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Abstract

As large models become increasingly prevalent, watermarking has emerged as a crucial
technology for copyright protection, authenticity verification, and content tracking. The
rise of multimodal applications further amplifies the importance of effective watermarking
techniques. While watermark robustness is critical for real-world deployment, the current
understanding of watermark robustness against various forms of corruption remains limited.
Our study evaluates watermark robustness in both image and text domains, testing against
an extensive set of 100 image perturbations and 63 text perturbations. The results reveal
significant vulnerabilities in contemporary watermarking approaches - detection accuracy
deteriorates by more than 50% under common perturbations, highlighting a critical gap
between current capabilities and practical requirements. These findings emphasize the urgent
need for more robust watermarking methods that can withstand real-world disturbances.
Our project website can be found at https://mmwatermark-robustness.github.io/.

Keywords: image and text watermarking, robustness, image corruptions and text
perturbations, multimodal

1 Introduction

Watermarks represent a sophisticated method of embedding information within digital content
across various modes, such as audio, video, and images. These watermarks are designed to
be imperceptible, or nearly so, to the human senses, yet detectable by specialized software
or algorithms. The primary purpose of a watermark is to assert copyright or verify the
authenticity of the content. Unlike traditional watermarks, which are limited to a single
type of media, watermarks can be integrated across different formats, enhancing security and
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flexibility. The robustness of these watermarks against various forms of perturbations and
their ability to remain intact even when the content is transformed or compressed is a key
aspect of their design, making them essential in generated content identification, copyright
protection, and digital rights management.

The robustness of watermarks under various perturbations is a critical aspect of their
effectiveness and reliability. In the digital realm, image content often undergoes a variety of
transformations, such as compression, scaling, cropping, or format conversion, while textual
content often undergoes synonym replacement, paraphrasing, or typing differences, which
can potentially alter or obliterate embedded watermarks. The robustness of a watermark
to withstand these perturbations is vital to ensure that the embedded data remains intact
and retrievable. This is particularly important for copyright protection, piracy detection,
and the verification of the authenticity of digital media. A robust watermark ensures that
ownership rights are preserved and content integrity is maintained, even when the media
is shared across different platforms and undergoes multiple alterations. Furthermore, in
sensitive applications such as legal documentation or secure communications, the persistence
of a watermark through various distortions is crucial for maintaining the trust and reliability
of the information contained within the media. Therefore, understanding the watermark’s
robustness to perturbations is a key focus.

To our best knowledge, there is currently no comprehensive study of how the perturbations
can affect the performance of image and text watermarks. Hence, in this work:

e We evaluate watermark robustness under image and text perturbations by analyzing 4
image watermarking methods and 4 text watermarking methods. Our study tested the
performance of 8 image-to-text models and 8 text-to-image models against 100 image
perturbations and 63 text perturbation methods.

e We find that watermarks are sensitive to distribution shifts caused by image and text
perturbations. Specifically, for image perturbations, Zoom Blur consistently shows the
highest impact, while Glass Blur is the least harmful one. For text perturbations, Casual
consistently shows the highest impact, while OCR is the least harmful. Under image
perturbations, SSL-WM seems more stable; while under text perturbations, KGW-WM
seems more stable.

e We have publicly released our codebase at https://mmwatermark-robustness.github.
io/ with CC BY-NC-SA License.

2 Related Work

Text Watermarking has become increasingly relevant due to the usage of language
models (LMs) for text generation (Liu et al., 2024). Text watermarking frameworks should
integrate seamlessly into a model with minimal impact on the generated text, without altering
the model’s parameters (Kirchenbauer et al., 2023b; Aaronson, 2023; Christ et al., 2023).
Additionally, text watermarks must be robust against distribution shifts, leading to the
proposal of a watermarking algorithm that assigns a sequence of arbitrary numbers generated
by a random watermark key to a sample from the LM (Kuditipudi et al., 2023). However,
relying solely on empirical methods to assess the effectiveness of proposed watermarking
algorithms is insufficient. In response, a theoretical framework to quantify the robustness
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of text watermarks was introduced. From this theoretical analysis, an enhanced framework
that utilizes a fixed grouping strategy was proposed (Zhao et al., 2023a). However, these
works lack comprehensive evaluations of their watermarking systems under a variety of
perturbations.

Image Watermarking studies protecting intellectual image property (Cox et al., 2007).
Recently, encoder/decoder models have been introduced (Ahmadi et al., 2020; Lee et al.,
2020; Luo et al., 2020; Zhang et al., 2020a; Zhu et al., 2018; Fernandez et al., 2022a; Kishore
et al., 2022; Vukoti¢ et al., 2018), which have shown promising results in terms of robustness
against a broad array of transformations. In the realm of generative models, there have been
attempts to watermark the training datasets used to train these models (Yu et al., 2021), an
approach that is markedly inefficient as embedding each new message necessitates a separate
training pipeline. A more contemporary strategy involves integrating the watermarking
process directly with the generative process (Fei et al., 2022; Lin et al., 2022; Nie et al., 2023;
Qiao et al., 2023; Wu et al., 2020; Yu et al., 2022; Zhang et al., 2020b), aligning it more
closely with the broader literature on model watermarking (Uchida et al., 2017).

Robustness of Image or Text Watermarks An et al. (2024) examined the vulnerabilities
in various image watermarking techniques. Zhao et al. (2023b) and Saberi et al. (2023)
found that methods like noising and denoising through diffusion models can effectively
remove some watermarks. Jiang et al. (2023) studied the robustness of Al-generated content
detection that relies on watermarking. Mofayezi and Medghalchi (2023) explored the impact
of text-guided corruptions on image classifiers. Kirchenbauer et al. (2023c) optimized the
watermark generation and detection pipeline for greater reliability in real-world scenarios.
Our study aims to challenge both text and image watermarking systems using perturbations
to identify potential vulnerabilities and robustness.

Robustness of Multimodal Models For the robustness evaluation of multimodal image-
text models under distribution shift, previous works (Goh et al., 2021; Daras and Dimakis,
2022; Galindo and Faria, 2021; Fort, 2021; Goh et al., 2021; Noever and Noever, 2021) have
tested some pre-trained models, such as CLIP (Radford et al., 2021), by attacking them
with text patches and adversarial pixel perturbations. Notably, Daras and Dimakis (2022)
discovered that DALLE-2 (Ramesh et al., 2022) possesses a hidden vocabulary that enables
image generation from absurd prompts, questioning the robustness of its output. Fang et al.
(2022) attributed robustness gains primarily to diverse training distributions. Cho et al.
(2022) explored the robustness of text-to-image generative models concerning visual reasoning
capabilities and social biases. For benchmarking robustness, (Li et al., 2021) compiled an
Adversarial VQA dataset to assess the robustness of VQA models. Schiappa et al. (2022)
examined the robustness of video-text models under perturbations, focusing solely on a
video-text retrieval task. Furthermore, Qiu et al. (2023d) investigated the robustness of
image-text models to perturbations in both modalities across five downstream tasks, while
Chen et al. (2023b) evaluated the robustness of adaptation methods across vision-language
datasets under multimodal corruptions. More related work can be found in Appendix C.
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Figure 1: The overall pipeline of our watermarking robustness study. Given a input im-
age/text generated by generative models, the watermarking system adds image /text
watermarks to the generated content. Then we conduct watermark detection to
evaluate their robustness under image corruptions or text perturbations.

3 Preliminary: Invisible Watermark Detection

Before diving into methods for measuring the robustness of watermarks, it is essential to
first understand the fundamentals of invisible watermarks and the techniques employed to
detect them.

Definition 1 (Invisible watermark) Let © € X represent the original content, and let
Xy = Watermark(x, aux) denote the watermarked content, where the watermarking scheme is
a function of x and any auziliary information aux, such as a secret key (Zhao et al., 2023b).
A watermark is defined as A-invisible on a clean image x with respect to a “distance” function
dist : X x X — Ry, if dist(z, x,,) < A.

Definition 2 (Watermark detection) A watermark detection algorithm Detect : X X
aux — {0,1} is designed to determine whether a content ¥ € X is watermarked, using
auziliary information such as a secret key (aux) (Zhao et al., 2023b). The algorithm Detect
1s subject to two types of errors: false positives, where unwatermarked content is incorrectly
classified as watermarked, and false negatives, where watermarked content is incorrectly
classified as unwatermarked. We define the content T as being drawn from either the null
distribution Py or the watermarked distribution Pi. The Type I error, or false positive rate,
is denoted as €1 := Pry.p,[Detect(x) = 1], and the Type II error, or false negative rate, is
denoted as €z := Pr,.p, [Detect(x) = 0].

A watermarking scheme is typically engineered so that the distribution of watermarked
content, P, is distinct from that of unwatermarked content, Py. This distinction allows
the corresponding detection algorithm, which is carefully designed, to almost perfectly
differentiate between the two, aiming to ensure that both Type I error (1) and Type II
error (e2) are nearly zero. An attack on a watermarking scheme typically involves post-
processing a possibly watermarked image in a way that alters both Py and Pj, with the goal
of simultaneously increasing both the Type I and Type II errors, thereby evading detection.
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4 Perturbation Methods

To evaluate the robustness of watermarks under image and text perturbations, we build a
comprehensive evaluation benchmark via perturbing the watermarked, generated text or
image.

Image Perturbation. To simulate real-world corruptions in image data, we employ
perturbation strategies adopted from Hendrycks and Dietterich (2019); Qiu et al. (2023d);
Zhang et al. (2024). These perturbations are categorized into five groups: noise, blur,
weather, digital, and geometric. Specifically, we utilize 20 different image perturbation
techniques across these five categories:

e (1) Noise — Gaussian noise, shot noise, impulse noise, speckle noise;

e (2) Blur — defocus blur, frosted glass blur, motion blur, zoom blur;

(1)
(2)

e (3) Weather — snow, frost, fog, brightness;

e (4) Digital — contrast, elastic transformation, pixelation, JPEG compression;
(

e (5) Geometric — scaling, rotation, shearing, piecewise affine transformation.

Acknowledging that real-world corruptions vary in intensity, we introduce variations for
each type of corruption as suggested in Hendrycks and Dietterich (2019); Geirhos et al.
(2019); Michaelis et al. (2019). In our evaluation, each category features 5 severity levels,
culminating in a total of 100 perturbation methods. These strategies, commonly regarded
as synthetic distribution shifts, provide a well-defined and manageable starting point. A
detailed description of each perturbation method is provided in Table 3 in Appendix A.

Text Perturbation. To simulate distribution shifts in language data, we have designed 19
text perturbation techniques organized into three categories: character-level, word-level,
and sentence-level (Qiu et al., 2023d).

e For character-level perturbations, we adopt six strategies from Ma (2019); Qiu et al.
(2023d) that simulate common typing errors: keyboard typos, OCR errors, character
insertion (CI), character replacement (CR), character swap (CS), and character deletion
(CD).

e At the word-level, five strategies from EDA and AEDA (Wei and Zou, 2019; Karimi
et al., 2021) are used: synonym replacement (SR), word insertion (WR), word swap
(WS), word deletion (WD), and punctuation insertion (IP). These techniques reflect
various editorial changes that mimic different writing habits.

e For sentence-level perturbations, eight strategies are included to address more complex
linguistic variations: Formal, Casual, Passive, and Active transformations from Li et al.
(2018); Etinger and Black (2019); Schmidt (2020); Schiappa et al. (2022) alter the style
of the text; Back Translation from Ma (2019); SCPN from Iyyer et al. (2018); BART
from Lewis et al. (2019); and DIPPER from (Krishna et al., 2023), focus on semantic
shifts due to translation errors and paraphrasing.
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Similar to image perturbations, each text perturbation strategy is assigned severity levels.
Character-level and word-level perturbations include five severity levels, mirroring the
approach used for image perturbations, whereas sentence-level perturbations are applied at a
single severity level. In total, this results in 63 text perturbation methods. These techniques
encompass a broad range of real-world text distribution shifts—such as typos, word swaps,
and style changes Detailed descriptions of each perturbation method are provided in Table 4
in Appendix A.

5 Watermarks

In this study, we utilize 4 image watermarking methods and 4 text watermarking methods
to evaluate their robustness. The subsequent sections provide a brief introduction to each of
these methods.

Image Watermarks (Image-WM)

e DwtDctSvd-WM Cox et al. (2007) integrates Discrete Wavelet Transform (DWT),
Discrete Cosine Transform (DCT), and Singular Value Decomposition (SVD) to embed
watermarks in color images. It starts by converting the RGB cover image to YUV,
applies DWT to the Y channel, segments it into blocks via DCT, and performs SVD
on each block before embedding the watermark. DwtDctSvd is the default method
used by Stable Diffusion (Rombach et al., 2022).

e RivaGAN-WM Zhang et al. (2019) introduces a robust image watermarking tech-
nique utilizing Generative Adversarial Networks (GANs) (Goodfellow et al., 2014). It
incorporates two adversarial networks: one to evaluate the quality of watermarked
images and another to facilitate watermark removal. The system includes an encoder
for watermark embedding and a decoder for its extraction, enhancing both performance
and robustness. RivaGAN is also employed as a watermarking method by Stable
Diffusion (Rombach et al., 2022).

e SSL-WM Fernandez et al. (2022b) leverages the latent spaces of pre-trained neural
networks for watermark encoding, using networks trained via self-supervised learning
(SSL) to capture effective watermarking features. This method embeds watermarks by
applying backpropagation and data augmentation, and it is capable of detecting and
decoding these watermarks from the watermarked image or its extracted features.

e StegaStamp-WM Tancik et al. (2019) introduces a learned steganographic algorithm
designed for the robust encoding and decoding of arbitrary hyperlink bit strings
into photos, achieving near-perceptual invisibility. The system utilizes a deep neural
network to learn an encoding/decoding algorithm that remains robust against image
perturbations typical of real-world printing and photography scenarios.

Text Watermarks (Text-WM)

e KGW-WM Kirchenbauer et al. (2023a) randomly splits the vocabulary into red tokens
and green tokens based on the hash value of the previous token. During the next token
generation, a constant § is added to the logits for tokens that belong to the green
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list. This effectively increases the probability of generating green list tokens, thereby
increasing the overall number of green tokens in the entire output sequence. During
detection, if the suspect text contains significantly more green tokens, it is likely from
the watermarked LLM.

o KTH-WM obtains a watermark key from the watermark sequence and generates the
watermarked text by mapping the watermark key (random numbers) to the sample
from the language model. Kuditipudi et al. (2023) provided two instantiations of this
protocol, namely inverse transform sampling and exponential minimum sampling. Both
schemes ensure distortion-free — the expected distribution of a single response from
the watermarked model is identical to the distribution of a single response from the
original model. We utilize exponential minimum sampling for our experiments due to
its stronger reported results (Kuditipudi et al., 2023).

e Blackbox-WM Yang et al. (2023): begins by obtaining the original text from a black-
box language model. The process involves selectively replacing words with context-based
synonyms to embed a watermark. It employs a unique binary encoding function that
assigns a random binary value (either bit-0 or bit-1) to each word. This function ensures
a near balance between bit-0 and bit-1 representations in non-watermarked texts. For
every word selected for replacement, the method generates synonym candidates, each
evaluated for the binary encoding they carry.

e Unigram-WM Zhao et al. (2023a) involves a watermarking process similar to KGW-
WM, splitting the vocabulary into the green list and the red list and then increasing
the probability of generating green tokens. The key difference is that Unigram-WM
keeps the red-green partitions fixed. This allows for better robustness guarantees since
each edit (insertion/deletion/replacement) only changes one token from green to red or
from red to green.

