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Abstract

As the impact of social media gradually esca-
lates, people are more likely to be exposed to
indistinguishable fake news. Therefore, numer-
ous studies have attempted to detect rumors on
social media by analyzing the textual content
and propagation paths. However, fewer works
on rumor detection tasks consider the malicious
attacks commonly observed at response level.
Moreover, existing detection models have poor
interpretability. To address these issues, we pro-
pose a novel framework named Defend-And-
Summarize (DAS) based on the concept that
responses sharing similar opinions should ex-
hibit similar features. Specifically, DAS filters
out the attack responses and summarizes the
responsive posts of each conversation thread
in both extractive and abstractive ways to pro-
vide multi-perspective prediction explanations.
Furthermore, we enhance our detection archi-
tecture with the transformer and Bi-directional
Graph Convolutional Networks. Experiments
on three public datasets, i.e., RumorEval2019,
Twitter15, and Twitter16, demonstrate that our
DAS defends against malicious attacks and pro-
vides prediction explanations, and the proposed
detection model achieves state-of-the-art.1

1 Introduction

Due to the low cost and easy access to information,
social media has become a popular platform for in-
formation dissemination. However, it increases the
spread of misinformation as well (Vosoughi et al.,
2018). The spread of rumors could cause panic and
further damage public mental health or lead to se-
vere economic loss (Verma et al., 2022). Therefore,
debunking unverified rumors on the Internet has
become an indispensable issue (Ahsan et al., 2019).
Numerous researchers have been dedicated to de-
tecting rumors automatically. Early works mostly
rely on the textual content of each post and the

1The source code and our datasets are available at https:
//github.com/joshchang0111/EMNLP2023-RumorDAS.

Figure 1: Three examples for the predicted probabil-
ity of each class with respect to the responses on the
Twitter15 dataset. The curves with their face colored
represent the ground-truth labels for their source post.
Critical responses that result in prediction shifts larger
than 0.5 are marked with a red circle.

corresponding responses (Ma et al., 2016; Volkova
et al., 2017). In addition, several studies show the
importance of considering the propagation path be-
tween the responses within the same conversation
thread (Ma et al., 2017, 2018; Lu and Li, 2020).
To better extract information from the propagation,
Graph Convolutional Networks (GCNs) are widely
adopted and achieve remarkable performance for
the rumor detection problem (Bian et al., 2020; Wei
et al., 2021; Sun et al., 2022). For instance, Song
et al. (2021) pioneer the integration of transformer
and GCN to better detect the rumors.

However, two main challenges remain unad-
dressed. Firstly, the detectors could be sensitive to
critical responses toward an event, i.e., responses
that significantly impact the detectors. Fig. 1
demonstrates that roughly 18.9% of posts in the
Twitter15 dataset contain critical responses. The
influence of such responses may be formulated as
an attacking manner by adversaries. As prior stud-
ies mainly focus on determining the veracity of a
given claim by the source post and responsive posts,
the potential threat from the attack responses could
lead to vulnerability in detection models (Le et al.,
2020). Hence, some works have developed GAN-
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style frameworks to build more robust detectors
(Ma et al., 2019, 2021; Song et al., 2021). How-
ever, retraining the entire model to defend against
attacks could be time-consuming and limited to rec-
ognizing only adversarial examples, disregarding
various forms of real-world malicious attacks.

On the other hand, recent works mainly lever-
age neural networks for predictions, making the
interpretability behind those predictions unattain-
able due to the black-box property of such models
(Ghorbani et al., 2019). To better interpret the
detectors’ behavior, some works utilize attention
mechanism to highlight the important parts of the
inputs (Khoo et al., 2020; Lu and Li, 2020), which
demonstrates the feasibility of probing the detec-
tion models by identifying influential responses in
a conversation thread. However, such an approach
lacks comprehensive and human-understandable
clues, which brings the second challenge of pro-
viding organized explanations that cover different
viewpoints. We posit that the consideration of
multiple perspectives within the discussion threads
serves to enhance readers’ cognizance of a multi-
tude of viewpoints, thereby discouraging the uncrit-
ical acceptance of an excessively confident verdict.

In this paper, we propose a novel framework
called Defend-And-Summarize (DAS) to reduce
detector vulnerability and provide prediction ex-
planations. The design of DAS follows the idea
that responses with similar stances or viewpoints
should lie closer in the embedding space. This
concept is substantiated by prior studies (Darwish,
2019; Rashed et al., 2021), which showcase that
various standpoints of political opinions on Twitter
can be well partitioned into distinct clusters based
on the embedding representations. This character-
istic could enhance summarization with more struc-
tured and comprehensive information. As such,
DAS includes a response extractor and a response
abstractor. The extractor filters and organizes the
responses, while the abstractor condenses the in-
formation according to the organized responses.
To improve robustness, we preemptively mitigate
malicious attacks with the response extractor. By
exploiting the idea of anomaly detection, we filter
the responses by considering the genuine ones as
normal data and the attack ones as anomalies. In ad-
dition to removing the potentially risky responses,
we further organize the remaining responses to find
representative ones. We apply clustering to auto-
matically explore the underlying aspects of data to

interpret model predictions from different perspec-
tives. Representative responses are then extracted
from the medoid of each cluster. Afterward, the
response abstractor aims to produce more compre-
hensive and human-understandable explanations
by summarizing the responses from each cluster.
We exploit the pre-trained abstractive summariz-
ers and transfer the models to the rumor detection
corpora via self-supervised learning. In particular,
the abstractor is finetuned by cluster-summary pairs
where the medoid of each response cluster serves as
a pseudo summary. Combining extractive and ab-
stractive summaries from DAS provides detectors
and users with more reliable and comprehensive
information on different viewpoints. Moreover,
we introduce a Bi-directional Transformer-Graph
Network (BiTGN) to improve rumor detection by
integrating the robust textual representations of the
transformer and the structural information of Bi-
directional GCN (BiGCN). The contributions of
this paper are summarized as follows:

• We propose a novel framework named DAS that
reduces the model vulnerability and provides pre-
diction explanations without additional annota-
tions and retraining of the detection models.

• We explain model predictions with extractive and
abstractive summaries by incorporating the con-
cept of clustering into self-supervised learning.

• Experiments on three public datasets show that
DAS defends against attacks while producing
multi-perspective explanations, and the proposed
BiTGN achieves state-of-the-art rumor detection.
Human evaluation further demonstrates the inter-
pretability of the generated summaries.

2 Related Work

Model Vulnerability Adversarial attack has been
used to simulate the impact of critical responses
(Xu et al., 2021; Mehrabi et al., 2022; Xie et al.,
2022). For example, Ma et al. (2019, 2021) develop
GAN-style frameworks to generate conflicting ut-
terances that complicate the original conversation
threads and force the discriminator to capture more
robust text features. Moreover, Le et al. (2020)
model such influential responses as a novel attack
scenario and propose an adversarial comment gen-
erator to mislead the detector. To reduce the model
vulnerability to such attacks, Song et al. (2021)
perform adversarial training on the detector with



Figure 2: Overview of our proposed framework (upper left). The rumor detector BiTGN (upper right) is trained
to predict the veracity of each source post. The response summarizer DAS (lower) preemptively filters out attack
responses generated by the response generator. It then organizes the remaining responses into k clusters and
produces both extractive and abstractive summaries for each cluster accordingly. During the inference phase, the
detector makes predictions based on the source post and the summaries.

adversarial responses. However, this approach re-
quires retraining the entire model. In contrast, our
work presents a novel framework that resists re-
sponse attacks without retraining the model.

Interpretability One class of studies typically
explains model predictions by analyzing the atten-
tion given to different parts of inputs, which is
usually accomplished by visualizing the word im-
portance scores (Ribeiro et al., 2016; Vig, 2019) or
using heatmap (Samek et al., 2017). For instance,
Lu and Li (2020) visualize the attention weights
between source tweets and the propagation struc-
tures to highlight evidential words and suspicious
users in predicting fake news. Similarly, Khoo
et al. (2020) provide token-level and post-level ex-
planations by examining the attention weights of
transformer layers. Apart from attention-based ap-
proaches, Pugoy and Kao (2021) explain recom-
mender system predictions by producing extractive
summaries from user and item reviews, which cap-
ture crucial sentences for models and provide more
comprehensive information than word-level and
review-level explanations. Consequently, in this
paper, we attempt to provide realistic explanations
for rumor detection models by summarizing differ-
ent opinions in each conversation thread.

