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Abstract
We present an approach to model-based RL that
achieves a new state of the art performance on the
challenging Craftax-classic benchmark, an open-
world 2D survival game that requires agents to
exhibit a wide range of general abilities—such
as strong generalization, deep exploration, and
long-term reasoning. With a series of careful
design choices aimed at improving sample effi-
ciency, our MBRL algorithm achieves a reward of
69.66% after only 1M environment steps, signifi-
cantly outperforming DreamerV3, which achieves
53.2%, and, for the first time, exceeds human per-
formance of 65.0%. Our method starts by con-
structing a SOTA model-free baseline, using a
novel policy architecture that combines CNNs and
RNNs. We then add three improvements to the
standard MBRL setup: (a) “Dyna with warmup”,
which trains the policy on real and imaginary
data, (b) “nearest neighbor tokenizer” on image
patches, which improves the scheme to create the
transformer world model (TWM) inputs, and (c)
“block teacher forcing”, which allows the TWM
to reason jointly about the future tokens of the
next timestep.

1. Introduction
Reinforcement learning (RL) (Sutton & Barto, 2018) pro-
vides a framework for training agents to act in environments
so as to maximize their rewards. Online RL algorithms
interleave taking actions in the environment—collecting ob-
servations and rewards—and updating the policy using the
collected experience. Online RL algorithms often employ
a model-free approach (MFRL), where the agent learns a
direct mapping from observations to actions, but this can
require a lot of data to be collected from the environment.
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Figure 1: Reward on Craftax-classic. Our best MBRL
and MFRL agents outperform all the previously published
MFRL and MBRL results, and for the first time, surpass the
reward achieved by a human expert. We display published
methods which report the reward at 1M steps with horizon-
tal line from 900k to 1M steps.

Model-based RL (MBRL) aims to reduce the amount of data
needed to train the policy by also learning a world model
(WM), and using this WM to plan “in imagination”.

To evaluate sample-efficient RL algorithms, it is common to
use the Atari-100k benchmark (Kaiser et al., 2019). How-
ever, although the benchmark encompasses a variety of
skills (memory, planning, etc), each individual game typi-
cally only emphasizes one or two such skills. To promote
the development of agents with broader capabilities, we
focus on the Crafter domain (Hafner, 2021), a 2D version of
Minecraft that challenges a single agent to master a diverse
skill set. Specifically, we use the Craftax-classic environ-
ment (Matthews et al., 2024), a fast, near-replica of Crafter,
implemented in JAX (Bradbury et al., 2018). Key features of
Craftax-classic include: (a) procedurally generated stochas-
tic environments (at each episode the agent encounters a
new environment sampled from a common distribution); (b)
partial observability, as the agent only sees a 63× 63 pixel
image representing a local view of the agent’s environment,
plus a visualization of its inventory (see Figure 2[left]); and
(c) an achievement hierarchy that defines a sparse reward
signal, requiring deep and broad exploration.

In this paper, we study improvements to MBRL methods,
based on transformer world models (TWM), in the context
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Figure 2: [Left] The Craftax-classic observation is a 63×63
pixel image, composed of 9×9 patches of 7×7 pixels. The
observation shows the map around the agent and the agent’s
health and inventory. Here we have rendered the image at
144× 144 pixels for visibility. [Right] 64 different patches.

of the Craftax-classic environment. We make contributions
across the following three axes: (a) how the TWM is used
(Section 3.4); (b) the tokenization scheme used to create
TWM inputs (Section 3.5); (c) and how the TWM is trained
(Section 3.6). Collectively, our improvements result in an
agent that, with only 1M environment steps, achieves a
Craftax-classic reward of 69.66% and a score of 31.77%,
significantly improving over the previous state of the art
(SOTA) reward of 53.20% (Hafner et al., 2023) and the
previous SOTA score of 19.4% (Kauvar et al., 2023)1.

Our first contribution relates to the way the world model
is used: in contrast to recent MBRL methods like IRIS
(Micheli et al., 2022) and DreamerV3 (Hafner et al., 2023),
which train the policy solely on imagined trajectories (gen-
erated by the world model), we train our policy using both
imagined rollouts from the world model and real experi-
ences collected in the environment. This is similar to the
original Dyna method (Sutton, 1990), although this tech-
nique has been abandoned in recent work. In this hybrid
regime, we can view the WM as a form of generative data
augmentation (Van Hasselt et al., 2019).