6 Experiments

In this study, we aim to address several key questions: (1) Which watermarking methods
demonstrate the highest stability and robustness? (2) Which perturbation techniques are
most effective in attacking the embedded watermarks? (3) Among image and text generation
models, which are the most robust?

6.1 Experimental Settings

Benchmark Models We investigate the following benchmark models, all of which are

publicly available. Each model has been chosen for its relevance and potential to provide

insights into the watermark robustness against perturbations. We used 16 NVIDIA A6000

GPUs for our experiments.

e Text-to-image models: NExT-GPT (Wu et al., 2023), Stable Diffusion (Rombach et al.,
2021), DALLE3 (Betker et al.), SDXL-Lightning (Lin et al., 2024), PIXART (Chen et al.,
2023a), Kandinsky 2.2 (Razzhigaev et al., 2023), Latent Consistency Models (LCMs) (Luo
et al., 2023), RPG (Yang et al., 2024).
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e Image-to-text models: NExT-GPT (Wu et al., 2023), Fuyu-8B (Bavishi et al., 2023),
InternLM-XComposer (Zhang et al., 2023), InstructBLIP (Dai et al., 2023), LLaVA 1.6
(Liu et al., 2023), MiniGPT-4 (Zhu et al., 2023), mPLUG-OwI2 (Ye et al., 2023), Qwen-VL
(Bai et al., 2023).

Evaluation Metrics For evaluating image quality, our study employs several metrics:
Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM) (Wang
et al., 2004), Bit Accuracy (Bit Acc), and Detection Accuracy (Dect Acc) (Zhao et al.,
2023a). In assessing text quality, we utilize BLEURT (Sellam et al., 2020; Pu et al., 2021),
ROUGE (Lin, 2004), Bit Accuracy (Bit Acc), and Detection Accuracy (Dect Acc) (Zhao
et al., 2023a). These metrics allow us to assess the fidelity and integrity of watermarked
images comprehensively.

6.2 Results And Discussions

Table 1: Comparison of different image watermarking methods.

Watermark Model PSNR SSIM Bit Acc Dect Acc Dect Acc (Ori) Dect Acc Drop (%)
NextGPT 17.03 0.50 4.29 12.12 95.56 -87.32%
Stable Diffusion 17.69 0.51 4.43 15.79 100.00 -84.21%
DALLE3 16.85 0.51 3.09 15.81 95.32 -83.41%
; SDXL-Lightning  18.55 0.56 5.96 21.27 100.00 -78.73%
DetbwiSvd-WM - pry ART 1766 054 428 18.83 95.57 -80.30%
Kandinsky 2.2 15.99 0.50 4.01 7.51 91.42 -91.79%
LCMs 19.48 0.58 6.32 18.81 100.00 -81.19%
RPG-Image 17.74 0.50 3.79 29.19 92.20 -68.34%
NextGPT 17.60 0.54 3.87 23.40 98.55 -76.26%
Stable Diffusion 17.19 0.51 3.10 31.39 100.00 -68.61%
DALLE3 16.93 0.52 3.59 25.40 97.59 -73.97%
. , SDXL-Lightning  18.40 0.55 3.56 36.83 100.00 -63.17%
RivaGAN-WM ™ by ART 1782 055 701 33.10 96.63 -65.75%
Kandinsky 2.2 16.05 0.51 5.53 17.17 90.33 -80.99%
LCMs 19.28 0.57 3.83 35.84 99.00 -63.80%
RPG-Image 17.30 0.50 4.29 29.55 91.63 -67.75%
NextGPT 7.71 0.30 7.05 26.18 96.67 -72.92%
Stable Diffusion 8.08 0.31 2.51 24.72 95.42 -74.09%
DALLE3 9.91 0.27 3.62 25.67 88.54 -71.01%
SSL-WM SDXL-Lightning  10.65 0.32 3.62 28.14 86.48 -67.46%
PIXART 8.54 0.30 3.09 24.86 92.41 -73.10%
Kandinsky 2.2 8.46 0.24 3.90 20.91 90.85 -76.98%
LCMs 8.75 0.34 3.06 12.01 94.87 -87.34%
RPG-Image 10.54 0.30 3.40 23.70 90.18 -73.72%
NextGPT 7.33 0.24 3.49 14.12 85.73 -83.53%
Stable Diffusion 7.38 0.29 4.04 19.26 82.29 -76.59%
DALLE3 6.83 0.29 3.84 15.98 88.41 -81.93%
- SDXL-Lightning 6.6 0.22 4.76 9.25 84.72 -89.08%
StegaStamp-WM - pry s R 815 021 331 14.53 85.69 -83.04%
Kandinsky 2.2 6.91 0.22 3.68 9.64 86.35 -88.84%
LCMs 6.94 0.21 4.15 25.71 88.67 -85.78%
RPG-Image 5.81 0.26 3.46 8.74 80.26 -89.11%

Watermarking Strategy Comparison. In Tables 1 and 2, we present the outcomes of
various image and text watermarking methods, respectively. The results indicate variations
in the performance across different models. Generally, under image perturbations, RivaGAN-
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Table 2: Comparison of different text watermarking methods.

Watermark  Model BLEURT ROUGE Bit Acc Dect Acc Dect Acc (ori) Dect Acc Drop (%)
NextGPT 0.32 39.54 59.41 19.60 99.76 -80.35%
Fuyu 0.30 40.39 67.87 36.27 99.85 -63.68%
InternLM-XComposer 0.31 35.07 64.68 14.97 100.00 -85.03%
InstructBLIP 0.30 3.07 51.26 23.60 100.00 -76.40%
“WM

KGW-WM LLaVA 1.5 0.35 42.34 68.11 71.38 98.04 -37.93%
MiniGPT-4 0.37 43.21 57.84 18.95 99.48 -80.95%
mPLUG-Owl2 0.30 43.17 59.78 37.64 99.95 -62.34%
Qwen-VL 0.29 29.16 63.09 23.10 99.93 -76.88%
NextGPT 0.31 41.43 51.78 21.06 98.37 -78.59%
Fuyu 0.29 41.50 66.34 33.50 99.06 -66.18%
InternLM-XComposer 0.23 38.13 57.86 33.00 100.00 -67.00%
KTH-WM InstructBLIP 0.36 14.54 56.34 34.00 99.85 -65.95%
B LLaVA 1.5 0.31 31.74 64.90 35.75 98.68 -63.77%
MiniGPT-4 0.32 44.14 50.63 21.50 100.00 -78.50%
mPLUG-Owl2 0.27 36.63 62.55 33.41 99.64 -66.47%
Qwen-VL 0.25 35.52 54.23 32.59 99.87 -67.37%
NextGPT 0.33 43.09 62.41 23.80 100.00 -76.20%
Fuyu 0.30 40.01 66.12 27.93 100.00 -72.07%
InternLM-XComposer 0.28 33.44 52.75 25.40 99.57 -74.49%
Blackbox-WM InstructBLIP 0.37 35.51 53.24 22.70 99.86 -T7.27%
ackboxs LLaVA 1.5 0.31 42,22 60.60 22.72 99.62 -77.19%
MiniGPT-4 0.37 44.72 64.53 24.01 100.00 -75.99%
mPLUG-Owl2 0.30 34.81 62.54 31.58 99.86 -68.38%
Qwen-VL 0.28 33.19 51.46 24.68 99.68 -75.24%
NextGPT 0.26 26.39 48.42 2.46 100.00 -97.54%
Fuyu 0.24 28.14 48.98 0.77 100.00 -99.23%
InternLM-XComposer 0.19 25.37 47.47 0.32 100.00 -99.68%
Unigram-WM InstructBLIP 0.25 17.18 47.88 17.74 99.76 -82.22%
meran- LLaVA 1.5 0.37 40.01 58.16 468 99.69 -95.31%
MiniGPT-4 0.32 32.67 45.33 2.48 98.62 -97.49%
mPLUG-Owl2 0.23 28.08 47.58 1.27 97.42 -98.70%
Qwen-VL 0.21 24.99 42.57 0.28 99.03 -99.72%

== PSNR == SSIM (x100) Bit Acc (x10) == Dect Acc == BLEURT (x100) == ROUGE Bit Acc == Dect Acc

NextGPT NextGPT
50.00 60.00
RPGImage 49 g0 Stable Diffusion Qwen-VL Fuyu
3000 40.00
00
LCMs DALLE3 mPLUG-OwI2 InternLM
Kandinsky 2.2 SDXL-Lightning MiniGPT-4 InstructBLIP
PIXART LLaVA 1.5

Figure 2: Performance comparison of differ-

ent models under image perturba-
tions.

Figure 3: Performance comparison of differ-

ent models under text perturba-
tions.
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WM appears to be more robust, whereas under text perturbations, KGW-WM demonstrates
greater stability.

Perturbation Method Comparison. In Figure 4, we showed the comparisons of different
[Top| image corruption and |[Bottom| text perturbation methods. All the results have been
averaged on different severity levels.

For image corruptions, we show the results by Stable Diffusion in Figure 4 [Top|. Generally,
noise and blur-based perturbations tend to have a more severe impact on all metrics, as
they directly affect the clarity and sharpness of images. Environmental effects and quality
degradation also impact the metrics but might be less severe compared to direct noise
introductions or blurs. Gaussian, Shot, Impulse, and Speckle noise appear to significantly
decrease PSNR and SSIM, indicating a substantial degradation in image quality. JPEG
compression, while degrading quality, may not affect structural similarity as much, depending
on the compression level. Distortions such as Rotate, Shear, and Piecewise Affine could
particularly lower Detection Accuracy as they alter the geometry and spatial relationships
within the image, potentially complicating detection tasks. Based on the results in Figure 4
[Top|, we find that Zoom Blur is more effective, and Glass Blur is less effective.

Similarly, for text perturbations, we show the results by LLaVA 1.6 in Figure 4 [Bottom].
Stylistic transformations (Formal, Casual, Active, Passive) show the highest performance
across all metrics, indicating minimal impact on text quality and excellent preservation and
detection capabilities. Synonym Replacement (SR), Bart, SPCN, and Dipper also perform
well, with high BLEURT and ROUGE scores and good preservation and detection accuracy.
Character Insert (CI), Character Delete (CD), and Word Swap (WS) show the lowest
scores across all metrics, indicating significant degradation in text quality and moderate
preservation and detection capabilities. Based on the results in Figure 4 [Bottom|, we find
that character-level perturbations are more effective, and sentence-level perturbations are
less effective.

= PSNR = SSIM (x100) Bit Acc ~ Dect Acc

——~ 74x—\—77*:/’ .y

R ~ . - ——
0
Gaussian  Shot Impulse  Speckle  Defocus Glass Motion Zoom Snow. Frost Fog  Brightness Contrast  Elastic  Pixelate JPEG Scale Rotate Shear Piecewse Affine

Image Perturbation

= BLEURT (x10) - ROUGE Bit Acc = Dect Acc

0

Keyboard OCR Character Character ~ Character ~ Character _ Synonym Word  WordSwap ~ Word n:
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Figure 4: Comparisons of different |Top| image corruption and [Bottom| text perturbation
methods using Stable Diffusion and LLaVA, respectively. All the results were
averaged at different severity levels.
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Figure 5: Model comparisons under [Top| image corrections and [Bottom| text perturbations.
All the results have been averaged on the performance under all image/text
perturbations.

Model Comparison. In Figure 5, we showed the model comparisons under [Top| image and
[Bottom| text perturbations. The results are averaged across all image and text perturbations.
Our findings indicate that under image perturbations, SDXL-Lightning demonstrates superior
robustness. Conversely, LLaVA exhibits greater robustness under text perturbations compared
to the other models.

6.3 Ablation Study

Image Perturbation Severity Influence. Each image perturbation method is associated
with multiple severity levels, so we would like to explore the relationship between robustness
performance and perturbation severity levels. In Figure 6, we showed two examples, Gaussian
Noise and Glass Blur, across varying levels of severity (from 1 to 5). PSNR and SSIM
are particularly sensitive to distortions, with PSNR showing a more pronounced drop in
the presence of Gaussian Noise than Glass Blur. This suggests that noise introduces more
disruptive interference compared to blur. SSIM, while also decreasing with severity, indicates
that structural elements of images are somewhat more preserved under Glass Blur compared
to Gaussian Noise, highlighting differential impacts depending on the type of distortion. Bit
Accuracy exhibits a notable decline under both conditions but is more affected by Glass
Blur, especially beyond moderate levels of severity. This suggests that blur more significantly
affects the bit-level representation of the image. Detection accuracy remains relatively stable
under Glass Blur and shows resilience, suggesting that detection algorithms might still
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Figure 6: Performance changes with different severity levels under image perturbations.
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Figure 7: Performance changes with different severity levels under text perturbations.

effectively identify key features in blurred images. However, it declines under Gaussian Noise,
indicating challenges in feature detection amidst this type of noise.

Text Perturbation Severity Influence. Similar to the image perturbations above, in
Figure 7, we showed two examples, OCR and Word Insertion, across varying levels of severity
(from 1 to 5). OCR errors cause a more drastic decrease in BLEURT scores than word
insertions, suggesting that OCR, errors might lead to more severe semantic disruptions than
simple word additions. Detection accuracy demonstrates notable resilience in both scenarios,

implying that the underlying algorithms are effective at extracting essential information
despite textual distortions.

6.4 Limitations and Future Work.

e Our current evaluation study focuses on watermark robustness against image corruptions
and text perturbations. However, it does not encompass other watermark types, such
as audio, nor does it include all potential perturbations. For instance, while there are
studies on the robustness against adversarial image perturbations, such attacks typically
involve a classification task conditioned on a target label, making them inapplicable to our
evaluation setting. Therefore, they were not included in this study.

e Our study investigated 8 image-to-text models and 8 text-to-image models. However, we
acknowledge that this is a preliminary study. Different watermarking strategies may show
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varying performance when the embedded watermarks change. Consequently, the findings
related to the models are speculative and not conclusive.

e We hope that future research will expand the evaluation benchmark to include a broader
range of watermark types and perturbations. To the best of our knowledge, our study
does not pose any potential negative societal impacts.

Takeaway: Our main findings are as follows.

(1) Watermarks are sensitive to image corruptions and text perturbations.