Rumor Detection Early studies tend to verify the
truthfulness of social media posts based on either
traditional language processing skills (Badaskar

et al., 2008; Potthast et al., 2018) or hand-crafted
features (Yang et al., 2012; Liu et al., 2015; Ma
et al., 2015; Wu et al., 2015). In recent years, deep
neural networks such as CNN and RNN have been
widely adopted to extract the text features auto-
matically (Volkova et al., 2017; Ma et al., 2016).
Furthermore, Recursive Neural Networks (RvNN)
(Ma et al., 2018) and GCN-based approaches (Bian
et al., 2020; Wei et al., 2021; Sun et al., 2022)
are proposed to analyze the propagation structures
of rumors. In addition, a recent line of studies
also leverages Transformers (Khoo et al., 2020;
Song et al., 2021; Tian et al., 2022) to capture long-
distance interactions between responsive posts.

3 Methodology

3.1 Problem Formulation

Here, we first define the notations. A conversation
thread is denoted by X = {xi}ni=0, where x0 is the
source post containing the main event to be veri-
fied, and {xi}ni=1 represents the responsive posts
of x0. A graph G = ⟨V,E⟩ with vertex set V and
edge set E is formed by taking each post in X as a
node, and the responsive relations between nodes
further define the edges. Specifically, two nodes xi
and xj are connected by an edge eij ∈ E if one of
them responds to the other one. The ground-truth
label is denoted by y ∈ Y = {N,F, T, U} (i.e.,
Non-Rumor, False Rumor, True Rumor, and Unver-
ified Rumor). In our framework, the rumor detector



aims to predict the veracity of the source post x0
with or without attacks, while the response summa-
rizer aims to extract k representative responses and
produce abstractive summaries accordingly.

3.2 Rumor Detector

We first introduce the proposed Bi-directional
Transformer Graph Network (BiTGN) for ru-
mor detection, which integrates the advantages
of the transformer network and the Bi-directional
Graph Convolutional Networks (BiGCN) as de-
picted in Fig. 2. Previous studies have shown that
Transformer-based models are more robust to out-
of-distribution data (Hendrycks et al., 2020) and
adversarial attacks (Jin et al., 2020) compared to
conventional models such as CNN and RNNs. To
obtain a robust textual feature, we adopt a trans-
former encoder θenc with Le layers to encode all
posts in a conversation thread by concatenating
them as a sequence. Specifically, the post content
is first transformed into vector representations by
an embedding layer. Let h(0)

i ∈ R|xi|×d denote the
embedding of the i-th post xi with dimension d.
The embedding of a conversation thread H(0) can
be represented as follows,

H(0) = [h
(0)
0 ∥ h(0)

1 ∥ ... ∥ h(0)
n ], (1)

where ∥ stands for the concatenation. Next, the em-
beddings are iteratively fed into each encoder layer
which consists of Multi-Head Attention (MHA)
(Vaswani et al., 2017). The hidden representa-
tion at the l-th transformer layer is denoted by
H(l) = MHA(H(l−1)). Note that since we con-
catenate all posts in a thread, different posts can
attend to each other and exchange information dur-
ing the encoding process. After the text encoding
process, we obtain the node feature zi by taking
mean-pooling on all the token representations of
the i-th post from the last encoder layer. The hid-
den feature matrix is obtained as follows,

Z = [z0 ∥ ... ∥ zi ∥ ... ∥ zn] ∈ Rn×d. (2)

To further aggregate the contextual features with
the structure of responses, we leverage a GCN-
based model θgcn to capture the interactions be-
tween different posts in two directions, which
consists of a Top-Down GCN (TD-GCN) and a
Bottom-Up GCN (BU-GCN). Let A ∈ Rn×n de-
note the adjacency matrix where Aij = 1 if xj re-
sponds to xi. The adjacency matrices for TD-GCN

and BU-GCN are ATD = A and ABU = AT, re-
spectively. The feature matrix is iteratively updated
by each GCN layer in both directions. As such, the
aggregated feature ẐTD from the TD-GCN with
Lg layers is obtained as follows,

ẐTD = MEAN(ZTD
Lg

),

ZTD
l = σ(ÂTDZTD

l−1W
TD
l−1),

ÂTD = D̃− 1
2 (ATD + I)D̃− 1

2 ,

(3)

where ZTD
0 = Z, ÂTD is a normalized adjacency

matrix with self-connection, D̃ii =
∑

j=0 Ã
TD
ij

represents the degree of the i-th node, and WTD
l−1 ∈

Rd×d is a learnable matrix. Similarly, the aggre-
gated result for BU-GCN is obtained by substi-
tuting ATD to ABU in Eq. (3). In the final step,
the aggregated features ẐTD and ẐBU are concate-
nated and passed through a fully connected layer
and a softmax function as follows,

ŷ = softmax([ẐTD ∥ ẐBU ]W + b), (4)

where W ∈ R2d×|Y | and b ∈ R|Y | are trainable pa-
rameters and ŷ is a vector indicating the predicted
probability of each class.

3.3 Adversarial Response Generator
To simulate the attack responses from various users
in real-world scenarios, we adopt an Adversarial
Response Generator (ARG) proposed by Song et al.
(2021). Given a conversation thread {xi}n−1

i=0 , ARG
generates an adversarial response x∗n that makes the
detector deviate from the ground-truth y by maxi-
mizing the detection loss Ldet, detailed in Sec. 3.5.
Notably, ARG shares the encoder θenc with BiTGN
and takes the hidden representation of the last en-
coder layer H(Le) as inputs. Moreover, the gener-
ated response x∗n is then attached to the source post
x0 to update the adjacency matrix, and its represen-
tation h∗

n is concatenated with the embedding of
{xi}n−1

i=0 to serve as part of the encoder’s inputs.2

3.4 Defend-And-Summarize Framework
Defensive Response Extractor (DRE) To de-
fend against the attacks, we aim to filter out the
attack responses simulated by ARG. We hypoth-
esize that if one malicious response can mislead
the detector, it must deviate from other normal re-
sponses in the embedding space. Therefore, we
adopt an autoencoder (AE) to detect the anomalies

2More details of ARG are provided in the Appendix.



according to the reconstruction error. Concretely,
we initialize the encoder ϕext-e and decoder ϕext-d
of the AE with transformer layers and train the
model on normal responses. The reconstruction
process of a response xi is as follows,

z = ϕext-f1(ϕext-e(hi)),

h̃i = ϕext-d(ϕext-f2(z)),
(5)

where ϕext-f1 and ϕext-f2 represent fully connected
layers. z ∈ R|xi|×dz is the hidden noise with di-
mension dz ≪ d to compress the features. We
apply L2 loss to calculate the reconstruction er-
ror and select the top-m responses with the least
loss since an unseen attack response should cause
a more significant error. The selection number
m is determined by a pre-defined extract ratio
ρ: m = ⌈ρ × n⌉. After the filtering process,
we take the mean-pooling on the remaining re-
sponses {hi}mi=1 to obtain the response represen-
tations {ri}mi=1. Afterward, k-means clustering is
performed on these representations to capture the
intrinsic perspectives of different responses. The
responses are partitioned into k clusters by mini-
mizing the intra-cluster sum of distances from each
sample to its nearest centroid. Let {Cj}kj=1 denote
the set of k clusters. The extractive summary is
formed by combining the medoids of all clusters,
where a medoid rextj is the response closest to a
cluster’s centroid cj :

rextj = argmin
ri∈Cj

{∥ri − cj∥2}. (6)

Finally, the embedding of the extraction result is de-
noted by Hext = [hext

1 ∥ ...∥hext
j ∥ ...∥hext

k ], where
hext
j is the response embedding of the medoid rextj .

Note that some responses may lose their parent
node after the extraction. Thus, we assign a new
parent node for such response by recursively track-
ing back until finding a remaining node.

Self-Supervised Response Abstractor (SSRA)
One main challenge of training the response ab-
stractor is the lack of ground-truth summary labels.
Inspired by previous works (Wang and Wan, 2021;
Elsahar et al., 2021), we finetune our SSRA θabs un-
der self-supervised settings. Previous works often
utilize Leave-One-Out (LOO) settings where each
response in a conversation thread takes turns to be
the pseudo summary. This approach follows the
assumption that responses of the same thread focus
on the same event, and each of the high-relevance

responses can be approximated as the summary
of the whole thread. However, such kind of set-
tings suffers from a great portion of inappropri-
ate responses-summary pairs when the responses
cover various aspects. As a result, we create pseudo
summaries from the cluster results obtained from
DRE. Specifically, each medoid hext

j is taken as
the pseudo summary, and the remaining responses
of cluster Cj are concatenated as the inputs for
producing the summary, i.e.,

habs
j = ϕabs([h1∥...∥hj−1∥hj+1∥...∥h|Cj |]), (7)

where habs
j is the summary embedding of cluster

Cj . Habs = [habs
1 ∥ ... ∥ habs

k ] represents the em-
bedding of the abstractive summary. Note that all
responses in a cluster are treated as inputs during
inference. Besides, each abstractive summary is
attached to the source post x0 to maintain the tree
structure, where the new adjacency is denoted as
A′. Finally, both extractive and abstractive results
input along with x0 for rumor detection:

ŷ = θgcn(θenc([h
(0)
0 ∥Hext ∥Habs]),A

′). (8)

3.5 Training Objectives

We train the rumor detector and adversarial re-
sponse generator in two stages. The trainable pa-
rameters for the detector are the encoder layers θenc
and the GCN layers θgcn, while the decoder layers
θdec are only trained for ARG. In the first stage, the
generator is trained with the detector to improve
the detection results and its generation quality. The
objectives of the generator are the cross entropy for
rumor classification LCE and the cross entropy for
text generation Ltxt = −

∑|x|
i=1 xi log x̂i. The ob-

jectives of the first stage are calculated as follows,

Ldet(θenc, θgcn) = LCE(ŷ,y),

Lgen(θdec) = LCE(ŷ,y) + Ltxt(x̂n, xn),

L1st = Ldet + Lgen.

