
AHA: A Vision-Language-Model for Detecting and
Reasoning Over Failures in Robotic Manipulation

Anonymous Author(s)
Affiliation
Address
email

Abstract: Robotic manipulation in open-world settings requires not only task1

execution but also the ability to detect and learn from failures. While recent ad-2

vances in vision-language models (VLMs) and large language models (LLMs)3

have improved robots’ spatial reasoning and problem-solving abilities, they still4

struggle with failure recognition, limiting their real-world applicability. We in-5

troduce AHA, an open-source VLM designed to detect and reason about failures6

in robotic manipulation using natural language. By framing failure detection as7

a free-form reasoning task, AHA identifies failures and provides detailed, adapt-8

able explanations across different robots, tasks, and environments. We fine-tuned9

AHA using FailGen, a scalable framework that generates the first large-scale10

dataset of robotic failure trajectories, the AHA dataset. FailGen achieves this11

by procedurally perturbing successful demonstrations from simulation. Despite12

being trained solely on the AHA dataset, AHA generalizes effectively to real-world13

failure datasets, robotic systems, and unseen tasks. It surpasses the second-best14

model (GPT-4o in-context learning) by 10.3% and exceeds the average perfor-15

mance of six compared models—including five state-of-the-art VLMs—by 35.3%16

across multiple metrics and datasets. We integrate AHA into three manipulation17

frameworks that utilize LLMs/VLMs for reinforcement learning, task and motion18

planning, and zero-shot trajectory generation. AHA ’s failure feedback enhances19

these policies’ performances by refining dense reward functions, optimizing task20

planning, and improving sub-task verification, boosting task success rates by an21

average of 21.4% across all three tasks compared to GPT-4 models. Anonymous22

page: https://aha-corlw.github.io/.23

Keywords: Failure detection and reasoning, Foundation models for robotics, Data24

generation, Zero-shot manipulation, robotic manipulation25

1 Introduction26

In recent years, foundation models have made remarkable progress across various domains, demon-27

strating their ability to handle open-world tasks[1, 2, 3, 4]. These models, including large language28

models (LLMs) and vision-language models (VLMs), have shown proficiency in interpreting and29

executing human language instructions[5], producing accurate predictions and achieving strong30

task performance. However, despite these advancements, key challenges remain—particularly with31

hallucinations, where models generate responses that deviate from truth. Unlike humans, who can32

intuitively detect and adjust for such errors, these models often lack the mechanisms for recognizing33

their own mistakes[6, 7, 8]. Learning from failure is a fundamental aspect of human intelligence.34

Whether it’s a child learning to skate or perfecting a swing, the ability reason over failures is essen-35

tial for improvement[9, 10, 8]. The concept of improvement through failures is widely applied in36

training foundation models and is exemplified by techniques such as Reinforcement Learning with37

Human Feedback (RLHF)[5, 11], where human oversight and feedback steers models toward desired38

outcomes. This feedback loop plays a critical role in aligning generative models with real-world objec-39

tives. However, a crucial question persists: How can we enable these models to autonomously detect40

Submitted to the 8th Conference on Robot Learning (CoRL 2024). Do not distribute.

https://aha-corlw.github.io/


and reason about their own failures, particularly in robotics, where interactions and environments are41

unpredictable?42

The use of foundation models like VLMs and LLMs in robotics is growing, addressing open-world43

tasks such as spatial reasoning, object recognition, and multimodal problem-solving—crucial for44

robotic manipulation[12, 13, 14, 15, 16]. These models are now being integrated to automate reward45

generation [17, 18], develop task plans[19], and generate zero-shot robot trajectories[20, 21, 22, 23].46

However, despite their strengths in task execution, they struggle with detecting and reasoning over47

failures. For instance, if a robot drops an object mid-task, it lacks the human-like ability to recognize48

and correct the mistake. Enhancing robots with failure detection and learning capabilities is key49

for operating in dynamic environments. To learn from their mistakes, robots must first detect and50

understand why they failed. We introduce AHA, an open-source vision-language model (VLM) that51

uses natural language to detect and reason about failures in robotic manipulation. Unlike prior work52

that treats failure reasoning as a binary detection problem, we frame it as a free-form reasoning53

task, offering deeper insights into failure mode reasoning. Our model not only identifies failures54

but also generates detailed explanations. This approach enables AHA to adapt to various robots,55

camera viewpoints, tasks, and environments in both simulated and real-world scenarios. It can also be56

integrated into downstream robotic applications leveraging VLMs and LLMs. We make the following57

three major contributions:58

1. We introduce FailGen, a data generation pipeline for the procedural generation of failure59

demonstration data for robotic manipulation tasks across simulators. To instruction-tune AHA,60

we developed FailGen, the first automated data generation pipeline that procedurally creates the61

AHA dataset—a large-scale collection of robotic manipulation failures with over 49K+ image-query62

pairs across 79 diverse simulated tasks. Despite being fine-tuned only on the AHA dataset, AHA63

demonstrates strong generalization to real-world failure datasets, different robotic systems, and64

unseen tasks, as evaluated on three separate datasets not included in the fine-tuning. FailGen is also65

flexible data generation pipeline integrates seamlessly with various simulators, enabling scalable66

procedural generation of failure demonstrations.67

2. We demonstrate that AHA excels in failure reasoning, generalizing across different embodi-68

ments, unseen environments, and novel tasks, outperforming both open-source and proprietary69

VLMs. Upon fine-tuning AHA, we benchmarked it against six state-of-the-art VLMs, both open-70

source and proprietary, evaluating performance across four metrics on three diverse evaluation71

datasets, each featuring different embodiments, tasks, and environments out-of-distribution from the72

training data. AHA outperformed GPT-4o model by more than 20.0% on average across datasets and73

metrics, and by over 43.0% compared to LLaVA-v1.5-13B [24], the base model from which AHA is74

derived. This demonstrates AHA’s exceptional ability to detect and reason about failures in robotic75

manipulation across embodiment and domains.76

3. We show that AHA enhances downstream robotic applications by providing failure reasoning77

feedback. We demonstrate that AHA can be seamlessly integrated into robotic applications that78

utilize VLMs and LLMs. By providing failure feedback, AHA improves reward functions through79

Eureka reflection, enhances task and motion planning, and verifies sub-task success in zero-shot80

robotic manipulation. Across three downstream tasks, our approach achieved an average success rate81

21.4% higher than GPT-4 models, highlighting AHA’s effectiveness in delivering accurate natural82

language failure feedback to improve task performance through error correction.83

2 Related Work84

AHA enables language reasoning for failure detection in robotic manipulation, enhancing downstream85

robotics applications. To provide context, we review progress in: 1) failure detection in robotic86

manipulation, 2) data generation in robotics, and 3) foundation models for robotic manipulation.87

Failure Detection in Robotic Manipulation. Failure detection and reasoning have long been88

studied in the Human-Robot Interaction (HRI) community [25, 26] and in works leveraging Task89

and Motion Planning (TAMP) [27]. With the recent widespread adoption of LLMs and VLMs in90

robot manipulation systems—either for generating reward functions or synthesizing robot trajectories91

2



Figure 1: AHA is a Vision-Language Model designed to detect and reason about failures in robotic
manipulation. As an instruction-tuned VLM, it can enhance task performance in robotic applications
that utilize VLMs for reward generation, task planning, or sub-task verification. By incorporating AHA
into the reasoning pipeline, these applications can achieve accelerated and improved performance.

