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Abstract

The Bellman equation and its continuous form, the Hamilton-Jacobi-Bellman
(HJB) equation, are ubiquitous in reinforcement learning (RL) and control theory
contexts due, in part, to their guaranteed convergence towards a system’s optimal
value function. However, this approach has severe limitations. This paper explores
the connection between the data-driven Koopman operator and Bellman Markov
Decision Processes, resulting in the development of two new RL algorithms to
address these limitations. In particular, we focus on Koopman operator methods
that reformulate a nonlinear system by lifting into new coordinates where the
dynamics become linear, and where HJB-based methods are more tractable. These
transformations enable the estimation, prediction, and control of strongly nonlinear
dynamics. Viewing the Bellman equation as a controlled dynamical system, the
Koopman operator is able to capture the expectation of the time evolution of the
value function in the given systems via linear dynamics in the lifted coordinates. By
parameterizing the Koopman operator with the control actions, we construct a new
“Koopman tensor” that facilitates the estimation of the optimal value function. Then,
a transformation of Bellman’s framework in terms of the Koopman tensor enables
us to reformulate two max-entropy RL algorithms: soft-value iteration and soft
actor-critic (SAC). This highly flexible framework can be used for deterministic or
stochastic systems as well as for discrete or continuous-time dynamics. Finally, we
show that these algorithms attain state-of-the-art (SOTA) performance with respect
to traditional neural network-based SAC and linear quadratic regulator (LQR)
baselines on three controlled dynamical systems: the Lorenz system, fluid flow
past a cylinder, and a double-well potential with non-isotropic stochastic forcing.
It does this all while maintaining an interpretability that shows how inputs tend to
affect outputs, what we call “input-output” interpretability.

1 Introduction

Interpretability is frequently lost in RL algorithms, especially those driven by large neural networks.
In this paper, we re-examine the underlying Bellman equation through a dynamical systems lens
and a novel application of a fundamental transfer operator known as the Koopman operator
[18, 19, 24, 3]. Nonlinear dynamics may be represented in terms of this infinite-dimensional linear
Koopman operator, which acts on the space of all possible measurement functions of the system.
Mathematically, given a function from the state space to the reals g : X → R, the Koopman operator
K for deterministic (time-homogenous) autonomous systems is defined as:

Kg(x) := g(F (x)) = g(x′), (1)
where F is the single-step flow map or law of motion. More generally, in stochastic autonomous
systems, it is defined as the conditional forecast operator:

Kg(x) = E (g(X ′)|X = x) . (2)
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Figure 1: Koopman-assisted reinforcement learning in the example of the Soft Actor Koopman-Critic,
a Koopman variant of the popular Soft Actor-Critic algorithm. The Koopman Critic receives the state,
and the reward as original, nonlinear dynamics, before lifting these dynamics onto the vector space,
where they can be advanced in time with the Koopman operator linearly. This critique is then fed
back to the Actor which issues the action to be performed in the environment.

In this paper, we recast the continuation term in the Bellman equation in terms of the Koopman
operator:

V π(x) = Eu∼π(·|x)

{
r(x, u) + γEx′∼p(·|x,u) [V (x′)]

}
(3a)

=⇒ Vπ(x) = Eu∼π(·|x) {r(x, u) + γKuV (x)} . (3b)

It is important to note that since the Koopman operator is equivalent to the conditional forecast
operator given state x, it only relies on the current state. In addition, the Koopman operator’s
dependence on the action u has been made explicit via the Ku notation.

The Koopman operator allows us to rewrite the equations of motion of a nonlinear system as a linear
system of equations on an infinite-dimensional function space [24, 7, 23, 3, 4]. When considering
a particular observable, like the value function in reinforcement learning, for many problems it is
possible to isolate a finite set of basis, or dictionary, functions for which we can approximately
express the dynamics of the value function with a finite-dimensional Koopman operator/matrix. Many
such approaches have been explored in traditional applied dynamical systems such as dynamic mode
decomposition (DMD) [30] for linear or approximately linear systems, and extended dynamic mode
decomposition (EDMD) [8], as well as the closely related sparse identification of nonlinear dynamics
(SINDy) [5], which can be thought of as generalizing the previous approaches to linear mappings
rather than just linear operators of dynamics [4]. This body of work was subsequently extended to
stochastic dynamical systems [16, 17] and controlled dynamical systems [15, 28].