(2) Among image perturbations, Zoom Blur consistently shows the highest impact, while
Glass Blur is the least harmful.

(3) Among text perturbations, character-level perturbations are more effective, and
sentence-level perturbations are less effective.

(4) Under image perturbations, RivaGAN-WM appears more stable, whereas under text
perturbations, KGW-WM seems more stable.

(5) In terms of models, SDXL-Lightning is more robust than other baselines under image
perturbations, while LLaVA demonstrates greater robustness under text perturbations.

7 Conclusion

In this study, we explore the robustness of image and text watermarks under perturbations.
Our research includes testing the performance of 8 image-to-text models and 8 text-to-image
models, subjected to 100 image perturbation techniques and 63 text perturbation methods.
We assess the robustness of 4 image watermarking methods and 4 text watermarking methods.
We aim for our benchmark to be a valuable resource for examining the robustness of image and
text watermarks, and we hope our results will inspire the development and implementation
of more robust watermarking strategies for practical applications.

Broader Impact Statement

Positive Impacts:

e Copyright Protection: By improving watermarking techniques, our research helps in
safeguarding the intellectual property rights of creators, particularly in digital media.
This can lead to more secure ways for artists, writers, and developers to claim ownership
and receive proper attribution.

e Content Authenticity: As fake content proliferates, robust watermarking can be crucial
in verifying the authenticity of digital media. This could be particularly significant
for news agencies, educational content providers, and other stakeholders interested in
preserving the integrity of information.

e Content Management: Effective watermarking aids content providers in tracking and

managing the distribution of their work. This can help in enforcing licensing agreements
and preventing unauthorized use, thus potentially reducing copyright violations.
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Negative Impacts:

e Privacy Concerns: Robust watermarking could potentially be used for surveillance and
tracking purposes. For example, watermarked images or texts could be used to trace
the activity of individuals without their consent.

e Accessibility and Misuse: As watermarking techniques become more sophisticated,
there might be a risk of these technologies being misused to embed malicious data or
to restrict access to content via overly aggressive copyright enforcement.

e Economic Impact: There may be concerns regarding the economic implications for
businesses that rely on less secure watermarking methods, which might face obsolescence
or the need for costly upgrades.

We acknowledge the dual-edged nature of technological advancements in watermarking,
emphasizing a commitment to ethical considerations and the responsible deployment of these
technologies to maximize benefits while minimizing harm.

Ethical Discussion: In addition to the positive and negative impacts discussions, we also
discuss the ethical implications of our research as follows:

e Equity and Accessibility: Our techniques could inadvertently favor large organizations
by enhancing their ability to protect intellectual property, potentially marginalizing
smaller entities and researchers. This could concentrate power within large tech
companies, thus impacting the balance between protection and accessibility in Al
development.

e Potential for Misuse: While watermarking can aid in identifying sources of malicious
content and facilitate moderation, it also poses risks if exploited by bad actors to claim
false ownership or bypass protections. Furthermore, robust watermarking could be
misused for surveillance, raising significant privacy and ethical concerns.

e Trade-offs: Implementing these watermarking systems involves balancing protection
strength, model performance, and accessibility. It is crucial to consider these trade-offs
carefully to avoid stifling innovation or restricting access to beneficial Al technologies.
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Appendix A. More Details about Perturbation Methods

Table 3 shows a detailed introduction to each image perturbation method. Table 4 shows a
detailed introduction about each text perturbation method.

Appendix B. Experimental Settings

B.1 Image Watermark Parameters

DctDwtSvd-WM and RivaGAN-WM For all of our experiments, we embed 4 characters
as bytes, specifically the string “test”, into the images. During decoding, we deem the
watermark detection algorithm as passing if it is able to fully retrieve the original, encoded
string “test”.

SSL-WM A neural network is needed to extract the features from images, and a normal-
ization layer is to evenly distribute the extracted features in the latent space. We utilize
the recommended, default model and normalization layers, namely ResNet-50 trained with
DINO and PCA whitening respectively. During detection, we consider the zero-bit scenario
(Fernandez et al., 2022b).

StegaStamp-WM requires a pretrained encoder, decoder, and detector. The encoder is
an architecture similar to U-Net (Ronneberger et al., 2015) where the image is first processed
through a fully connected network to become a tensor of size 50 x 50 x 3, then upsampled to
get a tensor of size 400 x 400 x 3. The decoder is a spatial transformer network (Jaderberg
et al., 2015) that is trained to recover the encoded watermark. For the detector, the authors
use an open-source semantic segmentation network, namely BiSeNet (Yu et al., 2018). We
utilize all of the default parameters used in (Tancik et al., 2019).

B.2 Text Watermark Parameters

KGW-WM We utilize game and delta values of 0.25 and 2.0, respectively. We also set
the seeding scheme as ‘simple 1’, which represents a simple bigram hash, to utilize the main
settings of the experiments in the paper (Kirchenbauer et al., 2023a). During detection, we
also utilize a z threshold of 0.5 and ignore repeated n-grams.

KTH-WM We set the desired length of the generated text, m, to 30 as detailed in
Kuditipudi et al. (2023). The length of the watermark sequence, n, is kept at the standard
value of 256. For generating the random watermark sequence, we employ a key of 42. The
authors’ method of evaluating their watermarking framework involves p-values, and we
consider texts with p < 0.1 as effectively watermarked.

Blackbox-WM We employ the 7 word value of 0.8, and a A value of 0.83 (Yang et al., 2023).
We also use the “embed” mode during watermarking. During detection, if the confidence
value is over 80%, we deem the detection algorithm as successfully finding the watermark.

Unigram-WM When applying the watermark, we utilize a fraction and strength value of
0.5 and 2.0, respectively. Additionally, we determined the watermark key to be defaulted to
0. During detection, we utilize the default value of 6.0 (Zhao et al., 2023a).

25



QIu, HAN, ZHAO, LoNG, FALOUTSOS, AND L1

Table 3: Image perturbations.

Category  Perturbation ‘ Description ‘ Severities

Gaussian Noise ‘ Gaussian noise can appear in low-lighting conditions. ‘ 5

Shot Noise Shot noise, also called Poisson noise, is electronic 5

. noise caused by the discrete nature of light itself.
Noise

Impulse Noise Impulse noise is a color analogue of salt-and-pepper 5
noise and can be caused by bit errors.

Speckle Noise Speckle noise is the noise added to a pixel that tends 5
to be larger if the original pixel intensity is larger.

Defocus Blur ‘ Defocus blur occurs when an image is out of focus. ‘ 5

Frosted Glass Blur | Frosted Glass Blur appears with “frosted glass” win- 5

Blur dows or panels.

Motion Blur ‘ Motion blur appears when a camera is moving quickly. ‘ 5

Zoom Blur Zoom blur occurs when a camera moves toward an 5
object rapidly.

Snow ‘ Snow is a visually obstructive form of precipitation. ‘ 5

Frost Frost forms when lenses or windows are coated with 5

Weather ice crystals.

Fog Fog shrouds objects and is rendered with the diamond- 5
square algorithm.

Brightness ‘ Brightness varies with daylight intensity. ‘ 5

Contrast Contrast can be high or low depending on lighting 5
conditions and the photographed object’s color.

Digital Elastic Elastic transformations stretch or contract small im- 5
age regions.

Pixelate Pixelation occurs when upsampling a low-resolution 5
image.

JPEG Compression | JPEG is a lossy image compression format that in- 5
troduces compression artifacts.

Scale Change the size of an image by enlarging or shrinking 5
its dimensions.

Rotate Turn the image around a central point by a specified 5
degree, altering its orientation.

Geometric gree, &

Shear Skew the image by shifting parts of it more than 5
others, creating a distortion.

Piecewise Affine Apply affine transformations to different parts of 5
the image independently, allowing for complex local
distortions.

Sum 20 | — | 100
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Table 4: Text perturbations.

Category Perturbation ‘ Description ‘ Severities

Keyboard Substitute character by keyboard distance with 5
probability p.

OCR Substitute character by pre-defined OCR error 5

ith probability p.
Character-level With probabiity p

Character Insert (CI) ‘ Insert character randomly with probability p. ‘ 5

Character Replace (CR) Substitute character randomly with probability 5
.

Character Swap (CS) | Swap character randomly with probability p. | 5

Character Delete (CD) ‘ Delete character randomly with probability p. ‘ 5

Synonym Replacement (SR) | Randomly choose n words from the sentence 5
that are not stop words. Replace each of these
words with one of its synonyms chosen at ran-
dom.

Word Insertion (WI) Find a random synonym of a random word in 5
the sentence that is not a stop word. Insert

Word-level that synonym into a random position in the
sentence. Do this n times.

Word Swap (WS) Randomly choose two words in the sentence 5
and swap their positions. Do this n times.

Word Deletion (WD) Each word in the sentence can be randomly 5
removed with probability p.

Insert Punctuation (IP) Random insert punctuation in the sentence 5
with probability p.

Formal ‘ Transfer the text style to Formal. ‘ 1

Casual ‘ Transfer the text style to Casual. ‘ 1

Passive ‘ Transfer the text style to Passive. ‘ 1

Active ‘ Transfer the text style to Active. ‘ 1

Back Translation (BT) Translate source to German and translate it 1
back to English via (Ng et al. 2020).

Sentence-level SCPN Produce a paraphrase of a given sentence 1
with specified syntactic structures (Iyyer et al.
2018).

BART Use BART for text summarization as para- 1
phrasing attack (Lewis et al.. 2019).

DIPPER DIPPER can paraphrase paragraphs, condition 1
on surrounding context, and control lexical
diversity and content reordering (Krishna et al.

2023).
Sum 19 63
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B.3 Number of Samples

We utilized 5,000 image-caption pairs from the COCO validation split (Lin et al., 2014). For
text generation, the input to the multimodal models consisted of the prompt “Describe this
image:" alongside the corresponding image from the dataset. For image generation, the input
was the prompt “Please generate an image describing the following caption: C", where C is
the corresponding caption from the dataset. In total, we generated 5,000 images and 5,000
texts for each model.

Appendix C. More Related Work

Multimodal Watermarking is a technique that embeds watermarks into various types of
media content like audio, video, and images. (Tang et al., 2023) proposed a safe and robust
backdoor-based embedding watermarking method for VLPs called VLPMarker. It further
proposed a collaborative copyright verification strategy based on both backdoor triggers and
embedding distribution, enhancing resilience against various attacks.

Multimodal Learning The study of multimodal learning traces back to 1989, when Yuhas
et al. (1989) leveraged the McGurk Effect to explore audio-visual speech recognition using
neural networks (Tiippana, 2014; McGurk and MacDonald, 1976). Since then, collaboration
between researchers in natural language processing (NLP) and computer vision (CV) has
led to the creation of large multimodal datasets designed for tasks such as classification,
translation, and detection. Advances in large language models (LLMs) have further facilitated
the integration of additional modalities, most notably visual data (Wang et al., 2022; Qiu
et al., 2023d; Nguyen et al., 2022; Li et al., 2022; Qiu et al., 2024a; Wang et al., 2021; Qiu
et al., 2023c; Shah et al., 2022; Zhang et al., 2021; Qiu et al., 2023a; Xu et al., 2023; Qiu
et al., 2024b; Wang et al., 2023; Qiu et al., 2023b; Long and Yao, 2020). By leveraging
embeddings pretrained on both language and image datasets, vision-language models achieve
exceptional performance across various tasks.

Appendix D. More Experimental Results

Trade-off between detection accuracy and content quality Figure 6 and Figure 7
illustrate the trade-offs between various metrics such as PSNR, SSIM, BLEURT, ROUGE,
Bit Accuracy, and Detection Accuracy, with respect to severity levels of image and text
perturbations, respectively. Detailed analyses (omitted from the paper due to their large
volume) indicate that SSL-WM and Blackbox-WM provide the optimal balance for image
and text watermarking, respectively.

Appendix E. Detailed Experimental Results

In the following tables, we provide the detailed results for each baseline model mentioned in
Section 6.1.
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Table 5: NExT-GPT image watermarks under image perturbations.

Watermark Attack Category Perturbation PSNR SSIM Bit Acc Dect Acc
Gaussian 18.95 0.40 1.87 5.68

Noise Shot 18.32 0.41 2.42 9.25

Impulse 18.18 0.38 4.79 1.38

Speckle 0.00 0.50 3.59 25.48

Defocus 22.93 0.55 7.40 28.82

Blur Glass 27.05 0.83 10.56 80.69

Motion 20.53 0.61 5.92 6.75

Zoom 17.31 0.50 3.63 0.00

Snow 11.13 0.52 0.29 6.42

Dot DSy e Frost 1000 0.60 0.33 2.98
cathe Fog 1322 0.59 0.70 0.38

Brightness 14.03 0.77 0.88 18.75

Contrast 14.73 0.53 0.88 1.48

Digital Elastic 16.70 0.41 5.02 11.49

& Pixelate 22.76 0.65 797 36.31

JPEG 28.09 0.84 5.93 0.00

Scale 4.88 0.22 8.94 0.00

Geometric Rotate 27.32 0.10 7.30 0.00

- Shear 2454 027 3.31 2.31

Piecewse Affine 10.02 0.25 4.14 4.28

‘Watermark Attack Category Perturbation PSNR SSIM Bit Acc Dect Acc
Gaussian 18.96 0.40 1.87 12.89

Noise Shot 18.31 0.41 2.36 12.08

B Impulse 18.18 0.38 4.78 8.20

Speckle 19.88 0.51 3.58 20.71

Defocus 22.94 0.55 6.87 32.69

Blur Glass 27.05 0.83 9.74 84.54

Motion 20.51 0.61 5.53 32.79

Zoom 17.32 0.50 3.56 2.70

vaGAN-W Snow 1117 0.52 0.29 4.38
RivaGANWAL e Frost 995 0.60 0.33 1297
Fog 13.25 0.59 0.67 2.37

Brightness 14.14 0.77 0.85 51.03

Contrast, 14.74 0.53 0.88 5.07

Dicital Elastic 16.70 0.41 4.55 59.62

& Pixelate 22.77 0.65 7.18 42.50

JPEG 28.07 0.84 5.90 0.15

Scale 15.64 0.42 5.82 1.18

Geometric Rotate 14.34 0.23 6.20 72.50

Shear 15.93 0.68 4.31 5.28

Piecewse Affine 12.21 0.31 2.22 4.41

‘Watermark Attack Category Perturbation PSNR SSIM Bit Acc Dect Acc
Gaussian 8.67 0.17 1.27 2.50

Nois Shot 7.72 0.16 1.49 2.43

omse Impulse 759 015 43.87 0.00

Speckle 8.56 0.22 2.58 13.89

Defocus 11.48 0.31 4.22 29.46

Blur Glass 13.62 0.42 6.55 74.71

Motion 10.25 0.31 3.47 22.36

Zoom 8.64 0.25 2.08 0.04

. Snow 5.56 0.26 0.21 3.23
SSLAWM et Frost 497 030 0.20 20.71
Fog 6.58 0.30 0.32 59.22

Brightness 7.04 0.39 1.12 73.01

Contrast, 7.36 0.27 0.49 55.45

Disital Elastic 8.34 0.21 2.88 46.66

it Pixelate 1138 033 467 5.60

JPEG 14.00 0.42 3.19 2.12

Scale 3.77 0.48 26.91 25.67

Geometric Rotate 291 0.25 2.93 30.82

Shear 2.63 0.35 4.01 24.19

Piecewse Affine 3.14 0.41 28.53 22.58

‘Watermark Attack Category Perturbation PSNR SSIM Bit Acc Dect Acc
Gaussian 8.41 0.28 2.11 7.55

Noi Shot 8.33 0.07 2.13 64.11

oise Impulse 476 031 4.30 1.80

Speckle 8.16 0.48 3.25 13.75

Defocus 30.26 0.31 3.48 21.55

Blur Glass 17.98 0.18 3.54 17.90

Motion 11.48 0.21 3.46 29.35

Zoom 5.40 0.14 6.71 2.70

o Snow 621 028 7.38 7.72
StegaStamp-WM Frost 457 017 5.73 33.90
cather Fog 1417 031 6.07 31.14

Brightness 3.41 0.28 3.80 1.19

Contrast 1.18 0.08 1.96 3.88

Digital Elastic 3.73 0.39 1.03

et Pixelate 195 037 5.37

JPEG 9.94 0.23 4.80

Scale 2.33 0.49 27.38

a tri Rotate 5.66 0.07 0.27

comtrie Shear 385 0.05 341

Piecewse Affine 4.89 0.13 3.70
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Table 6: Stable Diffusion image watermarks under image perturbations.