Figure 2: Overview of AHA Pipeline. (Top) The data generation for AHA is accomplished by
taking a normal task trajectory in simulation and procedurally perturbing all keyframes using our
taxonomy of failure modes. Through FailGen, we systematically alter keyframes to synthesize
failure demonstrations conditioned on the original tasks. Simultaneously, we generate corresponding
query and answer prompts for each task and failure mode, which are used for instruction-tuning.
(Bottom) The instruction-tuning pipeline follows the same fine-tuning procedure as LLaVA-v1.5 [24],
where we fine-tune only the LLM base model—in this case, LLaMA-2-13B and the projection linear
layers, while freezing the image encoder and tokenizer.

[17, 18] in a zero-shot manner—the importance of detecting task failures has regained prominence92

[20, 22, 28, 29]. Most modern approaches focus on using off-the-shelf VLMs or LLMs as success93

detectors [30, 29, 31, 22], and some employ instruction-tuning of VLMs to detect failures [32].94

However, these methods are often limited to binary success detection and does not provide language95

explanations for why failures occur. Our framework introduces failure reasoning in a new formulation,96

generating language-based explanations of failures to aid robotics systems that leverage VLMs and97

LLMs in downstream tasks.98

Data Generation in Robotics There have been many methods in robotic manipulation that automate99

data generation of task demonstrations at scale [33, 34], whether for training behavior cloning policies,100

instruction-tuning VLMs [14], or curating benchmarks for evaluating robotic policies in simulation101

[35, 36]. A well-known example is MimicGen [33], which automates task demonstration generation102

via trajectory adaptation by leveraging known object poses. Additionally, works like RoboPoint103

use simulation to generate general-purpose representations for robotic applications, specifically for104

fine-tuning VLMs. Similarly, systems like The Colosseum [36] automate data generation for curating105

3



benchmarks in robotic manipulation. Our approach aligns closely with RoboPoint, as we also leverage106

simulation to generate data for instruction-tuning VLMs. However, unlike RoboPoint, we focus on107

synthesizing robotic actions in simulation rather than generating representations like points.108

Foundation Models for Robotic Manipulation. In recent years, leveraging foundation models for109

robotic manipulation has gained significant attention due to the effectiveness of LLMs/VLMs in110

interpreting open-world semantics and their ability to generalize across tasks [37, 38, 39, 40]. Two111

main approaches have emerged: the first uses VLMs and LLMs in a promptable manner, where visual112

prompts guide low-level action generation based on visual inputs [41, 21, 23]. The second focuses113

on instruction-tuning VLMs for domain-specific tasks [42]. For example, RoboPoint [14] is tuned114

for spatial affordance prediction, and Octopi [43] for physical reasoning using tactile images. These115

models generalize beyond their training data and integrate seamlessly into manipulation pipelines.116

Our approach follows this second path, developing a scalable method for generating instruction-117

tuning data in simulation and fine-tuning VLMs specialized in detecting and reasoning about robotic118

manipulation failures, with applications that extend beyond manipulation tasks to other robotic119

domains.120

3 The AHA Dataset121

We leveraged FailGen to procedurally generate the AHA dataset from RLBench tasks [44] and used122

it for the instruction-tuning of AHA. In this section, we begin by categorizing common failure modes123

in robotics manipulation and defining a taxonomy of failures in Section 3. Next, we explain how this124

taxonomy is used with FailGen to automate the data generation for the AHA dataset in simulation in125

Section 3.1.126

To curate an instruction-tuning dataset of failure trajectories for robotic manipulation tasks, we began127

by systematically identifying prevalent failure modes. Our approach involved a review of existing128

datasets, including DROID [45] and Open-X Embodiment [46], as well as an analysis of policy129

rollouts from behavior cloning models. We examined failures occurring in both teleoperated and130

autonomous policies. Building upon prior works, such as REFLECT [47], we formalized a taxonomy131

encompassing seven distinct failure modes commonly observed in robotic manipulation: incomplete132

grasp, inadequate grip retention, misaligned keyframe, incorrect rotation, missing rotation, wrong133

action sequence, and wrong target object.134

3.1 Implementation of the AHA dataset135

The AHA dataset is generated with RLBench [44], utilizing its keyframe-based formulation to136

dynamically induce failure modes during task execution. RLBench natively provides keyframes137

for task demonstrations, which enables flexibility in both object manipulation (handling tasks with138

varying objects) and the sequence of actions (altering the execution order of keyframes). Building on139

this foundation, we leverage FailGen, our custom environment wrapper to wrap around RLBench that140

allows for task-specific trajectory modifications through keyframes perturbations, object substitutions,141

and reordering of keyframe sequences. FailGen systematically generates failure trajectories aligned142

with the taxonomy defined in Section 3, yielding a curated dataset of 49k failure-question pairs.143

To generate the AHA dataset, we systematically sweep through all keyframes in each RLBench task,144

considering all potential configurations of the seven failure modes that could result in overall task145

failure. By leveraging the success condition checker in the simulation, we procedurally generate146

YAML-based configuration files by sweeping through each failure mode across all keyframes. These147

files provide details on potential failure modes, parameters (such as distance, task sequence, gripper148

retention strength, etc.), and corresponding keyframes that FailGen should perturb to induce failure.149

Additionally, we incorporate language templates to describe what the robot is doing between consec-150

utive keyframes. Using these descriptions along with the failure modes, we can systematically curate151

question-answer pairs for each corresponding failure mode.152

For specific failure modes, No_Grasp is implemented by omitting gripper open/close commands153

at the relevant keyframes, effectively disabling gripper control. Slip introduces a timed release154

of the gripper shortly after activation. Translation and Rotation perturb the position and ori-155

entation of a keyframe, respectively, while No_Rotation constrains the keyframe’s rotational axis.156

Wrong_Action reorders keyframe activations to simulate incorrect sequencing, and Wrong_Object157

4



reassigns the keyframes intended for one object to another, maintaining the relative pose to mimic158

improper object manipulation. Using this pipeline, we also successfully generated a failure dataset159

from ManiSkill [48] and adapted RoboFail [47] for the evaluation of AHA. This demonstrates the160

generalizability of FailGen in generating failure cases across different simulation environments.161

4 Method162

This section outlines the failure reasoning problem formulation (Sec.4.1) used to fine-tune and163

evaluate AHA. Next, we discuss the curated data mix used for co-finetuning AHA (Sec.4.2). Finally,164

we detail the instruction fine-tuning pipeline and the model architecture selection for AHA (Sec.4.3).165

4.1 Failure Reasoning Formulation166

Unlike previous works [47, 28, 22] that primarily focus on detecting task success as binary classifica-167

tion problem, we approach failure reasoning by first predicting a binary success condition ("Yes"168

or "No") of the given sub-task based on a language specification and an input image prompt. If the169

answer is "No", the VLM is expected to generate a concise, free-form natural language explanation170

detailing why the task is perceived as a failure. To formulate failure reasoning, we prompt the VLMs171

to analyze the trajectory failures at the current sub-task and provide reasoning for why or what led172

to the failure. We define manipulation task trajectories as a series of sub-tasks {S0, S1, S2, . . . , St},173

where each sub-task is represented by two consecutive keyframes. For example, in a task like174