Our second contribution addresses the tokenizer which con-
verts between images and tokens that the TWM ingests and
outputs. Most prior work uses a vector quantized variational
autoencoder (VQ-VAE, Van Den Oord et al. 2017), e.g.
IRIS (Micheli et al., 2022), DART (Agarwal et al., 2024).
These methods train a CNN to process images into a fea-

1The score S is given by the geometric mean of the success rate
si for each of the N = 22 achievements; this puts more weight
on occasionally solving many achievements than on consistently
solving a subset. More precisely, the score is given by S =

exp
(

1
N

∑N
i=1 ln(1 + si)

)
−1, where si ∈ [0, 100] is the success

percentage for achievement i (i.e., fraction of episodes in which
the achievement was obtained at least once). By contrast, the
rewards are just the expected sum of rewards, or in percentage, the
arithmetic mean R = 1

N

∑N
i=1 si (ignoring minor contributions to

the reward based on the health of the agent). The score and reward
are correlated, but are not the same. Unlike some prior work, we
report both metrics to make comparisons easier.

ture map, whose elements are then quantized into discrete
tokens, using a codebook. The sequence of observation
tokens across timesteps is used, along with the actions and
rewards, to train the WM. We propose two improvements to
the tokenizer. First, instead of jointly quantizing the image,
we split the image into patches and independently tokenize
each patch. Second, we replace the VQ-VAE with a simpler
nearest-neighbor tokenizer (NNT) for patches. Unlike VQ-
VAE, NNT ensures that the “meaning” of each code in the
codebook is constant through training, which simplifies the
task of learning a reliable WM.

Our third contribution addresses the way the world model
is trained. TWMs are trained by maximizing the log likeli-
hood of the sequence of tokens, which is typically generated
autoregressively both over time and within a timeslice. We
propose an alternative, which we call block teacher forc-
ing (BTF), that allows TWM to reason jointly about the
possible future states of all tokens within a timestep, before
sampling them in parallel and independently given the his-
tory. With BTF, imagined rollouts for training the policy are
both faster to sample and more accurate.

Our final contributions are some minor architectural changes
to the MFRL baseline upon which our MBRL approach is
based. These changes are still significant, resulting in a
simple MFRL method that is much faster than Dreamer V3
and yet obtains a much better average reward and score.

Our improvements are complementary to each other, and
can be combined into a “ladder of improvements”—similar
to the “Rainbow” paper’s (Hessel et al., 2018) series of
improvements on top of model-free DQN agents.

2. Related Work
In this section, we discuss related work in MBRL — see
e.g. Moerland et al. (2023); Murphy (2024); OpenDILab for
more comprehensive reviews. We can broadly divide MBRL
along two axes. The first axis is whether the world model
(WM) is used for background planning (where it helps train
the policy by generating imagined trajectories), or decision-
time planning (where it is used for lookahead search at
inference time). The second axis is whether the WM is
a generative model of the observation space (potentially
via a latent bottleneck) or whether is a latent-only model
trained using a self-prediction loss (which is not sufficient
to generate full observations).

Regarding the first axis, prominent examples of decision-
time planning methods that leverage a WM include MuZero
(Schrittwieser et al., 2020) and EfficientZero (Ye et al.,
2021), which use Monte-Carlo tree search over a discrete
action space, as well as TD-MPC2 (Hansen et al., 2024),
which uses the cross-entropy method over a continuous ac-
tion space. Although some studies have shown that decision-
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time planning can sometimes be better than background
planning (Alver & Precup, 2024), it is much slower, es-
pecially with large WMs such as transformers, since it re-
quires rolling out future hypothetical trajectories at each
decision-making step. Therefore in this paper, we focus on
background planning (BP). Background planning originates
from Dyna (Sutton, 1990), which focused on tabular Q-
learning. Since then, many papers have combined the idea
with deep RL methods: World Models (Ha & Schmidhu-
ber, 2018b), Dreamer agents (Hafner et al., 2020a;b; 2023),
SimPLe (Kaiser et al., 2019), IRIS (Micheli et al., 2022), ∆-
IRIS (Micheli et al., 2024), Diamond (Alonso et al., 2024),
DART (Agarwal et al., 2024), etc.

Regarding the second axis, many methods fit generative
WMs of the observations (images) using a model with low-
dimensional latent variables, either continuous (as in a VAE)
or discrete (as in a VQ-VAE). This includes our method and
most background planning methods above 2. In contrast,
other methods fit non-generative WMs, which are trained
using self-prediction loss—see Ni et al. (2024) for a detailed
discussion. Non-generative WMs are more lightweight
and therefore well-suited to decision-time planning with
its large number of WM calls at every decision-making
step. However, generative WMs are generally preferred for
background planning, since it is easy to combine real and
imaginary data for policy learning, as we show below.

In terms of the architecture of the WM, many state-of-the-
art models use transformers, e.g. IRIS (Micheli et al., 2022),
∆-IRIS (Micheli et al., 2024), DART (Agarwal et al., 2024).
Notable exceptions are DreamerV2/3 (Hafner et al., 2020b;
2023), which use recurrent state space models, although
improved transformer variants have been proposed (Robine
et al., 2023; Zhang et al., 2024; Chen et al., 2022).

3. Methods
Here, we describe the components of our system, each of
which improves performance, as we show in Section 4.

3.1. MFRL Baseline

Our starting point is the previous SOTA MFRL approach
which was proposed as a baseline in Moon et al. (2024)3.
This method achieves a reward of 46.91% and a score of
15.60% after 1M environment steps. This approach trains
a stateless CNN policy without frame stacking using the
PPO method (Schulman et al., 2017), and adds an entropy

2A notable exception is Diamond (Alonso et al., 2024), which
fits a diffusion world model directly in pixel space, rather than
learning a latent WM.

