Under review as a conference paper at ICLR 2026

PRIMITIVE EMBEDDINGS FOR
GENERATIVE MODELING IN INVERSE LITHOGRAPHY

Anonymous authors
Paper under double-blind review

ABSTRACT

During the manufacturing process of integrated circuits, we require a mask in or-
der to print a certain wafer design. Predicting this mask design is a complex task
in the field of inverse lithography. The mapping from wafer to the mask design
is ill-posed and requires solving a non-convex optimization task, having multiple
potential solutions. Any difference in the setup of the problem (e.g. initializa-
tion, patching, or a different discretization scheme) tends to generate inconsis-
tencies. The designed wafer features generally consist of a defined set of basic
objects (primitives). Larger features can be built by transforming and aggregating
these primitives. Following these observations, we propose a holistic generative
approach that utilizes primitive embeddings. We use a model that encodes prim-
itives per type, embeds positional information and then aggregates the feature in-
formation. A variational inference approach is then used to take samples of these
encodings in the latent space. The samples are transformed by normalizing flows
that try to recover the postulated distribution before constructing a mask design. A
generative model predicts one of the best mask designs, avoiding inconsistencies
and thus allowing for a flexible design approach. Finally we introduce a novel
scoring method to fit this probabilistic setup. We assess the performance of this
approach for a simplified inverse lithography setup. The main purpose of this
study is to investigate the use of primitive modeling in inverse lithography tasks.
Although we are not yet able to reach benchmark accuracy within this new setup,
results are promising from an application point of view.

1 INTRODUCTION

Integrated circuits lie at the basis of all digital technology. The microchips are typically manu-
factured on a silicon wafer, with small features (O(10nm)) imprinted to make up components like
transistors. The lithography process is a key step in the manufacturing of these integrated circuits
(IC). It involves the transfer of a chip design (encoded by a reticle mask) onto a light sensitive ma-
terial (photoresist) through a series of lenses or mirrors. Due to optical limitations, the reticle mask
needs to be designed knowing the characteristics of light, lens, mask and photoresist. Sub-resolution
assist features (SRAFs) need to be added to ensure that the masks are robust with regards to (stochas-
tic) variations of the light source, optical and resist properties (Shen et al.|(2011)),Shen| (2018))). The
desired wafer design is also known, leaving the mask design to be optimized in order to produce the
desired wafer features. This process is known as inverse lithography technology (ILT) and has for a
long time been one of the biggest challenges in semiconductor manufacturing.

Optimizing the masks for a full chip design is highly computationally demanding. Typically, the
mask optimization is done iteratively by minimizing a pattern fidelity loss, subject to manufactura-
bility constraints. To provide a faster solution, deep learning surrogate models are trained in a super-
vised manner and used as fast surrogate models for subtasks of predicting a continuous transmission
masks CTM (see e.g. Yang et al|(2018))). However, the ILT optimization problem is ill-posed,
with multiple solution masks producing the same target on the wafer. A naive deep learning model
will therefore lead to poor mask predictions, averaging over all possible outcomes (Lugmayr et al.
(2020)/Pathak et al.|(2016)). Generative models might help by capturing a joint probability distribu-
tion p(¢, z) on observations ¢ and their latent parameterization z (Kingma et al.,|2019).

Under review as a conference paper at ICLR 2026

Existing methods for mask design typically treat the entire chip as one entity. Patching (dividing the
chip into smaller parts) is used to make the optimization problem tractable, by providing smaller data
sizes. However, using such patches comes at the cost of inconsistency at borders between neigh-
boring patches, due to the ill-posed problem. In addition, changing a single feature still requires
remapping the entire patch. A more flexible, modular setup of chip design would be beneficial. We
propose to integrate a so-called primitive modeling setup with a variational auto-encoding (VAE)
architecture. We adopt a separable feature encoding scheme, to allow for flexible target generation
and easy domain validation. Next we use generative modeling to deal with the one-to-many mapping
of target to masks, while introducing a novel scoring method to fit this probabilistic setup.

2 PROBLEM STATEMENT

Inverse lithography is the process of generating a mask to produce a desired target. Let ¢ € Sy
be the desired target image, w € S, be the wafer exposure image, and ¢ € Sy be a mask pattern
(Pang, [2021). The dimensions of the target and mask image are Diareer and Dy respectively. Also,
let £ : Sy — S, be the forward model that maps a mask image to the target image. F' contains an
optical model H, expressing the low-pass filtering effects of the lens as light passes through it, and
a resist model 7" (Shen et al., 2011}, which is essentially a thresholding function caused by the local
activation of resist chemistry from the energy deposited on the wafer. Using these definitions, we
have:

w=F@)=T(H*y*) +e, (D

where e captures stochastic disturbances such as the number of photons that hit the resist material
Pang| (2021). The goal is to find a mask that brings the exposed wafer target w as close as possible
to the desired target ¢. Due to the optical resolution limitations, assist features have to be added
to mask designs that sharpen the projection of the main features on the photoresist material. The
contribution of these assist features is kept below the activation energy level of the resist, meaning
they do not contribute to direct features on the wafer target (Shen et al.l [2011). The placement of
these assist features is non-trivial: the forward model is a one-to-many mapping (Pang, [2021). In
other words, F' is not a bijective function so the inverse of F' does not exist. The state-of-the-art
approach to finding an appropriate mask is to define a loss function, typically a mean squared error,
characterizing the dissimilarity between the exposed wafer and the desired target. This loss is then
optimized with respect to a continuous relaxation of mask space, known as continuous transmission
masks (CTM), with nonlinear least-squares solvers.

We characterize the problem as maximum a posteriori estimation in a probabilistic generative model:

Y= arg max p(¢|w) plw|¥) p(¥), 2)

P

where p(w | 1) describes the likelihood of wafer exposures given masks and p(¢)) is a prior distri-
bution over masks. The distribution p(¢ | w) is essentially another likelihood function that is high
when the exposed wafer target is similar to the desired target. In the next sections, we explain how
we model these distributions and how we derive an effective inference procedure.