An important contribution of this work is the construction of the Koopman tensor in a multiplicatively
separable dictionary space on states and controls, respectively. We then solve for this tensor via
least squares for the prediction of future state dictionaries using (state, control, future state) samples
collected from simulated environments. Slices of the resulting Koopman tensor are then weighted by
the control dictionary elements to construct a finite-dimensional Koopman matrix in the lifted state
observable space for any control value, including those outside of the training dataset.

Finally, as a proof of concept of Koopman assisted RL algorithms, we reformulate two max-entropy
RL algorithms: soft value iteration [13] and soft actor-critic [11, 12]. We refer to this approach
broadly as Koopman-Assisted Reinforcement Learning (KARL) and to the two particular reformu-
lated algorithms as soft Koopman value iteration (SKVI) and soft actor Koopman critic (SAKC).
We validate these algorithms in four environments using quadratic cost functions: linear system, the
Lorenz system, fluid flow past a cylinder, and a double-well potential with non-isotropic stochastic
forcing. We demonstrate in each system that our KARL methods achieve SOTA or near-SOTA
compared to traditional neural network-based SAC and LQR baselines.

1.1 Related Work

Use of the Koopman operator in RL is an emerging field of research. Previous works have used
the Koopman operator for imitation learning and identifying symmetries in state dynamics [31, 33].
Koopman analysis has been extended to controlled systems [28, 15]; however, our main contribution
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of recasting Markov Decision Processes (MDPs) using Koopman embedding frameworks has not
been explored. Notably, we introduce a novel approach to parameterize the Koopman operator
using a Koopman tensor on a lifted state-control space which is essential for handling controlled
dynamical systems. Other attempts to incorporate Koopman into controlled systems include dynamic
mode decompositon with control (DMDc) [28] for system identification and applications of LQR
to Koopman-linearized dynamics [28, 15]. The Koopman operator has also been used for model
predictive control (MPC) [6, 20, 21, 29], although without the same convergence guarantees as KARL.
One recent work learns a Koopman autoencoder [22, 25, 27] for Q-learning [33]. In contrast, our
approach of rewriting the Bellman and HJB equations using control-dependent Koopman operators
enables both interpretability and single-step estimates of the expectation of the value function.

2 Koopman-Assisted Reinforcement Learning (KARL)

2.1 Technical Background

Here, we discuss relevant theory and algorithms. We review Koopman operator theory, discuss the
reformulation of MDPs, and build intuition for the Koopman tensor. Finally we apply insights from
our reformulation of MDPs to develop two new max entropy RL algorithms: soft Koopman value
iteration (SKVI) and soft actor Koopman critic (SAKC).

2.1.1 Koopman Operator Theory

The Koopman operator describes the time evolution for any function of the state of autonomous and
controlled systems. Formally, we consider real-valued vector measurement functions g : M → R,
which are themselves elements of an infinite-dimensional Hilbert space and where M is a manifold
that represents the state space. Typically the observables are assumed to belong to the function space
L∞(X ) where M = X ⊂ Rd . Often, these functions g are called observables or measurements
of the state x. Formally, the Koopman operator K : L∞(X ) → L∞(X ) for deterministic (time-
homogenous) autonomous systems is defined as:

Kg(x) := g(F (x)) = g(x′), (4)

where F is the single-step flow map or law of motion. More generally in stochastic autonomous
systems, it is defined as the conditional forecast operator:

Kg(x) = E (g(X ′)|Xt = x) . (5)

Remark 2.1 (Basis Functions of the Koopman Operator) The main insight from this operator the-
oretic view of dynamics is that a finite set of basis functions may be found to characterize observables
of the state as long as the Koopman operator has a finite point spectra rather than a continuum.
This perspective is crucial below as we lift our coordinate spaces to a finite set of basis functions,
typically called dictionary functions, which we denote by {φi}. See A.1 (brief technical exposition);
[23] (broader treatment of Koopman operator in applied dynamical systems).

