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ABSTRACT

While compositional generalization is fundamental to human intelligence, we still
lack understanding of how neural networks combine learned representations of
parts into novel wholes. We investigate whether neural networks express represen-
tations as linear sums of simpler constituent parts. Our analysis reveals that models
trained from scratch often exhibit decodability, where the features can be linearly
decoded to perform well, but may lack linear structure, preventing the models
from generalizing zero-shot. Instead, linearity of representations only arises with
high training data diversity. We prove that when representations are linear, perfect
generalization to novel concept combinations is possible with minimal training
data. Empirically evaluating large-scale pretrained models through this lens reveals
that they achieve strong generalization for certain concept types while still falling
short of the ideal linear structure for others.

1 INTRODUCTION

Compositional understanding is the ability to combine simpler building blocks into novel, com-
plex representations. It is widely regarded as a cornerstone of human intelligence (Dehaene
et al., 2022). The Language of Thought hypothesis suggests that cognition arises from fun-
damental components and structured recombination rules (Fodor & Fodor, 1975). A growing
body of work suggests that neural network representations often exhibit linear structure, where
concepts, such as attributes or object properties in images, are represented as directions in the
feature space (Park et al., 2023; Trager et al., 2023), and allow for arithmetic manipulations
of them (Ravfogel et al., 2024; Wang et al., 2024b). Often referred to as the linear repre-
sentation hypothesis, this idea holds promise for explaining many recent successes observed
in compositional generalization (Trager et al., 2023; Abbasi et al., 2024; Mayilvahanan et al.,
2024) and informing how structure can be exploited to improve compositional generalization.

Color

Shape

Color Color

(1) Incorrect zero-shot (2) Correct decoded (3) Correct zero-shot

Decodable Linear

Shape Shape

Figure 1: Importance of linear feature structure for composi-
tional generalization. We illustrate a schematic for shape and color
classification using linear models in a 2-dimensional feature space,
comparing zero-shot and adapted cases with frozen feature extractor.
(1) If the feature space lacks a linear structure, the model misclas-
sifies the orange square in zero-shot inference. (2) Adaptation
by adding orange square samples allows correct classification.
(3) A linearly structured feature space enables correct zero-shot
generalization without adaptation.

We argue that without structured rep-
resentations in a model f = ftask ◦
frepr, that can be seen as a composition
of a feature extractor and task-head,
the model may struggle with concept
combinations it has not encountered
during training, whether in zero-shot
inference or adaptation. This is par-
ticularly concerning for downstream
models that build atop of frozen repre-
sentations, as these models must inter-
pret the structure of feature-extractor’s
representations even for unseen data
to perform well.

Recent works have shown that fea-
tures themselves are often decodable,
and are capable to address spurious correlations (Rosenfeld et al., 2022; Kirichenko et al., 2023;
Uselis & Oh, 2024). In particular, when a linear model is trained on frozen feature representations
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over a dataset with all possible concept combinations, the model often generalizes well within the
same data distribution. While this is promising, if we do not understand how the representation space
encodes concept combinations, ensuring generalization requires exposing the model to all possible
combinations, a task that quickly becomes infeasible. For example, as shown in Figure 1 (center),
adding datapoints that do not follow the structure the model expects can still enable correct classifica-
tion, indicating that adaptation can compensate for unstructured representations. However, collecting
such balanced datasets is often impractical, especially when the number of possible combinations is
large. If representations continue to exhibit a simple structure, such as linearity, even under unseen
concept combinations, generalization becomes possible without requiring exhaustive supervision, as
demonstrated in Figure 1 (right).

In this work, we investigate whether neural network feature representations can be decomposed as
the sum of independent, concept-specific vectors. Specifically, we show that this additive structure
naturally emerges when models are trained from scratch (Section 4), how it benefits compositional
generalization (Section 3.2), and that it is largely present in large-scale pre-trained models (Section
5).

2 RELATED WORK

Research on compositionality has taken several approaches, including both complexity-based and
structural perspectives (Elmoznino et al., 2025; Lepori et al., 2023). Neural networks often learn
to build complex representations by combining simple parts—a behavior sometimes attributed to
principles like Occam’s razor and the inherent simplicity observed in data (Ren & Sutherland,
2024; Geirhos et al., 2020; Valle-Pérez et al., 2018). Nonetheless, these models can sometimes rely
on misleading statistical patterns instead of capturing true compositional relationships (Pezeshki
et al., 2021; Scimeca et al., 2022), a problem that becomes especially apparent when certain valid
concept combinations are scarce in the training data (Sagawa et al., 2020). Other studies have
explored compositionality in generative models (Montero et al., 2022; 2020) or in settings with fixed
compositional datasets (Madan et al., 2021; Schott et al., 2022).

To promote better compositional generalization, recent methods have explored strategies like soft
prompting (Nayak et al., 2023), representation alignment (Wang et al., 2024a; Koishigarina et al.,
2025), and customized neural architectures (Zahran et al., 2024). There has also been notable progress
in object-centric approaches (Locatello et al., 2020; Wiedemer et al., 2023) and in developing metrics
for compositionality (Park et al., 2024b; Keysers et al., 2020), but mostly in language settings.