3 PRIMITIVE MODELING

The space of possible masks S for full target images is vast and searching it naively with an opti-
mization procedure will take a long time. We propose a smaller representation of the target space
that we hypothesize will make the inference problem easier.

Note that wafer targets ¢ are combinations of simple (i.e., non-self-intersecting) axis-aligned poly-
gons (Cecil et al.| [2022)). We refer to an individual polygon as a feature G.

Theorem 3.1. Any simple axis-aligned polygon G can be expressed as a finite union of rectangles.
The proof is a classical result in computational geometry (De Berg et al., [2008). Since targets are

simple axis-aligned rectangles, targets can be expressed as finite unions of rectangles. It follows
directly that the space of targets is covered by the space of finite unions of rectangles. But the two

Under review as a conference paper at ICLR 2026

spaces are not equivalent. The lithography system is diffraction-limited, which means two polygons
in the target must have a minimal distance between them. If the two polygons are too close to
each other, then the resulting mask is indistinguishable from the mask of a single polygon. In other
words, if the gap is too small, it is as if there would be no gap. Under finite unions of rectangles
it is possible to construct simple axis-aligned polygons that violate that constraint. These would be
elements from the space of finite unions of rectangles that are not part of Sy. This fact prevents us
from generating targets by optimizing over arbitrary finite unions of rectangles.

We will instead represent targets as combinations of primitives.

Definition 1. A primitive ¢, is a feature (i.e., a single simple axis-aligned polygon) from actual
wafer targets used in industry, represented as a binary image. In this image, white pixels represent
the interior of the polygon and black the exterior. As such, pixels represent the rectangles that
partition the polygon.

Figure [I] shows three examples of these primitives on the left. We construct targets by combining
smaller primitives on a larger blank image through spatial convolution:

N
Z Pp * Oy, > O, 3)
i=0

where 0, . is a two-dimensional unit impulse located at the point (z;,y;). From modeling of

the physics (section [1)) we know that the optical filtering kernel has limited field of view. This

observation motivates the primitive modeling approach by suggesting that features are composed of
nearby primitives.

Later on, we shall use variational autoencoders that encode and decode primitives. Training a model
that encodes these primitives independently, and subsequently aggregates and decodes the embed-
dings has several advantages. First, the model is suitable for any desired target that lies within the
pre-defined primitive domain, allowing easy validation of target design. Secondly, the entire mask
need not be recomputed when changing a single feature or primitive. Instead the modular setup
allows to recompute just the local area around the change, with less risk of introducing inconsis-
tencies. Finally, primitive aggregation can offer full field of view to the decoder, by aggregating all
encoded primitives in the lower-dimensional encoding manifold. When reconstructing a mask or
wafer target, the decoder can thus select the relevant encoded primitives based on their associated
positions. This reduces inconsistencies from patching.

4 GENERATIVE MODELING

The goal of generative modeling is to find a model that best explains the occurrence of observations
(¢), i.e. maximizes the evidence p(¢). Typically we find it more convenient to optimize for the
log-evidence instead, which leaves us to finding a tractable expression for In p(¢).

To this end, we introduce a latent variable z to the generative model and alters its factorization to be:

p(¢awa¢az) :Pa(¢|w)p9(7f%w | Z)p(z) (4)
We introduce a variational model over masks and the latent variable z given the target ¢:
q(, 2|) = q(¥ [2)q(z] ¢). (5)
Then we formulate an ELBO by lower bounding the log-evidence term (Kingma et al., [2016)):
(0) > Bygs o) [0 [pl00,6,2)0 ~ Ina(,2]) ©®

=By 00 [P0, 612)0] — Diala(GlONIpa)] — By [12)])
= Byt [1n [po(01)po(,012)d] ~ DialaGlo)Ip(2)] ~ Byt [ma(wl2)]. ®)

To tackle the integral over w, we introduce an importance sampling step over a distribution r(w | 2):

[o6 100801)0 = B[22 f(zy9|<;¢),w El

©))

Under review as a conference paper at ICLR 2026

This expectation is plugged into Eq.[8] which - through Jensen’s inequality - yields:
pa(¢ | w)pe(ﬂf’ W ‘ Z)]

r(w]z)
— Dxig(z | 9)[Ip(2)] = Eqry |) [Ing(| 2)] (10)

Given deterministic (neural networks) w = g,, (%) and ¢ = g, (2), this reduces to:

1np(¢) > Ezwq(z | #) [IHPGW = gl/)(z)vw = gw(z))] +Ez~q(z | #) [lnpﬂ((blz)]
joint plausibility generated mask and wafer projection data fidelity / accuracy
= D [a([9)IP(2)] = Bgs| »[Ina(¥] 2)]- (I

Note that the entropy over ¢(¢ | z) is 0 because 1) is generated deterministically from z. For the
accuracy term, we take the 2-norm between the generated wafer projection w and the desired wafer
projection ¢:

Inp(¢) > E.rogizjo) [0 po (9 (2), 90 (2))]| —Ezng(zie) [T;W*gw(z)\@} —Dxv[q(2|9)]Ip(2)].
(12)

np(¢) > Eq(y,z | ¢)Euwnr(w | 2) [In

As stated before in Section 2] the mapping ¢ — 1) is one-to-many and ill-defined (we may not know
all valid masks for a given ¢). For these reasons, we cannot use a naive pixelwise loss function
for mask reconstruction, neither can we construct a categorical-like loss. Instead, we derived a loss
term which is reminiscent to the adversarial loss in GANs (Goodfellow et al.l [2014) and the loss
value in membership inference (Hu & Pang| 2023)). This loss term (first component of the bound
in equation [I2)) is the joint plausibility of the generated mask and wafer projection. To evaluate
it, we propose training a standalone model that learns a proxy to the joint distribution p(w,).
This learned distribution can then be used to evaluate predicted samples p(gy (%), g, (2)), ensuring
consistency between predicted mask and wafer target (effectively the mask prediction model should
learn a joint latent distribution). Having such a probabilistic loss score nicely fits the context of
generative modeling and matches the difficulties that come with a one-to-many mapping.