"stacking cubes", a sub-task could represent a primitive action, such as ’picking up the cube’. For the175

input formulation in VLMs for instruction fine-tuning and evaluation, we required a query prompt176

with an input image for prompting the VLMs. The query prompt was generated using a template177

corresponding to the current sub-task the robot is performing. To capture the temporal relationships178

within the action sequence, the input image was constructed by selecting a single frame that repre-179

sents the robot’s trajectory up to the current sub-task and concatenating it with frames from other180

viewpoints in the rollout sequence, as shown in Table 3.181

This input frame is built by concatenating all keyframes up to the current sub-task in temporal order,182

from left to right, with any remaining keyframes replaced by white image patches. To mitigate183

occlusions, we also included all the available camera viewpoints, concatenating them alongside184

the temporal sequence, and provide a detailed task description in the prompt, as illustrated in185

Table 3 (left image). The image data is structured as a matrix I, where each row corresponds to a186

different camera viewpoint {V0, V1, . . . , Vn} and each column captures the temporal sequence of187

keyframes {S0, S1, S2, . . . , St}. This formulation for curating images serves as a general approach188

for formatting all datasets used for fine-tuning and evaluation. This structured input enables consistent189

handling of data across different tasks and viewpoints. Overall, our failure reasoning problem is to190

prompt VLM with sub-task discription and keyframe trajectory image to predict the success condition191

and language description of failure reason for each sub-task, as shown in Table 3.192

4.2 Synthetic Data for Instruction-tuning193

To facilitate the instruction-tuning of AHA, we needed to systematically generate failure demonstration194

data. To achieve this, we developed FailGen, an environment wrapper that can be easily applied195

to any robot manipulation simulator. FailGen systematically perturbs successful robot trajectories196

for manipulation tasks, transforming them into failure trajectories with various modes of failure as197

depicted in Figure 2 (Top image). Using FailGen, we curated the AHA dataset (Train) dataset by198

alternating across 79 different tasks in the RLBench simulator, resulting in 49k failure image-text199

pairs. Furthermore, following proper instruction-tuning protocols for VLMs [24] and building on prior200

works [49, 14], co-finetuning is crucial to the success of instruction fine-tuning of VLMs. Therefore,201

in addition to the AHA dataset, we co-finetuned AHA with general visual question-answering (VQA)202

datasets sourced from internet data, which helps models retain pre-trained knowledge. Specifically,203

we included the VQA dataset [24], containing 665k conversation pairs, and the LVIS dataset [50],204

which comprises 100k instances with predicted bounding box centers and dimensions, as summarized205

in Table 3.206

4.3 Instruction Fine-tuning207

We followed the instruction-tuning pipeline outlined by [51]. As depicted in Fig. 2, our model208

architecture includes an image encoder, a linear projector, a language tokenizer, and a transformer-209

5



Table 1: Results for AHA-13b evaluation with additional metrics.
AHA dataset (Test set) ManiSkill-Fail RoboFail [47]

Models ROUGEL ↑ Cos Sim ↑ BinSucc(%) ↑ Fuzzy Match ↑ ROUGEL ↑ Cos Sim ↑ BinSucc(%) ↑ Fuzzy Match ↑ ROUGEL ↑ Cos Sim ↑ BinSucc(%) ↑ Fuzzy Match ↑

LLaVA-v1.5-13B [24] 0.061 0.208 0.080 0.648 0.000 0.208 0.022 0.270 0.000 0.203 0.000 0.404
LLaVA-NeXT-34B [52] 0.013 0.231 0.017 0.626 0.001 0.195 0.007 0.277 0.018 0.188 0.017 0.351
Qwen-VL [53] 0.000 0.161 0.000 0.426 0.037 0.301 0.116 0.034 0.000 0.159 0.000 0.050
Gemini-1.5 Flash [12] 0.120 0.231 0.371 0.566 0.003 0.121 0.014 0.032 0.000 0.042 0.000 0.393
GPT-4o 0.251 0.308 0.500 0.784 0.142 0.335 0.688 0.453 0.114 0.318 0.554 0.438
GPT-4o-ICL (5-shot) 0.226 0.380 0.611 0.776 0.341 0.429 0.971 0.630 0.236 0.429 0.571 0.418
AHA-7B 0.434 0.574 0.691 0.695 0.609 0.680 1.000 0.532 0.204 0.394 0.625 0.439
AHA-13B (Ours) 0.446 0.583 0.702 0.768 0.600 0.681 1.000 0.633 0.280 0.471 0.643 0.465

based language model. The image encoder processes images into tokens, projected by a 2-layer linear210

projector into the same space as the language tokens. These multimodal tokens are then concatenated211

and passed through the language transformer. All components are initialized with pre-trained weights.212

During fine-tuning, only the projector and transformer weights are updated, while the vision encoder213

and tokenizer remain frozen. The model operates autoregressively, predicting response tokens and a214

special token marking the boundary between instruction and response.215

5 Experimental Results216

In this section, we evaluate AHA’s detection and reasoning performance against six state-of-the-art217

VLMs, including both open-source and proprietary models, some utilizing in-context learning. The218

evaluation spans three diverse datasets, covering out-of-domain tasks, various simulation environ-219

ments, and cross-embodiment scenarios. We then assess AHA’s ability to retain general world220

knowledge after fine-tuning on domain-specific data. Finally, we explore its potential to improve221

downstream robotic manipulation tasks.222

Table 2: Quantitative Evaluation on Standard VQA Benchmarks. AHA-13B performs on par
with LLaVA-13B [24], the VLM from which AHA adapts its fine-tuning strategy.

MMBench [54] ScienceQA [55] TextVQA [56] POPE [57] VizWiz[58]

LLaVA-13B (LLama-2) [24] 67.70 73.21 67.40 88.00 53.01
AHA-13B (LLama-2) 65.20 71.94 65.20 85.74 53.45

5.1 Experimental Setup223

To quantitatively evaluate AHA’s detection and reasoning capabilities for failures in robotic manipu-224

lation, we curated two datasets and adapted an existing failure dataset for benchmarking. To ensure a225

fair comparison of free-form language reasoning, we also employed four different evaluation metrics226

to measure semantic similarity between sentences.227

Benchmarks. We curated three datasets to evaluate AHA’s reasoning and failure detection capabilities,228

benchmarking against other state-of-the-art VLMs. The first dataset, AHA dataset (Test), includes229

11k image-question pairs from 10 RLBench tasks, generated similarly to the fine-tuning data via230

FailGen (Section 3.1) but without overlapping with the tasks from the finetuning dataset. It evaluates231

AHA’s ability to generalize to novel, out-of-domain tasks. The second dataset, ManiSkill-Fail,232

comprises 130 image-question pairs across four tasks in ManiSkill [48], generated using Failgen233

wrapper on Maniskill simulator. This dataset assesses AHA’s performance in a different simulator234

and under changing viewpoints. Lastly, we adapted a failure benchmark from the RoboFail dataset235

[47], which features real-world robot failures in seven UR5 robot tasks. This allows for evaluation236

across simulation and real-world trajectories and across different embodiments.237

Evaluation Metrics. To fairly evaluate success detection and free language reasoning across238

all datasets and baselines, we employ four metrics. First, the ROUGE-L score measures the239

quality of generated text by focusing on the longest common subsequence between candidate and240

reference texts. Second, we use Cosine Similarity to assess similarity between texts or embeddings,241

avoiding the "curse of dimensionality". Third, LLM Fuzzy Matching utilizes an external language242

model—specifically, Anthropic’s unseen model, claude-3-sonnet—to evaluate semantic similarity243

in a teacher-student prompting format. Lastly, we calculate a Binary success rate by comparing the244

model’s predictions directly against the ground truth for success detection.245

6



Figure 3: (Left) Scaling law with the AHA dataset. Scaling of effect of model performance with
varying domain specific fine-tuning data. (Right) Downstream Robotic Application Performance.
AHA-13B outperforms GPT-4o in reasoning about failures within these robotic applications, leading
to improved performance of the downstream tasks.