3 BENEFITS OF LINEARITY

3.1 STRUCTURE OF DATA AND MODELS

Data structure. At a high level, we study images that can be fully described by combinations of
discrete concepts (like color, shape, size). Each image maps to exactly one combination of concept
values, and each valid combination maps to exactly one image. We adapt the setup from (Trager et al.,
2023; Okawa et al., 2023; Park et al., 2024a) to study images that can be described by combinations
of concepts and their values.
Definition 3.1 (Concepts and Concept Space). A concept space C = C1 × · · · × Ck is a Cartesian
product of k sets, where each set Ci is called a concept and contains all possible values for concept
i. Each element ci ∈ Ci is called a concept value, and each element c ∈ C represents a unique
combination of concept values (c1, . . . , ck) where ci ∈ Ci.

For example, in the case of images, concepts could be the attributes of an image, such as color, shape,
and size, while concept values could be the specific color red, the shape triangle, and the size large.

We assume a mapping c : X → C that assigns to each image x ∈ X its corresponding concept values
c(x) = (c1, . . . , ck) ∈ C. In other words, each image maps to exactly one combination of concept
values, and conversely, each valid combination of concept values maps to exactly one image. In this
work we assume all concepts are discrete, i.e. there is no inherent order between concept values of
any concept. In our experiments we will deviate from this assumption and work with concept spaces
where some concepts are ordinal, but we will treat them as discrete to keep this study simple.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Model structure. We consider feature extractors that map visual inputs to a representation space
Rd, which can be described as f : X → Rd, where X is the space of inputs and Rd is the space of
representations. This model can be extracted from most models trained under different settings: in
supervised-learning models, this amounts to a linear layer on top of the features, in self-supervised
models like DINO this corresponds to the encoder that compares augmented views of the same image,
and in vision-language models like CLIP this represents the vision encoder that aligns visual features
with text embeddings.

Representation structure. Feature spaces may exhibit structure in how they relate to the concept
space C. The feature extractor f maps images to representations that may encode concept information,
and while the full complexity of this mapping can be difficult to analyze, we study whether the
representations follow simple linear structure. In particular, we study how linearly concepts combine
in the representation space - a property that is often assumed in concept learning and has emerging
empirical support (Stein et al., 2024; Trager et al., 2023; Leemann et al., 2023). In particular, we
study linear structure in the feature space, defined as follows:
Definition 3.2 (Linearly Factored Embeddings (Trager et al., 2023) and Concept Representations).
Given a concept space C = C1× · · ·× Ck, a collection of vectors {uc}c∈C is linearly factored if there
exist vectors uci ∈ Rd for all ci ∈ Ci (i = 1, . . . , k), which we refer to as concept representations,
such that for all c = (c1, . . . , ck):

uc = uc1 + · · ·+ uck . (1)

Should such a linear mapping exist? Intuitively, we would want the representation to behave like a
“switch” - having high similarity with vectors representing concepts that are present in the input, and
low similarity with those that are not. This would allow detecting each concept independently of the
others. As we show in Prop. A.1 in the Appendix, if representations satisfy an idealized version of this
property, there must exist concept representations that combine linearly to form the full representation.
While neural networks need not learn such representations, this provides one possible path to such
linear structure emerging during training.

Task: Compositional generalization. We study how the structure of learned feature spaces enables
compositional generalization in neural networks. Given a training dataset Dtrain ⊂ X × C containing
only a subset of possible concept combinations, we evaluate generalization to a test set Dtest ⊂ X ×C
containing novel combinations of familiar concepts. While images may contain many concepts,
we focus on two target concepts whose ground truth labels we observe during training, where
each concept has at most n possible values. Unlike standard i.i.d. generalization where train and
test distributions match, here Dtest contains systematically different pairings of these two n-valued
concepts.

The key distinction from standard generalization is that test examples contain novel combinations of
familiar concepts, rather than entirely new concepts. Success requires the model to learn representa-
tions that capture the compositional nature of the data rather than memorizing valid combinations.

3.2 BENEFITS OF LINEAR REPRESENTATIONS FOR COMPOSITIONAL GENERALIZATION

Recovering concept representations. Assuming that a representations from f are linearly factored,
we can recover the individual concept vectors ui by observing just two combinations per concept
value. Additionally, we can construct optimal classifiers of any concept value. Besides the linear
factorization in the representations, the only condition we require is that the concept representations
are not linearly-dependent. We summarize this result below.
Proposition 3.3 (Minimal Compositional Learning). Let f : X → Rd be a feature extractor with
linearly factored concept embeddings over C. Let U = {u1, . . . ,un} and V = {v1, . . . ,vn} be the
concept vectors for the first and second concepts respectively, where span(U + V ) has dimension
2n− 1. Suppose we only observe joint representations sharing concepts ci, cj ∈ {1, . . . , n}. Then
m = 2 combinations per concept value suffice to learn a linear classifier that perfectly generalizes to
all (n−m) · n unseen combinations.