The second component of the bound in equation[I2)is a data fidelity term that enforces the output by
the generator to have high likelihood, acting as a reconstruction error. The third component can be
thought of as a regularization term on the latent posterior, forcing it to approximate the postulated
prior distribution.

Different setups can be used for the generative and inference model; we use the variational auto-
encoder (Kingma et al.[(2019)/Kingma & Welling|(2013))), using a Gaussian prior on p(z).

4.1 TRANSFORMATION OF LATENT DISTRIBUTION

The better the posterior distribution p(z | ¢) approximates the true distribution, the better we will be
able to optimize the model parameters (Van Den Berg et al.,|2018). Unfortunately, a Gaussian prior
has limited descriptive power and it may not fully capture a complex (e.g. multi-modal) distribution,
which hampers performance. The authors from (Rezende & Mohamed, 2015)) tackle this problem
by using normalizing flows: a series of invertible transformations (using learned parameters) acting
on the prior. This effectively increases the expressiveness of the prior by constructing complex
distributions out of a Gaussian, such that the true posterior can be recovered. A special case of this
is Sylvester flow (Van Den Berg et al.||2018), which uses a set of mathematical tricks to ensure easy
optimization of the (flow) model. After K flow operations, we can rewrite the new, more complex
latent distribution as:
K
qr (2Kx) = qo(20) H

k=1

Mathematical details can be found in Appendix This new distribution g (zx) allows for a
more expressive posterior approximation. Replacing ¢ with g, we can rewrite the last term of
ELBO from equation[I2]as follows:

Ezkmax 4 (25 [9) = np(2)] = Ezgnge 0G0 (20 [¢) - P — Inp(2)] (14)
= Drr(90(20 | 9)[1P(2)) + Ezpngo [InP] (15)

Of (ze-1) '

Dot (13)

Under review as a conference paper at ICLR 2026

=0 ul :
[
P ®D+H+z

3

- »Dﬁmn<ﬂ

Figure 1: High level model overview. On the left, three stacks of images are shown for three different
types of primitives. Each stack is passed through the primitive embedding part (grey box) separately,
but for illustrative purposes this is only shown once. The resulting aggregated vectors per primitive
type are concatenated and passed on to the rest of the model.

where we define P as:

(16)

The first term in equation [15|is the KL-divergence between the simple base distribution gy and the
Gaussian prior p(z). The second term of equation accounts for the change of volume that comes
with the flow transformations. Having rewritten ELBO by incorporating normalizing flows, we
drive the sampling distribution towards a Gaussian. Meanwhile, the approximate posterior for the
latent variables is pushed to be as close to the real posterior as possible through optimizing the flow
variables.

4.2 LOSS FUNCTION

Putting everything together, we arrive at the following expression to optimize our bound, by mini-
mizing the loss function L:

1
—L= IEzwq(z | ¢) [lnpb‘ (gw(z)v gw(z))} *EZNq(z | ¢) [ﬁ”‘ﬁfgw(z)Hg]
— Dxr [q0(20 | 9)I[P(2)] 4 Ezgngo InP]. (17

With the first term a joint plausibility score based on a learned distribution p(w, ¢) to ensure mask
and wafer target consistency, and the second term a pixel-wise loss accounting for the data fidelity
term. p(z) is a Gaussian prior and P accounts for the flow transformations. The individual terms
will be weighted to account for any imbalances.

5 MODEL ARCHITECTURE

Our main contribution is the mask prediction model based on primitive embeddings. This model
encodes primitives and their positions, aggregates the embeddings and based on this generates an
output. A high-level overview of our proposed model architecture is given in Fig. [T}

5.1 PRIMITIVE EMBEDDING

One data sample ¢ consists of a set of primitives that together form a set of one or more features in
the field of view. Primitives of the separate types are grouped together. Each primitive has a specific
position with coordinates (x,y) within the field of view, as in (Dosovitskiy et al., [2020). These
coordinates are normalized and embedded into a vector using a sinusoidal encoding scheme, similar
to (Vaswani et al., 2017). The authors from (Annamoradnejad & Zoghil 2024) show that learning of
textual structural information is improved when an overview of the full text is given, in addition to
individual sentences. To simulate this, we give the model positional awareness by taking the relative
position of each primitive with regard to all other primitives in the field of view. These distances are

Under review as a conference paper at ICLR 2026

normalized, encoded and then summed into two final relative embedding vectors (for « and y). This
gives four position vectors per primitive. Besides, we have an image that uniquely represents its
shape, which is embedded via the inference model ¢(z | ¢) via a series of convolutions. At different
steps throughout the embedding, the position vectors are aggregated with the intermediate image
embeddings. This ensures that positional information is well represented and integrated in the final
primitive embedding.

The separate primitive types are fed through the encoding module separately (see fig. [T} however
encoder weights are shared. The embedded primitive vectors are summed per type, leaving one
vector for each type of primitives. These are aggregated through a simple concatenation and then
fed through a fully connected block, leaving a single vector h. From this a mean p and standard
deviation o vector are extracted through a linear transformation of h. These vectors py and og
describe the posterior distribution go(z | ¢).

5.2 SAMPLING AND FLOW

From ¢o(z0 | ¢), we obtain a set of latent variables zo ;Vi € {0, ...,63}. Random sample variables
are drawn from a normal distribution € ~ A (|0, 1). We use the reparameterization trick to compute
20 = o + oo - € (Kingma & Welling, 2013). The sampled latent variables zp ~ qo(zo | ¢) are
transformed by the flow model into zx = f(2¢). Latent variables zx are then passed on to the
generative model p(¢ | zx).

5.3 DECODING AND TRANSLATION

The decoder consists of two transposed convolutional blocks that have the exact same architecture
and are trained simultaneously. The first decoder produces a wafer target w = g,,(z) with all prim-
itives placed at their corresponding position in the field of view. Reconstructing the original image
from the primitives, forces the model to learn a meaningful latent posterior distribution p(z | ¢). Be-
sides, we can validate model output during inference, by evaluating whether the (known) mapping
from primitives to image is performed well. The second decoder predicts the desired mask image
1 = gy(z). While there is only one valid wafer target w given ¢y, there may be a set of N mask

images 9% = {wf’, w;’ sy wf,} associated with this wafer target w. Each of these mask images is
an equally valid output from the second decoder.