(9)

In the second stage, we train the generator with a
fixed detector. The target of the generator is to pro-
duce adversarial response that degrades detector’s
performance while resembling human writing style.
Thus, it is optimized to maximize the cross entropy
for rumor detection while minimizing Ltxt.

L2nd = Lgen(θdec)

= −LCE(ŷ,y) + Ltxt(x̂n, xn).
(10)



Summarizer Attack
RE2019 Twitter15 Twitter16

Acc. mF1 ASR ↓ Diff.ASR Acc. mF1 ASR ↓ Diff.ASR Acc. mF1 ASR ↓ Diff.ASR

- - 64.57 64.29 - - 85.64 85.50 - - 84.47 84.40 - -
- ✓ 33.41 19.76 62.32 - 33.95 27.40 63.88 - 28.12 16.80 72.19 -

DRE (ρ=0.25, k=3) ✓ 56.51 55.82 22.35 -39.97 74.98 75.62 16.39 -47.49 71.76 72.37 19.58 -52.61
DRE (ρ=0.15, k=3) ✓ 58.07 57.40 21.66 -40.66 78.69 79.02 11.97 -51.91 75.67 76.04 15.32 -56.87
DRE (ρ=0.05, k=3) ✓ 59.63 58.95 19.24 -43.08 80.07 80.26 10.67 -53.21 77.02 77.25 13.74 -58.45

DAS (ρ=0.25, k=3) ✓ 57.85 57.08 21.96 -40.36 72.78 73.37 18.71 -45.17 70.16 70.44 21.72 -50.47
DAS (ρ=0.15, k=3) ✓ 61.22 60.33 17.93 -44.39 76.22 76.53 14.38 -49.50 73.11 73.36 17.66 -54.53
DAS (ρ=0.05, k=3) ✓ 60.76 59.98 17.96 -44.36 77.32 77.39 13.74 -50.14 74.94 75.07 15.82 -56.37

Table 1: Overall results of adversarial attack & defense on BiTGN. Diff.ASR represents the difference of ASR with
and without defense. Both DRE and DAS can successfully resist a large amount of attacks from ARG.

For the DAS framework, the trainable parameters
are the response extractor ϕext and the response
abstractor ϕabs. The response extractor is trained
to reconstruct the embedding of normal responses
by minimizing the L2 loss between the original
embedding hi and the reconstructed one h̃i:

Lext(ϕext) = L2(hi, h̃i). (11)

The response abstractor is optimized to minimize
the cross entropy between the generated summary
sabsj and the pseudo summary sextj , i.e.,

Labs(ϕabs) = Ltxt(s
abs
j , sextj ). (12)

4 Experimental Results

4.1 Experimental Setup
Datasets We evaluate our model on three real-
world public datasets. Twitter15 and Twitter16
datasets (Ma et al., 2017) respectively contain 1490
and 818 Twitter posts labeled with Non-Rumor (N),
True Rumor (T), False Rumor (F), and Unverified
Rumor (U). Moreover, RumorEval2019 (RE2019)
dataset (Gorrell et al., 2019) was released by the
SemEval workshop in 2019, which contains 446
posts from both Twitter and Reddit. It provides
three veracity labels, i.e., True Rumor (T), False
Rumor (F) and Unverified Rumor (U). The detailed
statistics of datasets are listed in the Appendix.

Evaluation Metrics For the generation quality of
the response abstractor, we calculate the perplexity
(PPL) by GPT-2 (Radford et al., 2019) and the
factual consistency by FactCC (Kryscinski et al.,
2020). For rumor detection, we report the accuracy
(Acc.) over all classes, the F1 score of each class
and the macro-averaged F1 (mF1).

Baselines We compare the performance of rumor
detection with several baselines. RvNN (Ma et al.,
2018) captures the propagation patterns of each

Figure 3: Effect of extract ratio ρ and number of clusters
k on Twitter15. The dashed lines represent the detec-
tion performance without DAS. The Macro-F1 (left)
increases as the extract ratio ρ decreases and the Attack
Success Rate (right) behaves in an opposite trend. The
number of clusters k does not influence the results sig-
nificantly, which demonstrates the robustness of DAS.

conversation thread using tree-structured recursive
neural networks with GRU units. BiGCN (Bian
et al., 2020) represents each post with TF-IDF vec-
tors and utilizes a bi-directional GCN to aggre-
gate both propagation and dispersion structures.
EBGCN (Wei et al., 2021) extends the BiGCN
by adaptively updating the weight of each edge
formed by the responsive relations with a Bayesian
approach. WETGN (Song et al., 2021) combines
the transformer encoder with a unidirectional GCN
and adopts an edge filter. DUCK¬UT (Tian et al.,
2022) models each conversation thread as a graph,
a stream, and a user tree (UT) separately. Due to
the lack of such user information, we eliminate the
user tree (¬UT) for a fair comparison. Note that we
run these baselines on our version of Twitter15 and
Twitter16 datasets since the number of responses
is not comparable with previous works.3

3Since Twitter15 and Twitter16 only provide the tweet
IDs for responses, we use the version released by Song et al.
(2021), where the textual content of each response is manually
obtained via Twitter API.



Summarizer
RE2019 Twitter15 Twitter16

PPL ↓ FactCC PPL ↓ FactCC PPL ↓ FactCC

BART-base-SAMSum 0.63 68.77 0.87 62.40 0.55 59.48
SSRA-LOO 4.11 71.02 4.20 71.27 7.20 73.72

SSRA-k-means (k=1) 2.50 72.11 3.39 78.35 3.03 77.89
SSRA-k-means (k=2) 2.59 82.29 2.41 88.13 2.55 82.97
SSRA-k-means (k=3) 2.32 83.01 2.33 87.64 2.44 82.93
SSRA-k-means (k=4) 2.65 84.11 2.23 87.16 2.61 83.66
SSRA-k-means (k=5) 2.70 85.74 2.14 86.88 2.39 83.03

Table 2: Automatic evaluation of generated summaries.
The best / second best scores are marked in bold /
underlined. Our SSRA-k-means models generate sum-
maries with better text quality and factual consistency.

4.2 Adversarial Attack and Defense

We first discuss how the proposed DAS framework
can reduce detector vulnerability. Table 1 demon-
strates the results of BiTGN using BART encoder,
and under attack by ARG while equipping differ-
ent response summarizers. Apart from the accu-
racy and mF1, we also calculate the Attack Suc-
cess Rate (ASR) of ARG, defined as the ratio of
successfully misled predictions among all initially
correct predictions. The first and second rows rep-
resent the performance before and after the attacks.
The results manifest that ARG indeed degrades
the detection performance since the attack success
rates are greater than 60% on all datasets. Next,
we compare the defensive ability of our response
summarizers (both DRE and DAS) with different
extract ratios ρ given the number of clusters k set
to 3. First, the model performance has been recov-
ered significantly by simply equipping DRE during
inference, indicating that the extractor can filter out
a large portion of the attack responses generated
by ARG without retraining. Similarly, DAS can
also defend against the attacks while additionally
providing prediction explanations with abstractive
response summaries. To further analyze the behav-
ior of DAS, Fig. 3 shows the model robustness with
different extract ratio ρ and number of clusters k
on Twitter15.4 First of all, the Macro-F1 increases
with the extract ratio decreases and saturates when
the extract ratio ρ is around 0.2. Besides, even with
a high extract ratio, i.e., the left part of both figures,
the model could still defend against a certain ratio
of attacks while preserving more information from
the responses. Secondly, increasing the number of
clusters to produce more diverse summaries only
slightly affects the defense ability of DAS, which
demonstrates the robustness of our model.

4Due to the space constraint, the results of Twitter16 and
RE2019 are provided in the Appendix.