This theorem shows that with linear factorization, observing just two combinations per concept value
allows recognizing all possible combinations. Specifically, we can generalize from O(n) training
combinations to all O(n2) possible combinations by decomposing and recombining concept vectors.
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While this demonstrates the power of linear structure, it does not explain why and if networks would
learn such representations.

3.3 EXPERIMENTAL SETUP

Concept 1

C
on

ce
pt

2

Concept 1

m = 3 m = 2

Train Eval
Figure 2: Training combinations
for n = 4 concepts with m = 3
and m = 2 combinations per
concept value. Blue cells indicate
training combinations, while or-
ange cells represent unseen test
combinations. Each concept value
appears in exactly m training
combinations.

Training and testing sets Dtrain and Dtest. In real-world scenarios,
not all possible combinations of visual concept values occur with
equal frequency: some combinations may be rare or entirely absent
from the observed data. For any dataset, we focus on pairs of key
concepts (e.g., color and shape). Our framework characterizes the
number of possible training combinations through a parameter m
which dictates the number of combinations each concept value ap-
pears with. For each concept value i ∈ {1, . . . , n}, we select m
combinations with values from the other concept to form our train-
ing set. Within each valid training combination (each “cell” in our
concept grid), we sample ncell examples uniformly from all possible
variations of the remaining unlabeled concepts Cvary (like position,
orientation, background, etc.). This uniform sampling across |Cvary|
possible variations ensures balanced representation of each concept
combination across different visual contexts. We elaborate in the
Appendix. We illustrate the training and test sets conceptually for m = 3 and m = 2 combinations
per concept value in Figure 2.

Throughout our experiments, we fix the training dataset size to be 40,000 samples, regardless of m,
i.e. the diversity of concept combinations. In from-scratch case we perform oracle model selection
(Gulrajani & Lopez-Paz, 2020) by picking the epoch that maximizes the sum of individual concept
accuracies.

General evaluation approach. In this work, we evaluate whether linear structure emerges naturally.
To do so, we train models from scratch (Section 4) and examine whether such structure is present in
pre-trained models (Section 5).

In the from-scratch setup, we analyze how compositional generalization and the linearity of structure
depend on data diversity, quantified by the factor m in Equation (2). In the pre-trained model setup, we
instead assess accuracy under the assumption of linear representations. To achieve this, we construct
optimal classifiers for each concept pair following Proposition 3.3. In this case, we always set m = 2,
meaning only two concept combinations are observed for each concept value. Further details are
provided in the respective sections.

Datasets. We use a set of five datasets for performing analysis in this work. We chose these datasets
since they have associated concepts and their values associated with each sample. We elaborate in
Appendix A.3.

4 EMERGENT LINEAR STRUCTURE: THREE PHASES OF FEATURE LEARNING

In this section, we examine the zero-shot compositional generalization of models trained from scratch
and its relation to decodability and linearity;.

Setup. We use a randomly-initialized RESNET-50 (He et al., 2015) with linear classification heads.
The model outputs two predictions f(x) = (f1(x), f2(x)) where fj : X → Cj predicts the value of
concept j using a shared backbone followed by separate linear heads. We learn fixed classification
heads directly from visual data to provide an optimistic setting for compositional generalization.
ViTs were considered but we found them underperform when trained from scratch compared to
RESNET-50.

Metrics. We evaluate models on both compositional generalization and representation structure. For
generalization, we measure zero-shot accuracy on unseen concept combinations in Ctest (details in
Appendix A.3). For representation structure, we analyze: (i) Decodability Kirichenko et al. (2023) -
accuracy of linear probes trained on balanced data to assess concept discriminability, (ii) Linearity -
R2 score between representations and their linear reconstruction from concept components, and (iii)
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Orthogonality - mean cosine similarity between concept representations. Detailed metric definitions
and implementation are provided in Appendix A.2.
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0 25 50 75 100

% of Combinations

0.4

0.6

0.8

Linearity 
R2

0 25 50 75 100

% of Combinations

0.1

0.2

cos(u1, u2)

FSprites 3DShapesCMNIST DSpritesPUG-Animal

0 25 50 75 100

% of Combinations

0.0

0.2

0.4

0.6

0.8

1.0
Decoded accuracy

0 25 50 75 100

% of Combinations
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Figure 3: Linearity emerges with data diversity, while feature discriminability alone does not imply
linear structure. (a) Feature discriminability emerges early but does not imply compositional structure, (b)
Linear concept representations only emerge with increased training diversity, as shown through R2 scores and
orthogonality measures, (c) PCA visualizations confirm evolution from entangled to linear feature organization
as training diversity increases. X-axis represents percentage of training combinations m/n, with n being the
maximum number of concept values.

Results. Our analysis reveals two key findings about how neural networks learn to represent concepts.
First, we find that linearity in representations emerges naturally as models are exposed to more
diverse training combinations. As shown in Figure 3(b), both the linear separability (R2 scores) and
orthogonality (cosine similarity) of concept dimensions improve with increased training diversity.
This emergence of linear structure is accompanied by improved zero-shot generalization - Figure 3(a)
shows that zero-shot accuracy on unseen combinations steadily increases as training diversity grows.