5.4 ERROR PREDICTION MODEL

A high-level implementation of the classifier/regression model that is used for predicting the loss
score is given in Fig. As input we use pairs of a wafer target image w with an associated mask
image 1, which are embedded separately. To guide the model, we use a third input channel, for
which we take the absolute difference |w — t|. This gives an indication of the correspondence
between the two images, since the main features of the wafer target are also present in the mask.
Each input channel has its separate encoder, and the embedded vectors are concatenated and further
embedded into one latent vector. The model has two output heads to give both a classification and
regression score. They have the same number of linear layers for decoding, however the classifier
head uses Sigmoid activation, while the regressor head uses ReL.U activation. They are trained using
binary cross-entropy (BCE) and mean squared error (MSE) loss respectively.

6 EXPERIMENTAL SETUP

A synthetic data set is used to train, evaluate and test the model. According to the primitive mod-
eling setup described in Section [3] a hierarchical data generation method is used to generate target
images. Details can be found in the supplementary material. The resulting target images are passed
through an iterative solver to compute the continuous transmission mask images. Settings have been
determined to create a simple but realistic setup, the details of which can be found in Appendix [A.4]
A dataset of 3000 images is synthesized and split 80-20 into a training and validation set.

Model optimization is done using Adam optimization method (Kingma & Ba, 2014). The error
prediction model and mask prediction model are trained for a maximum of 500 and 1000 epochs
respectively. Early stopping is used when convergence was reached and/or training became unstable.

Under review as a conference paper at ICLR 2026

o
=

LS

(b) Training sample 1.

—)I:l\l

MSE|0.8

(a) High level overview of the error prediction model. It takes
three input channels (target and mask image, and the abso-
lute difference between them), and outputs both a classifica-
tion and regression score. (c) Training sample 2.

Figure 2: On the left (figure an overview of the error prediction model architecture is given.
On the right, two training samples for this model are given. [2b] shows a correct but blurry match of
target and mask while [2c[shows a mismatched sample.

To evaluate model performance, we consider the following general objectives: 1) the predicted mask
must be valid, 2) all valid masks should have equal likelihood and 3) the final predictions should be
highly accurate. Experiments to test the objectives are reported in Section

The error prediction model is trained first, to be used as scoring model later. For each pass through
the model, wafer target images are rematched to a random other mask image in the dataset with
40% probability. Additionally masks and wafer targets are blurred with a 50% probability, using a
Gaussian filter operation with varying standard deviation. This simulates the blurry predictions that
are made during the first stages of training of the mask prediction model. Omitting this step would
lead to the model only predicting meaningful error scores for fully trained model predictions (which
has no use during early stages of training). The classifier output is a simple indicator of whether a
wafer target is associated with its original mask (1), or has been rematched (0). Since this scoring is
binary, the classifier head is trained with binary cross-entropy loss. The ground truth for regression
score is a normalized MSE-loss between the wafer target and the result of passing the associated
mask through the optics and resist model. Depending on the possible wafer target-mask rematching
and applied blurring, this score varies between 0 and 1, where O indicates a perfect match. The
regressor head is trained using mean squared error loss. Optimization settings for training of the
error prediction model can be found in Appendix

After training the error prediction model, it can be used to train the mask prediction model. Only
regression scores are used in model optimization, with exponentially increasing weights while de-
caying the weight of MSE loss to ensure steady convergence. Note that while the regression scores
are required for mask prediction, they also steer wafer target prediction towards probable outcomes.
On a high level, we can view the training approach as two-folded: first we force wafer target pre-
diction towards ground truth. Based on the predicted wafer targets, we then push mask predictions
to match these. Optimization settings for training of the mask prediction model can be found in

Appendix [A.§]

7 EXPERIMENTS

To test the objectives formulated in Section [6] we conduct experiments to compare the proposed
model against a benchmark. Additionally, a report of ablation studies is given in the supplementary
material. The test set used consists of samples. We report model sizes as the number of trainable
parameters. Note that the error prediction model is applied in inference mode, so using it increases
model size but the number of trainable parameters stays the same.

We include image-to-image mapping in some setups, to evaluate the model’s ability to handle input

Under review as a conference paper at ICLR 2026

Prediction error/score # params
Model configuration Regression Classification
A: two-channel input 0.0399 £ 0.074 99% 5.56M
B: three-channel input | 0.0239 £ 0.0418 100% 8.0M

Table 1: Results of training regressor and classifier loss model

(b) Proposed model (c) Ground truth

Figure 3: Results from different models on one data sample. The left column shows the recon-
structed wafer target w (3aland[3b)), or target design ¢ (3c). The middle columns shows an associated
mask % (prediction) and the right columns shows the resulting wafer image F'(¢)).

data in the form of primitives and their positions. Please note however, that from an application
perspective this image-to-image setup is less desirable, for reasons mentioned in Section 3]

The classification/regression error prediction model must be trained prior to training the mask pre-
diction model. Quantitative results are provided in table[I] for setup A with two inputs (wafer target
w and mask 1)), and setup B with an third input (absolute difference between wafer target and mask).
As metric for the regression prediction error, we measure the fraction of absolute difference between
predicted and true error, with respect to the true error. The classification prediction score is the per-
centage of images correctly classified. Scores are averaged over all samples from the test set. Some
examples of matched inputs from the test set are provided in Figures|2bjand

Table 2)shows quantitative results of our proposed model (setup A), compared to a benchmark (setup
B). The benchmark model deploys a simple encoder-decoder setup to perform the image-to-image
mapping. These models are evaluated on reconstruction towards both wafer target w and mask ¥
domain. The metric used for wafer target reconstruction is the mean absolute error between ground
truth ¢ and predicted output w. For the ILT targets (masks), the score metric is the mean absolute
error between the wafer target (in low resolution) ¢;, and the result of passing the predicted mask
through the optics and resist model F'(¢). This gives an unambiguous way of scoring the predict
mask performance. An example of model output from our proposed method is given in Fig. {3} where
we show ground truth and predicted outcomes.