2.2 MDPs and Bellman’s Equation

Below, we assume an infinite horizon Markov decision process (MDP) setting for the agent’s objective.
In discrete time, assuming that the agent follows policy π which is a distribution over actions, the
π-value function takes the form:

V π(x) = E

[ ∞∑
t=0

−γtc(xt, ut)
∣∣∣∣∣π, x0 = x

]
, (6)

where γ ∈ [0, 1] represents the discount rate and we express rewards in terms of negative costs
r(x, u) = −c(x, u) as we will use a quadratic cost function as in the standard setting LQR below.

Remark 2.2 (Finite-Horizon MDPs and the Time-Inhomogenous Koopman Operator) The fi-
nite horizon MDP can also be transformed using the Koopman operator, however, in that case,
the operator will not be time-homogeneous and will depend not only on action, but also on point in
time. For an excellent in-depth discussion of discrete-time MDPs (both finite and infinite horizon)
and their place in RL, see [1].
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Figure 2: Construction of action-dependent Koopman operators Ku from the Koopman tensor K.
Colors match along the k index (depth of tensor box). Each of the matrix slices is then weighted
according to the ψ dictionary elements to construct the control-dependent Koopman operator Ku.

The agent’s optimal value function is expressed as follows:

V ∗(x) = max
π

V π(x). (7)

We use the Bellman equation (or Hamilton-Jacobi-Bellman equation in continuous time) to recursively
characterize the above optimal value function. The discrete Bellman optimality equation is:

V (x) = max
πt

Eu∼π(·|x)

[
−c(x, u) + γEx′∼p(·|x,u)[V (x′)]

]
(8a)

= max
π

Eu∼πt(·|x) [−c(x, u) + γKuV (x)] (8b)

= max
π

Eu∼πt(·|x)

[
−c(x, u) + γwTKuφ(x)

]
, (8c)

where φ : X → Rdx is the dictionary vector function φ = (φ1, · · · , φdx) that serves as a basis
for the Koopman operator applied to the value function. Note that the Koopman operator applies
element-wise when applied to vector functions.

2.3 Koopman Tensor Formulation of Controlled Dynamics

We introduce the Koopman tensor as an extended Koopman operator that includes a third dimension
specifically to capture control action observables. With it, we are able to construct a 2D Koopman
operator from any action on a continuum by collapsing the action observable dimension.

Algorithm 1 Koopman Tensor Estimation
Require: State feature map φ : X → Rdx , control feature map ψ : U → Rdu , and a sample
{(xi, ui)}Ni=0

1: Solve for M̂ as in Equation 9
2: Convert M into K tensor using Fortran-style reshaping

Denote φ : X 7→ Rdx as the feature mapping (each coordinate of φ is an observable function), and
ψ : U 7→ Rdu as the feature mapping for control. Let us seek a finite-dimensional approximation
of the Koopman operator Kui . Denote K ∈ Rdx×dx×du as a 3D tensor as shown in Figure 2. For
any u, let us denote Ku ∈ Rdx×dx as follows: Ku[i, j] =

∑d
z=1K(i, j, z)ψ(u)[z]. Namely, Ku

is the result of the tensor vector product along the third dimension of K and Ku serves as the
finite-dimensional approximation of Koopman operator Ku. We learn K as follows:

min
K

N∑
i=1

‖Kuiφ(xi)− φ(x′i)‖
2
.
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We can slightly rewrite the above objective so that it becomes the regular multi-variate linear
regression problem. We can rearrange to write K as a 2-dimensional matrix in Rdx×dx·du . Denote
M ∈ Rdx×dx·du , where M [i, :] ∈ Rdx·du is the vector from stacking the columns of the 2D matrix
K[i, :, :]. A nice way to visualize this rearrangement can be seen in the definition of M in Figure 2.
Denote ψ(u)⊗ φ(x) ∈ Rdx·du as the Kronecker product. Thus we have:

Kuφ(x) = M(ψ(u)⊗ φ(x)).