5.2 Quantitative Experimental Results246

We contextualize the performance of AHA by conducting a systematic evaluation of failure reasoning247

and detection across these three datasets, general VQA datasets, and performed ablation studies.248

AHA generalizes across embodiments, unseen environments, and novel tasks. To ensure fairness249

and eliminate bias in the detection and reasoning capabilities of AHA, we evaluated it on three250

different datasets that were never seen during fine-tuning, each designed to test a specific form of251

generalization. First, on the AHA dataset (test) dataset, AHA demonstrated its ability to generalize252

reasoning across tasks and new behaviors within the same domain, outperforming the second-253

best performing VLM, GPT-4o ICL, by an average margin of 12.6% difference across all evaluation254

metrics. Second, we assessed AHA-13B on a dataset generated by the Failgen wrapper in a255

different simulation domain, ManiSkill, showing that our model outperforms GPT-4o-ICL by256

an average of 13.4% difference across all metrics as depicted in Table 1. Lastly, to demonstrate257

generalization to real-world robots and different embodiments, we evaluated AHA-13B on258

RoboFail [47], where it outperforms GPT-4o-ICL by 4.9% difference.259

AHA retains common sense knowledge. We evaluated AHA-13B’s performance on various VQA260

benchmarks and present the results in Table 2 . AHA-13B performs comparably to LLaVA-261

v1.5-13B (LLama-2) [24] , with only a 1.5% margin difference as depicted in Table 2. Notably,262

LLaVA-v1.5-13B is a VLM trained on the same pre-trained weights as AHA-13B but fine-tuned on263

VQA data. This indicates that AHA-13B is capable of functioning as a general purpose VLM, in264

addition to excelling at failure reasoning.265

AHA’s performance scales with data size. We evaluated Aha’s performance using a range of AHA266

data for instruction fine-tuning, spanning [3k, 6k, 12k, 34k, 48k, 60k], and co-trained individual267

checkpoints corresponding to these data sizes as shown in Figure 3 (Left). The model was then268

assessed on the ManiSkill-Fail dataset across four evaluation metrics. An average quadratic fit269

gradient of 0.0022 across all four metrics demonstrates a scaling effect with fine-tuning on our270

procedurally generated data pipeline. This suggests that further scaling of the generated data may271

lead to improved model performance.272

5.3 Downstream Robotics Tasks273

We demonstrate that AHA’s failure detection and reasoning capabilities are useful across a wide274

spectrum of downstream robotics applications. This includes automatic reward generation for275

reinforcement learning applications [17], automatic task plan generation for task and motion planning276

applications [19], and as an improved verification step for automatic data generation systems [22].277

Videos and detailed improved reward function, task plan, example videos from each applications and278

etc can be found on the project page: https://aha-corlw.github.io/.279

AHA enables efficient reward synthesis for reinforcement learning. To evaluate this downstream280

task, we adapted Eureka’s [17] implementation to the ManiSkill simulator, which offers more state-281

based manipulation tasks. We strictly followed the Eureka reward function generation and reflection282

7

https://aha-corlw.github.io/


pipeline, modifying it by incorporating perception failure feedback via either AHA-13B or GPT-4o283

(acting as a baseline) to enhance the original LLM reflection mechanism. Instead of only including a284

textual summary of reward quality based on policy training statistics for automated reward editing,285

we further incorporated explanations of policy failures based on evaluation rollouts. We evaluated286

our approach on five reinforcement learning tasks from ManiSkill, ranging from tabletop to mobile287

manipulation. To systematically assess the reasoning capabilities of different VLMs under budget288

constraints, we sampled one reward function initially and allowed for iterations over two sessions of289

GPT API calls. Each policy was trained using PPO over task-specific training steps and evaluated290

across 1,000 test steps. During policy rollouts, we employed either AHA-13B or GPT-4o for reward291

reflection to improve the reward function. Comparing the evaluated policy success rates using292

different failure feedback VLMs, we observed that AHA-13B provided intuitive, human-level failure293

reasoning that aided in modifying and improving generated dense reward functions. This resulted in294

success across all five tasks within the budget constraints, and our approach outperformed GPT4o295

by a significant margin of 22.34% in task success rate shown in Figure 3 (Right).296

AHA refines task-plan generation for TAMP. To demonstrate AHA’s utility within a planning297

system, we incorporated our approach into PRoC3S [19]. The PRoC3S system solves tasks specified298

in natural language by prompting an LLM for a Language-Model Program (LMP) that generates299

plans, and then testing a large number of these plans within a simulator before executing valid plans300

on a robot. If no valid plan can be found within a certain number of samples (100 in our experiments),301

the LLM is re-prompted for a new LMP given failure information provided by the environment.302

Importantly, as is typical of TAMP methods, the original approach checks for a finite set of failures303

(inverse kinematics, collisions, etc.) from the environment, and returns any sampled plan that does not304

fail in any of these ways. We incorporated a VLM into this pipeline in two ways: (1) we prompt the305

VLM with visualizations of failed plan executions within the simulator, ask it to return an explanation306

for the failure, and feed this back to PRoC3S’ LLM during the LMP feedback stage, (2) after PRoC3S307

returns a valid plan, we provide a visualization of this to the VLM and ask it to return whether308

this plan truly achieves the natural language goal, with replanning triggered if not. We compared309

GPT-4o and AHA-13B as the VLM-based failure reasoning modules within this implementation310

of PRoC3S across three tasks (shown in Figure 4). Each task was evaluated over 10 trials, with a311

maximum of 100 sampling steps and three feedback cycles provided by either GPT-4o or AHA-13B.312

The success rate for each task was recorded. As shown in Figure Figure 3 (Right), utilizing AHA-13B313

for failure reasoning significantly improved the task success rate and outperforming GPT-4o by314

a substantial margin of 36.7%.315

AHA improves task verification for zero-shot robot data generation. To demonstrate316

AHA’s utility in zero-shot robot demonstration generation, we integrated our approach into the317

Manipulate-Anything framework. This open-ended system employs various Vision-Language318

Models (VLMs) to generate diverse robot trajectories and perform a wide range of manipula-319

tion tasks without being constrained by predefined actions or scenarios. A critical component320

of Manipulate-Anything is its sub-task verification module, which analyzes past and current321

frames to decide whether a sub-task has been achieved before proceeding or re-iterating over the322

previous sub-task. We replaced the original VLM (GPT-4V) in the sub-task verification module with323

AHA-13B and evaluated performance across four RLBench tasks (Figure 4), conducting 25 episodes324

for each task. Our results show that substituting the sub-task verification module’s VLM with325

AHA improved reasoning accuracy and overall task success by an average of 5%.326

6 Conclusion327

Limitations. AHA excels at reasoning within the fine-tuning data’s failure scenarios but has room to328

generate more open-ended failures beyond the defined taxonomy. Expanding FailGen to sample329

diverse failure modes from large pretrained policies could improve AHA’s flexibility. Conclusion.330

We present AHA, an open-source VLM that enhances failure detection and reasoning in robot331

manipulation. Trained on diverse failure trajectories with FailGen, AHA outperforms existing332

models and improves task success rates by providing detailed, natural language feedback, surpassing333

GPT-4 in error recovery and policy performance.334

8



References335

[1] D. Driess, F. Xia, M. S. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J. Tompson,336

