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Abstract

Prerequisite relation extraction aims to iden-
tify concept dependencies, which are crucial
for curriculum planning and adaptive educa-
tion. Existing methods struggle with noisy
edges, dense graphs, or fail to model diverse
concept relations effectively. In this paper, we
propose DPPNet, a novel graph-based approach
that incorporates a Determinantal Point Process
(DPP) to perform diversity-driven neighbor se-
lection, enabling the model to retain informa-
tive and structurally diverse relations while dis-
carding redundancy. Our method integrates this
pruning mechanism into the learning pipeline
and operates in a single pass, leading to a highly
efficient and robust model. Empirical results
across three benchmark datasets demonstrate
that DPPNet outperforms existing state-of-the-
art methods across three key dimensions: classi-
fication performance (Accuracy and F1-score),
memory footprint, and training time. These
results highlight DPPNet’s effectiveness and
scalability, making it a practical choice for real-
world educational applications.

1 Introduction

A well-structured curriculum is critical for effec-
tive learning, guiding students through concepts in
a coherent and pedagogically sound order. While
online educational resources such as lectures, tu-
torials, and videos have become widely accessi-
ble, they introduce a key challenge: learners are
often left to navigate complex topics without guid-
ance on concept sequencing. Accurately identify-
ing prerequisite relationships among concepts is
thus essential for adaptive curriculum design and
personalized learning pathways.

Recent work models this task using graph-based
representations (Mazumder et al., 2023), where
nodes represent documents or concepts and edges
denote associations. However, graphs built from
large-scale educational corpora are often exces-
sively dense and have many-to-many relationships

between documents and concepts, creating highly
entangled structures. These dense graphs introduce
redundant or noisy edges, increasing computational
burden and obscuring the true structure of knowl-
edge dependencies.

To address these challenges, we propose DPP-
Net, a novel framework for learning prerequisite
relations by pruning dense educational graphs us-
ing Determinantal Point Processes (DPPs) (Kulesza
and Taskar, 2012). DPPNet selects a diverse and
informative subset of edges for each node, elimi-
nating redundant or spurious connections without
relying on heuristic rules or fixed thresholds. This
principled, data-driven pruning improves not only
interpretability and accuracy but also reduces mem-
ory consumption and training time.

Our main contributions are as follows:

1. We propose a novel graph pruning frame-
work based on Determinantal Point Processes
(DPPs), specifically tailored to the structure
of educational concept graphs, improving the
precision of prerequisite relation extraction.

2. Our approach dynamically selects a diverse
and important subset of neighbors for each
node, preserving only pedagogically meaning-
ful connections while filtering out redundant
or noisy links.

3. We integrate this pruning mechanism into a
Graph Attention Network, enabling end-to-
end learning over interpretable, semantically-
focused, and scalable sparse graphs.

4. The proposed method not only enhances the
quality of concept representations but also re-
duces training time and memory usage sig-
nificantly, without relying on any additional
external information, unlike some state-of-the-
art methods.



2 Related Work

The study of concept prerequisite relations (CPRs)
has evolved significantly, with advancements in
models that capture semantic interconnections be-
tween educational concepts and documents. Under-
standing these relationships is crucial for construct-
ing effective learning paths. Early research focused
on quantifying dependencies through textual and
structural features, enabling the identification of
prerequisite relations (Talukdar and Cohen, 2012).
A metric based on hyperlink reference distance was
also proposed to assess the closeness of concepts
across educational resources (Liang et al., 2015).

Subsequent advancements incorporated proba-
bilistic models and deep learning, such as a model
combining topic modeling with Siamese neural
networks to improve detection (Roy et al., 2019).
Graph-based models, particularly Graph Neural
Networks (GNNs), have proven effective in captur-
ing complex relationships. The Variational Graph
Autoencoder (VGAE) (Kipf and Welling, 2016)
allowed the modeling of latent concept represen-
tations, and its extension, the Relational VGAE
(R-VGAE) (Li et al., 2020), integrated both con-
cepts and resources. Multi-head attention mech-
anisms (Zhang et al., 2022) were later incorpo-
rated to focus on more informative neighbors,
improving accuracy. The graph attention-based
model (Mazumder et al., 2023) has also been pro-
posed for concept relation prediction.