Second, we observe that this progression occurs in three distinct phases: (1) With limited concept
combinations (0-10%), models learn spurious features with poor discrimination (decoded accuracy
<80%) and random-level zero-shot performance, as shown by entangled representations in Figure 3(c)
at 8%. (2) At moderate diversity (25-75%), linearity and orthogonality begin emerging (Figure 3(b)),
with features becoming decodable (100% accuracy) and zero-shot performance reaching 60-80%. (3)
At high diversity (75-100%), while discriminability plateaus, representations become strongly linear
(R2 > 0.8) and orthogonal (cosine similarity <0.1), enabling zero-shot accuracy above 90% on the
majority of the datasets. The PCA visualizations in Figure 3(c) qualitatively confirm this progression
from entangled to linear organization.

These results indicates a link between training diversity and representation structure in NNs. While
models can learn to discriminate individual concepts with limited data (at around 25%), linearity in
representations emerges only with extensive concept diversity. Empirically, linearity and zero-shot
accuracy appear to be directly related.

5 DO LARGE PRE-TRAINED VISION MODELS EXHIBIT LINEAR
REPRESENTATIONS?

Having established that linearity in representations emerges naturally when models are trained with
sufficient concept diversity (Section 4), we now investigate whether modern pre-trained vision models
exhibit similar properties. This question is particularly relevant given that these models are trained on
massive, diverse datasets that should, in principle, expose them to many concept combinations. We
evaluate several performant vision models to assess if their representations exhibit the linear structure
needed for compositional generalization to novel concept combinations.

Models. We evaluate RESNET50-IMAGENET1K (He et al., 2015) for direct comparison purposes
with from-scratch models, RESNET50-DINOV1 (Caron et al., 2021), for comparing pre-training
data and training strategy impact, DINOV2 DINO-VIT-L/14 (Oquab et al., 2024) due to its strong
performance in downstream tasks (Mamaghan et al., 2024), and CLIP-VIT-L/14 (Radford et al.,
2021) which has demonstrated strong compositional capabilities across multiple studies (Abbasi
et al., 2024; Stein et al., 2024; Oikarinen & Nguyen, 2023; Esfandiarpoor et al., 2024).

Metrics. Following Proposition 3.3, we measure test accuracy using optimal classifiers constructed
under the assumption of linearity of representations. These classifiers are derived from factored
representations learned using only m = 2 combinations per concept value (details in Appendix. With
them, we measure both the training and testing accuracies, as explained in Section 3.3.
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Figure 4: Compositional generalization capabilities of pre-trained models when assuming the representa-
tions are compositional. Bar plots show both training (transparent) and testing (solid) accuracy across different
datasets (dSprites, Shapes3D, CMNIST, PUG-Animal) when using minimal training data (k = 2 combinations
per concept) to learn linear concept representations for each concept. Dashed lines indicate random baseline
performance. Following Proposition 3.3, we identified the factored representations uc1 and uc2 for each concept
value using m = 2 combinations per concept value. While perfect generalization predicted by the proposition
would require ideal linear compositionality, our empirical results show strong performance on certain concepts
(e.g., > 90% accuracy on color, orientation, digit, and backgound concepts for either CLIP or DINOv2 models),
with varying effectiveness across different concept types and models, suggesting that pre-trained representations
exhibit partial linearity in their representations.

Results. The results are presented in Figure 4. Models achieve varying levels of accuracy across
different concepts, consistently exceeding random chance (dashed lines) but never reaching perfect
accuracy on all concept types. Some concept relationships appear inherently more complex to
represent linearly - for instance, on DSprites, even the best model achieves only 50% training
accuracy for scale classification.

Certain concept pairs show strong amenability to linear representation across all models. On PUG-
Animal, all models achieve exceptionally high accuracy (>90%) on background-character combi-
nations, suggesting spatially separable concepts naturally induce more linear representations. The
best model consistently exceeds 90% accuracy on some concept classification across all datasets.
Additionally, models show clear specialization: CLIP excels at color-based tasks (highest accuracy
on CMNIST color-digit and Shapes3D object-hue), while DINOv2 performs best on shape-based
concepts (e.g. on scale, shape, orientation, and character).

While no model achieves the perfect generalization predicted by our theoretical analysis for ideally
linear representations, these results demonstrate that pre-trained models exhibit linearity in their
representations, varying in effectiveness across concept types. Strong performance on spatially
separable concept pairs supports our hypothesis that linear representation organization facilitates
compositional generalization.

6 CONCLUSION

In this work, we investigated how neural networks learn to represent and combine concepts by
examining the relationship between feature representations and compositional generalization. We
found that linearity in representations emerges naturally as training data diversity increases, but
only after passing through distinct phases of spurious correlations and non-linear feature learning.
As we argued and demonstrated, mere feature discriminability is insufficient for compositional
generalization: models can learn to distinguish individual concepts when adapted to a full set of
concept combinations, but fail to generalize to novel combinations zero-shot.