Watermark Attack Category Perturbation PSNR SSIM Bit Acc Dect Acc
Gaussian 19.12 0.39 1.80 16.93

Noise Shot 18.62 0.37 2.08 25.33

Impulse 17.98 0.33 4.87 9.81

Speckle 20.22 0.49 3.73 59.36

Defocus 23.93 0.69 11.01 35.49

Blur Glass 27.61 0.84 15.26 93.41

‘“ Motion 2120 0.66 777 8.46

Zoom 16.10 0.51 2.74 0.00

Snow 11.36 0.48 0.37 5.71

DDy Frost 1644 072 6.68 16.89
cavher Fog 1266 0.60 0.55 0.84

Brightness 14.35 0.76 1.00 19.27

Contrast 17.50 0.55 0.58 1.70

Digital Elastic 21.05 0.49 6.94 14.85

& Pixelate 22.03 0.55 8.06 0.56

JPEG 27.83 0.82 6.29 0.00

Scale 0.23 1.72 0.00

Geometric Rotate 0.17 1.27 0.00

™ Shear 0.24 2.03 0.00

Piecewse Affine 0.36 3.78 7.23

‘Watermark Attack Category Perturbation PSNR SSIM Bit Acc Dect Acc
Gaussian 19.03 0.35 1.78 12.69

Noise Shot 18.56 0.37 2.00 15.65

B Impulse 17.93 0.33 4.10 6.36

Speckle 20.14 0.49 3.07 29.42

Defocus 23.81 0.69 7.00 46.98

Blur Glass 27.23 0.82 791 95.22

Motion 21.14 0.65 5.34 47.78

Zoom 16.09 0.51 2.36 0.60

vaGAN-W Snow 11.38 0.48 0.37 6.85
RGN Frost 1547 071 153 16.23
cather Fog 1258 0.60 0.56 8.27

Brightness 14.39 0.73 0.76 48.22

Contrast, 14.06 0.54 0.58 8.23

Dicital Elastic 17.46 0.49 3.62 84.18

& Pixelate 21.01 0.55 5.51 4.17

JPEG 27.71 0.81 5.78 2.26

Scale 11.04 0.23 1.79 33.00

Geometric Rotate 9.23 0.17 1.30 13.00

Shear 10.96 0.24 2.31 60.28

Piecewse Affine 14.48 0.35 4.24 58.45

‘Watermark Attack Category Perturbation PSNR SSIM Bit Acc Dect Acc
Gaussian 9.12 0.33 1.31 0.00

Noise Shot 6.61 0.21 2.26 0.00

o Impulse 7.03 0.51 4.83 0.00

Speckle 4.15 0.43 3.33 341

Defocus 22.78 0.33 3.98 28.31

Blur Glass 18.67 0.28 2.19 88.36

Motion 10.00 0.18 3.21 45.87

Zoom 9.53 0.27 1.19 4.86

N Snow 3.64 0.15 0.80 5.70
SSLAWM et Frost 486 022 0.78 18.43
Fog 5.94 0.32 111 39.85

Brightness 6.93 0.33 1.41 41.83

Contrast, 6.92 0.38 2.85 65.78

Disital Elastic 5.23 0.40 3.95 33.84

el Pixelate 882 021 1.31 21.73

JPEG 7.98 0.38 4.43 22.38

Scale 5.79 0.38 2.36 24.46

Geometric Rotate 6.04 0.25 3.17 25.90

Shear 5.35 0.38 2.80 23.78

Piecewse Affine 6.28 0.18 2.88 0.00

‘Watermark Attack Category Perturbation PSNR SSIM Bit Acc Dect Acc
Gaussian 8.75 0.18 2.84 0.00

Noise Shot 7.03 0.40 3.90 0.46

Impulse 6.31 0.38 3.34 0.37

Speckle 7.73 0.34 2.45 22.85

Defocus 32.87 0.28 2.67 24.96

Bl Glass 19.54 0.26 3.86 21.14

u Motion 1148 018 183 23.84

Zoom 4.95 0.00 5.28 14.80

. " Snow 6.76 0.43 6.99 33.57
StegaStamp-WM Frost 405 036 6.78 35.76
cather Fog 613 0.29 6.57 24.05

Brightness 1.23 0.35 6.47 0.00

Contrast 1.13 0.22 6.78 0.00

Digital Elastic 2.08 0.42 5.72 3.72

et Pixelate 193 037 174 25.97

JPEG 9.28 0.25 1.85 33.78

Scale 3.50 0.33 2.04 26.58

a tri Rotate 4.82 0.37 2.38 38.56

comtrie Shear 381 0.22 217 27.31

Piecewse Affine 4.22 0.21 2.10 27.44
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Table 7: DALLE3 image watermarks under image perturbations.

Watermark Attack Category Perturbation PSNR SSIM Bit Acc Dect Acc
Gaussian 18.91 0.39 1.83 12.61
Noise Shot 18.15 0.39 222 16.81
Impulse 18.18 0.37 4.42 7.38
Speckle 19.62 0.48 3.05 39.09
Defocus 22.90 0.64 5.64 33.88
Blur Glass 27.26 0.84 7.83 88.00
Motion 20.30 0.62 5.10 9.63
Zoom 16.18 0.49 2.83 0.00
Snow 11.13 0.51 0.31 10.75
Dot DSy e Frost 1036 0.60 0.40 5.13
¢ Fog 13.21 0.61 0.65 1.08
Brightness 13.84 0.77 0.78 28.58
Contrast 14.48 0.54 0.83 2.40
Digital Elastic 16.50 0.43 4.20 17.17
& Pixelate 21.04 0.56 5.23 17.97
JPEG 28.63 0.85 5.89 0.00
Scale 10.88 0.25 1.50 9.98
Geomtric Rotate 9.31 0.19 1.09 8.51
™ . Shear 1072 0.26 2.40 4.15
Piecewse Affine 15.50 0.43 5.58 3.09
‘Watermark Attack Category Perturbation PSNR SSIM Bit Acc Dect Acc
Gaussian 18.97 0.39 1.86 15.96
Nois Shot 18.21 0.40 2.33 14.4
noise Impulse 1822 0.37 5.06 11.07
Speckle 19.71 0.49 3.71 23.89
Defocus 23.02 0.65 7.86 37.77
Blur Glass 27.64 0.86 12.50 91.53
Motion 20.34 0.62 6.30 38.05
Zoom 16.19 0.49 3.19 0.6
vaGAN-W Snow 1117 0.52 0.32 5.9
RGN Frost 1040 061 0.31 14.36
cather Fog 1322 0.62 0.40 4.22
Brightness 13.98 0.79 0.65 56.86
Contrast, 14.49 0.55 0.99 6.47
Dicital Elastic 16.54 0.43 5.17 74.38
& Pixelate 21.10 0.57 6.72 20.17
JPEG 28.82 0.85 6.20 0.55
Scale 10.87 0.25 1.36 75.57
Geomtric Rotate 9.31 0.18 1.00 16.16
Shear 10.81 0.27 1.81 0.00
Piecewse Affine 15.57 0.42 4.02 0.00
Watermark Attack Category Perturbation PSNR SSIM Bit Acc
Gaussian 10.77 0.02 0.08
Nois Shot 11.83 0.08 3.31
oise Impulse 558  0.19 3.76
Speckle 6.93 0.35 3.58
Defocus 22.73 0.28 3.17
Glass 25.48 0.58 3.21
Blur . 5 N -
Motion 21.85 0.46 4.75
Zoom 18.42 0.31 4.24
N Snow 4.31 0.27 3.82
SSLAWM et Frost 568 028 141
Fog 8.80 0.35 3.89
Brightness 9.41 0.34 5.91
Contrast, 10.53 0.30 1.23
Digital Elastic 11.32 0.38 1.35
it Pixelate 642 032 2.94
JPEG 3.31 0.35 3.74
Scale 5.83 0.14 9.44
Geomtric Rotate 2.78 0.32 1.42
Shear 3.33 0.02 2.83
Piecewse Affine 2.82 0.01 8.27
‘Watermark Attack Category Perturbation PSNR SSIM Bit Acc Dect Acc
Gaussian 5.02 0.24 1.49 54.41
Noi Shot 3.95 0.41 2.41 55.31
oise Impulse 733 011 2.01 2.25
Speckle 8.04 0.29 3.82 9.62
Defocus 8.75 0.20 6.93 17.83
Bl Glass 12.88 0.38 4.92 14.89
u Motion 1385 0.10 6.21 5.04
Zoom 13.00 0.17 4.82 1.73
. " Snow 1.65 0.39 4.88 10.85
StegaStamp-WM Weatl Frost 328 028 6.28 29.50
cather Fog 390 012 2.08 18.13
Brightness 4.00 0.18 5.32 19.41
Contrast 8.53 0.42 0.53 27.74
Digital Elastic 20.41 0.40 3.88 24.93
et Pixelate 345 0.43 5.83 107
JPEG 6.80 0.54 2.97 8.10
Scale 2.58 0.18 1.25 3.31
a tri Rotate 2.87 0.28 2.28 3.91
comtrie Shear 395 027 5.12 8.00
Piecewse Affine 2.37 0.39 3.76 3.41
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Table 8: SDXL-Lightning image watermarks under image perturbations.

Watermark Attack Category Perturbation PSNR SSIM Bit Acc Dect Acc
Gaussian 18.90 0.29 1.55 19.75

Noise Shot 18.08 0.28 1.52 22.86

Impulse 18.36 0.27 4.53 17.43

Speckle 19.73 0.38 2.50 51.08

Defocus 26.79 0.79 17.35 38.88

Blur Glass 31.14 0.91 23.44 96.75

Motion 23.46 0.74 11.21 14.25

Zoom 17.83 0.61 3.65 0.00

Snow 11.14 0.49 0.03 16.47

Dot DSy e Frost 1697 0.72 7.08 25.29
cathe Fog 1371 0.69 0.69 0.80

Brightness 13.52 0.81 0.07 29.25

Contrast 15.68 0.65 0.85 3.10

Digital Elastic 19.63 0.58 10.55 26.39

& Pixelate 23.30 0.65 12.28 7.29

JPEG 30.64 0.87 7.62 0.00

Scale 12.46 0.35 1.81 22.00

Geomtric Rotate 10.22 0.27 1.27 23.56

- ) Shear 1237 0.36 3.17 0.00

Piecewse Affine 17.06 0.52 8.02 10.17

‘Watermark Attack Category Perturbation PSNR SSIM Bit Acc Dect Acc
Gaussian 18.84 0.28 1.53 9.11

Noise Shot 18.04 0.28 1.50 9.60

B Impulse 18.31 0.27 3.92 5.23

Speckle 19.68 0.37 2.32 19.15

Defocus 26.55 0.77 9.33 51.98

Blur Glass 30.33 0.89 9.78 98.13

Motion 23.35 0.74 6.69 52.41

Zoom 17.82 0.60 3.18 0.98

vaGAN-W Snow 11.18 0.48 0.03 9.41
RGN Frost 1582 071 135 16.92
cather Fog 1368 0.69 0.69 6.58

Brightness 13.62 0.77 0.08 54.60

Contrast, 15.67 0.65 0.85 6.15

Dicital Elastic 19.54 0.57 5.72 90.94

& Pixelate 23.22 0.64 7.49 8.86

JPEG 30.28 0.86 6.95 1.90

Scale 12.47 0.34 1.64 82.98

Geomtric Rotate 10.22 0.26 115 16.29

Shear 12.37 0.35 2.13 76.05

Piecewse Affine 17.03 0.51 4.86 89.35

‘Watermark Attack Category Perturbation PSNR SSIM Bit Acc Dect Acc
Gaussian 11.24 0.05 0.10 3.75

Nois Shot 12.45 0.12 3.62 2.67

oise Impulse 612 0.24 3.87 5.16

Speckle 7.56 0.39 3.69 2.18

Defocus 23.11 0.31 3.28 30.33

Blur Glass 26.02 0.55 3.32 69.81

Motion 22.28 0.48 4.86 27.75

Zoom 19.05 0.33 4.35 31.06

Snow 4.89 0.29 3.93 29.22

SSLAWM et Frost 617 030 161 19.27
Fog 9.34 0.37 3.90 45.84

Brightness 10.03 0.36 6.02 42.65

Contrast, 11.15 0.32 1.43 38.06

Disital Elastic 12.00 0.41 1.55 37.36

it Pixelate 701 034 3.04 23.87

JPEG 3.87 0.37 3.84 25.28

Scale 4.75 0.31 5.88 24.95

Geomtric Rotate 6.27 0.28 4.72 24.24

Shear 5.43 0.30 4.70 28.57

Piecewse Affine 422 0.28 4.7 20.87

‘Watermark Attack Category Perturbation PSNR SSIM Bit Acc Dect Acc
Gaussian 5.19 0.53 9.75 9.11

Noi Shot 3.85 0.05 2.57 2.84

oise Impulse 725 017 1.87 9.92

Speckle 8.61 0.24 3.95 14.80

Defocus 6.48 0.28 7.01 1.20

Bl Glass 12.11 0.38 5.02 117

u Motion 9.03 031 118 3.10

Zoom 14.01 0.17 4.38 0.27

L Snow 278 019 6.28 1.50
StegaStamp-WM Frost 348 002 6.82 14.04
cather Fog 1413 0.03 247 29.84

Brightness 3.02 0.20 5.73 24.48

Contrast 12.41 0.21 7.47 24.79

Digital Elastic 16.82 0.15 2.75 21.28

et Pixelate 357 0.4 172 5.34

JPEG 6.63 0.22 5.37 4.32

Scale 2.73 0.38 3.88 3.57

Geomtric Rotate 4.93 0.42 1.57 5.16

Shear 2.54 0.21 4.38 6.28

Piecewse Affine 2.44 0.10 5.07 2.04
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Table 9: PIXART image watermarks under image perturbations.