8 DISCUSSION

An important goal of this study was to perform a mapping from primitive to image domain. While
this is beneficial application-wise (wafer design becomes more flexible), this is in fact a complex

Prediction error # params
Model configuration MAE(¢,w) MAE(¢y,-, F(v))
A: proposed 0.0075 £ 0.065 | 0.0026 £+ 0.026 13.9M
B: benchmark 0.0027 +0.033 | 0.00093 £ 0.0099 14.3M

Table 2: Model results compared against benchmark on ILT dataset.

Under review as a conference paper at ICLR 2026

task. Comparing model performance for an image-to-image and primitive setup, we see that the first
setup performs best. This suggests a more informative latent distribution i.e. structural information is
indeed better captured through images than through primitives and their positions. Still, the primitive
model is able to reconstruct masks and wafer targets reasonable well, with the main features present.

For a well-functioning mask reconstruction model, predicted error scores should be accurate. The
three-channel error prediction model is good at classifying images, but regression scores could be
improved. The setup with two-channel input performs slightly worse. Combining the wafer target
and mask image earlier in the model (e.g. during embedding) might help, allowing the model to
extract the difference between mask and wafer target.

Appendix[A.9)and report ablation studies to individually test the proposed models’ components
and an experiment to test our generative setup for the one-to-many mapping respectively.

8.1 LIMITATIONS

The convolutional network used is well-suited to capture structural information from images. For
our primitive setup however, a different encoder (e.g. graph networks) might be better, in which we
provide a categorical parameter (for the shapes) and some coordinates from a uniform distribution.

Aggregation of primitive embedding vectors is currently done via a summing operation. More ad-
vanced aggregation techniques can be explored to see what captures best the full latent distribution.

The distribution of input data provided during training of the error prediction model, should
correspond to the distribution of of output data of the mask prediction model. We tried to
approximate by training on mismatched and blurry data, but this is insufficient. Thus, we provide
out-of-distribution data during inference, leading to faulty error predictions. A GAN-like training
loop where the mask prediction model generates samples to train the error prediction model might
be beneficial. With each cycle, the input distribution of the error prediction model will be more
similar to the distribution on which it performs inference.

The dataset used has only a few different features. When using a dataset with randomized features
(i.e. no pre-defined set of features), the wafer target reconstruction model was more prone to over-
fitting during training. We hypothesize that this is because with limited sample size, randomized
samples have low structural similarity and the model can easily learn to discern them, i.e. over-
fit. Using larger datasets will force the model to learn the sample distribution instead of individual
samples. Using a dataset with 100 different features, the model did not overfit but wafer target
reconstruction was difficult.

9 CONCLUSION

In this study we trained a prediction model for mask reconstructions in a lithography application.
We proposed using primitive embeddings to allow for more flexibility in designing chip patterns in
this setting. This poses a harder challenge as we cannot simply map from image to image domain,
which caused a decrease in wafer target reconstruction and mask prediction accuracy. However, we
show that mask reconstruction based on primitive embeddings is possible and thereby address some
major challenges in inverse lithography.

Additionally, to deal with the one-to-many mapping in the data setup, we applied a generative model.
We also trained a separate error prediction model that could deal with the multiple possible outputs
in the given context. Although a gain in performance is required before the proposed model can be
applied in a real lithography setting, we show that our probabilistic setup works well for variable
sample prediction. As such, our proposed model aims to replace the inverse solvers that are typically
used to compute mask designs, saving computational time and resources. Finally, we introduced the
error prediction model in a very general way and we expect that this idea can be utilized in many
different applications.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We described a way of representing wafer target images ¢ as a collection of primitives. Appendix
[A.3] describes settings to synthesize these wafer targets. The corresponding masks can be obtained
using an inverse solver and (simplified) forward model, settings of which are given in appendix
The obtained data set can be used to first train the error prediction model, architecture and optimiza-
tion settings are provided in appendices[A.5|and[A.7]respectively. Next, the architecture of the mask
prediction model is provided in and optimization settings for different configurations are given
in appendix After training, the models can be used to construct mask predictions.

REFERENCES

Issa Annamoradnejad and Gohar Zoghi. ColBERT: Using BERT sentence embedding in parallel
neural networks for computational humor. Expert Systems with Applications, 249:123685, 2024.

Thomas Cecil, Danping Peng, Daniel Abrams, Stanley J Osher, and Eli Yablonovitch. Advances in
inverse lithography. ACS Photonics, 10(4):910-918, 2022.

Mark De Berg, Otfried Cheong, Marc Van Kreveld, and Mark Overmars. Computational Geometry:
Algorithms and Applications. Springer, 2008.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv:2010.11929,
2020.

Lucas H. Gabrielli. Gdstk (gdsii tool kit), 2020.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in Neural Informa-
tion Processing Systems, 27, 2014.

Hailong Hu and Jun Pang. Membership inference of diffusion models. arXiv:2301.09956, 2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv:1412.6980,
2014.

Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. arXiv:1312.6114, 2013.

Diederik P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling.
Improved variational inference with inverse autoregressive flow. Advances in Neural Information
Processing Systems, 29, 2016.

Diederik P Kingma, Max Welling, et al. An introduction to variational autoencoders. Foundations
and Trends® in Machine Learning, 12(4):307-392, 2019.

Andreas Lugmayr, Martin Danelljan, Luc Van Gool, and Radu Timofte. Srflow: Learning the super-
resolution space with normalizing flow. In European Conference on Computer Vision, pp. 715—
732. Springer, 2020.

Linyong Pang. Inverse lithography technology: 30 years from concept to practical, full-chip reality.
Journal of Micro/Nanopatterning, Materials, and Metrology, 20(3):030901-030901, 2021.

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros. Context
encoders: Feature learning by inpainting. In IEEE Conference on Computer Vision and Pattern
recognition, pp. 2536-2544, 2016.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In Interna-
tional Conference on Machine Learning, pp. 1530-1538. PMLR, 2015.

Yijiang Shen. Lithographic source and mask optimization with narrow-band level-set method. Op-
tics Express, 26(8):10065-10078, 2018.