Q. Vuong, T. Yu, et al. Palm-e: An embodied multimodal language model. arXiv preprint337

arXiv:2303.03378, 2023.338

[2] J.-B. Alayrac, J. Donahue, P. Luc, A. Miech, I. Barr, Y. Hasson, K. Lenc, A. Mensch, K. Millican,339

M. Reynolds, et al. Flamingo: a visual language model for few-shot learning. Advances in340

neural information processing systems, 35:23716–23736, 2022.341

[3] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida,342

J. Altenschmidt, S. Altman, S. Anadkat, et al. Gpt-4 technical report. arXiv preprint343

arXiv:2303.08774, 2023.344

[4] L. Zhang, A. Rao, and M. Agrawala. Adding conditional control to text-to-image diffusion345

models. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages346

3836–3847, 2023.347

[5] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,348

K. Slama, A. Ray, et al. Training language models to follow instructions with human feedback.349

Advances in neural information processing systems, 35:27730–27744, 2022.350

[6] S. Lin, J. Hilton, and O. Evans. Truthfulqa: Measuring how models mimic human falsehoods.351

arXiv preprint arXiv:2109.07958, 2021.352

[7] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. D. O. Pinto, J. Kaplan, H. Edwards, Y. Burda,353

N. Joseph, G. Brockman, et al. Evaluating large language models trained on code. arXiv354

preprint arXiv:2107.03374, 2021.355

[8] G. D. Heyman. Children’s critical thinking when learning from others. Current directions in356

psychological science, 17(5):344–347, 2008.357

[9] H. P. Young. Learning by trial and error. Games and economic behavior, 65(2):626–643, 2009.358

[10] A. Gopnik. Childhood as a solution to explore–exploit tensions. Philosophical Transactions of359

the Royal Society B, 375(1803):20190502, 2020.360

[11] P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei. Deep reinforcement361

learning from human preferences. Advances in neural information processing systems, 30,362

2017.363

[12] M. Reid, N. Savinov, D. Teplyashin, D. Lepikhin, T. Lillicrap, J.-b. Alayrac, R. Soricut,364

A. Lazaridou, O. Firat, J. Schrittwieser, et al. Gemini 1.5: Unlocking multimodal understanding365

across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.366

[13] OpenAI. Hello gpt-4o, May 2024. URL https://openai.com/index/hello-gpt-4o.367

[14] W. Yuan, J. Duan, V. Blukis, W. Pumacay, R. Krishna, A. Murali, A. Mousavian, and D. Fox.368

Robopoint: A vision-language model for spatial affordance prediction for robotics. arXiv369

preprint arXiv:2406.10721, 2024.370

[15] B. Chen, Z. Xu, S. Kirmani, B. Ichter, D. Driess, P. Florence, D. Sadigh, L. Guibas, and371

F. Xia. Spatialvlm: Endowing vision-language models with spatial reasoning capabilities. arXiv372

preprint arXiv:2401.12168, 2024.373

[16] Y. R. Wang, J. Duan, D. Fox, and S. Srinivasa. Newton: Are large language models capable of374

physical reasoning? arXiv preprint arXiv:2310.07018, 2023.375

[17] Y. J. Ma, W. Liang, G. Wang, D.-A. Huang, O. Bastani, D. Jayaraman, Y. Zhu, L. Fan, and376

A. Anandkumar. Eureka: Human-level reward design via coding large language models. arXiv377

preprint arXiv:2310.12931, 2023.378

9

https://openai.com/index/hello-gpt-4o


[18] Y. J. Ma, W. Liang, H.-J. Wang, S. Wang, Y. Zhu, L. Fan, O. Bastani, and D. Jayaraman.379

Dreureka: Language model guided sim-to-real transfer. arXiv preprint arXiv:2406.01967, 2024.380

[19] A. Curtis, N. Kumar, J. Cao, T. Lozano-Pérez, and L. P. Kaelbling. Trust the proc3s: Solving381

long-horizon robotics problems with llms and constraint satisfaction, 2024. URL https:382

//arxiv.org/abs/2406.05572.383

[20] W. Huang, C. Wang, R. Zhang, Y. Li, J. Wu, and L. Fei-Fei. Voxposer: Composable 3d value384

maps for robotic manipulation with language models. arXiv preprint arXiv:2307.05973, 2023.385

[21] H. Huang, F. Lin, Y. Hu, S. Wang, and Y. Gao. Copa: General robotic manipulation through386

spatial constraints of parts with foundation models. arXiv preprint arXiv:2403.08248, 2024.387

[22] J. Duan, W. Yuan, W. Pumacay, Y. R. Wang, K. Ehsani, D. Fox, and R. Krishna. Manipulate-388

anything: Automating real-world robots using vision-language models. arXiv preprint389

arXiv:2406.18915, 2024.390

[23] W. Huang, C. Wang, Y. Li, R. Zhang, and L. Fei-Fei. Rekep: Spatio-temporal reasoning of391

relational keypoint constraints for robotic manipulation. arXiv preprint arXiv:2409.01652,392

2024.393

[24] H. Liu, C. Li, Y. Li, and Y. J. Lee. Improved baselines with visual instruction tuning, 2023.394

[25] S. Ye, G. Neville, M. Schrum, M. Gombolay, S. Chernova, and A. Howard. Human trust after395

robot mistakes: Study of the effects of different forms of robot communication. In 2019 28th396

IEEE International Conference on Robot and Human Interactive Communication (RO-MAN),397

pages 1–7. IEEE, 2019.398

[26] P. Khanna, E. Yadollahi, M. Björkman, I. Leite, and C. Smith. User study exploring the399

role of explanation of failures by robots in human robot collaboration tasks. arXiv preprint400

arXiv:2303.16010, 2023.401

[27] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling. Pddlstream: Integrating symbolic planners402

and blackbox samplers via optimistic adaptive planning. In Proceedings of the international403

conference on automated planning and scheduling, volume 30, pages 440–448, 2020.404

[28] M. Skreta, Z. Zhou, J. L. Yuan, K. Darvish, A. Aspuru-Guzik, and A. Garg. Replan: Robotic405

replanning with perception and language models. arXiv preprint arXiv:2401.04157, 2024.406

[29] H. Ha, P. Florence, and S. Song. Scaling up and distilling down: Language-guided robot skill407

acquisition. In Conference on Robot Learning, pages 3766–3777. PMLR, 2023.408

[30] Y. J. Ma, S. Sodhani, D. Jayaraman, O. Bastani, V. Kumar, and A. Zhang. Vip: Towards409

universal visual reward and representation via value-implicit pre-training. arXiv preprint410

arXiv:2210.00030, 2022.411

[31] L. Wang, Y. Ling, Z. Yuan, M. Shridhar, C. Bao, Y. Qin, B. Wang, H. Xu, and X. Wang. Gensim:412

Generating robotic simulation tasks via large language models. arXiv preprint arXiv:2310.01361,413

2023.414

[32] Y. Du, K. Konyushkova, M. Denil, A. Raju, J. Landon, F. Hill, N. de Freitas, and S. Cabi.415

Vision-language models as success detectors. arXiv preprint arXiv:2303.07280, 2023.416

[33] A. Mandlekar, S. Nasiriany, B. Wen, I. Akinola, Y. Narang, L. Fan, Y. Zhu, and D. Fox.417

Mimicgen: A data generation system for scalable robot learning using human demonstrations.418

arXiv preprint arXiv:2310.17596, 2023.419

[34] R. Hoque, A. Mandlekar, C. Garrett, K. Goldberg, and D. Fox. Intervengen: Interven-420

tional data generation for robust and data-efficient robot imitation learning. arXiv preprint421

arXiv:2405.01472, 2024.422

10

https://arxiv.org/abs/2406.05572
https://arxiv.org/abs/2406.05572
https://arxiv.org/abs/2406.05572