Watermark Attack Category Perturbation PSNR SSIM Bit Acc Dect Acc
Gaussian 19.19 0.30 2.23 14.15

Noi Shot 19.23 0.36 3.40 35.73

oise Impulse 1770 0.27 5.01 8.26

Speckle 20.87 0.49 4.75 67.80

Defocus 24.43 0.75 8.24 38.18

Blur Glass 27.98 0.86 10.37 92.87

Motion 21.89 0.71 7.40 9.56

Zoom 16.86 0.57 3.47 0.00

Snow 11.45 0.43 0.49 10.60

DDy Frost 1581 0.6 2.68 19.44
cavher Fog 11.88 057 0.47 0.72

Brightness 14.77 0.70 1.69 18.32

Contrast 13.94 0.56 0.61 2.10

Digital Elastic 18.28 0.57 6.32 21.72

& Pixelate 21.65 0.55 7.07 5.11

JPEG 28.70 0.83 7.23 0.00

Scale 11.36 0.33 2.26 1.43

Geomtric Rotate 9.83 0.26 2.06 16.60

™ ) Shear 1118 0.35 3.05 6.49

Piecewse Affine 16.28 0.51 6.80 7.56

‘Watermark Attack Category Perturbation PSNR SSIM Bit Acc Dect Acc
Gaussian 19.25 0.30 2.27 5.58

Noise Shot 19.31 0.37 3.79 13.11

B Impulse 17.73 0.27 5.76 1.81

Speckle 20.98 0.51 7.90 28.58

Defocus 24.58 0.76 16.53 47.98

Blur Glass 28.39 0.89 22.61 94.15

Motion 21.96 0.73 12.57 48.42

Zoom 16.87 0.58 5.23 0.47

vaGAN-W Snow 11.50 0.44 0.50 5.56
RivaGANWAL e Frost 1650  0.67 7.89 1201
Fog 11.88 0.57 0.46 4.85

Brightness 14.97 0.73 2.27 31.75

Contrast, 13.94 0.56 0.61 5.60

Dicital Elastic 18.30 0.58 11.13 82.63

& Pixelate 21.70 0.64 12.52 5.54

JPEG 28.93 0.84 7.92 221

Scale 11.36 0.33 3.15 74.49

Geomtric Rotate 9.83 0.26 2.73 15.30

Shear 11.18 0.35 4.96 69.68

Piecewse Affine 17.27 0.52 9.30 82.23

‘Watermark Attack Category Perturbation PSNR SSIM Bit Acc Dect Acc
Gaussian 9.56 0.35 1.43 0.31

Nois Shot 7.07 0.23 2.38 0.99

oise Impulse 749 052 4.95 0.45

Speckle 4.31 0.44 3.45 3.61

Defocus 23.04 0.34 4.10 39.60

Blur Glass 19.93 0.29 2.21 89.56

Motion 11.30 0.19 3.23 46.95

Zoom 10.83 0.27 1.29 5.16

. Snow 4.14 0.16 0.82 6.00
SSLAWM et Frost 536 0.23 0.80 19.53
Fog 6.44 0.33 1.13 39.45

Brightness 7.43 0.34 1.43 42.13

Contrast, 7.42 0.49 2.87 55.06

Digital Elastic 5.73 0.41 3.98 34.14

it Pixelate 9.02 0.22 1.33 22.93

JPEG 8.18 0.39 4.45 23.56

Scale 9.90 0.02 4.04 23.46

Geomtric Rotate 7.65 0.37 5.73 22.74

Shear 2.64 0.28 6.79 21.57

Piecewse Affine 3.35 0.21 5.46 0.00

‘Watermark Attack Category Perturbation PSNR SSIM Bit Acc Dect Acc
Gaussian 4.07 0.24 2.11 21.84

Noi Shot 4.47 0.53 2.49 6.72

oise Impulse 758 0.24 1.92 14.95

Speckle 8.58 0.16 3.00 18.75

Defocus 10.33 0.39 4.82 21.75

Bl Glass 11.74 0.05 5.08 22.92

u Motion 1375 0.42 5.71 10.32

Zoom 10.99 0.00 4.32 20.30

. " Snow 10.41 0.45 5.55 44.78
StegaStamp-WM Weatl Frost 1704 037 1.18 17.81
cather Fog 356 0.03 2.25 14.75

Brightness 4.08 0.10 5.14 21.80

Contrast 13.77 0.09 0.05 23.72

Digital Elastic 18.80 0.22 2.10 3.11

et Pixelate 353 021 3.04 1.82

JPEG 6.10 0.30 5.28 9.72

Scale 7.75 0.04 3.48 1.85

Geomtric Rotate 1.78 0.09 0.24 5.60

Shear 4.37 0.05 2.93 4.42

Piecewse Affine 0.28 0.13 2.47 3.72
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Table 10: Kandinsky 2.2 image watermarks under image perturbations.

Watermark Attack Category Perturbation PSNR SSIM Bit Acc Dect Acc
Gaussian 19.25 0.46 2.90 1.20

Noise Shot 18.71 0.49 4.41 7.82

Impulse 17.55 0.42 6.01 0.12

Speckle 19.64 0.58 5.44 22.25

Defocus 21.15 0.64 5.96 19.12

Blur Glass 25.33 0.83 8.45 58.70

e Motion 0.60 5.44 2.37

Zoom 0.45 3.27 0.00

Snow 0.53 1.46 0.66

DetDwiSvd-WM Frot 0.54 147 0.40
Weather Fog 0.50 0.39 0.08

Brightness 15.85 0.72 3.88 10.37

Contrast 12.48 0.44 0.41 0.72

Digital Elastic 14.65 0.40 4.78 4.81

& Pixelate 20.95 0.65 6.32 20.45

JPEG 26.83 0.84 6.89 0.00

Scale 9.85 0.19 2.57 0.00

Geomtric Rotate 8.15 0.14 2.50 0.00

- ) Shear 991 0.23 3.20 0.00

Piecewse Affine 12.70 0.32 4.43 1.13

‘Watermark Attack Category Perturbation PSNR SSIM Bit Acc Dect Acc
Gaussian 19.31 0.46 3.00 7.05

Noise Shot 18.77 0.50 4.78 9.32

B Impulse 17.59 0.42 6.82 3.17

Speckle 19.72 0.59 7.89 16.15

Defocus 21.23 0.65 9.64 25.81

Blur Glass 25.57 0.85 14.67 68.94

Motion 18.65 0.61 7.86 24.75

Zoom 15.10 0.46 4.76 1.90

vaGAN-W Snow 11.69 0.53 1.48 2.33
RGN Frost 1029 055 147 5.24
cather Fog 11.29 050 0.40 113

Brightness 16.05 0.74 5.24 32.11

Contrast, 12.49 0.44 0.41 3.43

Dicital Elastic 14.65 0.40 717 40.7

& Pixelate 21.02 0.67 10.42 32.35

JPEG 27.00 0.85 7.29 0.4

Scale 9.86 0.19 3.36 3.86

Geomtric Rotate 8.15 0.14 3.03 4.85

comtrie Shear 991 023 4.68 40.43

Piecewse Affine 12.69 0.33 6.13 19.56

‘Watermark Attack Category Perturbation PSNR SSIM Bit Acc Dect Acc
Gaussian 5.82 0.15 1.11

Nois Shot 6.88 0.22 1.41

oise Impulse 731 031 21.34

Speckle 7.82 0.10 26.59

Defocus 7.95 0.11 27.46

Blur Glass 10.31 0.51 88.21

Motion 11.36 0.44 15.74

Zoom 14.85 0.38 3.15

Snow 7.52 0.39 2.22

SSLAWM et Frost 832 026 15.64
Fog 6.54 0.22 33.75

Brightness 7.83 0.25 32.85

Contrast, 11.41 0.21 29.58

Digital Elastic 10.88 0.22 27.04

it Pixelate 993 0.16 0.00

JPEG 9.40 0.19 0.00

Scale 8.26 0.15 14.88

Geomtric Rotate 5.81 0.18 15.96

Shear 6.61 0.17 11.21

Piecewse Affine 4.48 0.11 20.07

‘Watermark Attack Category Perturbation PSNR SSIM Bit Dect Acc
Gaussian 4.33 0.12 1.00

Noi Shot 4.29 0.20 1.04

oise Impulse 612 0.4 10.33

Speckle 7.87 0.12 15.89

Defocus 7.71 0.18 16.45

Bl Glass 12.44 0.43 12.44

u Motion 1328 0.28 333

Zoom 13.77 0.33 1.04

. " Snow 1.19 0.37 5.58
StegaStamp-WM Frost 321 030 22.89
cather Fog 391 0.29 25.75

Brightness 4.22 0.22 23.06

Contrast 12.87 0.24 24.85

Digital Elastic 19.30 0.21 20.00

et Pixelate 331 019 141

JPEG 5.69 0.18 1.63

Scale 6.38 0.16 0.00

a tri Rotate 2.48 0.10 0.00

comtrie Shear 390 015 2.24

Piecewse Affine 1.86 0.15 3.90
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Table 11: LCMs image watermarks under image perturbations.

Watermark Attack Category Perturbation PSNR SSIM Bit Acc Dect Acc
Gaussian 1885 0.24 1.53 19.66
Noi Shot 1781 0.23 1.44 20.34
oise Impulse 1846 0.23 451 18.28
Speckle 1934 0.31 2.24 44.70
Defocus 29.37 0.81 18.77
Blur Glass 3314 091 24.74
Motion 2581 0.78 12.02
Zoom 1929 0.67 4.27
Snow 11.13 0.49 0.01
Dot DSy e Frost 1719 073 7.50
cathe Fog 1403 0.73 0.72
Brightness 13.56 0.83 0.02
Contrast 16.35  0.70 0.97
Digital Elastic 2193 0.64 11.24
gt Pixelate 2576 0.69 13.33
JPEG 3118 085 7.85
Scale 13.68 2.07 0.00
Geomtri Rotate 10.54 1.37 0.00
Teomtrie Shear 13.62 3.41 0.00
Piccewse Affine  18.48 8.48 10.05

‘Watermark Attack Category Perturbation PSNR SSIM Bit Acc Dect Acc

Gaussian 18.78 0.24 1.51 7.39

Nois Shot 17.77 0.22 1.42 6.15

noise Impulse 1841 0.23 3.90 3.88

Speckle 19.29 0.31 2.09 13.59

Defocus 28.94 0.80 10.22 51.71

Blur Glass 31.89 0.88 10.28 97.60

Motion 25.58 0.77 7.46 52.01

Zoom 19.28 0.66 3.77 1.18

vaGAN-W Snow 1117 0.48 0.01 6.57
RGN Frost 1579 071 131 13.64
cather Fog 14.04 072 0.73 6.07

Brightness 13.65 0.79 0.04 52.79

Contrast 16.34 0.69 0.97 6.07

Dicital Elastic 21.86 0.63 6.27 91.13

& Pixelate 25.63 0.69 8.44 9.75

JPEG 30.78 0.84 7.19 1.32

Scale 13.68 0.42 1.92 84.81

Geomtric Rotate 10.54 0.33 1.29 16.27

Shear 13.63 0.43 2.45 75.16

Piecewse Affine 18.46 0.57 5.35 89.71

‘Watermark Attack Category Perturbation PSNR SSIM Bit Acc Dect Acc
Gaussian 9.62 0.38 1.45 0.42

Nos Shot 7.13 0.28 2.40 0.75

oise Impulse 755 075 3.99 0.57

Speckle 4.46 0.45 3.45 1.52

Defocus 23.25 0.38 4.13 18.52

Blur Glass 20.15 0.28 225 3.58

Motion 11.52 0.20 3.50 5.23

Zoom 10.95 0.28 1.55 6.93

. Snow 4.32 0.11 0.66 8.76
SSLAWM et Frost 548 0.28 0.8 11.03
Fog 6.32 0.48 1.24 20.41

Brightness 6.12 0.38 1.56 44.21

Contrast, 6.84 0.50 3.56 0.41

Digital Elastic 5.85 0.48 4.10 92.45

el Pixelate 9.16 0.1 1.46 3.31

JPEG 8.28 0.48 4.50 2.54

Scale 9.84 0.33 3.94 1.15

a i Rotate 8.48 0.26 6.37 7.88

comtric Shear 204 0.24 476 5.47

Piecewse Affine 7.64 0.15 5.47 5.10

‘Watermark Attack Category Perturbation PSNR SSIM Bit Acc Dect Acc
Gaussian 291 0.16 12.84 18.82

Noi Shot 4.92 0.04 2.74 0.94

oise Impulse 546 0.14 2.52 2.89

Speckle 7.68 0.13 3.48 25.13

Defocus 8.74 0.33 5.34 22.31

Bl Glass 12.66 0.17 5.40 11.38

u Motion 1449 0.10 6.18 578

Zoom 12.15 0.21 4.24 9.45

L Snow 049  0.19 6.84 0.21
StegaStamp-WM Frost 382 028 185 20.30
cather Fog 346 0.49 1.20 25.19

Brightness 5.60 0.04 3.28 29.80

Contrast 13.30 0.24 3.45 25.79

Digital Elastic 18.82 0.30 0.04 21.78

i Pixelate 500 0.8 4.14 6.78

JPEG 3.92 0.21 3.88 6.82

Scale 6.84 0.40 4.94 0.07

Geomtric Rotate 2.83 0.21 1.98 3.45

Shear 4.55 0.12 2.72 11.42

Piecewse Affine 1.12 0.30 2.88 3.98
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Table 12: RPG image watermarks under image perturbations.