Building on these insights, we conducted an evaluation of whether large-scale pre-trained models like
DINO and CLIP already exhibit compositional capabilities. By assuming linearity, we constructed
optimal classifiers for each concept and evaluated their performance on unseen combinations. By
analyzing their feature spaces through the lens of linearity, we found mixed results that varied across
both model architectures and concept types. While DINO exhibited strong compositional capabilities
for object-centric tasks and CLIP showed advantages for color-based generalization, neither achieved
the perfect combinatorial generalization that our theoretical analysis shows is possible with ideally
structured linear representations. These findings suggest that while current pre-training approaches
can produce partially compositional features, there remains significant room for improvement in
developing architectures and training objectives that more reliably develop linearity in representations.
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A APPENDIX

A.1 TRAINING AND TESTING SETS CONSTRUCTION

Concretely, for each concept value i ∈ {0, . . . , n− 1}, we observe m combinations during training,
defining our training and test sets as:

Ctrain :=

n⋃
i=1

{(i, (i+ j mod n)) : j ∈ {0, . . . ,m− 1}} , Ctest := (C1 × C2) \ Ctrain. (2)

A.2 DETAILS ON METRICS IN FROM-SCRATCH MODELS

To quantify both compositional generalization capabilities and the underlying structure of learned
representations, we evaluate models using two complementary sets of metrics.

For generalization, we report zero-shot accuracy on Ctest, measuring the model’s ability to classify
unseen concept combinations. We report averaged accuracy for a concept pair considered (e.g., color
and shape, detailed in Appendix A.3).

For representation structure, we consider: (i) Decodability, following Kirichenko et al. (2023), we
train linear probes on balanced data and report average accuracy across concepts, indicating if features
capture concept information; that is, we merge the training and testing sets, and use a held-out dataset
covering all concept combinations for measuring decoded accuracy. (ii) Linearity - we compute
the coefficient of determination (R2) between joint representations f(x) and their reconstruction

from individual concept representations
∑k

i=1 uci , where R2 = 1 −
∑

x ∥f(x)−
∑k

i=1 uci
∥2∑

x ∥f(x)−f̄∥2 with

f̄ = 1
|D|
∑

x∈D f(x) measures how well representations follow linear structure. Here, f̄ represents the
mean representation across all samples. (iii) Orthogonality - we measure the mean cosine similarity

1
|C1||C2|

∑
i,j cos(uci1

,ucj2
) between concept representations to assess if concepts are encoded in

orthogonal subspaces, sometimes found in pretrained models (Stein et al., 2024; Wang et al., 2024b).

A.3 DATASETS

Table 1: Overview of datasets and their attributes. Numbers in parentheses indicate the cardinality |Ci|(i = 1, 2)
of possible values for each concept dimension.

Dataset Attributes C1, C2 (Number of values per concept n)

PUG Animal type (60), Background type (60)
Shapes3D Scale (8), Object-hue (8)
DSprites Scale (6), Orientation (6)
FSprites Shape (14), Color (14)
Colored-MNIST Digit (10), Color (10)

A.3.1 FUNNY SPRITES DATASET

We introduce the Funny Sprites dataset, an OOD dataset designed to test models’ ability to generalize
to previously unseen shape combinations. The dataset consists of sprites traced from 5-15 points
on a 128x128 pixel grid, creating a diverse set of abstract geometric shapes. This dataset serves as
an important test bed for evaluating compositional generalization, as it allows us to assess whether
models can recognize and combine novel shape features they have never encountered during training.

The sprites are generated by connecting traced points to form closed polygonal shapes, with variations
in:

• Shape (14 different base shapes)
• Scale (14 different sizes)
• Orientation (14 different angles)
• Position (14 x 14 grid positions)
• Color (14 distinct colors)
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Each sprite can be dynamically recolored using a predefined palette of 14 colors, chosen to be
visually distinct while maintaining good contrast. The dataset follows a similar structure to dSprites
but introduces more complex geometric shapes to test generalization capabilities, ensuring that no
previous model has seen such shapes. We illustrate the dataset with shape and orientation variations
in Figure 5 in the case of n = 14,m = 3.

Figure 5: Examples from the Funny Sprites dataset. The figure shows different shape and orientation
variations from our Funny Sprites dataset. Each sprite is generated by connecting 5-15 traced points to form
unique geometric shapes. Here we show examples for n = 14 different values and k = 2 combinations of shape
and orientation attributes.

A.4 DETAILS ON TRAINING AND EVALUATION

Model training. We use RESNET-50 (He et al., 2015) with linear classification heads. The model
outputs two predictions f(x) = (f1(x), f2(x)) where fj : X → Cj predicts the value of concept
j using a shared backbone followed by separate linear heads. We learn fixed classification heads
directly from visual data to provide an optimistic setting for compositional learning through feature
reuse. We found other baselines performing similarly to RESNET-50 but they were often slower.
ViTs were considered but we found them underperform when trained from scratch compared to
RESNET-50.