Figure 4: Human evaluation of generated summaries. In
part A, our SSRA-k-means model can generate more in-
formative response summaries compared to SSRA-LOO.
In part B, human predictions based on either responses
or summaries can achieve comparable accuracy, which
demonstrates the interpretability of the summaries.

4.3 Interpret Predictions with Summary

Automatic Evaluation Here, we show that the
generated response summaries can be used to ex-
plain model predictions. Since higher text quality
can help humans understand models’ decisions,
we first compare the generation quality of the ab-
stractors trained under different self-supervised
settings, including Leave-One-Out (LOO) and k-
means with varying values of k. We initialize all
models with BART-base-SAMSum, a summarizer
pre-trained on the SAMSum corpus,5 and take its
zero-shot results as a baseline of text quality. Re-
sults in Table 2 manifest that self-supervised mod-
els demonstrate higher perplexity than BART-base-
SAMSum due to the abbreviations and informal
expressions in social microblog text, such as hash-
tags and URLs. Compared to SSRA-LOO, our pro-
posed SSRA-k-means achieves better perplexity
scores, indicating its ability to generate more fluent
and human-understandable summaries. The inclu-
sion of fragmented responses and incomplete sen-
tences in SSRA-LOO training targets contributes
to a higher perplexity. Secondly, we validate the
factual consistency between the input responses
and generated summaries. We observe that SSRA-
k-means outperforms baselines across different k
values, suggesting the necessity of self-supervised
learning. Besides, even when k = 1, i.e., SSRA-k-
means only provides one summary as SSRA-LOO
does, our model scores higher than SSRA-LOO on
all datasets by covering more factual information
from the responses. Furthermore, the factuality im-
proves significantly when k > 1, demonstrating
the effectiveness of providing the abstractor with

5The SAMSum dataset (Gliwa et al., 2019) contains about
16K daily conversations with ground-truth summary labels.



Source Post (False Rumor): new. leaked phone call between rebel leader &
russian intel agent: "cossacks" shot down #MH17. URL URL

Responses ... [5]: @name1 @name2 who leaked this? Do you check
sources? Have you verified anything? ... [7]: RT @name1: NEW. Leaked
phone call between rebel leader & Russian intel agent: "Cossacks" shot down
#MH17. URL ... [15]: @name1 @name3 NEW. Leaked phone call between
rebel leader & Russian intel agent: "Cossacks" shot down #MH17 URL ...
[19]: @name1 @name4 what is the proof [20]: @name1 Jim, Jim, Jim,
shame on you. It was a hoax of sorts and you promoted it Opps there goes
our credibility again Too bad @name5

Summary [1]: RT: NEW. Leaked phone call between rebel leader & Russian
intel agent: "Cossacks" shot down #MH17 [2]: This is a hoax, it was a hoax
of sorts and you promoted it. Shame on you [3]: what is the proof??

Table 3: Generation example of SSRA-k-means (k=3).
Key information captured by summaries is highlighted.

responses from different perspectives.

Human Evaluation and Case Study We recruit
100 human readers and conduct two parts of user
study. In part A, we randomly select 10 samples
from each of the three datasets, each containing
a source post, responses, and two sets of sum-
maries generated by SSRA-LOO6 and SSRA-k-
means (k = 3). Readers are requested to assess
the informativeness of the summaries based on the
viewpoint coverage and diversity using a Likert
scale from 1 to 5, with 5 representing the most in-
formative. In part B, we aim to evaluate whether
humans make a consistent judgment, either after
reading responses or response summaries. Thus,
we select 20 samples, including 10 true and false
rumors, and ask the participants to judge the truth-
fulness of source posts based on the provided in-
formation, i.e., responses or summaries. The upper
of Fig. 4 shows that SSRA-k-means outperforms
SSRA-LOO in terms of informativeness, indicat-
ing the effectiveness of utilizing k-means cluster-
ing to grasp diverse opinions. The results of part
B show that participants who solely read the sum-
maries achieve comparable accuracy to those who
read the responses on average, with a marginal
difference of approximately 5%. Although the re-
sponses provide more complete information, these
findings suggest that summaries are practical for
social media users to judge the post veracity as
the summaries effectively capture different view-
points in a shorter format. In real applications, we
could provide both responses and summaries to
convey the essential viewpoints by summaries and
delve into details in the responses. Moreover, we
evaluate the percentage of ground-truth predictions
pgt for each sample and analyze the correlation

6We randomly split the responses into 3 groups and make
SSRA-LOO generate one summary for each group.

Model
RE2019 Twitter15 Twitter16

Acc. mF1 Acc. mF1 Acc. mF1

RvNN 52.00 51.42 73.88 73.81 75.18 75.22
BiGCN 60.31 56.83 84.02 83.69 87.33 87.07
EBGCN 57.43 52.91 82.79 82.48 85.43 85.16
WETGN 68.82 67.53 87.35 87.34 87.16 87.09
DUCK¬UT 69.73 69.02 86.25 86.14 86.55 86.40

BiTGN 70.84 70.05 87.77 87.73 89.10 89.02

-BUGCN 69.27 68.45 87.76 87.72 88.02 88.00
-TDGCN 69.50 69.03 88.39 88.33 87.78 87.79
-GCN 70.40 69.48 87.35 87.42 87.89 87.83

Table 4: Overall results of rumor detection. The best /
second best scores are marked in bold / underlined. Our
BiTGN outperforms all baselines in the first block.

between pgt of responses and summaries. We ob-
serve a Pearson correlation of 0.54 with p-value
0.014, justifying a high correlation between pre-
dictions based on responses and summaries. This
demonstrates that the response summaries effec-
tively capture crucial information and can interpret
human decisions based on the responses. Table
3 demonstrates a generation example of SSRA-k-
means (k = 3). The source post contains a false
claim about a “Malaysian flight shot down by Cos-
sacks”. Our summaries encompass diverse stances
such as “It was a hoax” (deny) and “what is the
proof ” (query), providing evidential guidance for
models and users to evaluate the veracity of the
source post. These summaries also help identify
which information models focus on.

4.4 Rumor Detection
In this section, we purely analyze the rumor detec-
tion results of the proposed BiTGN with RoBERTa
encoder in Table 4.7 Compared with all base-
lines, our BiTGN achieves the best accuracy and
macro-averaged F1 on all datasets. Specifically,
transformer-based models (BiTGN, DUCK¬UT,
WETGN) outperform models that use TF-IDF vec-
tors (BiGCN, EBGCN, RvNN) as node features,
which demonstrates the importance of robust tex-
tual representations. Moreover, our model strikes
the best among transformer-based baselines, show-
ing that the BiGCN component can better aggregate
the conversation information from two directions.
Besides, compared to DUCK¬UT that models the
conversation structures with two branches of trans-
former networks, our model still achieves better
results with fewer parameters. We also analyze the
influence of GCN by ablating the BiGCN as shown
in Table 4. In particular, the model with BiGCN

7The detailed statistics are shown in the Appendix.



(BiTGN) achieves the best performance on RE2019
and Twitter16 while achieving the second best on
Twitter15. We notice that the model without top-
down GCN (-TDGCN) improves on the classes of
non-rumor and true rumor of Twitter15. This may
be caused by the diverse structure of these data,
as observed by Huang et al. (2020). Although the
structure information may be noisy, the model can
still benefit from introducing the information of
propagation path through GCN layers compared
with the model without GCN layers (-GCN).

5 Conclusion

In this paper, we propose a novel response sum-
marization framework, Defend-And-Summarize
(DAS), to enhance the robustness and interpretabil-
ity of rumor detection models. Our DAS frame-
work is built around two pivotal components: a De-
fensive Response Extractor (DRE) adept at sifting
out malicious responses and extracting significant
ones, and a Self-Supervised Response Abstractor
(SSRA) capable of producing multi-perspective ab-
stractive response summaries. Moreover, we pro-
pose a Bi-directional Transformer Graph Network
(BiTGN) to strengthen transformer-based detec-
tors with bi-directional graph aggregation. Exper-
iments on three real-world datasets demonstrate
the potent capabilities of DAS to improve the re-
silience and interpretability of detection models.
Besides, BiTGN delivers state-of-the-art rumor de-
tection. The combination of DAS and BiTGN sig-
nals promising advancement in the field of rumor
detection, providing a robust and interpretable solu-
tion primed for future challenges and applications.

Limitations

Our work focuses on determining the truthfulness
of a source post from social media websites by an-
alyzing the structural information of its responses.
Since the opinions from various users provide rich
information and can influence other readers sig-
nificantly, we do not consider the settings of fake
news detection that solely rely on the news content.
Moreover, the DRE component in our framework
adopts the widely-used k-means algorithm to pro-
duce response clusters without considering specific
aspects. However, it would be beneficial to create
clusters with more fine-grained aspects, such as
the stance or sentiment of responses. This would
enable humans to gain a more comprehensive un-
derstanding of the public’s opinion. We’ll explore

this possibility as a direction for our future work.

