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Abstract

Causal confusion is a phenomenon where an agent learns a policy that reflects1

imperfect spurious correlations in the data. The resulting causally confused be-2

haviors may appear desirable during training but may fail at deployment. This3

problem gets exacerbated in domains such as robotics with potentially large gaps4

between open- and closed-loop performance of an agent. In such cases, a causally5

confused model may appear to perform well according to open-loop metrics but fail6

catastrophically when deployed in the real world. In this paper, we conduct the first7

study of causal confusion in offline reinforcement learning and hypothesise that8

selectively sampling data points that may help disambiguate the underlying causal9

mechanism of the environment may alleviate causal confusion. To investigate this10

hypothesis, we consider a set of simulated setups to study causal confusion and11

the ability of active sampling schemes to reduce its effects. We provide empirical12

evidence that random and active sampling schemes are able to consistently reduce13

causal confusion as training progresses and that active sampling is able to do so14

more efficiently than random sampling.15

1 Introduction16

Offline learning offers opportunities to scale reinforcement learning to domains where offline data17

is plentiful but online interaction with the environment is costly. The fundamental challenge of18

offline reinforcement learning is to identify cause and effect of actions from a fixed dataset, which is19

often intractable. In the absence of online interactions, our hope is that the dataset covers a uniform20

distribution of an exhaustive set of plausible scenarios. This is often not the case in datasets for robotic21

control, which are long-tailed and often contain only a handful of samples for rare (and informative)22

events. Causal confusion occurs when agents misinterpret the underlying causal mechanisms of the23

environment and erroneously associate certain actions or states with a given reward. For example,24

if an agent happens to simultaneously observes independent events X and Y in its environment25

whenever it receives a reward R, and R causally depends on Y but not on X , the agent may attribute26

the reward R to X and Y occurring jointly even though R may be independent of Y . Problematically,27

if the spurious correlation between Y and R observed at training time ceases to hold at deployment28

time, a causally-confused model may show a significant deterioration in performance. Often, spurious29

correlations are not perfectly held in offline data, but optimisation schemes like mini-batched gradient30

descent can still produce models that latch onto them since they help in optimising the training loss.31

In this paper, we explore whether causal confusion in offline reinforcement learning from datasets32

exhibiting causal ambiguity can be alleviated by random or active sampling. We provide empirical33

evidence that random and active sampling schemes are able to consistently reduce causal confusion34

and that active sampling is able to do so more efficiently than random sampling.35
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2 Related Work36

Causal Confusion in Supervised Learning. Several works in imitation learning have proposed37

solutions to mitigate causal confusion, which was first defined in [de Haan et al., 2019]. Wen et al.38

[2020] proposes adversarial training to prune out any known sources of spurious correlations from39

the policy’s representation, for instance, the previous control commands given to a robot; Wen et al.40

[2021] propose loss-reweighting of datapoints based on the loss of a model trained with just the41

spurious correlates as the input; OREO [Park et al., 2021] regularises the model’s representation to42

be invariant to any individual object being dropped out in a scene. Lee et al. [2022] propose training43

a diversified ensemble in the case when perfect spurious correlations exist in the data and later select44

from these hypotheses based on validation data. Causal Confusion has also recently been studied45

in reward-learning from preferences [Tien et al., 2022], where spurious correlations can be drawn46

between a human evaluator’s preferences and certain actions or parts of the state space.47

Ensemble Models in RL. Ensembles have been studied extensively to guide exploration in online48

RL [Osband et al., 2016] [Lee et al., 2021], and recently to construct adaptive pessimism constraints49

in offline RL, to disincentivise uncertain actions from having high estimated returns. Recent work50

[An et al., 2021] showed that increasing the size and diversity of the ensembled critic in Soft-Actor-51

Critic [Haarnoja et al., 2018] performs competitively with state-of-the-art offline RL algorithms.52

However prior work hasn’t explored how the uncertainty from ensembles could be used to sample53

transitions in RL. Prioritised replay [Schaul et al., 2015] is a sampling scheme based on the TD-error54

of transitions, that was proposed in off-policy RL but hasn’t been studied in offline RL.55

AI Alignment. AI alignment seeks to align the behavior of agents with the intentions of their56

creators by investigating the incentives behind demonstrated tasks. Recent work on Goal Misgen-57

eralisation [Langosco et al., 2022] explores how online RL agents in Procgen [Cobbe et al., 2019]58

can get confused about the goal they’re pursuing since those goals co-occur with irrelevant artifacts59

in the environment most of the time. In this case the specification is correct, but the agent still60

pursues an unintended objective (as opposed to poor reward definitions that predictably lead to reward61

hacking). We build upon an environment introduced in this work to collect data for reproducing the62

phenomenon of causal confusion in offline RL.63

3 Alleviating Causal Confusing in Offline RL via Active Sampling64

3.1 Offline Reinforcement Learning65

Offline RL algorithms aim to learn an optimal policy along with estimates of the value (or Q-value)66

function from a dataset of transitions D = {(s,a, r, s′)} collected by a behaviour policy πβ .67