Further, supervised methods (Sun et al., 2024a)
and evidence-based approaches (Zhang et al., 2024)
have also shown promising performance. Weak
supervision methods were applied to reduce de-
pendency on labeled data, improving generaliza-
tion (Zhang et al., 2025a). To further enhance
performance, global knowledge graphs and opti-
mization techniques were employed to optimize
prerequisite learning (Zhang et al., 2025b), and
multiscale GNNs improved link prediction (Zhang
et al., 2025c¢).

Despite advancements, current models tend to
treat all graph edges uniformly, which can lead to
suboptimal performance. In educational graphs,
some connections are more informative than others.
Although GNNs perform well, their computational
demands are high. Graph pruning strategies (Sun
et al., 2024b) that remove less informative edges
have been suggested to improve model efficiency,
but are time-consuming. The proposed work builds
on these insights, aims to optimize the balance

between performance, time efficiency, and memory
consumption.

3 Proposed Approach

We are given a set of learning resources R for a
topic 1" and the set of concepts C present in R. The
main objective is to build a model M that will take
a pair of concepts c;,c¢; € C and determine if ¢;
is a prerequisite for c;. In other words, a learner
needs to know the concept c; before he/she try to
know about c;. This task can naturally be viewed as
binary classification. Specifically, if M(c;, ¢;) =
1, then ¢; € C is the prerequisite concept of ¢; € C,
otherwise ¢; € C is not a prerequisite concept of
¢; € C. We note that, if M(c;,¢;) = 0, it does
not imply that M(c;,c;) = 0. Therefore, even
though ¢; is not a prerequisite for ¢;, ¢; can still be
a prerequisite for c;.

We assume that the concepts in R are already
known to us. Thus, our task is to uncover the di-
rected dependencies that form meaningful learning
sequences. To achieve this, we construct a het-
erogeneous graph consisting of concept and docu-
ment nodes, following the methodology proposed
in (Mazumder et al., 2023). However, directly op-
erating on this full graph often results in high edge
density, especially in large corpora, where redun-
dant or weak connections can negatively impact
the model’s performance.

As we described in Section 2, several meth-
ods have been proposed in the recent past. Un-
surprisingly, the methods based on deep neural
nets achieve better performance than the classical
machine learning models. Furthermore, among
the deep learning models, graph neural networks
turned out to be the most effective models. How-
ever, a major limitation of most of the top-scoring
existing methods is that they are not good at gener-
ating distinguishable concept representations even
for seemingly unconnected concepts, primarily due
to the highly connected graph on which they oper-
ate. Some methods employ additional annotation
(such as the relationship between the documents)
to alleviate the problem. However, these methods
are not cost-effective.

To address this, we introduce an approach based
on a repulsive point process that retains a diverse,
informative subset of neighbors for each node from
the graph, reducing graph complexity without los-
ing the semantics. We then apply a Graph At-
tention Network (GAT) to learn node representa-



tions by aggregating information from neighboring
nodes. These learned embeddings are then fed into
a binary classifier that predicts the relationship be-
tween two concepts. Both the GAT and classifier
are trained jointly in an end-to-end manner to opti-
mize performance.

In summary, our approach achieves several im-
portant goals: (i) enables the graph attention net-
work to generate higher quality concept representa-
tions, (ii) reduces order of magnitude training time,
(ii1) significantly lesser memory footprint, and fi-
nally, (iv) does not use any additional inoformation
unlike some of the state of the art methods.

Our approach has three major components,
namely, graph construction, neighbor selection for
each node, and Prerequisite Relation Prediction.
We detail below each of these components.

3.1 Graph Construction

We construct a heterogeneous graph G = (V, E)
to represent the educational corpus, V= R NC
(the concept nodes and the document nodes).

An edge is created between a document node
(d) and a concept node (c) if the concept is present
in the document. The weight of the edge is the
probability that the frequency f;. of ¢ in d lies
in the extreme right tail of its frequency distribu-
tion in similar documents (the same measure as
in (Mazumder et al., 2023)). An edge between
two concepts is present if they have positive point-
wise mutual information (PMI) based on a sliding
window of length 30, and the weight is the PMI
value itself. Finally, for document to document
node connections, each document is represented by
averaging the vectors of all its concepts. Then, doc-
uments are linked using cosine similarity between
their concept-based vector representations.

Each node is initialized with a dense embedding.
The concept node embeddings are derived from
co-occurrence statistics, while document node em-
beddings are computed as the average of embed-
dings for the concepts they contain. These embed-
dings, along with edge weights, serve as inputs for
downstream learning in the GAT-based prediction
module.