[35] A. Xie, L. Lee, T. Xiao, and C. Finn. Decomposing the generalization gap in imitation learning423

for visual robotic manipulation. In 2024 IEEE International Conference on Robotics and424

Automation (ICRA), pages 3153–3160. IEEE, 2024.425

[36] W. Pumacay, I. Singh, J. Duan, R. Krishna, J. Thomason, and D. Fox. The colosseum: A bench-426

mark for evaluating generalization for robotic manipulation. arXiv preprint arXiv:2402.08191,427

2024.428

[37] J. Duan, S. Yu, H. L. Tan, H. Zhu, and C. Tan. A survey of embodied ai: From simulators to429

research tasks. IEEE Transactions on Emerging Topics in Computational Intelligence, 6(2):430

230–244, 2022.431

[38] Y. Hu, Q. Xie, V. Jain, J. Francis, J. Patrikar, N. Keetha, S. Kim, Y. Xie, T. Zhang, Z. Zhao,432

et al. Toward general-purpose robots via foundation models: A survey and meta-analysis. arXiv433

preprint arXiv:2312.08782, 2023.434

[39] R. Firoozi, J. Tucker, S. Tian, A. Majumdar, J. Sun, W. Liu, Y. Zhu, S. Song, A. Kapoor,435

K. Hausman, et al. Foundation models in robotics: Applications, challenges, and the future.436

arXiv preprint arXiv:2312.07843, 2023.437

[40] J. Urain, A. Mandlekar, Y. Du, M. Shafiullah, D. Xu, K. Fragkiadaki, G. Chalvatzaki, and J. Pe-438

ters. Deep generative models in robotics: A survey on learning from multimodal demonstrations.439

arXiv preprint arXiv:2408.04380, 2024.440

[41] F. Liu, K. Fang, P. Abbeel, and S. Levine. Moka: Open-vocabulary robotic manipulation441

through mark-based visual prompting. arXiv preprint arXiv:2403.03174, 2024.442

[42] X. Li, C. Mata, J. Park, K. Kahatapitiya, Y. S. Jang, J. Shang, K. Ranasinghe, R. Burgert, M. Cai,443

Y. J. Lee, et al. Llara: Supercharging robot learning data for vision-language policy. arXiv444

preprint arXiv:2406.20095, 2024.445

[43] S. Yu, K. Lin, A. Xiao, J. Duan, and H. Soh. Octopi: Object property reasoning with large446

tactile-language models. arXiv preprint arXiv:2405.02794, 2024.447

[44] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison. Rlbench: The robot learning benchmark &448

learning environment. IEEE Robotics and Automation Letters, 5(2):3019–3026, 2020.449

[45] A. Khazatsky, K. Pertsch, S. Nair, A. Balakrishna, S. Dasari, S. Karamcheti, S. Nasiriany, M. K.450

Srirama, L. Y. Chen, K. Ellis, et al. Droid: A large-scale in-the-wild robot manipulation dataset.451

arXiv preprint arXiv:2403.12945, 2024.452

[46] A. Padalkar, A. Pooley, A. Jain, A. Bewley, A. Herzog, A. Irpan, A. Khazatsky, A. Rai, A. Singh,453

A. Brohan, et al. Open x-embodiment: Robotic learning datasets and rt-x models. arXiv preprint454

arXiv:2310.08864, 2023.455

[47] Z. Liu, A. Bahety, and S. Song. Reflect: Summarizing robot experiences for failure explanation456

and correction. arXiv preprint arXiv:2306.15724, 2023.457

[48] T. Mu, Z. Ling, F. Xiang, D. Yang, X. Li, S. Tao, Z. Huang, Z. Jia, and H. Su. Maniskill:458

Generalizable manipulation skill benchmark with large-scale demonstrations. arXiv preprint459

arXiv:2107.14483, 2021.460

[49] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choromanski, T. Ding, D. Driess,461

A. Dubey, C. Finn, et al. Rt-2: Vision-language-action models transfer web knowledge to462

robotic control. arXiv preprint arXiv:2307.15818, 2023.463

[50] A. Gupta, P. Dollar, and R. Girshick. Lvis: A dataset for large vocabulary instance segmentation.464

In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages465

5356–5364, 2019.466

11



[51] H. Liu, C. Li, Q. Wu, and Y. J. Lee. Visual instruction tuning, 2023.467

[52] H. Liu, C. Li, Y. Li, B. Li, Y. Zhang, S. Shen, and Y. J. Lee. Llava-next: Improved reasoning,468

ocr, and world knowledge, 2024.469

[53] J. Bai, S. Bai, S. Yang, S. Wang, S. Tan, P. Wang, J. Lin, C. Zhou, and J. Zhou. Qwen-vl: A470

frontier large vision-language model with versatile abilities. arXiv preprint arXiv:2308.12966,471

2023.472

[54] Y. Liu, H. Duan, Y. Zhang, B. Li, S. Zhang, W. Zhao, Y. Yuan, J. Wang, C. He, Z. Liu, et al.473

Mmbench: Is your multi-modal model an all-around player? arXiv preprint arXiv:2307.06281,474

2023.475

[55] P. Lu, S. Mishra, T. Xia, L. Qiu, K.-W. Chang, S.-C. Zhu, O. Tafjord, P. Clark, and A. Kalyan.476

Learn to explain: Multimodal reasoning via thought chains for science question answering. In477

The 36th Conference on Neural Information Processing Systems (NeurIPS), 2022.478

[56] A. Singh, V. Natarjan, M. Shah, Y. Jiang, X. Chen, D. Parikh, and M. Rohrbach. Towards vqa479

models that can read. In Proceedings of the IEEE Conference on Computer Vision and Pattern480

Recognition, pages 8317–8326, 2019.481

[57] Y. Li, Y. Du, K. Zhou, J. Wang, W. X. Zhao, and J.-R. Wen. Evaluating object hallucination in482

large vision-language models. arXiv preprint arXiv:2305.10355, 2023.483

[58] D. Gurari, Q. Li, A. J. Stangl, A. Guo, C. Lin, K. Grauman, J. Luo, and J. P. Bigham. Vizwiz484

grand challenge: Answering visual questions from blind people. In Proceedings of the IEEE485

conference on computer vision and pattern recognition, pages 3608–3617, 2018.486

[59] K. Grauman, A. Westbury, E. Byrne, Z. Chavis, A. Furnari, R. Girdhar, J. Hamburger, H. Jiang,487

M. Liu, X. Liu, et al. Ego4d: Around the world in 3,000 hours of egocentric video. In488

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages489

18995–19012, 2022.490

12



7 Appendix491

7.1 Overview492

The Appendix contains the following content.493

• Failure Taxonomy (Appendix 7.2): more thorough definition and figure to discussions494

about the different failure modes.495

• FailGen Data Generation Pipeline (Appendix 7.3): more discussion of FailGen imple-496

mentation with example configurations files.497

• AHA Datasets (Appendix 7.4): more details on the instruction-tuning dataset and evaluation498

datasets.499

• Additional Experimental Results (Appendix 7.5): more details and experiments with500

instruction finetuning.501

• Downstream Robotic Application: VLM Reward Generation (Appendix 7.6): more502

policy rollouts, generated reward function examples, and prompts.503

• Downstream Robotic Application: VLM Task-plan Generation(Appendix 7.7): more504

policy rollouts, generated task-plan examples, and prompts.505

• Downstream Robotic Application: VLM Sub-task Verification(Appendix 7.8): more506

policy rollouts.507

7.2 Failure Taxonomy508

We conducted an in-depth study of recent real-world, diverse robot datasets (such as Open-X [46],509