10

Under review as a conference paper at ICLR 2026

Yijiang Shen, Ningning Jia, Ngai Wong, and Edmund Y Lam. Robust level-set-based inverse lithog-
raphy. Optics Express, 19(6):5511-5521, 2011.

Jakub Mikolaj Tomczak. Variational auto-encoders. URL https://jmtomczak.github.
io/.

Rianne Van Den Berg, Leonard Hasenclever, Jakub M Tomczak, and Max Welling. Sylvester nor-
malizing flows for variational inference. In Conference on Uncertainty in Artificial Intelligence,
pp- 393-402, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Informa-
tion Processing Systems, 30, 2017.

Haoyu Yang, Shuhe Li, Yuzhe Ma, Bei Yu, and Evangeline FY Young. Gan-opc: Mask optimization
with lithography-guided generative adversarial nets. In Proceedings of the 55th Annual Design
Automation Conference, pp. 1-6, 2018.

11

https://jmtomczak.github.io/
https://jmtomczak.github.io/

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 PRIOR DISTRIBUTION IN VARIATIONAL INFERENCE

As described in Section] a simple prior for the latent distribution can lead to decreased model
performance. This gap in performance stems from the difference between the true and approximate
posterior and can be inferred from the log-likelihood function p(¢) (for the full derivation, see
(Tomczak)):

Inp(6) = Exvg i p(0)] s
e [2 0(o)
=Eeny [P 0 1
o e 1E16) | a(10)
=Eonn mplo1) - 25 B 0
= B.ny Ip(612)] — KLlo(z | 0)Ip(:)] + KLl |9z 9). 2D

Now the last component K'L [q(z | ¢)||p(z | ¢)] gives a measure of the difference between the true
posterior p(z | ¢) and the approximate posterior ¢(z | ¢). Compare this with the normal equation for
ELBO loss to see that this KL-divergence term is not present there:

np(¢) = Ezng [Inp(¢ | 2)] = KLg(z |)llp(2)] - (22)

In principle, the KL [q(z]| ®)||p(z | ¢)] is non-negative and thus we can leave it out and obtain
the ELBO. However, this term shows that there can be a gap between the ELBO that we optimize
for, and the true posterior. As a consequence the set of parameters that maximizes ELBO may
be suboptimal and is not necessarily the same as the set of parameters that maximizes In p(¢).
Consider having a basic Gaussian prior, and a complex (e.g. multi-modal) true distribution p(z | ¢).
The approximate posterior distribution will never reach the shape of the true distribution, leading to
the gap in estimated model parameters that was derived above. This observation motivates setting a
more expressive prior in order to reach a better approximation.

A.2 FLOW MATHEMATICS

To construct a flow series, we use invertible functions f; (unrelated to the forward model F’) of the
following form:

fk(Zk> = zr + Ah(BZ + k+ b) where 2z + 1« fk(zk) (23)

A and B are matrices that can be learned from data, and are constructed according to the method for
Orthogonal Sylvester Normalizing Flow (O-SNF) construction described in (Van Den Berg et al.,
2018). These functions are used to construct a series of K flow operations, through which we can
transform given set of variables zg:

2k = f(z0) where f=fgo---ofsofi. (24)

The new, more complex distribution formed through the flow can be computed by using a change of
variables:

Of Hzk-1 .

K
tox (2x) = ay0(20) [| -

k=1

(25)

A.3 WAFER TARGET DATA GENERATION

Each target image consists of multiple features drawn randomly from a pre-defined set, which are
placed randomly across the image, in a non-overlapping fashion. Each feature in turn consists of
multiple primitives, mimicking standard patterns across chips. Four different types of primitives
have been defined: 1) a unit square with width w = u and height i = u; 2) a horizontal rectangle
(w = au, h = u); 3) a vertical rectangle (w = u, h = bu), and 4) a corner-like shape, composed
of two touching rectangles (one horizontal and one vertical). The horizontal and vertical rectangle
have variable width w and height h respectively, while for the corner shape both h and w can vary.

12

Under review as a conference paper at ICLR 2026

Image size 896 nm
Feature unit size 56 nm
Max. feature size | 560 nm
Pixel size 7 nm

Table 3: Settings for generation of target images

Image size [128, 128] px
Zero-padding 96 px
Pixel size 7 nm
Optical kernel main lobe [56, 56] nm
Sigmoid rescale resist 20.0
Threshold resist 0.30

Nr. optical side lobes considered 3

Nr. iterations 250

Table 4: Settings for generation of continuous transmission masks, using a non-linear least squares
solver

The unit size v is the minimum printable feature size. A suitable distance (in lithography context
called the ’pitch’) is maintained between separate primitives and features to ensure that the intended
design can be produced on the wafer given the optical model properties [Pang| (2021)). All target
images are synthesized in the GDSII format that is typically used in chip design contexts |Gabrielli
(2020). These GDSII files are subsequently rasterized to be used in image format, and saved together
with (z,y) of the primitive shapes in the image plane. First, targets are converted to low resolution
by applying a blurring and downsampling transformation, to make a printable image. Next, these
low resolution images are zero-padded to prevent aliasing during modeling when used together with
the inverse solver.

A.4 SETTINGS FOR MASK COMPUTATION

The target images are built using the settings shown in table 3] The mask images are subsequently
constructed using an inverse solver with settings as provided in table 4]

A.5 ERROR PREDICTION MODEL ARCHITECTURE

The error prediction model uses two or three encoder blocks, based on the configuration used (dif-
ference image embedded or not). The structure of these blocks is given in the first half of Table [5}
input size is (1, 256, 256). The outputs from each of the encoder blocks is a vector of size (256, 1,
1). These vectors are combined and fed through a combining convolutional block as presented in the
second half of table@ The input size is (256, 2, 1) or (256, 3, 1) depending on the configuration. As
activation function after each layer LeakyReLU is used. The model is completed by two heads for
regression and classification, structure of which is given in table[6] Both are fully connected neural
networks, take as input a vector of length 256 and output is a single number.