3.2 Neighborhood Refinement

Our objective in this step is to dynamically se-
lect a diverse and informative subset of neighbors
for each node in a graph, promoting richer and
non-redundant neighborhood representations. To
achieve this, we adopt a greedy sampling approach

inspired by Yao et al. (2016), which efficiently se-
lects a diverse set of neighbors without requiring a
fixed k.

Section 3.2.1 provides a brief overview of De-
terminantal Point Processes (DPPs), while Sec-
tion 3.2.2 presents the greedy DPP algorithm. In
Section 3.2.3, we introduce a novel early filtering
mechanism that improves efficiency, and finally,
Section 3.2.4 outlines the complete neighbor prun-
ing algorithm.

3.2.1 Background

We leverage the properties of Determinantal Point
Processes (DPPs) (Kulesza and Taskar, 2012),
which are probabilistic models that favor diverse
subsets through negative correlation. Given a ker-
nel matrix L, the probability of selecting a subset
Y C Yis given by:

P(Y) x det(Ly) (1)

The kernel matrix L captures both the quality and
similarity of elements. Each entry is defined as:

Lij = 9] bjq; 2)

where ¢; is a quality score and ¢; is a feature vector
for the i" item. The inner product gb;—gbj reflects
similarity, promoting the selection of dissimilar,
high-quality elements. This makes DPPs particu-
larly suitable for edge pruning, where we aim to
retain a subset of neighbors that are both relevant
and diverse.

While standard DPP sampling favors diversity,
its stochastic nature does not ensure optimal or
deterministic outcomes. To mitigate this limitation,
we employ a greedy approximation of DPPs, as
proposed in (Yao et al., 2016), which we detail
below.

3.2.2 Greedy DPP Algorithm Overview

The greedy DPP algorithm (Yao et al., 2016) in-
crementally builds a subset .S; for node ¢, selecting
one element at a time from a candidate pool N,
which consists of all neighbors of node 7. At each
iteration, the element with the highest marginal
gain in diversity is added:

Ag = scorer,(S; U {s}) —scorer(S;) (3)

The diversity score is defined using the log-
determinant:

scorer,(S;) = logdet(Ls,) 4)



The process halts when no candidate yields a posi-
tive marginal gain. This adaptive strategy retains
the diversity-seeking nature of DPPs without need-
ing a fixed subset size.

To ensure that the determinant is positive and
the logarithm is well-defined, particularly when the
kernel matrix may be singular or nearly singular,
we update the score calculation (Equation 4) and
add the identity matrix /, thus scorer,(.S;) is given
by:

scorer,(5;) = logdet(Lg, + 1) 5)

To make this approach more computationally
efficient, we introduce an early filtering mechanism
that prunes candidates based on their marginal gain,
allowing us to reduce the number of candidates to
evaluate in each iteration.

3.2.3 Early Filtering Mechanism

The greedy DPP algorithm constructs a diverse
subset by iteratively selecting elements that max-
imize the marginal gain in diversity (Equation 3).
However, evaluating A, for all candidates in each
iteration becomes computationally expensive for
large candidate pools.

To reduce this cost, we introduce an early filter-
ing mechanism that prunes candidates with non-
positive marginal gain, i.e.,

Ay <0 = sisdiscarded.

This filtering relies on a fundamental property
of DPP. Although the determinant function itself
is not submodular, the log-determinant function
(Equation 5) is submodular when L is positive
semi-definite. This follows from the fact that the
log-determinant function behaves like a submodu-
lar function as established in (Kulesza and Taskar,
2012). Specifically, for any S; € S; C Y and
s¢S;,

logdet(Lg,uqsy + I) — logdet(Ls; + 1) <

6
log det(Lg,uqs) + I) —logdet(Lg, + I) ©

This inequality expresses the diminishing re-
turns property of the log-determinant function: the
marginal contribution of adding an element de-
creases as the selected set grows. Thus, if an ele-
ment has zero or negative marginal gain at iteration
1, it is guaranteed that it will not contribute posi-
tively in subsequent iterations and can therefore be
safely pruned.

We define the filtered candidate set as

Ni:{SENi|As>O},

from which we select the candidate with the highest
marginal gain:
s = argmax Ag.
sEN;
The set is then updated as S;11 = S; U {s*}, and
the process repeats until N; = 0.