Ethics Statement

We discuss some potential risks that our rumor de-
tection system might raise. As our proposed frame-
work highly relies on the interactions between dif-
ferent users on social media, the content of the
users’ utterances including mentions to other users
will be revealed to the system. However, the system
doesn’t require any personal information such as
user description, user account age, number of fol-
lowers, number of posts, etc. Due to this reason, the
proposed method shall not infringe on individual’s
privacy. Another risk is that the detector might still
give wrong classification results that mislead the
users. For this issue, we believe that our method
could provide a more simplified but comprehensive
summary of the diverse responses under each post,
making the users able to observe the opinions on
more sides toward an event. This might enhance
the ability of the public to rethink and justify the
truthfulness of various sources of information.
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A Adversarial Response Generator

Here, we provide a more detailed formulation of the
adversarial response generator. To further simulate
the attack responses produced by different users
in real-world scenarios, we adopt an adversarial
response generator (ARG) proposed by Song et al.
(2021), which is trained by adversarial learning un-
der white-box settings. We initialize ARG with a
BART model due to its outstanding performance
on several text generation tasks. Given a conver-
sation thread {xi}n−1

i=0 , the goal is to generate an
adversarial response x∗n that makes the detector de-
viate from the ground-truth y by maximizing the
detection loss Ldet, detailed in Sec. 3.5, i.e.,

max
h∗
n

Ldet(y
∗,y),

y∗ = θgcn(θenc([H
(0) ∥ h∗

n]),A
′),

(13)

where h∗
n denotes the hidden representation of x∗n

and A′ is the new adjacency that attaches x∗n to
source post x0. To generate a response, we con-
struct the ARG by sharing the encoder θenc with
BiTGN and feeding the hidden representation of
the last encoder layer H(Le) to the decoder θdec as:

h∗
n = θdec(H

(Le)),

x∗n = argmax(softmax(θout(h
∗
n))).

(14)

Note that θout denotes the output layer, which is
tied with the input embedding layer θin. In this

way, h∗
n can approximate the embedding of a gen-

erated response and be concatenated with the em-
bedding of {xi}n−1

i=0 that serves as part of the en-
coder’s inputs without taking argmax operation.
Subsequently, the gradients can be backpropagated
from the rumor detection loss to train the ARG.
Moreover, the generated response is attached to
the source post of the thread and a new edge e0,n
between x0 and x̂n is thus created.

B Experimental Setup

B.1 Datasets

All datasets we used are publicly available. Table 5
displays the statistics of RumorEval2019 (RE2019),
Twitter15 and Twitter16 datasets. N, T, F, U rep-
resent Non-Rumor, True Rumor, False Rumor and
Unverified Rumor respectively. We also calculate
the statistics of the number of posts for each claim
and report them as thread length in the table.

B.2 Implementation Details

All of our experiments are conducted on a single
NVIDIA GeForce RTX 3090 GPU. We conduct
5-fold cross-validation and report the average re-
sults for all datasets. The total training time re-
quired for each fold on RE2019 and Twitter16 is
around one hour, and two hours for Twitter15. The
number of trainable parameters is around 300 mil-
lion. We use the same set of hyperparameters on
all datasets. Specifically, the batch size for BiTGN,
ARG, and SSRA is 16, while the learning rates are
set to 2× 10−5. For DRE, the batch size and learn-
ing rate are respectively 256 and 4 × 10−5. We
finetune BiTGN, ARG and SSRA for 10 epochs,
and DRE is trained for 50 epochs. The number of
GCN layers Lg in BiTGN is 2, and the encoder
and decoder of DRE both consist of 4 transformer
layers. The dimension of the hidden noise z in

Dataset RE2019 Twitter15 Twitter16

# of claims 446 1490 818
# of N - 374 205
# of T 185 372 207
# of F 138 370 205
# of U 123 374 201

# of posts 8529 41154 18618
Max. thread length 268 304 250
Min. thread length 1 2 1
Avg. thread length 19.12 28.23 22.76

Table 5: Dataset Statistics
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Model
RE2019 Twitter15 Twitter16

Acc. mF1 F1-T F1-F F1-U Acc. mF1 F1-N F1-T F1-F F1-U Acc. mF1 F1-N F1-T F1-F F1-U

RvNN 52.00 51.42 53.41 54.14 46.72 73.88 73.81 70.27 81.77 72.46 70.74 75.18 75.22 67.07 85.49 74.25 74.09
BiGCN 60.31 56.83 66.39 58.72 45.38 84.02 83.69 80.02 88.61 84.79 81.34 87.33 87.07 79.52 92.87 87.63 88.26
EBGCN 57.43 52.91 64.73 53.67 40.33 82.79 82.48 78.01 87.97 83.87 80.05 85.43 85.16 77.01 91.36 86.61 85.65
WETGN 68.82 67.53 73.21 67.80 61.57 87.35 87.34 91.41 87.45 85.82 84.69 87.16 87.09 86.37 92.79 83.45 85.75
DUCK¬UT 69.73 69.02 72.07 71.20 63.79 86.25 86.14 87.04 88.88 84.39 84.26 86.55 86.40 79.81 93.62 86.12 86.07

BiTGN 70.84 70.05 74.30 69.70 66.15 87.77 87.73 89.82 88.63 87.34 85.15 89.10 89.02 88.78 94.52 86.13 86.66

-BUGCN 69.27 68.45 73.72 65.94 65.67 87.76 87.72 89.93 89.44 88.04 83.48 88.02 88.00 86.20 93.47 84.66 87.66
-TDGCN 69.50 69.03 73.45 69.35 64.31 88.39 88.33 91.31 89.93 87.06 85.02 87.78 87.79 86.89 95.59 81.77 86.91
-GCN 70.40 69.48 74.54 68.51 65.41 87.35 87.42 90.96 86.68 87.15 84.90 87.89 87.83 87.10 94.18 84.14 85.89

Table 6: Detailed results of rumor detection. The F1 score of each class is reported. The best / second best scores of
the first two blocks are marked in bold / underlined. Our BiTGN outperforms all baselines listed in the first block.

Model
RE2019 Twitter15 Twitter16

p (Acc.) p (mF1) p (Acc.) p (mF1) p (Acc.) p (mF1)

RvNN 1.29 × 10−4 1.30 × 10−4 6.79 × 10−5 7.60 × 10−5 1.14 × 10−4 1.15 × 10−4

BiGCN 9.29 × 10−3 5.52 × 10−3 3.14 × 10−3 1.42 × 10−3 1.31 × 10−1 1.30 × 10−1

EBGCN 4.14 × 10−3 4.25 × 10−3 1.29 × 10−3 1.38 × 10−3 2.52 × 10−2 2.39 × 10−2

WETGN 2.25 × 10−1 1.69 × 10−1 3.32 × 10−1 3.37 × 10−1 1.27 × 10−1 1.37 × 10−1

DUCK¬UT 3.57 × 10−1 3.57 × 10−1 1.13 × 10−1 1.00 × 10−1 1.09 × 10−1 1.12 × 10−1

Table 7: Paired student t-test between our BiTGN and other baselines for rumor detection. The p-value of both
accuracy (Acc.) and macro-averaged F1 (mF1) are presented.

DRE is set to 100. Moreover, we implement our
framework with Hugging Face Transformers and
PyTorch. For the results of rumor detection in
section 4.4, the transformer encoder of BiTGN is
initialized with RoBERTa-base8. For the results of
adversarial attack and defense in section 4.2, the
ARG shares the same encoder with BiTGN, and the
overall encoder-decoder framework is initialized
with BART-base9. The SSRA is initialized with
BART-base-SAMSum10. We also follow (Song
et al., 2021) to perform tree decomposition on the
original datasets where each conversation thread is
decomposed into several subtrees by adding each
response one by one in chronological order. In this
way, we not only increase the amount of training
data for BiTGN but also create a pseudo-ground-
truth response for ARG from the last response of
each subtree. For the baseline models of rumor
detection, we use the official implementation for
RvNN11, BiGCN12, EBGCN13 and DUCK¬UT

14.
For WETGN15, we implement the model architec-
ture by ourselves due to the similar design. For
the evaluation of factual consistency, we use the

8https://huggingface.co/roberta-base
9https://huggingface.co/facebook/bart-base

10https://huggingface.co/lidiya/bart-base-samsum
11https://github.com/majingCUHK/Rumor_RvNN
12https://github.com/TianBian95/BiGCN
13https://github.com/weilingwei96/EBGCN
14https://github.com/ltian678/DUCK-code
15https://github.com/yunzhusong/AARD

official implementation of FactCC16.