A.6 MASK PREDICTION MODEL ARCHITECTURE

The mask prediction model can be used in either an image-to-image or primitive setup. The primitive
setup uses a sinusoidal encoding scheme to produce vectors for absolute and relative position. The
encoding scheme has depth 200 and outputs encoded vectors of length 64. These are added to
the outputs of convolutional layers. The primitive embedding scheme is given in table [0] The
image embedding scheme is given in table(8| All layers in both the primitive and image embedding
modules have LeakyReLU activation. Input size for the primitives is (1, 64, 64) and for the images
is (1,256, 256). They output a vector of length 256. For the sampling and flow setup, a mean and
variation vector of size 64 are extracted by two separate linear layers. These are used to sample
a vector of latent variables which is fed into the flow network. For the setup without sampling or
flow, one linear layer of size 64 is used, with a LeakyReLLU activation. The output of this layer is
the vector of latent variables. After reparameterization, mean and variance vectors are clamped to

13

Under review as a conference paper at ICLR 2026

layer type | nr. filters | kernelsize | stride | padding

Embedding modules
Conv2D 16 [5, 5] 1 2
Conv2D 32 [5, 5] 4 2
Conv2D 64 [5, 5] 2 2
Conv2D 128 [3, 5] 4 2
Conv2D 256 [8, 8] 1 0

Combining embedding
layer type | nr. filters kernel size stride | padding

[72]

Conv2D 512 2, 1Jor (3,11 | 1 0
Conv2D 512 [1, 1] 1 0
Conv2D 256 [1,1] 1 0

Table 5: Embedding module for error prediction module

layer type | size [activation

Regression
Linear 128 | LeakyReLU
Conv2D 64 | LeakyReLU
Conv2D 1 ReLU
Classification

Linear 128 | LeakyReLU
Conv2D 64 | LeakyReLU
Conv2D 1 Sigmoid

Table 6: Regression and classification heads for error prediction model

ranges of [—20, 20] and [—5, 5] respectively, for stable convergence. The final latent vectors of size
64 are fed into decoding modules that are used for mask and target prediction. Their architecture is
given in table [0}

A.7 OPTIMIZATION SETTINGS ERROR PREDICTION MODEL

Optimization settings for training of the error prediction model can be found in table MSE loss
and BCE loss are weighted 1 : 0.1 respectively. The ground truth for regression loss is computed as
follows: we compute the maximum over all samples of taking the score of each wafer target image
with respect to a zero image. Then we compute the maximum of taking MSE score of each recon-
structed target image (both blurred and not blurred) with respect to a zero image. We approximate
that the maximum error is the sum of these. As minimum error we take the minimum of a MSE
scores over all wafer targets with respect to their reconstructed target images. Then we normalize
all other scores with respect to these minimal and maximal errors.

A.8 OPTIMIZATION SETTINGS MASK PREDICTION MODEL

Optimization settings for training of the mask prediction model can be found in table[I2] Loss terms
are weighted as MSE,, : KL : MSE,;, = 0.5 : 1071% : 0.5. For training of the loss model, after
a sensibility check that MSE,, < 0.05, the weight of MSE,, was replaced with an exponentially
decaying (w = 0.986°PM ™) factor. Simultaneously a predicted regression loss score was clamped
between 0 and 1, and added to the total loss with weight 1072 - (1 — 0.986°P°h) Settings for flow
are left at default from (Van Den Berg et al.| 2018)).

A.9 ABLATION STUDIES

A set of ablation studies is performed with results shown in Table Models are evaluated on
reconstruction towards both wafer target w and mask) domain. The metric used for wafer target
reconstruction is the mean absolute error between ground truth ¢ and predicted output w. For the
ILT targets (masks), the score metric is the mean absolute error between the wafer target (in low

14

Under review as a conference paper at ICLR 2026

layer type nr. filters | kernel size | stride padding
GatedConv2D 16 [5, 5] 1 2
GatedConv2D 32 [5, 5] 2 2
GatedConv2D 32 [5, 5] 2 2
GatedConv2D 64 [5, 5] 1 2
repeat each position vector 4 times, reshape to (1, 16, 16), and concatenate with filters
GatedConv2D 64 [5, 5] 1 2
GatedConv2D 64 [5, 5] 2 2
GatedConv2D 64 [5, 5] 1 2
reshape each position vector to (1, 8, 8), and concatenate with filters

GatedConv2D 64 [5, 5] 1 2
GatedConv2D 256 [8, 8] 1 0

reshape the four position vectors to (256, 1, 1), and concatenate with filters
GatedConv2D [256 [2, 1] [1 [0
layer type size activation
Linear 512 LeakyReLU
Linear 256 -

Table 7: Primitive embedding module for mask prediction model

layer type | nr. filters | kernel size | stride | padding
Embedding modules
GatedConv2D 16 [5, 5] 1 2
GatedConv2D 16 [5, 5] 2 2
GatedConv2D 32 [5, 5] 2 2
GatedConv2D 32 [5, 5] 1 2
GatedConv2D 32 [5, 5] 2 2
GatedConv2D 64 [5, 5] 1 2
GatedConv2D 64 [5, 5] 2 2
GatedConv2D 128 [5, 5] 2 2
GatedConv2D 256 [8, 8] 1 0

Table 8: Image embedding module for mask prediction model

layer type nr. filters | kernel size | stride padding
GatedConv2D 16 [5, 5] 1 2
GatedConv2D 32 [5, 5] 2 2
GatedConv2D 32 [5, 5] 2 2
GatedConv2D 64 [5, 5] 1 2
repeat each position vector 4 times, reshape to (1, 16, 16), and concatenate with filters
GatedConv2D 64 [5, 5] 1 2
GatedConv2D 64 [5, 5] 2 2
GatedConv2D 64 [5, 5] 1 2
reshape each position vector to (1, 8, 8), and concatenate with filters

GatedConv2D 64 [5, 5] 1 2
GatedConv2D 256 [8, 8] 1 0

reshape the four position vectors to (256, 1, 1), and concatenate with filters
GatedConv2D [256 [[2, 1] [1 [0
layer type size activation
Linear 512 LeakyReLU
Linear 256 -