This filtering mechanism significantly reduces
the number of determinant evaluations without
compromising the diversity-seeking nature of the
DPP model. Compared to the baseline greedy DPP
algorithm (Yao et al., 2016), our approach improves
scalability while maintaining high-quality subset
selection.

3.2.4 Neighbor Selection Algorithm

Our algorithm has two main parts: (i) Kernel Con-
struction: to build the kernel matrix based on the
node’s neighborhood and (ii) Greedy Selection:
a filtering approach to select a diverse subset of
neighbors.

This strategy yields adaptive, high-quality neigh-
borhoods per node, without requiring a manually
tuned k. The steps are as follows:

Kernel Computation:
neighborhood:

N; ={j| (i.4) € E}

and construct a kernel L € RIVil*INil ysing:

For node 7, identify its

Lji = qj-sim(j, k) -q. VjkeN; (7)

where g; is a quality score for the neighbor node j,
which is the weight of the edge between the node @
and j and sim(j, k) is the similarity between j and
k. The kernel inherently favors sets of nodes that
are individually relevant to ¢, but dissimilar to one
another, helping avoid redundancy in the selected
neighborhood.

Greedy Selection: Once the kernel matrix L is
constructed (Equation 7) for a given node 7, we
apply the greedy selection algorithm to select a
diverse subset of neighbors from the candidate pool
N;.

At each iteration, the algorithm evaluates the
marginal gain A, using the log-determinant score
(Equation 5), and applies the early filtering mech-
anism (Section 3.2.3) to discard candidates with
non-positive gain.

The detailed procedure for neighbor selection of
each node 7 in graph G = (V, E) using kernel L is
outlined in the algorithm 1.



Algorithm 1 Greedy Selection Algorithm
Input: Neighbor V;, Kernel L & threshold e.
Output: Selected Neighbor N/

1: S; 0, C + N;

2: while C # () do

3: for all s € C' do
4: Compute A using Eq. (3)
5: end for
6: 8% + argmaxgeo Ag
7: if Ay« < e then
8: break
9: end if
10: Add s* to S;, remove s* from C'

11: Remove all s € C' where A; <0
12: end while

13: NZ/ «~— S

14: return N/

Although the input graph is undirected, we per-
form neighbor pruning in an asymmetric manner.
For each node 7, we apply the selection algorithm
(Alg. 1) to choose a diverse subset of neighbors
NZ»/ C N;. The connections from 7 to nodes not
in N/ are removed only with respect to i. That is,
the edge (i, j) is removed from ¢’s perspective if
J ¢ N/, but it may still exist from j’s perspective
ifi e N j’ This results in an effectively asymmetric
neighborhood structure, even though the original
graph is undirected.

3.3 Concept Relation Prediction

After the DPP-based pruning phase (Section 3.2),
we obtain a sparsified concept graph G’ = (V, E')
that retains high-quality and diverse connections.
We now utilize this graph to learn task-specific
node representations and identify prerequisite rela-
tionships between concepts. For this purpose, we
adopt a two-stage neural framework introduced in
prior work (Mazumder et al., 2023), comprising a
Graph Attention Network (GAT) for node encoding
and a pairwise classifier for relation prediction.

3.3.1 Node Representation

The first stage of the model employs a Graph At-
tention Network (Velickovic et al., 2018) to encode
each node based on its local neighborhood.

The input consists of node features derived from
embeddings for both concept and document nodes.
Each node ¢ is associated with a feature vector
v; € R¥, which is first linearly transformed into
a higher-level space via a shared weight matrix

© e RF"*F_ To capture contextual relevance, an
attention score is computed between each node ¢
and its neighbors j € N;. The unnormalized atten-
tion coefficient c;; is computed using a single-layer
feedforward network with LeakyReL.U activation:

¢;j = LeakyReLU <aT [Ov; || @VjD

where a € R2" is a learnable attention weight
vector and || denotes vector concatenation. These
coefficients are then normalized across the neigh-
borhood using softmax:

_ exp(cij)
ZkeM eXp(Cik)

Otij

In the case of graphs with edge features, it can
be incorporated by extending the attention compu-
tation to include transformed edge embeddings:

¢ij = LeakyReLU (aT [Ov; || ©v; | @eeij])

where e;; denotes the edge feature. The final repre-
sentation for each node ¢ is then a weighted aggre-
gation over its neighbors:

r_ . OV
vV,=0 E ajj - OV
JEN;

This results in task-aware, neighborhood-sensitive
embeddings that reflect both local structure and
semantic importance.