Model selection and metrics. For model selection, we use the average accuracy across all concepts
at each epoch. We perform oracle model selection by directly evaluating models on the test set to
select the best performing checkpoint (Gulrajani & Lopez-Paz, 2020). This allows us to focus on the
fundamental capabilities of models rather than validation strategies.

A.5 IDEALIZED CLIP SETTING: TRAINING WITH CONCEPT SUPERVISION

Consider how CLIP’s training data naturally aligns with our concept structure framework. CLIP
learns from a dataset Ddata := {(xi,yi)}Ni=1 of image-text pairs, where each text description yi

describes some subset of concepts present in image xi. Mathematically, we can express this as a
text description function dy : 2C → Y that maps subsets of concept values to natural language
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descriptions1. For instance, given concept values (c1, c2, c3) = (red, circle, large), dy might output
”a large red circle”, ”a red circle”, or ”a large circle” depending on which concepts are mentioned.
During training, CLIP learns to align these partial concept descriptions with their corresponding
images by maximizing the cosine similarity cos(f(x), g(y)) = f(x)⊤g(y)

∥f(x)∥∥g(y)∥ between matched image-
text pairs while minimizing it for unmatched pairs. This training objective encourages the model to
learn representations where any valid subset of concepts from an image has high alignment with the
corresponding text embedding.

This training objective has important implications for how CLIP learns to structure its representation
space. For any subset of concepts S ⊆ c(x) present in an image x, the cosine similarity between
f(x) and g(dy(S)) should be higher than for any subset S′ where some concepts from S are not
matching the image. For example, given an image of a large red circle, the representation alignment
with the text ”a large red circle” should be higher than with ”a small red circle” (incorrect concept).

More formally, for an image x with concepts c(x) = (c1, . . . , ck) and any subset S ⊆ {c1, . . . , ck}:
cos(f(x), g(dy(S))) > cos(f(x), g(dy(S

′))) (3)
where S′ is any subset that includes either (1) incorrect concept values for concepts in S, or (2) fewer
concepts than S. This property encourages CLIP to learn representations where concept combinations
are structured such that more complete and accurate descriptions have stronger alignment with the
image representations that contain those concepts.

Assuming that CLIP produces constant cosine similarity values for any single concept value ci, i.e.,
cos(f(x), g(dy({ci}))) = αci for some constant αci that depends only on the concept value. Under
this assumption, we can show that the representation space exhibits linear factorization.
Proposition A.1 (Fixed Cosine Similarities Admit Linear Factorization). Assume that for every
x ∈ X with c(x) = (c1, . . . , ck) the following hold:

(∗) For each i,

cos
(
f(x),ui,ci

)
=
⟨f(x),ui,ci⟩
∥f(x)∥∥ui,ci∥

= αi,ci ,

where αi,ci is a fixed constant (depending only on i and the active candidate ci); for any
other candidate c ̸= ci in Ci the cosine similarity takes some other fixed value.

(∗∗) For every x,

f(x) ∈ span
( k⋃
i=1

{ui,1, . . . ,ui,|Ci|}
)
= Rr, with r := 1 +

k∑
i=1

(|Ci| − 1).

Then, for every x ∈ X with configuration c(x) = (c1, . . . , ck) there exist unique scalars
β1,c1 , . . . , βk,ck such that

f(x) =
k∑

i=1

βi,ci ui,ci , with βi,ci =
⟨f(x),ui,ci⟩
∥ui,ci∥2

.

Moreover, if we further assume that ∥f(x)∥ = C is constant for all x with the same configuration,
then by (∗)

⟨f(x),ui,ci⟩ = αi,ci C ∥ui,ci∥
so that

βi,ci = αi,ci

C

∥ui,ci∥
.

Proof. Since f(x) ∈ span{u1,c1 , . . . ,uk,ck}, there exist unique scalars βi,ci such that

f(x) =

k∑
i=1

βi,ci ui,ci .

Taking the inner product with uj,cj for any j gives

⟨f(x),uj,cj ⟩ = βj,cj ∥uj,cj∥2,
1When multiple instances of the same concept type appear (e.g., ”three red circles”), the text description

function can be extended to operate on multisets of concept values rather than just individual values. This
preserves the mathematical framework while accommodating multiplicity.
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so that

βj,cj =
⟨f(x),uj,cj ⟩
∥uj,cj∥2

.

Then by (∗) we have
⟨f(x),uj,cj ⟩ = αj,cj ∥f(x)∥∥uj,cj∥.

If ∥f(x)∥ = C, it follows that

βj,cj = αj,cj

C

∥uj,cj∥
.

We can absorb the coefficients into the concept representations by defining

ũi,ci := βi,ci ui,ci = αi,ci

C

∥ui,ci∥
ui,ci .

This allows us to express f(x) as a simple sum of these modified concept vectors for every x with
configuration c(x) = (c1, . . . , ck), we have

f(x) =

k∑
i=1

ũi,ci .