Table 9: Primitive embedding module for mask prediction model

15

Under review as a conference paper at ICLR 2026

layer type | nr. filters | kernel size | stride | padding
Prediction modules
GatedConv2DT 256 [8, 8] 1 0
GatedConv2DT 128 [5, 5] 2 2
GatedConv2DT 64 [5, 5] 2 2
GatedConv2DT 64 [5, 5] 1 2
GatedConv2DT 32 [5, 5] 2 2
GatedConv2DT 32 [5, 5] 1 2
GatedConv2DT 32 [5, 5] 2 2
GatedConv2DT 16 [5, 5] 2 2
GatedConv2DT 16 [5, 5] 1 2
Conv2D 1 [1, 1] 1 0

Table 10: Mask and wafer target prediction modules for mask prediction model

epochs (two-channel input) 300
epochs (three-channel input) 500
batch size 32
learning rate Se-5
gradient clipping 0.5
image size (256, 256)
threshold for classification 0.5

Table 11: Optimization settings for error prediction model

Configuration || Proposed | No prim. | No rel. pos. | No sampl./flow | No classifier [Benchmark

epochs 200 [200 [200 [200 1000 1000
batch size 32

learning rate le-5

grad. clipping 0.6 [0.7 [0.6 [0.6 0.6 0.6
mask im. size (256, 256)

prim. im. size (64, 64) - (64, 64) (64, 64) (64, 64) -
input im. size - (256, 256) - - - (256, 256)
flow type orthogonal | orthogonal | orthogonal - orthogonal -

Table 12: Optimization settings for mask prediction model

16

Under review as a conference paper at ICLR 2026

a) Ground truth

b) Proposed model

¢) No primitive setup

d) No relative position encoding

Figure 4: Wafer target reconstruction of four different samples, for different model configurations.

Prediction error # params
Model configuration | MAE(¢,w) | MAE(¢;, F(v)) |
Full model 0.0075 £ 0.065 | 0.0026 £ 0.026 13.9M
A: no primitives 0.0021 £+ 0.026 | 0.00083 £ 0.0089 14.9M
B: no relative pos. 0.0061 £0.059 | 0.0023 £ 0.024 13.9M
C: no sampling/flow | 0.0098 +0.077 | 0.0031 £ 0.031 13.2M
D: no classifier loss 0.0249 £ 0.13 0.0100 £ 0.071 13.9M

Table 13: Results of ablation studies

resolution) ¢;,- and the result of passing the predicted mask through the optics and resist model
F(v). Performance of the full model (the proposed method) is shown for comparison. Four extra
model configurations are tested, leaving out one of our proposed methods at a time. Setup A omits
the primitive encoding part, using image-to-image mapping instead. In B we use the primitive setup,
but leave out the relative position encoding. C goes back to a deterministic modeling setup, with no
sampling or flow in the latent space. Finally, setup D uses a naive MSE loss function on the mask
prediction instead of the trained loss scoring model. Note that combining all these ablations results
in the benchmark model setup. Some examples for wafer target reconstruction by different model
configurations are shown in Fig. [

Looking at the comparison between benchmark and proposed model, we see that the benchmark
performance is better. This is expected, as its task is simpler: we omit the complex primitive setup
and although we will not have a spread in the predicted mask domain, the model can learn to predict
a general mask shape well. In the ablation studies we see the same effect: the model performs

17

Under review as a conference paper at ICLR 2026

Hmask Omask Htarget Ttarget

(a) Proposed model

Hmask Omask Htarget Otarget

(b) No error prediction model

Figure 5: Visualization of spread between different predictions. Columns 1 and 2 show the mean
and variance of predicted masks respectively. Columns 3 and 4 show the mean and variance of
predicted targets respectively.

Prediction error
Model config. Spread masks | Spread targets
A: proposed 8.85-10717 5.28 -107°
B: benchmark 0 0

C: no loss model | 4.07-1073 1.89-1074

Table 14: Results of sampling multiple masks

slightly better about 3x better when omitting the primitive setup. Furthermore, the ablation studies
show that adding relative position is not helpful in this setup. However, earlier results on toy datasets
showed that adding relative position improved the model’s reconstruction ability. There might be
other methods to add context to the model, that work better in the proposed setup. Finally we see that
adding the error prediction model to the setup improves performance, which is desired. However,
we did not fully investigate using the exponentially decaying MSE loss without adding an error
prediction model, which could also be of influence.

A.10 MULTIPLE MASK PREDICTION

One goal of this study was to enable the one-to-many mapping in mask prediction. We test this by
sampling multiple times from an encoded set of primitives, and evaluating the spread of predicted
mask images. This spread s, is measured using mean absolute differences between predicted masks.
A high spread within the set of predicted masks is only useful if the masks actually map back to
one wafer target. Therefore we also evaluate the spread of the images resulting from putting the
predicted masks through the optics and resist model. Results are averaged over five data samples,
with 20 masks sampled from each, and shown in Table 4] for different model configurations. Fig. 5]
shows a visual example of the differences in masks and wafer targets.

Comparing the spread in predicted masks between the setups with and without error prediction
model, we actually see that using no error prediction model we have a higher spread in the predicted
output masks. However, the prediction errors for this setup are more than twice as high, and also
the spread in wafer target domain is higher which is not desired. Having multiple faulty predictions
can also lead to a higher spread in the prediction domain; but this is not the desired effect. Visually
looking at the results in Fig. [5| we see that differences between predictions are mostly around the
edges of target and main features, which is as expected. The main features are represented quite
well across all images.

18

	Introduction
	Problem statement
	Primitive modeling
	Generative modeling
	Transformation of latent distribution
	Loss function

	Model architecture
	Primitive embedding
	Sampling and flow
	Decoding and translation
	Error prediction model

	Experimental setup
	Experiments
	Discussion
	Limitations

	Conclusion
	Appendix
	Prior distribution in variational inference
	Flow mathematics
	Wafer target data generation
	Settings for mask computation
	Error prediction model architecture
	Mask prediction model architecture
	Optimization settings error prediction model
	Optimization settings mask prediction model
	Ablation studies
	Multiple mask prediction