3.3.2 Relation Prediction

The second stage of the model is a pairwise predic-
tion module. Given the learned embeddings v and
v’; for a candidate concept pair (C;, Cy), the model
predicts whether C; — C; holds. Each embedding
is first passed through a feedforward network with
shared weights:

h; = ReLU(W,vj+b,), h; = ReLU(W,v/+b,)

The final relation score is computed from a joint
representation formed by combining the two hid-
den vectors:

x;; = [hi;hy hy —hyih; © hyl

p(C; — Cj) = o(W Tx;j +b)

where © denotes element-wise multiplication and
o is the sigmoid function.



The model is trained using binary cross-entropy
loss:

1
LBCE = — 77 Z [yi; log pij
D] 2 .
(4,3,yi5)€D (8)

+(1 — yij) log(1 — pij)]

where y;; € {0, 1} is the ground truth label indicat-
ing whether C; is a prerequisite for C.

4 Experimental Setup

This section presents the experimental results ob-
tained on three different datasets. We evaluate the
performance of our proposed approach, DPPNet,
DPP Pruned Graph for Attention Prerequisite Net-
work, in comparison with several other graph neu-
ral network-based models for prerequisite learning.
For assessment, we employ standard evaluation
metrics, including precision, recall, F1 score, and
accuracy.

Table 1: Dataset Statistics

Dataset D] |C]  |Cpreql
Lecture Bank 277 320 821
MOOC 382 406 4332
University Course 654 407 4347

4.1 Datasets

We perform experiments on three publicly available
benchmark educational datasets. Table 1 displays
the statistics for all three datasets. In this table, the
column |D| represents the total number of docu-
ments, |C| indicates the total number of concepts
and |Cpyq| refers to the total count of concept pre-
requisite relationships. A detailed description of
each dataset is provided below.

« Massive Open Online Course (MOOC)':
This dataset is sourced from the Massive Open
Online Course (MOQOC), as used in (Pan et al.,
2017). It includes concepts related to Com-
puter science and comprises 406 concepts
from various university-level courses. Each
course is accompanied by multiple video lec-
tures, along with subtitles, where each subtitle
represents a distinct document.

"http://keg.cs.tsinghua.edu.cn/jietang/software/acl17-
prerequisite-relation.rar

* Lecture Bank (LB)? : This dataset (Li et al.,
2019) contains English lecture files from 60
courses covering 5 different domains, includ-
ing Natural Language Processing (NLP), Ma-
chine Learning (ML), Artificial Intelligence
(AD), deep learning (DL), and information re-
trieval (IR).

e University Course (UC)3: Introduced
by (Liang et al., 2017), the university course
dataset contains course descriptions from
various university courses. These courses
include subjects like Algorithm Design, Com-
puter Graphics, Graph Theory, and Neural
Networks from the domain of computer
science.

4.2 Baselines

We compare our proposed method, DPPNet, with
eleven state-of-the-art models for concept pre-
requisite relation prediction. These models in-
clude RefD (Liang et al., 2015), M3 (Miaschi
et al., 2019), GAE and VGAE (Li et al., 2019),
PREREQ (Roy et al., 2019), R-VGAE(T) and R-
VGAE(P) (Li et al., 2020), MHAVGAE (Zhang
et al., 2022), HGAPNet (Mazumder et al., 2023),
LCPRE (Sun et al., 2024b) and GKROM (Zhang
et al., 2025b). These baselines represent key
advancements in prerequisite relation extraction,
specifically graph-based neural networks, multi-
objective knowledge optimization, and learning-
path-based sparse graph approaches. Each baseline
brings a unique perspective to the task, and com-
paring them allows us to showcase the advantages
of our proposed approach in terms of both perfor-
mance and computational efficiency. Each method
is trained with the same 8:1:1 ratio of data for fair
comparison.