Therefore, the optimization problem becomes a regular linear regression:

min
M

N∑
i=1

‖M (ψ(u)⊗ φ(xi))− φ(x′i)‖
2
. (9)

Once we compute M , we can convert back to Koopman operator for any u ∈ U by reshaping M
back to the 3D tensor K. Then the dx × dx finite dimensional Koopman operator approximation is
again Ku for any u ∈ U as seen in the summation in Figure 2.

Note that the above formulation also works for discrete control set U . The benefit of doing this is
that control share information and similarity via their feature ψ(u). This could give better sample
efficiency than learning independent Koopman operators one for each discrete control.

2.4 Max Entropy Koopman RL Algorithms

To demonstrate the effectiveness of how the Koopman operator can be used in RL we follow a
popular strand of RL literature and add an entropy penalty α lnπ to the cost function to encourage
exploration of the environment.

2.4.1 Koopman Value Iteration

In addition to the assumption about the finite dimensional representation of the Koopman operator,
we will also assume that the optimal value function V ?(x) can be written as a linear combination
of basis functions. In other words, there exists a w? ∈ Rd, such that V ?(x) = (w?)>φ(x). Given a
w ∈ Rd, we can express the (entropy regularized) Bellman error as follows. For any x:

w>φ(x)− min
π:X 7→∆(U)

[
Eu∼π(x)

[
c(x, u) + α lnπ(u|x) + w>Kuφ(x)

]]
.

Thanks to the entropy regularization, given a w, we can express the optimal form of π as follows:

π(u|x) = exp
(
−
(
c(x, u) + w>Kuφ(x)

)
/α
)
/Zx, (10)

where Zx is the normalizing constant that is only dependent on x that makes π(·|x) a proper
probability distribution. Note that π depends on w.

Converting this into an iterative procedure to find the value function weights, w′ in terms of the
previous weights w, the average Bellman error (ABE) over the dataset can be expressed as follows:

min
w′:‖w‖2≤W

1

N

N∑
i=1

(
w′>φ(x)− min

π(·|x)

[
Eu∼π(x)

[
c(x, u) + α lnπ(u|x) + w>Kuφ(x)

]])2

. (11)

The above is a canonical ordinary least squares (OLS) problem and can thus be solved explicitly. We
repeat this procedure until the ABE is small or until there is minimal improvement between update
steps. Unfortunately, given finite data, it is possible for a suboptimal value function to satisfy the
Bellman equation exactly [10]. As a result, we need to be careful when using the Bellman error as a
training objective for RL agents.

2.5 Soft Actor Koopman-Critic (SAKC)

Here, we outline how we modify the the Soft-Actor-Critic (SAC) framework [11] to restrict the search
space by incorporating information from the Koopman operator. Using the same loss functions and
similar notation to that of the SAC paper [11], we first specify the soft value function loss:

JV (w) = Ex∼D
[

1

2

(
Vw(x)− Eu∼πφ [Qθ(x, u)− α lnπν(u|x)]

)2]
. (12)
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Algorithm 2 Learning Optimal Policy via Average Bellman Error (ABE) Minimization
Require: Confidence parameter ε, reward function or reward function approximator r, and feature

maps on the state φ : X → Rdx and the control ψ : U → Rdu . Two datasets Dx and Dx that
store a comprehensive set of possible states of the environment. Initialize w0 as desired.