Watermark Attack Category Perturbation PSNR SSIM Bit Acc Dect Acc
Gaussian 21.21 0.53 4.42 38.39

Noi Shot 17.95 0.45 2.97 23.52

oise Impulse 2183 0.58 474 39.05

Speckle 26.15 0.73 6.71 56.49

Defocus 17.25 0.48 2.72 17.63

Blur Glass 17.17 0.50 2.70 16.35

Motion 26.21 0.78 6.80 53.85

Zoom 22.06 0.67 4.94 35.21

Snow 15.77 0.51 213 7.47

DDy Frost 2078 0.67 441 27.84
cavher Fog 1566 0.54 2.12 5.04

Brightness 15.57 0.55 2.10 3.71

Contrast 19.05 0.67 3.69 17.57

Digital Elastic 8.15 0.37 1.20 29.81

& Pixelate 9.02 0.41 0.79 27.06

JPEG 14.79 0.60 1.83 3.48

Scale 22.48 0.14 15.02 25.19

Geomtric Rotate 15.64 0.29 1.19 30.92

™ ) Shear 1458 0.28 4.05 55.83

Piecewse Affine 13.57 0.24 1.29 69.31

‘Watermark Attack Category Perturbation PSNR SSIM Bit Acc Dect Acc
Gaussian 21.33 0.54 5.98 38.89

Noise Shot 18.03 0.46 3.83 22.22

B Impulse 21.95 0.59 6.39 42.90

Speckle 26.34 0.74 9.24 65.93

Defocus 17.32 0.49 3.37 19.77

Blur Glass 17.24 0.50 3.32 19.80

Motion 26.40 0.79 9.28 67.48

Zoom 22.19 0.68 6.54 46.17

vaGAN-W Snow 15.83 0.51 2.39 13.68
RivaGANWAL e Frost 2000 0.68 5.70 1031
Fog 15.71 0.54 2.32 13.89

Brightness 15.62 0.56 2.26 13.85

Contrast 19.15 0.68 4.56 32.48

Dicital Elastic 8.11 0.37 2.63 24.13

& Pixelate 8.99 0.41 2.06 19.16

JPEG 14.83 0.60 1.75 11.41

Scale 15.72 0.24 4.45 12.42

a tric Rotate 12.68 0.28 3.72 27.98

comtrie Shear 13.66 0.8 2.18 25.54

Piecewse Affine 14.03 0.25 3.79 32.88

‘Watermark Attack Category Perturbation PSNR SSIM Bit Acc Dect Acc
Gaussian 18.40 0.27 3.70 21.26

Nois Shot 13.65 0.21 2.81 11.83

oise Impulse 1845  0.32 3.96 27.87

Speckle 23.86 0.44 523 45.50

Defocus 11.56 0.23 2.74 15.97

Blur Glass 11.08 0.24 2.76 17.93

Motion 22.80 0.49 5.38 52.36

Zoom 16.86 0.40 4.24 39.77

Snow 8.06 0.25 2.49 19.57

SSLAWM et Frost 1439 039 3.96 39.65
Fog 7.14 0.28 2.54 23.58

Brightness 6.65 0.29 2.56 25.49

Contrast, 10.93 0.39 3.59 40.12

Digital Elastic 4.05 0.13 0.53 3.47

it Pixelate 326 0.16 0.82 8.80

JPEG 4.08 0.32 2.51 31.58

Scale 3.44 0.33 5.85 26.35

Geomtric Rotate 3.85 0.30 4.07 22.81

Shear 2.49 0.18 4.72 0.00

Piecewse Affine 5.84 0.29 3.47 0.00

‘Watermark Attack Category Perturbation PSNR SSIM Bit Acc Dect Acc
Gaussian 5.66 0.49 1.89 0.00

Noi Shot 6.00 0.10 1.50 0.00

oise Impulse 6.92 015 3.45 0.00

Speckle 8.00 0.19 4.49 15.50

Defocus 7.88 0.32 4.41 19.93

Bl Glass 12.30 0.33 4.90 11.98

u Motion 1278 0.38 5.98 119

Zoom 13.42 0.12 4.43 4.28

L Snow 342 007 4.29 2.42
StegaStamp-WM Frost 204 042 479 18.14
cather Fog 328 0.3 3.48 2.83

Brightness 5.52 0.41 4.48 21.48

Contrast 10.92 0.01 1.12 22.48

Digital Elastic 0.32 0.28 2.50 24.39

et Pixelate 182 044 3.45 7.58

JPEG 4.18 0.14 2.58 4.92

Scale 4.30 0.32 5.29 2.40

a tri Rotate 1.83 0.24 2.71 3.39

comtrie Shear 423 047 0.41 5.28

Piecewse Affine 1.43 0.19 3.15 3.58
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EVALUATING DURABILITY: BENCHMARK INSIGHTS INTO IMAGE AND TEXT WATERMARKING

Table 13: NExT-GPT text watermarks under text perturbations.

‘Watermark Attack Category Perturbation BLEURT ROUGE Bit Acc Dect Acc
Keyboard 0.40 57.96 65.00 17.70

OCR 0.58 74.09 65.22 17.01

Character-level Character Insert (CI) 0.42 58.15 65.77 18.37

Character Replace (CR) 0.40 58.15 64.82 18.37

Character Swap (CS) 0.51 61.40 68.17 19.64

Character Delete (CD) 0.47 58.17 66.30 15.09

Synonym Replacement (SR) 0.54 62.54 68.48 24.83

Word Insertion (WI) 0.53 76.60 64.02 25.87

R ‘Word-level Word Swap (WS) 0.54 59.88 67.62 31.01
KGW-WM Word Deletion (WD) 0.50 7292 63.66 26.51
Insert Punctuation (IP) 0.06 6.99 53.77 26.49

Formal 0.02 0.46 50.43 17.72

Casual 0.01 2.44 50.28 18.83

Passive 0.07 7.43 53.74 17.07

Sentence-level Active 0.07 8.16 54.86 14.88

Back Translation 0.79 77.41 77.96 17.03

SCPN 0.09 2.15 44.82 11.31

Bart 0.00 3.66 41.06 16.74

Dipper 0.04 2.75 42.78 17.89

‘Watermark Attack Category Perturbation BLEURT ROUGE Bit Acc Dect Acc
Keyboard 0.39 63.88 64.88 18.67

OCR 0.56 o 65.15 19.43

Character-level Character Insert (CI) 0.41 64.02 64.79 19.54

e Character Replace (CR) 0.39 64.04 64.74 19.60

Character Swap (CS) 0.49 66.66 66.43 22.99

Character Delete (CD) 0.46 64.17 65.72 17.90

Synonym Replacement (SR) 0.44 53.98 66.24 26.73

Word Insertion (WI) 0.45 70.53 63.42 28.01

’ Word-level Word Swap (WS) 0.47 56.77 65.67 30.01
KTH-WM Word Deletion (WD) 0.44 6820  63.13 27.60
Insert Punctuation (IP) 0.17 4.83 54.08 29.04

Formal 0.05 0.19 17.69 9.08

Casual 0.04 0.52 14.61 6.63

Passive 0.18 2.88 55.40 25.02

Sentence-level Active 0.19 3.03 55.40 23.52

Back Translation 0.64 72.46 71.33 23.19

SCPN 0.00 23.62 20.89 19.70

Bart 0.02 13.77 21.75 18.64

Dipper 0.06 15.84 22.57 14.75

‘Watermark  Attack Category Perturbation BLEURT ROUGE Bit Acc Dect Acc
Keyboard 0.42 65.78 81.13 41.82

OCR 0.59 79.28 82.75 50.98

Character-level Character Insert (CI) 0.44 66.00 68.85 40.73

R Character Replace (CR) 0.42 66.00 81.24 41.02

Character Swap (CS) 0.53 68.98 81.33 42.39

Character Delete (CD) 0.48 66.03 69.65 39.87

Synonym Replacement (SR) 0.55 66.35 67.89 24.18

Word Insertion (WI) 0.54 82.30 64.64 30.04

- Word-level Word Swap (WS 0.56 63.71 67.91 25.92
Blackbox-WM Word Dclcm(m (\zw) 0.52 78.23 64.20 30.57
Insert Punctuation (IP) 0.12 7.78 54.25 0.00

Formal 0.03 4.88 54.83 0.00

Casual 0.02 4.20 53.68 0.00

Passive 0.08 7.55 55.48 0.00

Sentence-level Active 0.13 8.72 55.59 0.00

Back Translation 0.74 69.22 67.96 20.70

SCPN 0.04 5.36 33.85 21.48

Bart 0.03 4.72 41.27 22.34

Dipper 0.07 3.58 39.27 20.19

Watermark  Attack Category Perturbation BLEURT ROUGE Bit Acc Dect Acc
Keyboard 0.31 44.98 55.12 1.65

OCR 0.37 51.62 55.08 1.72

Character-level Character Insert (CI) 0.31 45.10 54.82 1.67

o Character Replace (CR) 0.31 45.10 55.06 1.67

Character Swap (CS) 0.35 46.68 55.21 1.78

Character Delete (CD) 0.34 45.86 55.31 1.82

Synonym Replacement (SR) 0.32 26.71 53.91 4.98

Word Insertion (WI) 0.33 50.89 53.60 5.20

. . Word-level Word Swap (WS) 0.33 48.00 54.53 6.61
Unigram-WM Word Deletion (WD) 0.34 55.84 53.22 5.42
Insert Punctuation (TP) 0.33 0.48 55.13 0.00

Formal 0.10 0.22 14.90 0.00

Casual 0.09 0.20 13.21 0.00

Passive 0.30 0.98 48.80 0.00

Sentence-level Active 0.31 0.57 48.71 0.00

Back Translation 0.35 36.25 47.92 7.05

SCPN 0.03 0.77 46.37 1.41

Bart 0.06 0.84 48.13 3.32

Dipper 0.01 0.37 50.88 2.53
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Table 14: Fuyu-8B text watermarks under text perturbations.

‘Watermark Attack Category Perturbation BLEURT ROUGE Bit Acc Dect Acc
Keyboard 0.38 65.71 93.15 36.38

OCR 0.53 79.63 95.93 34.20

Character-level Character Insert (CI) 0.39 65.90 68.77 35.20

Character Replace (CR) 0.38 65.87 93.84 35.56

Character Swap (CS) 0.49 69.28 92.96 36.06

Character Delete (CD) 0.45 65.97 69.68 36.30

Synonym Replacement (SR) 0.52 62.00 71.67 34.72

Word Insertion (WI) 0.53 75.65 67.62 37.74

R ‘Word-level Word Swap (WS) 0.57 62.39 71.87 39.82
KGW-WM Word Deletion (WD) 0.54 470 69.19 39.40
Insert Punctuation (IP) 0.05 0.00 53.86 50.54

Formal 0.05 0.02 53.30 48.00

Casual 0.03 2.36 50.20 32.90

Passive 0.02 8.67 55.03 40.20

Sentence-level Active 0.03 0.21 55.32 41.10

Back Translation 0.69 68.60 70.88 29.30

SCPN 0.06 0.00 50.08 28.53

Bart 0.03 0.06 50.31 29.90

Dipper 0.00 0.33 55.79 23.35

‘Watermark Attack Category Perturbation BLEURT ROUGE Bit Acc Dect Acc
Keyboard 0.38 72.63 85.55 37.58

OCR 0.52 82.97 87.04 36.26

Character-level Character Insert (CI) 0.39 72.74 67.63 37.76

e Character Replace (CR) 0.38 72.74 85.85 37.70

Character Swap (CS) 0.48 75.23 85.89 38.88

Character Delete (CD) 0.45 72.84 68.19 36.64

Synonym Replacement (SR) 0.44 57.01 68.88 27.70

Word Insertion (WI) 0.46 72.00 65.96 43.46

’ Word-level Word Swap (WS) 0.49 58.95 69.11 31.66
KTH-WM Word Deletion (WD) 0.46 71.44 66.08 32.18
Insert Punctuation (IP) 0.08 0.02 53.65 36.22

Formal 0.08 0.02 54.96 33.60

Casual 0.08 0.28 54.94 32.50

Passive 0.06 2.67 54.82 33.20

Sentence-level Active 0.07 0.51 54.83 33.10

’ co Back Translation 0.63 67.48 68.33 29.60

SCPN 0.03 2.84 54.89 28.44

Bart 0.07 2.18 60.03 27.45

Dipper 0.04 3.96 53.83 22.63

‘Watermark  Attack Category Perturbation BLEURT ROUGE Bit Acc Dect Acc
Keyboard 0.39 61.86 82.67 49.04

OCR 0.53 74.36 84.14 58.80

Character-level Character Insert (CI) 0.40 61.96 69.04 47.20

R Character Replace (CR) 0.39 61.98 82.58 47.68

Character Swap (CS) 0.49 65.19 83.16 52.24

Character Delete (CD) 0.45 62.07 69.88 48.72

Synonym Replacement (SR) 0.52 64.62 72.19 45.52

Word Insertion (WI) 0.53 79.48 68.94 61.32

- Word-level Word Swap (WS 0.58 64.81 72.34 38.62
Blackbox-WM Word Dclcm(m (\zw) 0.53 77.35 69.72 53.86
Insert Punctuation (IP) 0.04 0.25 54.28 0.00

Formal 0.04 0.01 55.96 0.00

Casual 0.03 2.33 55.68 0.00

Passive 0.02 8.23 55.58 0.00

Sentence-level Active 0.02 0.12 55.87 0.00

Back Translation 0.67 64.88 68.75 27.70

SCPN 0.01 3.05 49.21 0.00

Bart 0.00 4.66 50.78 0.00

Dipper 0.04 2.89 55.49 0.00

Watermark  Attack Category Perturbation BLEURT ROUGE Bit Acc Dect Acc
Keyboard 0.28 40.48 65.05 221

OCR 0.42 53.15 67.04 1.10

Character-level Character Insert (CI) 0.30 40.56 49.84 0.00

o Character Replace (CR) 0.28 40.58 65.04 0.00

Character Swap (CS) 0.37 43.63 64.33 0.00

Character Delete (CD) 0.33 40.62 50.75 0.00

Synonym Replacement (SR) 0.40 46.96 53.28 4.32

Word Insertion (WI) 0.41 57.98 49.88 0.00

. . Word-level Word Swap (WS) 0.49 49.13 55.10 0.00
Unigram-WM Word Deletion (WD) 0.43 58.53 53.43 0.00
Insert Punctuation (TP) 0.02 1.94 36.91 2.86

Formal 0.02 0.54 39.36 0.00

Casual 0.02 3.06 39.65 0.00

Passive 0.02 3.75 39.85 1.52

Sentence-level Active 0.02 2.93 39.71 0.00

Back Translation 0.51 44.35 54.19 0.00

SCPN 0.01 3.28 38.48 1.49

Bart 0.00 1.13 33.04 0.00

Dipper 0.15 2.07 35.78 1.13

38



EVALUATING DURABILITY: BENCHMARK INSIGHTS INTO IMAGE AND TEXT WATERMARKING

Table 15: InternLM-X Composer text watermarks under text perturbations.