4.3 Implementation Details

We use the concept prerequisite relations given by
(Zhang et al., 2025b) and adopt an 8:1:1 ratio to
divide the dataset into training, validation, and test
sets. The model is trained for 500 epochs with a
batch size of 4 using the Adam optimizer, with bi-
nary cross-entropy employed as the loss function.
Consistent with the configuration in (Mazumder
et al., 2023), our architecture includes two graph
attention layers: the first with 128 hidden units and
the second with 512. The prediction component is

*https://github.com/Yale-LILY/LectureBank
3https://github.com/suderoy/PREREQ-IAAI-19/



a feed-forward layer that maps a 512-dimensional
input to a 64-dimensional output vector. All exper-
iments are conducted on a system equipped with
an NVIDIA A100 GPU with 80 GB of memory, an
Intel Xeon Gold 6330 CPU running at 2.00 GHz,
and 376 GB of RAM.

5 Results

We evaluate our proposed model, DPPNet, on three
widely used educational datasets. The evaluation
covers two key aspects: the model’s ability to accu-
rately extract prerequisite relations and its compu-
tational efficiency in terms of memory usage and
training time.

5.1 Performance on Prerequisite Relation
Extraction

The evaluation, based on Fl-score and accuracy,
is summarized in Table 2. DPPNet outperforms
all baselines, achieving the highest scores on all
three datasets. Among the baselines, HGAPNet
ranks second, showing solid generalization, while
models like LCPRE and GKROM perform well on
specific datasets but lack consistency. Older meth-
ods such as PREREQ, GAE, and VGAE struggle
with complex prerequisite relationships, and mod-
els like MHAVGAGE and R-VGAE(P) show only
modest improvements. Notably, while LCPRE ex-
cels on LectureBank, it does not generalize across
other datasets.

These results demonstrate that DPPNet excels
in both accuracy and consistency, offering a strong
balance between precision and recall as indicated
by its superior F1-scores

5.2 Computational Efficiency

In real-world educational systems, strong model
performance must be balanced with computational
efficiency for scalability and usability. To evalu-
ate this, we compare the memory usage, training
time, and edge sparsification of our proposed model
(DPPNet) against leading baselines—GKROM,
LCPRE, and HGAPNet—across three benchmark
datasets. These baselines were chosen due to their
competitive accuracy and F1-score (Table 2), while
other methods were excluded for their lower per-
formance and practical viability. The following
sections delve into a comprehensive analysis of
each aspect.

5.2.1

Table 3 shows the memory consumption (in GB)
across all datasets. DPPNet exhibits the lowest
memory usage, outperforming LCPRE, which also
uses graph sparsification. DPPNet’s pruning strat-
egy, based on Determinantal Point Processes, ef-
ficiently removes redundant edges, resulting in
more compact graphs. In contrast, HGAPNet and
GKROM use dense graphs with complex relational
modeling, leading to significantly higher memory
consumption. These results highlight DPPNet’s
scalability, particularly in low-resource settings or
large educational datasets.

Memory Utilization

5.2.2 Training Time Comparsion

Beyond memory savings, DPPNet also delivers
substantial gains in training speed, as shown in
Table 4. Across all datasets, it consistently trains
in less than one-third of the time required by its
closest competitors. In the baselines, based on the
data, it can be seen that HPANet performs better
than the other two baselines.

It is particularly notable that LCPRE, despite
using sparsification to reduce memory, still suffers
from longer training times. This likely stems from
its added temporal modeling and path-based reason-
ing, which introduce complexity during training.
DPPNet, in contrast, uses a single-shot, diversity-
driven pruning mechanism, reducing not only the
graph size but also the computation needed for each
learning iteration.

5.2.3 [Edge Sparsification

An essential feature of DPPNet is its ability to sig-
nificantly reduce graph density while preserving
task-relevant information. Figure 1 compares edge
counts (log scale) across methods on the MOOC
dataset, categorized by edge types: CC (Concept-
Concept), DD (Document-Document), and DC
(Document-Concept). We observe the same pat-
tern in the two datasets as well.

HPAGNet and GKROM use the full graph, re-
sulting in high edge counts and computational cost.
LCPRE performs moderate pruning but retains sub-
stantial edge density. In contrast, DPPNet achieves
over 98% edge reduction, maintaining strong clas-
sification performance. The significant reduction
in DD (Document-Document) edges by DPPNet
and LCPRE suggests that document-level connec-
tions contribute minimally to concept prerequisite
classification and may introduce more noise than
value.



Table 2: Performance Comparison. Best results are bolded, and runner-ups are underlined.