DROID [45], and EGO4D [59]) and the policies trained using these datasets. Through this analysis,510

we identified several common modes of failure, which can be categorized into seven types: incomplete511

grasp, inadequate grip retention, misaligned keyframe, incorrect rotation, missing rotation, wrong512

action sequence, and wrong target object.513

Incomplete Grasp (No_Grasp) Failure: No_Grasp is an object-centric failure that occurs when the514

gripper reaches the desired grasp pose but fails to close before proceeding to the next keyframe.515

Inadequate Grip Retention (Slip) Failure: Slip is an object-centric failure that occurs after the516

object has been successfully grasped. As the gripper moves the object toward the next task-specific517

keyframe, the grip weakens, causing the object to slip from the gripper. For generating the AHA518

dataset for training and evaluation, we configured a 5-timestep activation for the Slip failure mode,519

triggering the object to drop from the gripper.520

Misaligned keyframe (Translation) Failure: This action-centric failure occurs when the gripper521

moves toward a task keyframe, but a translation offset along the X, Y, or Z axis causes the task to fail.522

For the AHA training and evaluation dataset, we introduced a translation offset of [-0.5, 0.5] meters.523

In the ManiSkill-Fail dataset, we applied a translation noise of [0, 0.1] meters along either the X, Y,524

or Z axis from the original waypoint. The translation coordinate system is depicted in Figure 7 (Left).525

Incorrect Rotation (Rotation) Failure: Rotation is an action-centric failure that occurs when the526

gripper reaches the desired translation pose for the sub-task keyframe, but there is an offset in roll,527

yaw, or pitch, leading to task failure. For the AHA dataset, we set a rotation offset of [-3.14, 3.14] in528

radians along roll, yaw, or pitch. The rotation coordinate system is depicted in Figure 7 (Right).529

Missing Rotation (No_Rotation) Failure: No_Rotation is an action-centric failure that happens530

when the gripper reaches the desired translation pose but fails to achieve the necessary rotation (roll,531

yaw, or pitch) for the sub-task, resulting in task failure.532

Wrong Action Sequence (Wrong_action) Failure: Wrong_action is an action-centric failure that533

occurs when the robot executes actions out of order, performing an action keyframe before the correct534

13



Table 3: AHA datasets for instruction-tuning. We combined RoboFail, our large-scale robotic
manipulation failure dataset, with VQA and object detection data. By incorporating this diverse data
mix into the fine-tuning process, AHA is able to reason about failures in robotic manipulation across
different domains, embodiments, and tasks.

Source AHA (Train) VQA [24] LVIS [50]

Quantity 49K 665K 100K

Query For the given sub-tasks, first determine
it has succeed by choosing from ["yes",
"no"] and then explain the reason why
the current sub-tasks has failed.

What is the cat doing in the image? Find all instances of drawer.

Answer No, The robot gripper rotated with an
incorrect roll angle

The cat is sticking its head into a vase
or container, possibly drinking water or
investigating the interior of the item.

[(0.41, 0.68, 0.03, 0.05), (0.42, 0.73,
0.04, 0.08), ...]

Figure 4: Downstream Robotic Application. We demonstrated that AHA can be integrated into
existing LLM/VLM-assisted robotic applications to provide failure reasoning and feedback, helping
to accelerate and improve task success rates in these systems.

one. For example, in the task put_cube_in_drawer, the robot moves the cube toward the drawer535

before opening it, leading to task failure.536

Wrong Target Object (Wrong_object) Failure: Wrong_object is an object-centric failure that537

occurs when the robot acts on the wrong target object, not matching the language instruction. For538

example, in the task pick_the_red_cup, the gripper picks up the green cup, causing failure. We539

perform a sweep through all manipulable objects, swapping them with the target object in the scene.540

7.3 FailGen Data Generation Pipeline541

We developed FailGen, an environment wrapper that can be easily integrated into any simulator.542

It leverages pre-defined or hand-crafted robot demonstrations for imitation learning, where each543

trajectory is represented as a waypoint-based system. Two consecutive waypoints form a sub-544

task, with each sub-task linked to a predefined set of language descriptions. FailGen allows for545

modifications to environment parameters, such as gripper end-effector translation, rotation, and546

open/close state. By altering these parameters, we systematically generate failures at every waypoint.547

However, for the 79 tasks collected from RLBench, we do not initially know which sub-task will fail548

14



Figure 5: Failure mode reference coordinate systems. (Left) Translation coordinate system, and
(Right) rotation coordinate system.

Table 4: Ablation on Different Base LLMs for Fine-Tuning. We fine-tuned AHA-13B using both LLaMA-
2-13B and Vicuna-1.5-13B as base LLM models. The quantitative results show that the average performance
difference between the two models is less than 2.5%, indicating that our failure formulation and the AHA dataset
are effective regardless of the base model selection.

AHA dataset (Test) ManiSkill-Fail RoboFail
Models ROUGEL ↑ Cos Sim ↑ BinSucc(%) ↑ Fuzzy Match ↑ ROUGEL ↑ Cos Sim ↑ BinSucc(%) ↑ Fuzzy Match ↑ ROUGEL ↑ Cos Sim ↑ BinSucc(%) ↑ Fuzzy Match ↑
AHA-13B (Llama-2) 0.446 0.583 0.702 0.768 0.600 0.681 1.000 0.633 0.280 0.471 0.643 0.465
AHA-13B (Vicuna-1.5) 0.458 0.591 0.709 0.695 0.574 0.657 1.000 0.851 0.290 0.468 0.661 0.605

due to specific failure modes. To address this, we perform a systematic sweep, using RLBench’s built-549

in success conditions to explore all possible combinations. This generates a configuration of failures550

for each task, which we then use to procedurally generate all failure training data. Additionally, we551

manually annotate each sub-task with natural language instructions describing the task, and pair this552

with failure mode explanations to serve as language input for instruction-tuning. Example of the553

configuration files are depicted at Figure 9.554

7.4 AHA Dataset555

Using FailGen, we curated two datasets from RLBench [44]. The first is the training dataset,556

AHA dataset (train), which is used for instruction-tuning AHA alongside the co-train dataset. The557

second is the testing dataset, AHA dataset (test), used for evaluation. AHA dataset (train) contains558

approximately 49k image-query pairs of failures derived from 79 tasks, while AHA dataset (test)559

consists of around 11k image-query pairs from 10 hold-out tasks.560

7.5 Additional Experimental Results561

We conducted additional experiments to better understand and visualize AHA’s predictions. We562

trained two versions of the AHA model with 13B parameters, using different language models for563

fine-tuning: Llama-2-13B and Vicuna-1.5-13B. The results showed less than a 2.5% performance564

difference between the two models, indicating that our fine-tuning data is effective regardless of the565

base language model. These results are presented in Table 4. Additionally, we visualized the output566

predictions from various baselines compared to our model and evaluated performance across all three567

datasets, with the results shown in Figure 5.568

15



Figure 6: (Left) Example of config file of one task for Maniskill-Fal. (Right) Example of config
file for AHA task

Figure 7: Data distribution of AHA dataset for both train and test.