‘Watermark Attack Category Perturbation BLEURT ROUGE Bit Acc Dect Acc
Keyboard 0.42 64.78 87.40 37.38

OCR 0.59 81.32 90.33 1.42

Character-level Character Insert (CI) 0.44 65.00 68.48 37.20

Character Replace (CR) 0.42 65.01 87.67 36.02

Character Swap (CS) 0.51 69.47 86.48 16.52

Character Delete (CD) 0.44 65.00 69.07 36.08

Synonym Replacement (SR) 0.44 51.76 63.31 2.88

Word Insertion (WI) 0.48 60.34 61.11 1.76

R ‘Word-level Word Swap (WS) 0.57 47.94 63.61 15.94
KGW-WM Word Deletion (WD) 0.48 5662 6170 20.86
Insert Punctuation (IP) 0.09 0.00 53.02 6.68

Formal 0.09 0.00 54.90 3.70

Casual 0.08 0.00 54.99 6.20

Passive 0.07 0.00 54.60 10.80

Sentence-level Active 0.08 0.00 54.73 0.00

Back Translation 0.52 38.10 65.04 0.00

SCPN 0.04 1.05 50.17 20.16

Bart 0.06 0.00 52.24 15.86

Dipper 0.05 0.00 50.00 14.95

‘Watermark Attack Category Perturbation BLEURT ROUGE Bit Acc Dect Acc
Keyboard 0.40 69.21 89.42 39.54

OCR 0.49 77.41 85.36 40.66

Character-level Character Insert (CI) 0.35 71.69 80.02 42.85

R Character Replace (CR) 0.34 70.78 77.80 37.42

Character Swap (CS) 0.33 68.33 62.53 29.55

Character Delete (CD) 0.36 80.41 23.31 31.86

Synonym Replacement (SR) 0.41 76.90 84.36 37.64

Word Insertion (WI) 0.47 41.31 85.74 40.89

’ Word-level Word Swap (WS) 0.55 50.78 86.93 42.93
KTH-WM Word Deletion (WD) 0.31 5572 75.43 48.80
Insert Punctuation (IP) 0.02 1.51 49.21 34.04

Formal 0.03 0.03 45.67 32.28

Casual 0.09 0.00 44.04 29.37

Passive 0.02 0.01 36.96 28.63

Sentence-level Active 0.00 0.07 50.39 30.68

’ co Back Translation 0.21 55.81 66.77 19.76

SCPN 0.00 2.64 0.00 20.02

Bart 0.02 1.85 21.56 20.06

Dipper 0.01 0.03 33.76 19.94

‘Watermark  Attack Category Perturbation BLEURT ROUGE Bit Acc Dect Acc
Keyboard 0.38 52.26 65.34 26.35

OCR 0.53 62.64 66.43 21.90

Character-level Character Insert (CI) 0.41 52.30 54.57 26.97

R Character Replace (CR) 0.33 52.34 65.21 27.72

Character Swap (CS) 0.52 55.08 65.68 26.41

Character Delete (CD) 0.48 52.41 55.23 25.21

Synonym Replacement (SR) 0.21 54.67 56.89 24.09

Word Insertion (WI) 0.55 68.21 55.02 21.36

- Word-level Word Swap (WS 0.55 54.49 56.96 24.33
Blackbox-WM Word Dclcm(m (\zw) 0.51 65.18 55.05 22.02
Insert Punctuation (IP) 0.08 0.21 42.78 33.36

Formal 0.07 0.01 44.19 33.14

Casual 0.05 1.97 43.97 28.23

Passive 0.01 6.95 43.89 21.45

Sentence-level Active 0.00 0.10 44.12 22.80

Back Translation 0.52 54.77 54.29 32.38

SCPN 0.05 0.16 42.87 20.31

Bart 0.00 0.21 44.68 21.74

Dipper 0.07 1.41 45.03 22.83

Watermark  Attack Category Perturbation BLEURT ROUGE Bit Acc Dect Acc
Keyboard 0.29 55.21 70.93 0.00

OCR 0.40 44.99 68.87 0.00

Character-level Character Insert (CI) 0.22 40.84 69.21 0.00

o Character Replace (CR) 0.21 39.90 60.30 0.00

Character Swap (CS) 0.30 39.36 59.26 0.00

Character Delete (CD) 0.41 37.12 55.21 2.21

Synonym Replacement (SR) 0.39 38.00 70.64 1.10

Word Insertion (WI) 0.32 42.11 68.27 2.12

. . Word-level Word Swap (WS) 0.51 43.51 39.21 0.62
Unigram-WM Word Deletion (WD) 0.21 44.98 39.84 0.00
Insert Punctuation (TP) 0.00 0.21 36.85 0.00

Formal 0.00 1.12 30.02 0.00

Casual 0.01 1.63 30.58 0.00

Passive 0.03 2.75 29.21 0.00

Sentence-level Active 0.00 3.88 30.64 0.00

Back Translation 0.31 41.86 44.67 0.00

SCPN 0.00 1.21 30.06 0.00

Bart 0.00 1.77 31.41 0.00

Dipper 0.00 1.65 36.84 0.00
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Table 16: Instruct-BLIP text watermarks under text perturbations.

‘Watermark Attack Category Perturbation BLEURT ROUGE Bit Acc Dect Acc
Keyboard 0.44 0.00 88.15 42.06

OCR 0.52 0.00 88.16 57.58

Character-level Character Insert (CI) 0.45 0.00 79.20 22.44

Character Replace (CR) 0.41 0.00 85.64 25.84

Character Swap (CS) 0.81 58.32 98.74 58.32

Character Delete (CD) 0.77 0.00 83.59 68.40

Synonym Replacement (SR) 0.00 0.00 0.00 0.00

Word Insertion (WI) 0.20 0.00 55.26 0.00

R ‘Word-level Word Swap (WS) 0.00 0.00 0.00 0.00
KGW-WM Word Deletion (WD) 0.00 0.00 0.00 0.00
Insert Punctuation (IP) 0.09 0.00 40.86 33.08

Formal 0.36 0.00 52.58 88.60

Casual 0.31 0.00 52.32 52.00

Passive 0.37 0.00 52.63 0.00

Sentence-level Active 0.37 0.00 52.63 0.00

Back Translation 0.00 0.00 0.00 0.00

SCPN 0.37 0.00 52.63 0.00

Bart 0.00 0.00 41.47 0.00

Dipper 0.17 0.00 50.00 0.00

‘Watermark Attack Category Perturbation BLEURT ROUGE Bit Acc Dect Acc
Keyboard 0.46 21.19 84.59 39.20

OCR 0.57 25.72 85.93 46.38

Character-level Character Insert (CI) 0.47 21.21 73.82 29.44

R Character Replace (CR) 0.44 21.23 83.18 30.26

Character Swap (CS) 0.70 29.55 89.76 42.42

Character Delete (CD) 0.66 21.32 77.36 40.98

Synonym Replacement (SR) 0.14 9.49 26.41 13.46

Word Insertion (WI) 0.22 11.17 55.82 13.32

’ Word-level Word Swap (WS) 0.16 9.52 26.12 14.66
KTH-WM Word Deletion (WD) 0.14 1085 23.56 10.04
Insert Punctuation (IP) 0.10 0.91 46.20 50.56

Formal 0.22 1.35 53.55 53.60

Casual 0.21 1.00 53.45 48.40

Passive 0.22 1.62 53.51 57.00

Sentence-level Active ) 0.23 1.39 53.56 57.80

Back Translation 0.82 32.82 87.31 60.10

SCPN 0.37 21.38 30.68 10.66

Bart 0.25 1.66 31.73 14.95

Dipper 0.46 32.79 34.00 12.74

‘Watermark  Attack Category Perturbation BLEURT ROUGE Bit Acc Dect Acc
Keyboard 0.47 50.46 90.56 45.86

OCR 0.63 55.15 81.44 45.76

Character-level Character Insert (CI) 0.49 49.56 83.63 45.77

R Character Replace (CR) 0.45 56.78 85.85 44.89

Character Swap (CS) 0.58 62.32 77.42 31.86

Character Delete (CD) 0.51 64.12 77.32 32.75

Synonym Replacement (SR) 0.60 64.99 74.36 28.64

Word Insertion (WI) 0.57 66.46 64.58 30.32

~ Word-level Word Swap (WS 0.62 62.31 32.18 39.42
Blackbox-WM Word Dclcm(m (\zw) 0.59 62.56 44.73 37.33
Insert Punctuation (IP) 0.15 2.12 39.47 0.00

Formal 0.05 0.00 36.64 0.00

Casual 0.06 0.00 37.33 0.00

Passive 0.11 0.00 30.25 0.00

Sentence-level Active 0.18 0.00 29.36 1.11

Back Translation 0.78 77.91 53.81 41.55

SCPN 0.04 0.00 21.56 0.00

Bart 0.00 0.00 22.61 1.24

Dipper 0.08 0.00 28.49 4.88

Watermark  Attack Category Perturbation BLEURT ROUGE Bit Acc Dect Acc
Keyboard 0.41 32.67 85.08 28.03

OCR 0.49 35.33 85.33 18.74

Character-level Character Insert (CI) 0.39 32.20 80.92 21.46

o Character Replace (CR) 0.39 32.08 84.69 23.46

Character Swap (CS) 0.54 51.68 85.71 24.28

Character Delete (CD) 0.51 32.39 82.58 22.48

Synonym Replacement (SR) 0.17 13.92 32.84 17.97

Word Insertion (WI) 0.18 19.70 33.12 17.76

. N Word-level Word Swap (WS) 0.17 17.10 30.92 15.64
Unigram-WM Word Deletion (WD) 0.17 1992 2088 15.04
Insert Punctuation (TP) 0.17 1.00 49.66 21.08

Formal 0.12 1.36 31.85 15.68

Casual 0.12 1.43 31.88 16.58

Passive 0.11 1.49 31.96 15.58

Sentence-level Active 0.11 1.48 31.98 14.09

Back Translation 0.32 27.74 38.36 16.08

SCPN 0.03 1.31 20.59 10.77

Bart 0.18 1.89 21.66 11.53

Dipper 0.12 1.66 20.78 10.89
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EVALUATING DURABILITY: BENCHMARK INSIGHTS INTO IMAGE AND TEXT WATERMARKING

Table 17: LLaVA 1.6 text watermarks under text perturbations.

‘Watermark Attack Category Perturbation BLEURT ROUGE Bit Acc Dect Acc
Keyboard 0.45 68.64 93.56 56.34

OCR 0.58 79.10 96.48 91.60

Character-level Character Insert (CI) 0.47 68.75 67.49 61.82

Character Replace (CR) 0.45 68.75 94.45 58.26

Character Swap (CS) 0.54 72.15 93.97 49.66

Character Delete (CD) 0.53 68.75 68.11 64.62

Synonym Replacement (SR) 0.61 64.58 71.94 39.74

Word Insertion (WI) 0.56 75.15 69.27 91.44

R ‘Word-level Word Swap (WS) 0.61 58.91 74.68 53.88
KGW-WM Word Deletion (WD) 0.56 7180 70.69 60.94
Insert Punctuation (IP) 0.06 0.00 53.32 92.18

Formal 0.05 0.22 54.49 73.60

Casual 0.07 1.81 54.76 58.70

Passive 0.04 7.07 54.67 99.50

Sentence-level Active 0.06 0.15 55.01 0.00

Back Translation 0.83 90.32 67.23 0.00

SCPN 0.00 2.51 48.31 77.88

Bart 0.08 1.38 44.86 53.64

Dipper 0.03 4.51 60.75 72.33

‘Watermark Attack Category Perturbation BLEURT ROUGE Bit Acc Dect Acc
Keyboard 0.44 59.05 81.25 33.06

OCR 0.56 70.54 82.74 34.70

Character-level Character Insert (CI) 0.46 59.03 66.30 35.10

e Character Replace (CR) 0.43 59.09 80.74 33.36

Character Swap (CS) 0.55 62.00 81.44 33.74

Character Delete (CD) 0.49 59.14 67.24 33.18

Synonym Replacement (SR) 0.44 37.64 67.30 32.80

Word Insertion (WI) 0.45 44.25 65.47 34.92

’ Word-level Word Swap (WS) 0.47 37.09 66.82 35.62
KTH-WM Word Deletion (WD) 0.43 42.82 64.81 35.16
Insert Punctuation (IP) 0.08 0.50 53.94 37.02

Formal 0.09 0.57 55.63 35.40

Casual 0.08 0.49 55.61 38.00

Passive 0.07 2.05 55.31 35.10

Sentence-level Active 0.08 0.90 55.50 37.90

’ co Back Translation 0.68 66.43 72.95 36.50

SCPN 0.09 1.21 54.67 39.00

Bart 0.00 0.00 50.31 39.45

Dipper 0.09 0.31 55.10 39.30

‘Watermark  Attack Category Perturbation BLEURT ROUGE Bit Acc Dect Acc
Keyboard 0.41 65.80 81.00 41.70

OCR 0.60 79.50 83.00 51.05

Character-level Character Insert (CI) 0.45 66.20 68.50 40.55

R Character Replace (CR) 0.43 69.13 81.50 41.25

Character Swap (CS) 0.56 66.10 81.75 42.62

Character Delete (CD) 0.51 66.40 69.50 40.02

Synonym Replacement (SR) 0.58 82.50 67.00 24.33

Word Insertion (WI) 0.57 63.90 64.00 30.22

. Word-level Word Swap (WS 0.59 78.30 68.00 26.03
Blackbox-WM Word Dclcliién (\zw) 0.51 58.77 64.50 30.85
Insert Punctuation (IP) 0.14 7.90 54.00 0.00

Formal 0.05 4.90 55.00 0.00

Casual 0.04 4.30 54.50 0.00

Passive 0.10 7.60 56.12 0.00

Sentence-level Active 0.11 8.80 68.94 0.00

Back Translation 0.16 69.40 47.31 21.03

SCPN 0.00 0.00 33.60 25.84

Bart 0.00 1.84 17.58 10.44

Dipper 0.01 0.83 35.62 5.82

Watermark  Attack Category Perturbation BLEURT ROUGE Bit Acc Dect Acc
Keyboard 0.48 80.42 71.23 3.29

OCR 0.57 84.97 71.46 4.95

Character-level Character Insert (CI) 0.47 80.40 67.08 3.63

o Character Replace (CR) 0.47 80.36 70.89 5.14

Character Swap (CS) 0.56 81.57 71.42 3.31

Character Delete (CD) 0.54 80.54 67.65 4.27

Synonym Replacement (SR) 0.34 37.30 65.12 4.21

Word Insertion (WI) 0.35 55.48 63.27 9.34

. . Word-level Word Swap (WS) 0.35 47.33 65.30 2.97
Unigram-WM Word Deletion (WD) 0.36 56.26 62.71 6.12
Insert Punctuation (TP) 0.21 0.44 53.44 4.29

Formal 0.21 0.47 54.76 7.46

Casual 0.21 0.54 54.77 7.86

Passive 0.21 0.95 54.58 2.67

Sentence-level Active 0.22 0.72 54.59 3.07

Back Translation 0.57 66.62 64.67 8.36

SCPN 0.48 1.37 33.75 3.74

Bart 0.31 2.63 27.93 1.37

Dipper 0.17 1.84 30.41 291
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Table 18: MiniGPT-4 text watermarks under text perturbations.