1: Let ABE denote the objective of the minimization problem (11).
2: Let π∗0(u|x) be the optimal policy given in (10) evaluated at w0

3: ABE(wt, πt) = ABE(w0, π
∗
0)

4: while ABE(wt, πt) > ε do
Sample xi ∼iid Dx
Compute costs, log probabilities, and value function outputs of all (xi, u) pairs for all u ∈ Du
wt+1 = solution to Equation (11)
wt+1 7→ π∗t+1(u|x)
ABE(wt, πt) = ABE(wt+1, π

∗
t+1(u|x))

5: end while

The additional specification that is imposed in the Koopman RL framework would be a restriction
around the specifications of Vw(x) and Qθ(x, u):

Vw(x) = wTφ(x), (13)

where w is a vector of coefficients for the dictionary functions.

Next, we show how the loss function for the (Q) quality function changes:

JQ(θ) = E(x,u)∼D

[
1

2

(
Qθ(x, u)− Q̂(x, u)

)]
, (14)

where the target Q-function incorporates the Koopman operator and is defined as:

Q̂(x, u) = r(x, u) + γEx′∼p(·|x,u) [Vw̄(x′)]

= r(x, u) + γw̄TKuφ(x), (15)

where K represents the infinite-dimensional Koopman for a fixed action u and Ku represents the
Koopman operator’s finite-dimensional form on the state-dictionary space.

Finally, the loss function for the policy does not change and is given by:

Jπ(ν) = Ex∼D
[
DKL

(
πν(·|x)

∥∥∥∥exp(Qθ(x, ·))
Zθ(x)

)]
. (16)

After these adjustments, the general algorithm remains the same as in the SAC paper and is given by:

Algorithm 3 Soft Actor Koopman-Critic
Require: Initial parameter vectors w, w̄, θ, ν

1: for each iteration do
2: for each environment step do

u∼πν(u|x)
x′ ∼ p(x′|x, u)
D ← D ∪ {(x, u, r(x, u), x′}

3: end for
4: for each gradient step do

w ← w − λV ∇̂νJV (w)

θi ← θi − λQ∇̂θiJQ(θi) for i ∈ {1, 2}
ν ← ν − λπ∇̂νJπ(ν)
w̄ ← τw + (1− τ)w̄

5: end for
6: end for
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Figure 3: Four benchmark problems investigated: (a) simple linear system; (b) Lorenz 1963 model;
(c) incompressible fluid flow past a cylinder [at Reynolds number 100]; and (d) double-well potential
with non-isotropic stochastic forcing.

3 Experimental Evaluation

3.1 Evaluation Design

We apply KARL in a linear system, fluid flow past a cylinder, Lorenz, and a double-well potential:
figure 3 for an illustration of the dynamics for the four systems. For details such as formal definitions
and variable values of these systems, please refer to A.2. For purposes of evaluating the proposed
algorithms, we build upon CleanRL [14] from which we use the reference implementations of the
corresponding RL algorithms,1 and upon which our implementation of Soft Actor Koopman-Critic
is based.2 For the Koopman tensor, we use an order 2 monomial dictionary space for all systems,
and allow the Koopman tensor access to 30,000 steps of data collected by a random agent for each
environment. Each environment has different action ranges, which were selected with some minimal
a priori understanding of the system, but are mostly random. To ensure that we train the various
policies to minimize the same cost, we use the LQR cost function for each system, defined as:

c(x, u) = xTQx+ uTRu. (17)
3.2 Results

Evaluating the performance of the Soft Actor Koopman-Critic (SAKC) on the four environments
against the classical control baseline, as well as the reference soft actor-critic implementations, we
see that on the Linear System the SAKC needs ≈ 5, 000 environment steps to properly calibrate its
Koopman critic, and match the SOTA performance of LQR, Value Iteration, and the value-based SAC.
The Q-function based SAC exhibits a slightly greater degree of instability and requires ≈ 8, 000
environment steps to match SOTA performance. On the Fluid Flow this training dynamic is matched
with SAKC requiring 5, 000 − 8, 000 environment steps to calibrate itself in this more difficult
environment and reach SOTA. The required number of environment steps matches those required
by the value-function based SAC. On the even more difficult chaotic Lorenz System SAKC requires
slightly more exploration with 10, 000 environment steps, before hitting SOTA. Of note here is that
SAKC exhibits more performance instability as compared to the better-performing SAC, and Value
Iteration. On the Double Well, we see a fast calibration of SAKC to quickly match SOTA, while
LQR is unable to match the performance of the reinforcement learning algorithms on this even more
difficult environment. Zooming in on the performance of the different RL algorithms 5, we can see
that after seemingly reaching SOTA, the episodic returns of all agents equally fluctuate and SAKC
matches the performance of the other SAC methods.