7.6 VLM Reward Generation569

In this section, we present reward functions generated by GPT-4o and AHA for comparison, as shown570

in Figure 9. Additionally, we demonstrate RL policy rollouts improved through AHA ’s failure571

feedback across all five tasks along with all the final dense reward function modified by AHA shown572

in Figure 10 and 11. For all tasks, except put_sphere_on_holder (trained with PPO for 10M steps),573

PPO was trained for 25M steps prior to reflection and evaluation.574

16



Figure 8: Examples of different failure modes. Row 1: No_grasp and Rotation_x. Row 2:
Rotation_y and Rotation_z. Row 3: Slip and Wrong_sequence. Row 4: Translation_x and
Translation_y. Row 5: Translation_z and Wrong_object.

Simulation task Details We describe each of the 4 tasks in detail, along with their Maniskill variations575

and success condition.576

7.6.1 pickup YCB577

Filename: pick_single_ycb.py578

Task: Pick up the single YCB object and lift it up to target height.579

Success Metric: The object position is within goal_thresh (default 0.025) euclidean distance of the580

goal position.581

7.6.2 push T582

Filename: push_T.py583

Task: Push the T into the T shaped area.584

Success Metric: The 3D T block covers at least 90585

17



Table 5: Examples of detection and reasoning over failures by various VLMs. We sampled one
evaluation data point from each of the three evaluation datasets and compared the reasoning predic-
tions generated by different state-of-the-art VLMs alongside our AHA-13B. Our model consistently
provides the most semantically similar reasoning to the ground-truth answers for the given queries.

Evaluation Datasets AHA dataset (Test) Maniskill-Fail RoboFail [47]

Question At the current sub-task, the
robot is picking up the hockey
stick. First, determine whether it
has succeeded by choosing from
["yes", "no"]. If not, explain why
it failed?

At the current sub-task, the robot
is picking up the red cube. First,
determine whether it has suc-
ceeded by choosing from ["yes",
"no"]. If not, explain why it
failed?

At the current sub-task, the robot
is placing the apple into the
bowl. First, determine whether it
has succeeded by choosing from
["yes", "no"]. If not, explain why
it failed?

LLaVA 1.5-13B The image displays a time-lapse
sequence of a robotic arm grab-
bing a hockey stick.

Based on the image, it depicts a
different sub-task of a robot grasp-
ing a red block.

For the pick-up task, i would say
the robot arm has succeeded in
picking.

GPT4o No, the robot arm fails to hold the
hockey stick securely.

Yes, the robot arm has success-
fully picked up the red block.

No, the robot gripper failed to pick
up the bowl in the second frame.

Gemini 1.5 Flash Yes. Yes, Yes, Yes. Frame 1, no the gripper is not
grasping the bowl and move it.

AHA-13B (Ours) No, the robot slip the object out of
its gripper.

No, the robot gripper fails to close
the gripper.

No, this is not the right action se-
quence for the task.

Ground-truth Answer No, the robot slip the object out of
its gripper.

No,the robot gripper fails to close. No, this is not the right action se-
quence for the task.

7.6.3 place sphere586

Filename: place_sphere_v1.py587

Task: Pick up the sphere and place it into the bin.588

Success Metric: the sphere is on top of the bin. That is, the sphere’s xy-distance to the bin goes near589

0, and its z-distance to the bin goes near the sphere radius + the bottom bin block’s side length the590

object is static. That is, its linear and angular velocities are bounded with a small value the gripper is591

not grasping the object.592

7.6.4 stack cube593

Filename: stack_cube_v1.py594

Task: Pick up the red cube and stack it onto the green cube.595

Success Metric: the red cube is on top of the green cube (to within half of the cube size), the red596

cube is static, the red cube is not being grasped by the robot (robot must let go of the cube).597

7.6.5 open drawer598

Filename: open_cabinet_drawer_v1.py599

Task: Pull open the drawer.600

Success Metric: The drawer is open at least 90% of the way, and the angular/linear velocities of the601

drawer link are small.602

18



Figure 9: (Left) Example of improved dense reward function using GPT-4o for reflection. (Right)
Example of improved dense reward function using AHA for reflection

7.7 VLM Task-plan Generation603

In this section, we present the policy rollouts improved by AHA in Figure 12, along with the modified604

task plans in Figure 13.605

Simulation task Details We describe each of the 3 tasks in detail, along with their PyBullet variations606

and success condition.607

7.7.1 put banana centre608

Filename: ours_raven_ycb_pick.py609

Task: Pick up the banana and place it onto the centre of the table.610

Success Metric: The success condition on the final location of the banana with respect to the table611

area.612

7.7.2 stack banana613

Filename: ours_ycb_banana_spam_stack.py614

Task: Pick up the banana and place it onto the spam can.615

Success Metric: The position of the banana should be on the spam can, and rest stably.616

7.7.3 stacks cubes617

Filename: ours_raven_bowl_stack.py618

Task: Pick up the green cube and place into the green bowl, and then take the yellow cube and stack619

it on top of the green.620

Success Metric: When the yellow cube is stably stack on top of the green in the green bowl.621

7.8 VLM Sub-task Verification622

In this section, we leverage Manipulate-Anything [22] as the main policy framework, integrating623

it with AHA. AHA functions as a sub-task verifier VLM, playing a crucial role in ensuring task624

success when using Manipulate-Anything. Examples of the roll-outs are shown in Figure 14.625

19



Figure 10: RL policy roll-outs via improved with AHA. Row 1: pickup_YCB. Row 2: push_T.
Row 3: Place_sphere. Row 4: stack_cube. Row 5: open_drawer

Simulation task Details We describe each of the 4 tasks in detail, along with their RLBench variations626

and success condition.627

7.8.1 put block628

Filename: put_block.py629

Task: Pick up the green block and place it on the red mat.630

Success Metric: The success condition on the red mat detects the target green block.631

7.8.2 pickup cup632

Filename: pickup_cup.py633

Task: Pick up the red cup.634

Success Metric: Lift up the red cup above the pre-defined location.635

7.8.3 sort mustard636

Filename: sort_mustard.py637

Task: Pick up the yellow mustard bottle, and place it into the red container.638

20



Figure 11: Examples of modified reward function via AHA

Success Metric: The yellow mustard bottle inside red container.639

7.8.4 pick & lift640

Filename: pick_and_lift.py641

Task: Pick up the red cube.642

Success Metric: The red cube is lifted up.643

21



Figure 12: TAMP policy roll-outs via improved with AHA. Row 1: put_banana_centre. Row 2:
stack_banana. Row 3: stack_cubes

22



Figure 13: Examples of modified task-plan via AHA

23



Figure 14: Examples of zero-shot data generator trajectories with AHA as sub-tasks verifier.
Row 1: pickup_cube, pickup_cup. Row 2: put_block, sort_mustard

24


	Introduction
	Related Work
	The Aha Dataset
	Implementation of the Aha dataset

	Method
	Failure Reasoning Formulation
	Synthetic Data for Instruction-tuning
	Instruction Fine-tuning

	Experimental Results
	Experimental Setup
	Quantitative Experimental Results
	Downstream Robotics Tasks

	Conclusion
	Appendix
	Overview
	Failure Taxonomy
	FailGen Data Generation Pipeline
	Aha Dataset
	Additional Experimental Results
	VLM Reward Generation
	pickup YCB
	push T
	place sphere
	stack cube
	open drawer

	VLM Task-plan Generation
	put banana centre
	stack banana
	stacks cubes

	VLM Sub-task Verification
	put block
	pickup cup
	sort mustard
	pick & lift