A.6 DETAILS ON THE SUPERVISED TRAINING PROCEDURE

Following (Trager et al., 2023), we list a property of linearly factored embedding:
Proposition A.2 (Unique Mean-Centered Decomposition). For any linearly factored embeddings
{fc}c∈C , there exist unique concept value embeddings {uci}ci∈Ci for each concept i with zero mean
(
∑

ci∈Ci
uci = 0), such that:

fc = u0 + uc1 + · · ·+ uck where uci =
1

|Ci|
∑
c∈Ci

fc (4)

where u0 is the sum of the means of the representations: u0 =
∑k

i=1
1

|Ci|
∑

ci∈Ci
fci . Additionally,

each uci can be recovered by taking the mean over centered representations fc that contain concept
value ci:

uci =
1

|{c ∈ C : ci ∈ c}|
∑

c∈C:ci∈c

(fc −
1

|C|
∑
c′∈C

fc′) (5)

This proposition essentially tells us that if we recover any decomposition of linearly factored em-
beddings {fc}c∈C , the centered components of the decomposition are unique and match those of the
factored embeddings.

In practise, we often do not have access to the observations of the concept values ci for each x ∈ X .
A more realistic assumption is that we have access to only a subset of concepts S ⊂ C. We can thus
define the pairwise joint embedding between concept values in S as follows.
Definition A.3 (Pairwise Joint Embedding). Given a concept space C = C1 × · · · × Ck, the pairwise
joint embedding between concepts i, j ∈ {1, . . . , k} and their values ci, cj ∈ Ci, Cj is defined as:

uci,cj =
1

|{x ∈ D : c(x)i = ci, c(x)j = cj}|
∑

x∈D:c(x)i=ci,c(x)j=cj

f(x). (6)

It then immediately follows that the pairwise joint embedding between concepts i, j ∈ {1, . . . , k} is
equal to the sum of individual concept embeddings:
Lemma A.4. Under linearly factored embeddings, the pairwise joint embedding uci,cj is equal to
the sum of individual concept embeddings:

uci,cj = uci + ucj (7)
where uci and ucj are the factored representations of concepts i and j respectively.
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Proof. Note that

uci,cj =
1

|{x ∈ D : c(x)i = ci, c(x)j = cj}|
∑

x∈D:c(x)i=ci,c(x)j=cj

f(x) (8)

=
1

|{x ∈ D : c(x)i = ci, c(x)j = cj}|
∑

x∈D:c(x)i=ci,c(x)j=cj

k∑
l=1

ucl (9)

= uci + ucj +
∑

l ̸∈{i,j}

1

|Cl|
∑
cl∈Cl

ucl (10)

= uci + ucj (11)
where the second line expresses f(x) as the sum of all concept embeddings from the linear factoriza-
tion, the third line separates out the fixed concepts ci and cj and averages over all other concepts, and
the final equality follows since

∑
cl∈Cl

ucl = 0 for any concept dimension l by Proposition A.2.

Theorem A.5 (Minimal Compositional Learning). Let f : X → Rd be a feature extractor with
linearly factored concept embeddings over C. Let U = {u1, . . . ,un} and V = {v1, . . . ,vn} be the
concept vectors for the first and second concepts respectively, where span(U + V ) has dimension
2n− 1. Suppose we only observe joint representations sharing concepts ci, cj ∈ {1, . . . , n}. Then
m = 2 combinations per concept value suffice to learn a linear classifier that perfectly generalizes to
all (n−m) · n unseen combinations.

Proof. We show this in two steps. The proof relies on establish that the joint factored embeddings
under the training data are identifiable. Then, we show that the number of independent equations is
equal to the number of unknowns, and that every equation provides independent information about
the factored representations. Additionally, we assume that the restrictions are placed only on the
concepts on which the target depends; we assume that all other concept combinations are present in
the training data.

Part 1: Identifying joint factored embeddings uci1,c
j
2
.

We assume k = 2 for simplicity, but the same applies for higher k. First, note that we observe the
following combinations:

Ctrain = {(i, i) : i ∈ [n]} ∪ {(i, i+ 1) : i ∈ [n− 1]} ∪ {(n, 1)} (12)
= {(1, 1), (2, 2), ..., (n, n)} ∪ {(1, 2), (2, 3), ..., (n− 1, n)} ∪ {(n, 1)} (13)

with |Ctrain| = n+(n− 1)+1 = 2n total combinations. This dataset is restricted to the combinations
in Ctrain, but varies in other concepts. We denote this dataset as Dtrain := {(c1, c2,x) : (c1, c2) ∈
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Ctrain,x ∈ X}. The average representation over these training combinations is:

ūtrain =
1

2n

(
n∑

i=1

Ex:i∈c1(x),i∈c2(x)[f(x)] +

n−1∑
i=1

Ex:i∈c1(x),i+1∈c2(x)[f(x)] + Ex:n∈c1(x),1∈c2(x)[f(x)]

)
(14)

=
1

2n

(
n∑

i=1

(uci1,c
i
2
+ f) +

n−1∑
i=1

(uci1,c
i+1
2

+ f) + (ucn1 ,c
1
2
+ f)

)
(since uc1,c2 = f(x)− f )

(15)