When tasked with learning dynamics and converging to an optimal controller in non-linear systems,
our new Koopman-assisted reinforcement learning approach significantly outperformed LQR in
non-linear systems, as measured by relative cost. See Figure 4 and Table 1. KARL’s success in
these unique dynamical settings demonstrates its significant flexibility across varying environments:
fluid flow shows its prowess in non-linear systems; Lorenz proves KARL’s ability to control chaotic
systems; and double well shows its ability to learn in stochastic environments.

4 Conclusion and Future Work

In summary, we present a novel approach to RL by integrating Koopman operator methods with
existing maximum entropy RL algorithms to formulate Koopman-Assisted Reinforcement Learning.

1https://github.com/vwxyzjn/cleanrl
2https://github.com/Pdbz199/koopman-rl
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Figure 4: Episodic returns of the evaluation environments for the compared algorithms: value
iteration, a linear quadratic regulator (LQR), the Q-function based soft actor-critic (SAC (Q)), the
V-function based soft actor-critic (SAC (V)), and the soft actor Koopman-critic (SAKC).

By leveraging the Koopman operator, KARL overcomes limitations of traditional RL algorithms by
making them more “input-output” interpretable, allowing for a deeper understanding of the learned
policies and their underlying dynamics. The empirical results presented in this paper on a diverse
set of dynamical systems-based environments including non-linear, chaotic, and stochastic systems
show that KARL is able to match the SOTA performance of the reference Soft Actor-Critic algorithm.
In addition, KARL outperforms the classical control baseline of LQR methods on the non-linear
environments, showcasing its flexibility, and adaptability. KARL’s SOTA performance in these
various complex systems highlights its potential for real-world applications, making it a valuable
addition to the repertoire of current RL techniques. The future of KARL lies in its continuous
evolution and adaptation to more complex and realistic settings. Addressing these challenges and
exploring these directions will allow the Koopman operator to aid in the development of robust,
interpretable, and efficient future RL algorithms.

Prospects for further development and application of KARL are both numerous and promising. For
example, integration of KARL with modern online learning techniques [32] could support real-time
applications, especially in combination with techniques to improve the efficiency of the algorithm such
as knowledge gradients [9]. A comprehensive theoretical analysis of KARL algorithms, including
convergence properties and sample complexity bounds, would provide valuable insights into their
behavior, and would aid in providing more intuition and guarantees for safety-critical applications.
Incorporating sparsification techniques such as SINDy [5] to facilitate the use of large dictionary
spaces in unfamiliar complex systems to determine value function dynamics will help further interpret
the main driving features (observables) of the optimal value function. Visualization techniques
to better interpret the learned Koopman tensor and Koopman-dependent operators could facilitate
broader adoption in domains where interpretability is a top priority, such as healthcare, economics,
and autonomous driving systems.
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Appendix

A Further Theoretical Background

A.1 Koopman Operator Theory Details

In what follows, we discuss more technical details of both theory and algorithms. The Koopman
operator describes the time evolution for any function of the state of autonomous and controlled
systems. Formally, we consider real-valued vector measurement functions g : M → R, which are
themselves elements of an infinite-dimensional Hilbert space and where M is a manifold. Typically
this manifold is taken to be L∞(X ) where X ⊂ Rd. Often, these functions g are called observables.
In deterministic autonomous systems, we denote the law of motion of the state x as:

x′ = F(x), (18)
for discrete-time systems and

ẋ(t) = f(x(t)), (19)
for continuous-time systems.
Similarly, in deterministic controlled systems, we can denote the law of motion as:

x′ = F(x, u), (20)
for discrete-time systems and

ẋ(t) = f(x(t), u(t)), (21)
for continuous-time systems.