C Additional Results of Rumor Detection

C.1 Models with Different Backbones
We provide the results of WETGN and BiTGN
using different transformer encoders, including
RoBERTa with 12 self-attention layers and BART
encoder with 6 self-attention layers. The results are
shown in Table 8. It is obvious that both WETGN
and BiTGN perform better with RoBERTa encoder,
which is expected since RoBERTa contains more
layers than BART encoder. Moreover, RoBERTa
is pre-trained on several text classification tasks,
while BART is more effective on text generation
tasks. We also report the rumor detection results of
BiTGN after each adversarial training stage. For
the first stage (BiTGN†), the inputs of the detec-
tor contain the response generated from ARG, and
the second stage (BiTGN*) contains only the re-
sponses from original data. We can observe that
the model performs better in the first stage, which
indicates that the generated response in the first
stage can help the detector improve its accuracy.

C.2 Detailed Detection Results
Table 6 provides the detailed results of rumor de-
tection, including the F1 score for each class. The
results demonstrate that BiTGN outperforms all
baselines listed in the first block, demonstrating

16https://github.com/salesforce/factCC
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https://huggingface.co/facebook/bart-base
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Figure 5: Effect of extract ratio ρ and number of clusters k on RE2019 (left) and Twitter16 (right). The dashed lines
represent the detection performance without DAS. The Macro-F1 increases as the extract ratio ρ decreases on both
datasets, and the Attack Success Rate (ASR) behaves in an opposite trend. Moreover, the number of clusters k do
not influence the results significantly, demonstrating the robustness of DAS.

Model Backbone
RE2019 Twitter15 Twitter16

Acc. mF1 Acc. mF1 Acc. mF1

WETGN BART 67.03 65.59 86.53 86.40 85.82 85.71
WETGN RoBERTa 68.82 67.53 87.35 87.34 87.16 87.09

BiTGN† BART 66.14 65.69 86.94 86.79 86.06 85.95
BiTGN* BART 64.79 64.46 86.12 85.98 85.81 85.76
BiTGN RoBERTa 70.84 70.05 87.77 87.73 89.10 89.02

Table 8: Performance of BiTGN and WETGN with
BART and RoBERTa as transformer encoder. RoBERTa
encoder improves the performance on all models.

its power contributed by the robust textual repre-
sentations from the transformer network and the
effective graph aggregation from the BiGCN com-
ponent. Moreover, as discussed in section 4.4, we
see that BiTGN has a lower F1 score on the classes
of non-rumor and true rumor of Twitter15, which
may be caused by the diverse structural informa-
tion of this dataset as observed by Huang et al.
(2020). To validate the significance of the detec-
tion results, we perform the paired student t-test
between the proposed BiTGN and each of the base-
line models. The corresponding p-values for both
accuracy and macro-averaged F1 scores are pre-
sented in Table 7. Notably, our BiTGN not only
achieves the best average accuracy and F1 scores
as discussed previously but also significantly out-
performs models utilizing TF-IDF vectors as node
features (BiGCN, EBGCN, RvNN). We notice that
the significance levels for the comparisons with
WETGN and DUCK¬UT are relatively lower. This
could be attributed to their shared utilization of a
transformer backbone and the notable variability
in folds. Nonetheless, in comparison to WETGN,
which incorporates a top-down GCN with weighted
edges, our BiTGN effectively benefits from the
bi-directional GCN component, even in the ab-
sence of weighted edges. When compared against
DUCK¬UT, which employs two distinct branches

of transformers to independently model each con-
versation thread as both a stream and a graph,
our model achieves a more favorable average per-
formance by utilizing only a single transformer
branch, thereby resulting in fewer parameters.

D Adversarial Attack and Defense on
Other Datasets

We investigate the robustness of DAS under dif-
ferent extract ratio ρ and number of clusters k on
RE2019 and Twitter16 datasets, as illustrated in
Fig. 5. The dashed lines represent the detector’s per-
formance without equipping the DAS framework.
Specifically, the red line and green line stands for
the performance of the model with and without be-
ing attacked respectively. The results of all datasets
are intuitive and similar, where the F1 score in-
creases as the extract ratio ρ decreases, and the
Attack Success Rate (ASR) behaves in an opposite
trend. Moreover, increasing the number of clusters
k to provide responses from more perspectives do
not affect the model performance drastically.

E Additional Results of DAS Framework

E.1 Rumor Detection with DAS

To observe how the proposed response summa-
rization framework affects the performance of ru-
mor detection, we provide the detection results of
BiTGN equipped with the variants of DAS with-
out being attacked in Table 9. DRE† denotes DRE
with the autoencoder (AE) only. In this experi-
ment, BiTGN is initialized with BART-base, and
the number of clusters k is set to 3, i.e., DRE ex-
tracts 3 responses, and DAS further produces 3 ab-
stractive summaries based on the 3 clusters. Firstly,
we observe that both DRE† and DRE can approx-
imate the model’s performance. Notably, DRE†



Summarizer
RE2019 Twitter15 Twitter16

Acc. mF1 F1-T F1-F F1-U Acc. mF1 F1-N F1-T F1-F F1-U Acc. mF1 F1-N F1-T F1-F F1-U

- 64.57 64.29 65.25 64.01 63.63 85.64 85.50 88.52 87.75 85.35 80.37 84.47 84.40 85.62 92.16 80.78 79.06

DRE† (ρ=0.05) 60.08 59.88 62.22 60.50 56.93 83.78 83.68 85.51 86.49 83.43 79.31 82.39 82.31 81.88 91.80 76.81 78.73
DRE† (ρ=0.10) 60.67 60.10 64.32 58.74 57.24 84.40 84.31 87.59 86.71 83.42 79.52 82.52 82.45 82.35 92.03 76.79 78.61
DRE† (ρ=0.15) 60.76 60.41 62.54 60.77 57.92 84.54 84.43 87.49 86.85 84.12 79.27 83.13 83.07 83.63 91.88 77.92 78.84
DRE† (ρ=0.20) 61.43 61.10 63.33 62.10 57.86 84.67 84.54 87.40 86.48 84.23 80.08 82.89 82.83 84.02 90.75 77.54 79.03
DRE† (ρ=0.25) 61.88 61.41 63.53 64.25 56.45 84.95 84.85 87.42 86.62 84.64 80.70 83.13 83.08 84.02 90.75 78.26 79.31
DRE† (ρ=0.50) 63.00 62.40 64.54 64.31 58.36 86.12 85.96 89.08 88.42 85.62 80.73 83.38 83.37 83.96 90.40 78.14 81.00
DRE† (ρ=0.75) 64.35 63.69 66.14 64.94 59.98 85.70 85.56 88.64 88.09 85.44 80.07 84.96 84.94 85.60 92.45 80.11 81.60
DRE† (ρ=0.90) 64.12 63.49 65.21 64.16 61.10 85.91 85.77 88.90 87.90 85.58 80.68 84.22 84.12 83.78 91.98 79.75 80.99

DRE (ρ=0.05) 60.08 59.88 62.22 60.50 56.93 83.78 83.68 85.51 86.49 83.43 79.31 82.39 82.31 81.88 91.80 76.81 78.73
DRE (ρ=0.10) 60.53 60.22 62.93 61.15 56.58 84.19 84.11 87.16 86.71 83.10 79.45 82.76 82.69 82.81 92.03 77.11 78.80
DRE (ρ=0.15) 60.31 59.97 62.15 60.03 57.72 84.54 84.45 87.66 86.85 83.65 79.63 83.01 82.95 83.36 91.88 77.71 78.84
DRE (ρ=0.20) 61.43 61.11 63.35 62.31 57.66 84.95 84.86 87.59 86.97 84.57 80.33 82.88 82.84 83.41 90.64 77.52 79.80
DRE (ρ=0.25) 61.88 61.50 63.77 64.42 56.30 85.15 85.07 87.49 87.01 85.19 80.59 83.13 83.08 83.98 91.11 78.06 79.17
DRE (ρ=0.50) 62.10 61.70 64.02 61.09 59.97 84.95 84.88 87.65 87.04 84.47 80.37 82.89 82.84 82.50 90.21 77.48 81.15
DRE (ρ=0.75) 61.88 61.65 62.53 63.52 58.91 84.67 84.57 87.83 87.03 84.39 79.03 84.22 84.23 85.51 91.98 78.49 80.96
DRE (ρ=0.90) 61.88 61.46 63.75 62.28 58.35 84.95 84.83 88.00 87.10 84.61 79.60 83.62 83.61 83.65 91.18 78.71 80.92

DRE (ρ=1.00) 59.64 59.35 60.98 60.50 56.58 84.54 84.45 87.32 86.72 84.09 79.66 83.12 83.11 83.34 91.56 78.26 79.28