Conservative Q-Learning. For our experiemnts we choose CQL [Kumar et al., 2020] for it’s68

simplicity and competitive performance. The CQL objective, which combines the standard TD-error69

of Q-learning with a penalty constraining deviations from the behaviour policy, is defined as:70

LCQL
critic (θ) =

1

2
E

(s,a,s′)∼D

[
(Qθ − BπQθ̄)

2
]
+ α0 E

s∼D

[
log

∑
a

expQ(s, a)− E
a∼πβ

[Q(s, a)]

]
, (1)

where the Bellman operator BπQ = r + γPπQ , and Pπ is the transition matrix coupled with the71

policy π. We model the uncertainty of the learned Q-function parameterised by θ by ensembling the72

model and training on identical transitions across the ensemble members,with their own corresponding73

targets (θ̄) as proposed in Ghasemipour et al. [2022]74

3.2 Active Sampling75

The focus of this work is on experimenting with data-sampling strategies without making any76

modifications to the objective. Algorithm 1 describes the CQL setup with active-sampling of77

transitions, where the modifications from vanilla random-sampling are highlighted in blue. We study78

the following uncertainty-based and loss-based data acquisition schemes:79
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(a) Top: The leading vehicle is static and
the top-left tile flashes yellow since the
leading vehicle is static. Bottom: The
agent is in front of a red light, and the
top-left tile isn’t yellow since the leading
vehicle isn’t static or blocked.

(b) Random sampling takes 4x gradient steps to recover the cor-
rect solution compared to active sampling (Variance and TD-Error-
based) when both are trained on data with the spurious yellow tile.

Figure 1: Traffic-world environment.

Uncertainty about the greedy action (variance-based): The Q-values of different ensemble80

members could have arbitrary numerical offsets but still be equivalent, due to bootstrapping. Instead,81

we estimate the uncertainty of actions by computing the variance of their advantage over the ensemble,82

where the advantage of an action a∗ for a Q-learner can be written as follows:83

Aπ(s, a∗) = Qπ(s, a∗)− V π(s) ≈ Qπ(s, a∗)−
∑
a

[
Q(s, a) · e(Q(s,a)∑

a′ eQ(s,a′)

]
(2)

TD-Error (loss-based): Based on the Temporal Difference error similar to Prioritised Experience84

Replay [Schaul et al., 2015]85

In practice, computing the acquisition scores over all the transitions in the dataset can be very86

expensive and redundant since high-error or high-uncertainty points will likely stay informative for87

a short window of subsequent gradient steps. We thus recompute the scores after every n gradient88

steps, and vary n as a hyper-parameter in our experiments.89

4 Experiments90
Algorithm 1 Conservative Q-Learning ( + active-
sampling)
1: Initialise ensemble Q-function Qθ , nep=epochs,

dsz=dataset size, bsz=batch size, T=steps-per-
epoch.

2: for epoch e in {1, . . . , nep} do
3: for step t in {1, . . . , T} do
4: compute scores acqi over Dtrain = [si, ai]

dsz
i=1

according to the acquisition function
5: acqi =

acqi∑dsz
j=1 acqj

(normalise scores)

6: sample batch B = [si, ai, s
′
i, ri]

bsz
i=1 from

Dtrain ∼ multinomial(acq)
7: Train the Q-function on Dtrain using objec-

tive from Equation (1)
8: end for
9: end for

We investigate the following questions: (1) Can91

causal confusion be consistently observed in92

CQL when sampling transitions randomly from93

a long-tailed demonstration dataset? (2) Does94

active-sampling based on the (implicit) policy’s95

uncertainty or loss help? (3) What is the compu-96

tation time involved with each of these acquisi-97

tion schemes?98

4.1 Illustrative Example: Traffic-World99

The autonomous driving literature cites many ex-100

amples where models training on large datasets101

are very performant but exhibit causal confusion102

on the tail cases of their operational domain, for instance: (1) models stopping at pedestrian crossings103

regardless of whether a pedestrian is present or not since the two often co-occur; (2) self-driving104

agents that simply try to cruise if they know their current speed since expert driving datasets contain105

cruising behaviour in a large fraction of each trajectory. We build on the environment proposed in106

[Anonymous, 2021] to construct a gridworld (shown in Figure 1a), where an agent (red triangle)107

starts at the leftmost point in a row behind leading vehicles (blue circles), and needs to cross a traffic108

light to reach a goal location (green square) on the right side of the grid. We collect data such that the109

probability of the traffic light turning red becomes lower as the agent approaches it, and so the data110

distribution contains (1) mostly episodes where the light is green, (2) some episodes where the traffic111
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(a) Performance with randomly-sampled goals. (b) Performance with goals at the top-right.