=
1

2n

(
n∑

i=1

(uci1
+ uci2

+ f) +

n−1∑
i=1

(uci1
+ uci+1

2
+ f) + (ucn1

+ uc12
+ f)

)
(16)

=
1

2n

(
n∑

i=1

uci1
+

n−1∑
i=1

uci1
+ ucn1

+

n∑
i=1

uci2
+

n−1∑
i=1

uci+1
2

+ uc12
+ 2nf

)
(17)

=
1

2n

(
2

n∑
i=1

uci1
+ 2

n∑
i=1

uci2
+ 2nf

)
(18)

=
1

2n
(2 · 0+ 2 · 0+ 2nf) (since

n∑
i=1

uci1
=

n∑
i=1

uci2
= 0) (19)

= f (20)

Thus, we can identify the factored representations uci1
and uci2

for each concept value i ∈ [n] from
the training data since the average representation over the training data under our training dataset is
the global mean embedding f . With this, we can compute uci1,c

i
2

for 2n combinations.

Part 2: Identifying the individual factored representations uci1
and uci2

for each concept value
i ∈ [n].

Consider a training set with exactly two combinations per concept value. By the linear factorization
property, for any combination (i, j) in our training set, we have: uci1,c

j
2
= uci1

+ ucj2
, where ci1

denotes value i for the first concept and cj2 denotes value j for the second concept.

Let U1,U2 ∈ Rd×n be matrices whose columns are the unknown factored representations uci1
and

uci2
respectively for i ∈ [n]. Let V ∈ Rd×2n be the matrix of observed pairwise joint embeddings

uci1,c
j
2

for the 2n training combinations. The system of equations can be written as:



uc11,c
1
2

uc21,c
2
2

...
ucn1 ,c

n
2

uc11,c
2
2

uc21,c
3
2

...
ucn−1

1 ,cn2
ucn1 ,c

1
2


︸ ︷︷ ︸

V

=



1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
1 0 · · · 0

0 1 · · · 0 0

0 0
. . . 0 0

...
...

. . .
...

...
0 0 · · · 1 0
0 0 · · · 0 1


︸ ︷︷ ︸



uc11
uc21

...
ucn1

uc12
uc22

...
ucn2


︸ ︷︷ ︸U1

U2



(21)

We note that this system is full rank, as the design matrix has linearly independent rows. The first
block of rows corresponds to the diagonal combinations (i, i), while the second block corresponds
to cyclic combinations (i, i+ 1) (with wraparound from n to 1). These form distinct patterns that
ensure linear independence.
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Given this full rank system with 2n equations and 2n unknowns (the factored representations uci1
and uci2

for each concept value), we can uniquely solve for the factored concept embeddings. For
k > 2 combinations per concept value, we get more equations while maintaining the same number of
unknowns, making the system overdetermined and the solution more robust.

Once we recover these factored representations, we can compute uci1,c
j
2
= uci1

+ ucj2
for any

combination (i, j), including the (n− 2)n unseen ones.

Part 3: Optimality of classifiers. To show that we can construct classifiers that provable generalize
to novel combinations, we simply note that by assumption no concept representation is within the
span of remaining representations. As such, given U := span({ui}|C1|

i=1), and V := span({vi}|C2|
i=1),

such that dim(U) = |C1| − 1 and dim(V ) = |C2| − 1 and U ∩ V = {0}, any vector w in their joint
span can be uniquely decomposed as w = u+ v where u ∈ U , v ∈ V and u ⊥ v. This allows us to
construct projection matrices PU and PV onto these orthogonal subspaces, which can then be used to
build optimal classifiers by projecting input features onto the respective concept dimensions.

We note that the proof above is constructive, and can be used to recover the factored representations
from the training data. We summarize the steps in the Algorithm 1. In practise, since we do not
observe all possible combionations of unlabeled concepts, we use empirical approximations of the
expectations.

Algorithm 1 Recovering Factored Concept Representations for k = 2 Concepts

Require: Training dataset Dtrain where each individual concept appears in at least 2 different combi-
nations (k ≥ 2)

Require: Feature extractor f : X → Rd

Ensure: Factored concept representations {uci1
}ni=1, {uci2

}ni=1

1: Compute global mean embedding: fd ← 1
|Dtrain|

∑
x∈Dtrain

f(x)d for each dimension d

2: for d = 1 to d do
3: Initialize design matrix A ∈ R2n×2n based on observed combinations
4: Initialize v ∈ R2n to store joint embeddings for dimension d
5: row ← 1
6: for each combination (i, j) in training set do
7: uci1,c

j
2
← 1

|{x:c(x)1=i,c(x)2=j}|
∑

x:c(x)1=i,c(x)2=j f(x)d − fd
8: Store uci1,c

j
2

in position row of v
9: Update row row of A with indicators for concepts i and j

10: row ← row + 1
11: end for
12: Solve system A

[
u1

u2

]
= v for dimension d

13: Store solutions in {uci1
}ni=1, {uci2

}ni=1 at dimension d
14: end for
15: return {uci1

}ni=1, {uci2
}ni=1
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