University Course LectureBank MOOC
Method

ACC F1 ACC Fl1 ACC F1
RefD 0.762 0.711 0.739 0.757 | 0.818 0.714
M3 0.825 0.821 0.794 0.786 | 0.781 0.690
GAE 0.664 0.663 0.687 0.687 | 0.671 0.670
VGAE 0.694 0.698 0.714 0.711 | 0.675 0.676
PREREQ 0.543 0.587 0.510 0.556 | 0.512 0.582
R-VGAE(T) 0.685 0.682 0.666 0.644 | 0.593 0.535
R-VGAE(P) 0.737 0.720 0.702 0.661 | 0.703  0.663
MHAVGAGE 0.788 0.795 0.726 0.740 | 0.748 0.764
HGAPNet 0.871 0.875 0.787 0.780 | 0.882 0.888
LCPRE 0.820 0.829 0.830 0.846 | 0.845 0.852
GKROM 0.870 0.874 0.823 0.820 | 0.863 0.869

 DPPNet (Ours) | 0.886  0.891 | 0.860 0.852 | 0.889 0.895

Table 3: Memory Usage Comparison (in GB). Best
results are bolded, and runner-ups are underlined.

Method LB MOOC UC
HGAPNet 3.1 497 859
LCPRE 078 078 0.78

(GKROM_ 311 497 8.8
DPPNet (Ours) 0.65  0.65  0.67

Table 4: Computational Time Comparison (in Hours).

Method LB MOOC UC
HGAPNet 0.65 490 835
LCPRE 147 873 862

(GKROM 081 556 882
DPPNet (Ours) 026  1.34 127

6 Conclusion

In this paper, we introduced DPPNet, a novel
method for concept prerequisite relation extraction
that utilizes Determinantal Point Process (DPP)-
based graph pruning. Our approach addresses the
challenge of balancing prediction accuracy and
computational efficiency by selectively retaining
the most informative edges, thus reducing graph
size without sacrificing effectiveness. DPPNet’s
lightweight pruning mechanism not only enhances
memory usage and reduces training time but also
improves generalization by eliminating noisy or
redundant connections. This contrasts with the
common assumption that dense graphs are more
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Figure 1: Edge Count Comparison on MOOC Dataset.

expressive, demonstrating that sparse graphs, when
carefully constructed, can achieve comparable or
superior results.

Our experimental results confirm that DPPNet
outperforms other state-of-the-art methods, includ-
ing approaches that retain all edges (HGAPNet),
those based on a pruned structure (LCPRE), and
even models that incorporate additional external
knowledge (GKROM). DPPNet’s ability to dynam-
ically select the number of edges to prune, without
requiring predefined inputs, further highlights its
adaptability and scalability, making it a promis-
ing solution for large-scale educational applica-
tions. These findings not only set a new standard
in concept prerequisite relation extraction but also
pave the way for more resource-efficient and inter-
pretable models in educational content design.



Limitations

While DPPNet represents a significant advance-
ment in concept prerequisite relation extraction,
there are a few limitations that need to be consid-
ered for future improvements.

* Dependency on Graph Quality: The effec-
tiveness of the DPP-based pruning approach
is heavily reliant on the quality of the input
graph. If the graph construction is flawed or
incomplete, the pruning process may inadver-
tently remove important connections, poten-
tially reducing the model’s accuracy. Thus,
ensuring high-quality graph construction re-
mains a key challenge for improving perfor-
mance.

Scalability for Extremely Large Datasets:
While DPPNet demonstrates strong perfor-
mance on large-scale educational datasets, its
scalability may face challenges when deal-
ing with extremely large or highly complex
graphs. The sheer volume of data in such
cases could result in increased computation
times. Although pruning techniques help re-
duce model complexity, the process of select-
ing edges from massive graph structures may
still impose significant computational over-
head, potentially limiting efficiency for very
large datasets.

Domain-Specific Adaptation: The model’s
performance might vary across different do-
mains or educational contexts. DPPNet has
been evaluated on a few specific datasets, and
while it has shown strong performance, its
generalization to other fields with significantly
different learning structures or concept rela-
tionships remains an open question. Further
research into domain adaptation techniques
could enhance its applicability across diverse
educational domains.

Despite these limitations, DPPNet provides a
strong foundation for future research and devel-
opment in the field of concept prerequisite relation
extraction. Addressing these challenges in future
work can pave the way for even more robust, scal-
able, and interpretable models.
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