For discrete-time stochastic systems we can express the (controlled) law of motion as
x′ = F(x, u) + σ(x, u)ε′ (22)

where {ε} is a white noise process. For continuous-time stochastic systems, we will only give as an
example the stochastic differential equation form for It ô-diffusion processes, however the Koopman
operator theory applies more broadly to any Markov process:

dX = µ(X,u)dt+ σ(X,u)dW (23)
where W is a Wiener process (i.e. standard Brownian motion).

Remark A.1 One can obtain a discrete-time dynamical system by applying a transformation to a
continuous-time dynamical. This transformation can be thought of as sampling the system at discrete
points in time so that xk = x(k∆t), where ∆t is the time step. This transformation is called a flow
map, or discrete-time propagator, and, in the deterministic case, for example, is given by

x(t+ ∆) = F∆t(x(t)) = x(t) +

∫ t+∆

t

f(x(τ))dτ.

The Koopman operatorK, and its (infinitesimal) generatorL, is an infinite-dimensional linear operator
that acts on observables g as:

Kg = g ◦ F (24)
Lg = f · ∇g. (25)

The Koopman generator L has the following limiting relationship with the Koopman operator:

Lg = lim
t→0

Kg − g
t

= lim
t→0

g ◦ F − g
t

. (26)

In stochastic systems, the definition of the Koopman operator is generalized to be defined as:
Kg = E(g(X)|X0 = ·)

Lg = lim
t→0

Kg − g
t

,

where {X} denotes the stochastic process representing the state over time.

Next, we briefly discuss how to represent the Koopman operator on a set of basis functions. Consider
a function space G ⊂ X 7→ R. For any u ∈ U , the Koopman operator Ku associated with u is defined
as follows:

Kug := g ◦ F (·, u) = Ex′∼F (·,u)[g (x′)].
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A.1.1 Continuous-time MDPs and Bellman’s Equation

In continuous time, the value function from following policy π takes the form:

V π(x) = E
[∫ ∞

t=0

−e−ρtc(x(t), u(t))dt

∣∣∣∣π, x(0) = x

]
. (27)

The agent’s optimal value function is again defined as:

V ∗(x) = max
π

V π(x). (28)

We now turn to the Hamilton-Jacobi-Bellman to recursively characterize the above optimal value
function.

V (x) =
1

ρ
max
π

Eu∼π(·|x) [−c(x, u) + LuV (x)] . (29)

where L is the generator of the Koopman operator as defined above.

A.1.2 Koopman Tensor for Discrete and Continuous-time Dynamics

As discussed above in Section 2.3, the Koopman tensor is constructed by finding the best finite
dimensional operator (matrix) such that given the dictionary spaces on the action and state space, we
can best predict the next observable value, one step ahead in time, in an OLS sense. As a result, the
slices of the tensor as depicted in Figure 2 when applied to the dictionary on actions evaluated at a
specific action leads to the Koopman operator for that specific action. In a deterministic setting, the
Koopman operator for a fixed action when applied to the state dictionary space evaluated at a fixed
state represents a characterization of the dynamics of the system going from a starting state x to a
future state x′. In a stochastic setting, the Koopman operator gives the conditional expectation of x′.

The Koopman tensor can be extended to support continuous-time dynamics using the Koopman
generator operator. The minimization is as follows:

∑
i ‖ ddtφ(xi)−M(ψ(ui)⊗ φ(xi))‖ and the M

can be reshaped into the Koopman tensor as shown in Figure 2.

A.2 System Dynamics

Here we provide details about the four dynamical systems used to compare various RL algorithms in
the results.

A.2.1 Linear System

The equations for a linear system are given by

F (x, u) = Ax+Bu (30)

where A and B are matrices.