‘Watermark Attack Category Perturbation BLEURT ROUGE Bit Acc Dect Acc
Keyboard 0.64 85.94 70.63 22.68

OCR 0.47 64.38 65.31 19.69

Character-level Character Insert (CI) 0.63 83.52 70.57 23.40

Character Replace (CR) 0.82 65.23 76.50 27.54

Character Swap (CS) 0.39 51.51 62.83 19.27

Character Delete (CD) 0.36 48.14 62.24 19.28

Synonym Replacement (SR) 0.77 96.73 75.15 27.83

Word Insertion (WI) 0.56 70.10 68.52 24.01

R ‘Word-level Word Swap (WS) 0.25 31.28 58.72 18.19
KGW-WM Word Deletion (WD) 0.47 5691 65.66 22.97
Insert Punctuation (IP) 0.21 24.71 57.58 18.24

Formal 0.19 21.28 56.97 18.24

Casual 0.34 38.18 61.65 21.58

Passive 0.19 26.94 45.01 11.44

Sentence-level Active 0.17 24.92 45.83 12.33

Back Translation 0.09 5.02 53.89 17.82

SCPN 0.19 3.88 33.51 10.86

Bart 0.15 10.63 32.85 11.88

Dipper 0.17 11.58 35.57 12.75

‘Watermark Attack Category Perturbation BLEURT ROUGE Bit Acc Dect Acc
Keyboard 0.57 80.81 76.41 24.59

OCR 0.44 68.70 64.65 20.53

Character-level Character Insert (CI) 0.56 88.03 75.94 25.64

R Character Replace (CR) 0.70 88.03 88.69 31.32

Character Swap (CS) 0.38 53.39 58.72 20.03

Character Delete (CD) 0.36 49.24 57.26 20.07

Synonym Replacement (SR) 0.66 99.27 85.23 31.81

Word Insertion (WI) 0.50 70.87 70.60 26.61

’ Word-level Word Swap (WS) 0.27 29.77 49.07 18.68
KTH-WM Word Deletion (WD) 0.43 5586 64.03 25.24
Insert Punctuation (IP) 0.24 21.66 46.26 18.80

Formal 0.22 17.44 44.76 18.82

Casual 0.33 34.44 54.79 23.43

Passive 0.06 34.09 18.36 9.57

Sentence-level Active 0.05 32.62 19.96 10.82

’ co Back Translation 0.14 2.03 37.37 18.36

SCPN 0.07 3.79 18.77 21.99

Bart 0.08 4.88 17.38 22.54

Dipper 0.00 3.72 13.75 19.58

‘Watermark  Attack Category Perturbation BLEURT ROUGE Bit Acc Dect Acc
Keyboard 0.65 95.92 85.39 58.32

OCR 0.49 72.82 77.19 43.55

Character-level Character Insert (CI) 0.64 92.24 83.34 54.34

R Character Replace (CR) 0.82 74.33 90.40 66.74

Character Swap (CS) 0.41 57.66 70.85 31.78

Character Delete (CD) 0.39 53.56 69.07 28.43

Synonym Replacement (SR) 0.77 73.71 85.60 57.70

Word Insertion (WI) 0.57 75.32 75.61 39.74

- Word-level Word Swap (WS 0.27 34.22 61.32 14.14
Blackbox-WM Word Dclcm(m (\zw) 0.48 60.40 69.76 29.00
Insert Punctuation (IP) 0.23 26.20 57.81 7.55

Formal 0.21 22.03 56.00 4.16

Casual 0.35 39.10 61.36 0.00

Passive 0.15 29.48 37.80 0.00

Sentence-level Active 0.13 27.94 37.91 0.00

Back Translation 0.10 2.74 47.87 10.97

SCPN 0.15 3.83 50.31 0.00

Bart 0.13 3.94 52.73 1.41

Dipper 0.17 4.34 55.79 8.36

Watermark  Attack Category Perturbation BLEURT ROUGE Bit Acc Dect Acc
Keyboard 0.38 65.69 65.10 3.61

OCR 0.33 48.79 55.35 2.08

Character-level Character Insert (CI) 0.38 62.63 64.39 4.00

o Character Replace (CR) 0.45 78.40 74.61 6.13

Character Swap (CS) 0.30 37.23 50.04 1.87

Character Delete (CD) 0.30 34.06 48.69 1.88

Synonym Replacement (SR) 0.43 70.12 71.30 6.30

Word Insertion (WI) 0.36 49.40 59.22 4.33

. . Word-level Word Swap (WS) 0.26 19.48 41.53 1.34
Unigram-WM Word Deletion (WD) 0.33 38.21 53.55 3.81
Insert Punctuation (TP) 0.25 13.28 38.91 1.37

Formal 0.24 10.07 37.53 1.37

Casual 0.29 22.21 45.53 0.00

Passive 0.12 27.57 15.70 0.00

Sentence-level Active 0.12 26.66 16.84 0.00

Back Translation 0.21 4.68 30.85 1.18

SCPN 0.44 2.55 29.67 4.74

Bart 0.36 4.21 30.51 0.00

Dipper 0.45 5.42 31.87 3.21
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Table 19: mPLUG-OwI2 text watermarks under text perturbations.

‘Watermark Attack Category Perturbation BLEURT ROUGE Bit Acc Dect Acc
Keyboard 0.62 66.29 67.84 38.48

OCR 0.46 72.11 85.61 35.48

Character-level Character Insert (CI) 0.61 92.23 94.93 39.81

Character Replace (CR) 0.79 75.14 65.61 44.60

Character Swap (CS) 0.37 55.97 76.37 35.80

Character Delete (CD) 0.35 51.59 73.77 36.07

Synonym Replacement (SR) 0.74 88.75 98.67 45.71

Word Insertion (WI) 0.54 74.05 83.76 41.79

R ‘Word-level Word Swap (WS) 0.24 31.11 62.41 35.67
KGW-WM Word Deletion (WD) 0.44 5828 7516 4118
Insert Punctuation (IP) 0.10 22.53 57.31 36.25

Formal 0.08 18.08 54.68 36.51

Casual 0.01 35.76 62.81 40.44

Passive 0.09 35.82 27.54 29.58

Sentence-level Active 0.07 34.33 27.80 30.83

Back Translation 0.07 2.46 42.83 37.10

SCPN 0.03 3.53 28.64 33.41

Bart 0.00 0.00 29.99 38.90

Dipper 0.06 2.14 20.05 37.52

‘Watermark Attack Category Perturbation BLEURT ROUGE Bit Acc Dect Acc
Keyboard 0.58 82.91 89.41 40.02

OCR 0.44 76.98 79.90 37.17

Character-level Character Insert (CI) 0.57 67.78 87.10 39.72

e Character Replace (CR) 0.71 61.52 95.34 42.61

Character Swap (CS) 0.36 58.69 72.64 35.51

Character Delete (CD) 0.34 53.64 70.59 35.07

Synonym Replacement (SR) 0.67 78.22 89.87 41.52

Word Insertion (WI) 0.49 76.48 78.28 38.01

’ Word-level Word Swap (WS) 0.24 30.76 61.69 32.88
KTH-WM Word Deletion (WD) 0.41 5899 7154 36.28
Insert Punctuation (IP) 0.21 20.86 57.67 32.03

Formal 0.02 5.74 55.60 31.59

Casual 0.03 3.96 61.87 33.84

Passive 0.01 1.96 34.49 25.23

Sentence-level Active 0.01 0.81 34.66 25.51

’ co Back Translation 0.09 7.63 46.28 29.49

SCPN 0.00 2.58 33.89 22.04

Bart 0.01 3.21 36.53 27.49

Dipper 0.02 3.33 31.05 28.81

‘Watermark  Attack Category Perturbation BLEURT ROUGE Bit Acc Dect Acc
Keyboard 0.63 52.81 87.64 73.97

OCR 0.46 69.28 79.20 55.15

Character-level Character Insert (CI) 0.62 89.23 85.57 69.76

R Character Replace (CR) 0.80 61.92 92.88 86.47

Character Swap (CS) 0.38 54.03 72.73 41.25

Character Delete (CD) 0.35 49.93 70.91 37.37

Synonym Replacement (SR) 0.74 71.33 88.00 76.14

Word Insertion (WI) 0.54 72.38 77.71 53.16

- Word-level Word Swap (WS 0.23 30.42 62.99 20.18
Blackbox-WM Word Dclcm(m (\zw) 0.44 57.30 71.72 40.11
Insert Punctuation (IP) 0.19 22.40 59.41 12.56

Formal 0.07 18.23 57.57 8.62

Casual 0.01 5.79 63.12 1.39

Passive 0.00 0.28 38.83 3.19

Sentence-level Active 0.08 0.62 38.97 2.64

Back Translation 0.06 1.13 49.27 9.17

SCPN 0.00 1.31 30.04 3.53

Bart 0.06 1.22 30.78 2.55

Dipper 0.09 1.85 30.95 2.78

Watermark  Attack Category Perturbation BLEURT ROUGE Bit Acc Dect Acc
Keyboard 0.48 63.53 68.48 1.71

OCR 0.35 47.33 60.55 0.85

Character-level Character Insert (CI) 0.48 61.44 66.76 1.82

o Character Replace (CR) 0.62 77.46 73.85 2.90

Character Swap (CS) 0.28 37.32 54.77 0.60

Character Delete (CD) 0.27 34.66 53.16 0.56

Synonym Replacement (SR) 0.58 70.69 69.58 2.84

Word Insertion (WI) 0.42 50.71 59.90 1.75

. . Word-level Word Swap (WS) 0.18 21.67 45.99 0.13
Unigram-WM Word Deletion (WD) 0.34 40.60 54.44 1.38
Insert Punctuation (TP) 0.05 16.48 42.83 0.05

Formal 0.03 3.78 41.20 0.00

Casual 0.04 6.22 46.62 0.87

Passive 0.06 0.42 23.59 1.94

Sentence-level Active 0.05 0.06 23.85 1.74

Back Translation 0.05 1.09 33.80 0.29

SCPN 0 0.09 29.41 1.53

Bart 0.06 0.03 28.79 1.23

Dipper 0.05 0.01 26.47 1.88
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Table 20: Qwen-VL text watermarks under text perturbations.

‘Watermark Attack Category Perturbation BLEURT ROUGE Bit Acc Dect Acc
Keyboard 0.64 65.57 90.76 30.89

OCR 0.49 51.60 80.30 15.60

Character-level Character Insert (CI) 0.62 69.54 88.15 35.16

Character Replace (CR) 0.76 10.11 97.14 56.91

Character Swap (CS) 0.40 53.03 72.23 14.10

Character Delete (CD) 0.37 47.79 69.96 14.39

Synonym Replacement (SR) 0.70 96.03 91.03 59.14

Word Insertion (WI) 0.52 66.84 78.30 39.52

R ‘Word-level Word Swap (WS) 0.26 25.11 60.09 9.47
KGW-WM Word Deletion (WD) 0.42 4972 7085 34.57
Insert Punctuation (IP) 0.21 14.80 55.61 10.19

Formal 0.02 0.49 53.31 10.42

Casual 0.03 0.12 60.15 28.05

Passive 0.01 0.70 30.11 24.51

Sentence-level Active 0.01 0.39 30.26 19.61

Back Translation 0.07 0.34 42.95 9.19

SCPN 0.00 0.54 40.03 9.99

Bart 0.02 0.59 44.65 9.12

Dipper 0.01 0.79 42.85 8.13

‘Watermark Attack Category Perturbation BLEURT ROUGE Bit Acc Dect Acc
Keyboard 0.57 70.00 92.83 45.41

OCR 0.43 74.63 77.60 40.10

Character-level Character Insert (CI) 0.55 94.32 91.23 44.73

R Character Replace (CR) 0.67 66.84 66.68 49.99

Character Swap (CS) 0.33 55.89 68.65 36.83

Character Delete (CD) 0.30 50.66 66.32 35.96

Synonym Replacement (SR) 0.60 72.93 80.83 47.78

Word Insertion (WI) 0.43 71.95 82.00 41.23

’ Word-level Word Swap (WS) 0.18 27.49 54.54 31.71
KTH-WM Word Deletion (WD) 0.33 5435 7277 37.93
Insert Punctuation (IP) 0.12 17.22 50.00 30.02

Formal 0.09 1.91 47.62 29.14

Casual 0.02 9.12 59.67 33.22

Passive 0.02 4.46 13.55 17.27

Sentence-level Active 0.02 0.72 15.04 17.73

’ co Back Translation 0.00 0.08 36.33 24.99

SCPN 0.00 0.01 18.68 18.46

Bart 0.03 0.04 19.68 19.00

Dipper 0.06 2.31 16.38 17.62

‘Watermark  Attack Category Perturbation BLEURT ROUGE Bit Acc Dect Acc
Keyboard 0.61 78.45 69.26 26.62

OCR 0.45 58.54 62.59 24.32

Character-level Character Insert (CI) 0.59 75.43 67.62 27.60

R Character Replace (CR) 0.75 94.64 73.39 31.23

Character Swap (CS) 0.36 45.66 57.47 24.52

Character Delete (CD) 0.33 42.20 56.03 24.71

Synonym Replacement (SR) 0.69 85.70 69.53 32.02

Word Insertion (WI) 0.50 61.21 61.40 29.03

~ Word-level Word Swap (WS 0.21 25.71 49.76 24.36
Blackbox-WM Word Dclcm(m (\zw) 0.40 48.45 56.66 28.53
Insert Punctuation (IP) 0.17 8.94 46.93 24.77

Formal 0.04 5.41 45.46 24.95

Casual 0.07 0.03 49.86 27.92

Passive 0.02 0.01 30.65 19.65

Sentence-level Active 0.09 0.06 30.76 20.58

Back Translation 0.03 0.10 38.90 25.34

SCPN 0.00 0.00 39.68 18.80

Bart 0.00 0.03 33.29 17.36

Dipper 0.00 0.06 38.48 16.56

Watermark  Attack Category Perturbation BLEURT ROUGE Bit Acc Dect Acc
Keyboard 0.45 60.66 80.47 0.92

OCR 0.33 45.61 67.28 0.43

Character-level Character Insert (CI) 0.44 57.90 76.97 0.98

o Character Replace (CR) 0.56 71.90 88.09 0.00

Character Swap (CS) 0.26 35.26 56.84 0.29

Character Delete (CD) 0.24 32.43 53.88 0.00

Synonym Replacement (SR) 0.52 64.48 80.10 1.58

Word Insertion (WI) 0.36 46.03 64.07 0.96

. . Word-level Word Swap (WS) 0.14 19.39 41.19 0.00
Unigram-WM Word Deletion (WD) 0.29 36.03 54.52 0.00
Insert Punctuation (TP) 0.10 3.84 35.36 0.00

Formal 0.08 0.96 32.36 0.00

Casual 0.02 0.07 40.78 0.00

Passive 0.02 0.06 3.13 0.00

Sentence-level Active ) 0.02 0.08 3.19 0.00

Back Translation 0.01 0.02 18.94 0.21

SCPN 0.00 0.04 3.68 0.00

Bart 0.00 0.02 3.52 0.00

Dipper 0.07 0.07 4.42 0.00
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