DAS (ρ=0.05) 61.66 60.99 64.81 61.22 56.93 81.31 81.13 82.20 84.88 80.50 76.97 80.93 80.73 78.42 90.60 76.22 77.68
DAS (ρ=0.10) 62.56 61.88 65.87 61.08 58.70 81.72 81.53 82.20 85.20 81.05 77.65 81.42 81.25 79.19 91.05 77.47 77.30
DAS (ρ=0.15) 62.11 61.65 64.10 61.51 59.34 82.13 81.97 84.02 84.80 80.90 78.15 81.30 81.11 79.63 89.44 77.12 78.24
DAS (ρ=0.20) 63.00 62.29 65.35 62.98 58.54 82.75 82.60 84.39 84.82 81.80 79.37 81.05 80.99 80.38 88.32 76.29 78.95
DAS (ρ=0.25) 63.90 63.09 67.15 64.14 57.97 82.41 82.26 83.54 85.29 81.60 78.61 82.28 82.19 80.97 89.54 78.72 79.53
DAS (ρ=0.50) 63.45 62.54 66.85 63.28 57.50 83.09 82.98 84.37 86.54 81.83 79.18 82.16 82.10 79.71 89.51 79.98 79.22
DAS (ρ=0.75) 63.68 62.94 67.14 61.87 59.80 83.09 82.98 86.02 86.98 81.12 77.79 82.51 82.43 81.25 90.97 77.34 80.15
DAS (ρ=0.90) 63.67 62.73 66.67 61.55 59.96 83.09 82.94 84.91 86.89 81.68 78.30 83.25 83.19 81.15 90.41 79.90 81.28

DAS (ρ=1.00) 64.34 63.44 67.31 63.40 59.60 83.16 83.06 84.84 87.59 81.31 78.53 82.64 82.54 82.07 91.31 77.42 79.36

Table 9: Rumor detection results of BiTGN using different summarizers without being attacked. The results of
DRE†, DRE, and DAS are demonstrated in the upper, middle, and lower sections, respectively. DRE† represents
DRE with the autoencoder (AE) only. The number of clusters k is set to 3. Both DRE† and DRE can approximate
the detection results of BiTGN without summarizers, and DAS only slightly degrades the performance.

even scores higher on the Twitter15 and Twitter16
datasets, potentially due to the filtering process,
which identifies and removes noisy responses that
could degrade the model’s performance. Moreover,
DRE achieves comparable results even if only 3
responses are selected, indicating that the extrac-
tor can effectively capture the representative re-
sponses from each conversation thread. As such,
the extracted responses can be used to interpret
the model’s behavior. Next, for all summariz-
ers, the performance rises as the extract ratio ρ
increases and saturates at different ratios on differ-
ent datasets, which suggests that the representative
responses could be potentially excluded if we fil-
ter out too many of them. Lastly, we also find
that DAS slightly degrades the detection perfor-
mances, possibly due to the distribution shift of
abstractive summaries as the abstractor is tuned
under self-supervised settings without fine-grained
ground-truth labels. Furthermore, the unsatisfy-
ing quantity of data also indicates that there is still
room for improvement. We consider enhancing
the text quality under self-supervised settings as a
potential avenue for future research.

E.2 Human Evaluation

In this section, we further provide the settings and
additional results of human evaluation. We recruit
100 human readers for both parts of the human
evaluation. We additionally insert a trick question
in part A to validate the answer quality of each
participant, and each participant will be paid $5
if he / she passes the trick question. To verify the
consistency of the collected results, we calculate
the Fleiss’ Kappa to evaluate the inter-rater reli-
ability of the human evaluation. For part A, we
calculate the Fleiss’ Kappa to assess the readers’
agreement toward rating our model more favorably
than the baseline, and the score is 0.3321. In part B,
for readers that make predictions based on the re-
sponses and summary, we obtain the Fleiss’ Kappa
scores of 0.5341 and 0.4225, respectively. Follow-
ing the criteria outlined by Landis and Koch (1977),
these values indicate a fair and moderate agreement
among participants in part A and B. It’s important
to note that this level of agreement has been es-
tablished as reliable in prior research studies (Cao
and Wang, 2021; Chen et al., 2021). In part A, we
select SSRA-LOO as the baseline and compare its
informativeness with SSRA-k-means (k=3). Since



Figure 6: Visualization of the number of predictions based on the responses / summary for each sample of human
evaluation part B. Ground-truth label for each sample is marked with "+". In most cases, predictions based on the
responses and the summaries are highly correlated, demonstrating the interpretability of the summaries.

SSRA-LOO generates only one summary by de-
fault, we randomly divide each conversation thread
into 3 groups and make SSRA-LOO generate one
summary for each group for a fair comparison. We
ask the participants to rate each set of summaries
based on the following scoring strategy:

• Score 1: None of the three summaries accurately
capture the information from the responses, and
the summaries may repeat the same information
or contain unrelated information.

• Score 2: Only one summary captures the infor-
mation from the responses, but the other ones
may be incomplete, inaccurate, or repetitive.

• Score 3: Most of the summaries accurately cap-
ture the information from the responses, but some
important perspectives may be missing, or some
information may be repeated unnecessarily.

• Score 4: All three summaries accurately capture
the information from the responses but may not
fully cover all important perspectives or provide
a nuanced understanding of the issue.

• Score 5: All three summaries accurately capture
the information from the responses, and the sum-
maries provide a comprehensive and nuanced
understanding of the issue. The summaries cover
diverse perspectives and avoid repetition.

In part B, we select 20 samples from RE2019 and
Twitter15 datasets, with 5 true rumors and false ru-
mors from each of them. The participants are asked
to determine whether a source post is true or false
based on all its responses or a set of summaries.
A key idea is to observe whether the responses or

summaries deny the rumor, but the readers are not
required to accept all the utterances and can make
their decisions based on their intuition after reading
the provided information. We visualize the predic-
tions based on the responses and summary in Fig.
6. Notably, a higher number of individuals accu-
rately predict the veracity (pgt > 0.5) of 15 and
17 samples based on the responses and summary,
respectively. Despite the slightly lower average
accuracy of the summary, as shown in Fig. 4, the
results still indicate its effectiveness in providing
social media users with essential information from
the responses. Additionally, we observe a high cor-
relation between the predictions obtained from the
responses and summaries in most cases. This em-
phasizes the interpretability of the summaries, as
we can identify the crucial information that the de-
tection models focus on when making predictions.

E.3 Generation Examples

We demonstrate more examples by DAS in Ta-
ble 10, and 11. QID corresponds to the Question ID
of part B human evaluation, as shown in Fig. 6. We
provide the source post, responses, and both extrac-
tive and abstractive summaries for each example.
The responses are arranged in different clusters (i.e.,
Cluster 1, Cluster 2, and Cluster 3) and chrono-
logical order (i.e., [1], [2], ...). Specifically, we
highlight the crucial information of the responses
captured by the summaries with different colors for
each cluster. The results show that both extractive
and abstractive summaries can capture essential
viewpoints from different perspectives. Moreover,
the responses in the same clusters contain similar
information, indicating the clustering mechanism



in DAS can indeed identify the underlying aspects
in the diverse responses of a conversation thread.
The summaries can not only explain predictions
from rumor detection models but also benefit social
media readers and make them quickly understand
the public’s opinions toward specific events.



QID Content

9

Source Post (False Rumor): a claim that #obama used the #shutdown to scuttle the amber alert system reveals an
ignorance about amber alerts. URL

Responses (Cluster 1) [2]: "@name1 : Claim #Obama used #shutdown to scuttle AmberAlerts reveals ignorance abt
AmberAlerts URL" @name2 [5]: RINO!!! RT @name1 A claim that #Obama used the #shutdown to scuttle the
Amber Alert system reveals an ignorance about Amber Alerts. [6]: @name1 Thebn what was he doing when he shut
it down? [9]: @name1 @name3 you retweeted ignorance today. "Amber alert ..." False [10]: @name1 No it doesn’t
It shows how ignorant ppl are for believing stupid S # % t #SHUTDOWN (Cluster 2) [1]: @name1 Just got asked to
"inform" someone about this - since he/she can’t be bothered to inform self. URL (Cluster 3) [3]: @name1 @name4
Perhaps, but a smart administration wouldn’t have put that notice on the site. I have no sympathy. [4]: @name1
@name4 That’s not the claim. The claim is that Obama is trying to scare people by appearing to shut down sites. [7]:
@name1 @name5 I’m really sick and tired of seeing more of this fake news finding traction; how stupid are these
readers? [8]: @name1 @name6 Why care at all?? Maybe the little scamps wandered off to look for some food since
their SNAP was cut. Just a guess. [11]: @name7 I’m willing to bet there’s a high probability that the people who
believe this might also believe Obama is Kenyan [12]: @name1 @name8 These lies about the #GOPShutdown are
not isolated. They’re part of RNC strategy of distraction URL

Extractive Summary [1]: @name1 No it doesn’t It shows how ignorant ppl are for believing stupid S # % t
#SHUTDOWN [2]: @name1 Just got asked to "inform" someone about this - since he/she can’t be bothered to
inform self. URL [3]: @name1 @name4 Perhaps , but a smart administration wouldn’t have put that notice on the
site. I have no sympathy.