A.2.2 Fluid Flow

To approximate the fluid flow past a circular cylinder, we use the following reduced-order model
developed by Noack et al. [26]:

f(x, u) =

 µx0 − ωx1 +Ax0x2

ωx0 + µx1 +Ax1x2 + u
−λ(x2 − x2

0 − x2
1)

 (31)

where µ = 0.1, ω = 1.0, A = −0.1, and λ = 1. The states x0 and x1 represent the most energetic
proper orthogonal decomposition modes for the flow, and the third state x2 represents the shift
mode [26], which is important for capturing relevant transients. This model has been used to test
Koopman modeling algorithms in the past [22].
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A.2.3 Lorenz

The Lorenz system is a canonical benchmark dynamical system given by the equations

f(x, u) =

[
σ(x1 − x0) + u
(ρ− x2)x0 − x1

x0x1 − βx2

]
(32)

where σ = 10, ρ = 28, and β = 8
3 . This system can be challenging for Koopman-based approaches

because it has a continuous eigenvalue spectrum [2].

A.2.4 Stochastic Double Well Potential

For a stochastic test system, we consider the stochastically forced particle in a double well potential,
governed by the following dynamics:

f(x, u) =

[
4x0 − 4x3

0 + u
−2x1 + u

]
+

[
0.7 x0

0 0.5

] [
v0 ∼ N (0, 1)
v1 ∼ N (0, 1)

]
. (33)

B More Details on Results

B.1 Linear Quadratic Regulator Implementation

For our implementation of LQR, we added a file to our fork of the CleanRL repo and made use of
the Python Control Systems Library. Specifically, we use the dlqr function for the linear system and
the lqr function for controlling the rest of the systems. The linear system is the only system that has
inherent A and B matrices as in Ax+ Bu, so to recover usable A and B matrices for the other three
systems, we linearize the system dynamics around whichever fixed (reference) point we are looking
to control the system towards. For computing cost, the Qs and Rs are identity matrices for all systems
except in Lorenz where the R matrix is an identity matrix multiplied by 0.001 to incentivize more
action from the agent.

B.2 Discrete Value Iteration Implementation

In our fork of the CleanRL GitHub repository, we have added a new algorithm file for discrete value
iteration. We manually implemented the calculation of the average Bellman error given a set of
system states, and the extraction of the softmax policy. We use the same dataset to train our value
iteration policy as the Koopman tensor. For our discretized action space, we use the min and max
action in the system’s range and choose some somewhat arbitrary number of actions into which we
can evenly split the range. After the value iteration policy is trained, we ran it against the same initial
conditions as the other algorithms as shown in Figure 4.

B.3 Continuous Value Iteration Implementation

Because there is an inherent, undesirable limitation when working with a discrete action space, we
attempted a simple method of continuous value iteration that simply used the trained value function
weights w from the discrete value iteration above and trained a continuous policy neural network to
minimize the KL-divergence between the values from c(xi, uj) + α lnπ(uj |xi) + γwTKuj (xi) and
the log probabilities from the policy model.

B.4 Average Cost Comparisons for SKVI

Comparing the cost of the application of RL with discrete value iteration to the application to the
classical control approach of LQR we witness the following difference in computing costs:

B.5 Detailed Return Comparisons for Double Well Environment
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Average Cost Over 100 Episodes
LQR Discrete Value

Iteration
Reduction in
Average Cost

Linear System 690.3652 746.2580 -8.1%
Fluid Flow 1,609.8472 1,528.9954 5.0%
Lorenz 1,475,234.6126 160,554.6264 89.1%
Double Well 103,704.5169 2,661.4114 97.4%

Table 1: Illustrates the comparative average cost incurred by LQR and value iteration policies over 100
episodes. Bolded values indicate the lowest average cost, and thus, the best performing controller for
each dynamical system. The last column shows how the KARL value iteration controller compared
to the LQR controller expressed as a percentage reduction in average cost.
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Figure 5: Zoomed in episodic returns for the double well, where the linear quadratic regulator has
been discarded due to its significantly worse performance as compared to the reinforcement learning
algorithms.
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