Figure 2: Agents trained on a dataset containing 6000 episodes with a fixed goal and 200 episodes
with a randomly sampled goal in Maze. We see that random-sampling and active-sampling perform
similarly on the fixed goal evaluation environment (right), but the active-sampling variants achieve
higher reward in the environments with randomly sampled goals. This verifies that the model is not
just performing well in one of the two kinds of environments, is not constrained by capacity, and the
reason behind the lower performance of random-sampling in this case is causal confusion.

light is red and the agent is waiting behind the vehicle in front (referenced here onward as the leading112

vehicle), and (3) only a couple of episodes where the light turns red with the agent at the front of113

the traffic queue. In this setup, the agent could just learn to follow the leading vehicle, instead of114

learning traffic light rules. To test causal confusion explicitly here, we introduce a related spurious115

correlate: a flashing yellow tile at the top left of the grid, that is yellow whenever the leading vehicle116

is stopped or blocked, and grey otherwise. The agent could follow this as an indicator of whether to117

stop or go ahead, and this policy would be correct for 98% of the data points. Figure 1b shows the118

training curves of CQL agents trained with randomly-sampled data, with and without the yellow tile119

present in images in the dataset - we see that the performance of the former agent degrades and it120

takes 4x the number of gradient steps to converge to the solution of the latter agent which is trained121

without the spurious correlate present. Also shown are the active sampling variants trained with the122

spurious yellow tile, which perform very similarly to random-sampling when the spurious correlate is123

not present.124

4.2 Generalization in Offline RL: Procgen125

The Maze environment in Procgen [Cobbe et al., 2019] defines a navigation task where the agent126

starts at the bottom left in the maze and receives a reward of +10 upon successfully reaching the goal127

which is sampled at any valid location in the maze. [Langosco et al., 2022] recently showed that128

an agent trained on a series of environments with the goal always at the top-right will be causally129

confused about the source of the reward. It will still navigate to the top-right even when the goal is130

sampled elsewhere. We generate a skewed mixture dataset containing mostly epsiodes where the goal131

is sampled at the top-right, and a few episodes where the goal is sampled randomly. Further details132

about the setup described in the Appendix. Figure 2b shows the evaluation performance of random133

and active-sampling agents trained on the mixture dataset, when goals are sampled randomly in the134

evaluation environment. We plot the computation time for the random and active-sampling variants135

in Figure 3 in the Appendix. Qualitative evaluations show that agents which achieve lower reward136

still successfully navigate to the top-right corner of the maze.137

5 Conclusions138

In this paper we designed preliminary setups to study causal confusion in offline RL, which occurs139

when a policy is learnt with random sampling of data from a skewed offline dataset. We designed140

uncertainty-based and loss-based data sampling baselines to selectively sample transitions for training,141

and saw promising evidence that active sampling can recover a less causally-confused model in142

significantly fewer training steps as compared to random-sampling. An interesting line of future143

work would be to scale this up to larger benchmarks, and extend this analysis to the case when144

acquisition scores for active sampling aren’t computed for all the data at once, instead maintaining an145

approximation through running scores as is done in [Schaul et al., 2015].146
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A Appendix213

A.1 Implementation214

All our environments use a discrete action space. Therefore we build our method on top of the215

double-DQN implementation similar to the original CQL paper. As stated in section 1, we use216

ensembles of Q networks and at evaluation time, we average the Q-value outputs of the ensemble,217

and select the action with the maximum Q-value. In other place where we need to do inference218

(for instance: to compute Q-values for the conservative loss) we similarly take the mean across the219

ensemble.220

A.2 Code and Data221

We will release our code, data and pretrained models once the work is uploaded online. The code222

repository will also contain code to reproduce all the figures in this work.223

A.3 Data Collection224

1. Traffic-World: To collect data for Offline RL, we trained a PPO agent on a slightly modified225

version of the Traffic-world environment, with reward shaping on the environment, to226

incentivise the agent to reach the goal since this could is a hard exploration environment227

(there is the potential to receive many negative rewards before receiving a positive reward,228

and without reward shaping the PPO agent just learns to toggle in-place till the episode ends229

to avoid negative penalties).230

2. Maze: We use the Impala-based PPO agent trained in [Langosco et al., 2022] for 200M231

steps to collect the expert trajectories on 6000 episodes of epsides with randomised goals232

and 200 episodes of episodes with fixed goals.233

A.4 Hyper-parameters234

CQL: We conduct a grid search over the learning rate and conservative penalty coefficient (α). We235

use gradient clipping with the norm varied between 3,5,7.236

Active Sampling: We kept all the hyper-parameters the same as random sampling (batch size,237

learning rate, α). The parameters related to active sampling are238

1. n: the number of gradient steps with stale scores we take before we recompute acquisition239

scores on the data.240

2. the ensemble size which we set to 3, and keep constant across the active and random-241

sampling variants for a fair comparison.242
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A.5 Computational Cost243

Figure 3 shows a scatterplot for the wallclock times to achieve highest reward across different active244

and random baselines. It also plots the time needed for active sampling variants to achiebve the best245

reward that random sampling achieves (denoted as Variance-par-Random and TD-par-Random in the246

plot).247

Figure 3: Timing Comparison for different sam-
pling schemes on the Procgen-Maze benchmark
plotted as reward achieved versus wallclock time
in minutes.
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