Abstractive Summary [1]: Claim #Obama used #shutdown to scuttle Amber Alerts reveals ignorance abt Am-
berAlerts [2]: I don’t know how to inform someone about this - since he/she can’t be bothered to inform self. [3]:
That’s not the claim. The claim is that Obama is trying to scare people by appearing to shut down sites.

11

Source Post (True Rumor): krispy kreme hull is advertising kkk wednesday. i don’t know. i do not know. URL

Responses (Cluster 1) [1]: @name1 Via Burlingame. URL [4]: @name1 @name2 Is that a real ad? [6]: @name1
sprinkled with WHITE POWDER? [9]: Anybody could make that... @name1 @name3 [11]: @name1 Ack! [12]:
@name4 Hull, we need to talk... [16]: @name1 [17]: @name1 seriously, how could someone had been so stupid.
[19]: @name1 I wonder if they use... URL (Cluster 2) [2]: "@name1: Krispy Kreme hull is advertising KKK
Wednesday. I don’t know. I do not know. URL" #Fail [3]: @name1 @name2 Its a company born in the dirty south,
sooo? [5]: Wow! RT "@name1: Krispy Kreme hull is advertising KKK Wednesday. I don’t know. I do not know.
URL" [14]: @name5 @name1 Which is really good. Unfortunately, the mockery will continue until morale improves.
[18]: @name1 @name6 Krispy Kreme is headquartered in the American South, (Winston Salem, North Carolina)
sooo... [20]: @name1 @name7 The Kicker is that this was advertised to children as Krispy Kreme Klub, teaching
racism and poor spelling all in one. (Cluster 3) [7]: @name1 Hi, we know we got it wrong & wholeheartedly
apologise. We’re taking steps to make sure it doesn’t happen again [8]: @name1 They’re dull in Hull and the Isle
of Mull is seething with discontent. [10]: @name1 GG Hull, glad to know the 2017 city of culture is trying to
be inclusive of all groups [13]: @name1 Like the article said. It was a poor choice of the play on the word Club
(*spelled Klub) Their intentions were good though. [15]: @name5 @name1 you’re going to take step to make sure
you don’t create any more sales events with unbelievably racist names? Okay.

Extractive Summary [1]: @name1 Via Burlingame. URL [2]: Wow! RT "@name1: Krispy Kreme hull is adver-
tising KKK Wednesday. I don’t know. I do not know. URL" [3]: @name1 GG Hull, glad to know the 2017 city of
culture is trying to be inclusive of all groups

Abstractive Summary [1]: That’s so stupid!!! [2]: Krispy Kreme hull is advertising KKK Wednesday. I don’t know.
I do not know. [3]: I’m sorry to hear this, but it was a poor choice of the play on the word Club (*spelled Klub).

Table 10: Generated examples of DAS (k=3). QID corresponds to the Question ID in Fig. 6. The responses are
arranged in different clusters and chronological order. Key information captured by summaries is highlighted with
different colors for each cluster. The responses within the same cluster deliver similar information, and the produced
summaries can effectively capture essential information from the responses.



QID Content

13

Source Post (False Rumor): new. leaked phone call between rebel leader & russian intel agent: " cossacks s̈hot
down #mh17. URL URL

Responses (Cluster 1) [5]: @name1 @name2 who leaked this? Do you check sources? Have you verified anything?
[6]: "Fuck them. They should not fly, we are at war here." RT @name1: NEW. Leaked phone call between rebel
leader & Russian intel agent #MH17 [7]: RT @name1: NEW. Leaked phone call between rebel leader & Russian
intel agent: "Cossacks" shot down #MH17. URL ... [8]: 1/2 RT @name1 Leaked phone call/rebel leader & Russian
intel agent: "Cossacks" shot down #MH17. URL URL [12]: @name1 It not seems as a reliable source. Now all are
fabricating they own versions. [14]: @name1 @name3 careful what you believe; way too much propaganda and lies
out there [15]: @name1 @name4 NEW. Leaked phone call between rebel leader & Russian intel agent: "Cossacks"
shot down #MH17 URL [18]: @name1 "indonesian student" ??? my poor fellow countrymen ... #damn you terrorist!
(Cluster 2) [4]: @name1 such violence and hate but we will be celebrating Mandela’s Birthday tomorrow with acts
of giving and love in South Africa #peace [17]: @name1 Another Hollywood story is in making :-) CIA should make
a story bank. Poor Hollywood is struggling for JamesBond films. @name5 [20]: @name1 Jim, Jim, Jim, shame on
you. It was a hoax of sorts and you promoted it Opps there goes our credibility again Too bad @name6 (Cluster 3)
[1]: @name1 this is beyond insane... [2]: @name1 Leaked by whom? Or don’t you bother verifying sources? [3]: 親
露派指導者と露諜報機関の通話「コサックが撃墜した」 RT @name1 NEW. Leaked phone call between rebel
leader & Russian ... URL URL [9]: @name1 [10]: @name1 checked that? [11]: @name1 @name7 @name8 [13]:
@name1 @name9 Thus it begins... [16]: @name10 @name11 @name1ありゃりゃ、もう言い逃れできないわ
な。 [19]: @name1 @name5 what is the proof

Extractive Summary [1]: NEW. Leaked phone call between rebel leader & Russian intel agent: " Cossacks" shot
down #MH17 URL [2]: @name1 Jim, Jim, Jim, shame on you. It was a hoax of sorts and you promoted it Opps
there goes our credibility again Too bad @name6 [3]: @name1 @name9 Thus it begins...

Abstractive Summary [1]: RT: NEW. Leaked phone call between rebel leader & Russian intel agent: "Cossacks"
shot down #MH17 [2]: This is a hoax, it was a hoax of sorts and you promoted it. Shame on you [3]: what is the
proof??

16

Source Post (True Rumor): microsoft is reportedly buying ’minecraft’ developer mojang for $2 billion URL

Responses (Cluster 1) [2]: @name1 Good job, @name2 [8]: @name1 @name3 NOOO [12]: @name1 that’s one
way to get it onto Windows Phone. [15]: @name1 Pls no. [14]: @name1 NOOO!!! [18]: @name1 don’t do it
mojang!!! ... [19]: @name1 oh god why.. (Cluster 2) [1]: @name1 For some reason I don’t believe that. They
turned down offers before, so i’m sure they will again. [3]: . "@name1: Microsoft is reportedly buying ’Minecraft’
developer Mojang for $2 billion URL" [5]: "@name1: Microsoft is reportedly buying ’Minecraft’ developer Mojang
for $2 billion URL" @name4 [6]: "@name1: Microsoft is reportedly buying ’Minecraft’ developer Mojang for $2
billion URL" wauw! @name5 [7]: "@name1: Microsoft is reportedly buying ’Minecraft’ developer Mojang for $2
billion URL? [10]: "@name1: Microsoft is reportedly buying ’Minecraft’ developer Mojang for $2 billion URL"
whoa [13]: "@name1: Microsoft is reportedly buying ’Minecraft’ developer Mojang for $2 billion URL" Wat? [20]:
@name6 "@name1: Microsoft is reportedly buying ’Minecraft’ developer Mojang for $2 billion URL" (Cluster 3)
[4]: @name7 @name8 @name1 better buy minecraft now before it’s off the psn store [9]: @name9 wooottt? Have
you ever played Minecraft? That game will eat up your time I swear and babu objectives just dig up sand and create
[11]: @name7 @name8 @name1 lol already on there. [16]: @name10 @name1 @name3 @name2 From what
I’m told, Notch walked away from Mojang. He’s doing things on his own now. [17]: @name11 @name7 @name8
@name1 yeah microsoft

Extractive Summary [1]: @name1 Pls no. [2]: "@name1: Microsoft is reportedly buying ’Minecraft’ developer
Mojang for $2 billion URL" whoa [3]: @name7 @name8 @name1 lol already on there.

Abstractive Summary [1]: NOOO!!!... [2]: Microsoft is reportedly buying ’Minecraft’ developer Mojang for $2
billion [3]: I think Minecraft is a great game.

Table 11: Generated examples of DAS (k=3). QID corresponds to the Question ID in Fig. 6. The responses are
arranged in different clusters and chronological order. Key information captured by summaries is highlighted with
different colors for each cluster. The responses within the same cluster deliver similar information, and the produced
summaries can effectively capture essential information from the responses.