3The authors’ main method uses external knowledge about the
achievement hierarchy of Crafter, so cannot be compared with
other general methods. We use their baseline instead.

penalty to ensure sufficient exploration. The CNN used is a
modification of the Impala ResNet (Espeholt et al., 2018a).

3.2. MFRL Improvements

We improve on this MFRL baseline by both increasing the
model size and adding a RNN (specifically a GRU) to give
the policy memory. Interestingly, we find that naively in-
creasing the model size harms performance, while combin-
ing a larger model with a carefully designed RNN helps
(see Section 4.3). When varying the ratio of the RNN
state dimension to the CNN encoder dimension, we observe
that performance is higher when the hidden state is low-
dimensional. Our intuition is that the memory is forced to
focus on the relevant bits of the past that cannot be extracted
from the current image.

We concatenate the GRU output to the image embedding,
and then pass this to the actor and critic networks, rather than
directly passing the GRU output. Algorithm 2, Appendix
A.1, presents a pseudocode for our MFRL agent.

With these architectural changes, we increase the reward
to 55.49% and the score to 16.77%. This result is notable
since our MFRL agent beats the considerably more com-
plex (and much slower) DreamerV3 agent, which obtains
a reward of 53.20% and a score of 14.5. It also beats other
MBRL methods, such as IRIS (Micheli et al., 2022) (reward
of 25.0%) and ∆-IRIS (Micheli et al., 2024) 4 (reward of
35.0%). In addition, our MFRL agent only takes 15 minutes
to train for 1M environment steps on one A100 GPU.

3.3. MBRL baseline

We now describe our MBRL baseline, which combines
our MFRL baseline above with a transformer world model
(TWM)—as in IRIS (Micheli et al., 2022). Following IRIS,
our MBRL baseline uses a VQ-VAE, which quantizes the
8×8 feature map Zt of a CNN to create a set of latent codes,
(q1t , . . . , q

L
t ) = enc(Ot), where L = 64, qit ∈ {1, . . . ,K}

is a discrete code, and K = 512 is the size of the codebook.
These codes are then passed to a TWM, which is trained
using teacher forcing—see Equation (2) below. Our MBRL
baseline achieves a reward of 31.93%, and improves over
the reported results of IRIS, which reaches 25.0%.

Although these MBRL baselines leverage recent advances
in generative world modeling, they are largely outperformed
by our best MFRL agent. This motivates us to enhance our
MBRL agent, which we explore in the following sections.

4This is consistent with results on Atari-100k, which show that
well-tuned model-free methods, such as BBF (Schwarzer et al.,
2023), can beat more sophisticated model-based methods.
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3.4. MBRL using Dyna with warmup

As discussed in Section 1, we propose to train our MBRL
agent on a mix of real trajectories (from the environment)
and imaginary trajectories (from the TWM), similar to Dyna
(Sutton, 1990). Algorithm 1 presents the pseudocode for
our MBRL approach. Specifically, unlike many other re-
cent MBRL methods (Ha & Schmidhuber, 2018a; Micheli
et al., 2022; 2024; Hafner et al., 2020b; 2023) which train
their policies exclusively using world model rollouts (Step
4), we include Step 2 which updates the policy with real
trajectories. Note that, if we remove Steps 3 and 4 in Al-
gorithm 1, the approach reduces to MFRL. The function
rollout(O1, πΦ, T,M) returns a trajectory of length T gen-
erated by rolling out the policy πΦ from the initial state
O1 in either the true environment Menv or the world model
MΘ. A trajectory contains collected observations, actions
and rewards during the rollout τ = (O1:T+1, a1:T , r1:T ).
Algorithm 4 in Appendix A.3 details the rollout procedure.
We discuss other design choices below.

PPO. Since PPO (Schulman et al., 2017) is an on-policy
algorithm, trajectories should be used for policy updates
immediately after they are collected or generated. For this
reason, policy updates with real trajectories take place in
Step 2 immediately after the data is collected. An alternative
approach is to use an off-policy algorithm and mix real and
imaginary data into the policy updates in Step 4, hence
removing Step 2. We leave this direction as future work.

Rollout horizon. We set TWM ≪ Tenv, to avoid the problem
of compounding errors due to model imperfections (Lambert
et al., 2022). However, we find it beneficial to use TWM ≫ 1,
consistent with Holland et al. (2018); Van Hasselt et al.
(2019), who observed that the Dyna approach with TWM = 1
is no better than MFRL with experience replay.

Multiple updates. Following IRIS, we update TWM N iters
WM

times and the policy on imagined trajectories N iters
AC times.

Warmup. When mixing imaginary trajectories with real
ones, we need to ensure the WM is sufficiently accurate
so that it does not harm policy learning. Consequently,
we only begin training the policy on imaginary trajectories
after the agent has interacted with the environment for TBP
steps, which ensures it has seen enough data to learn a
reliable WM. We call this technique “Dyna with warmup”.
In Section 4.3, we show that removing this warmup, and
using TBP = 0, drops the reward dramatically, from 67.42%
to 33.54%. We additionally show that removing the Dyna
method (and only training the policy in imagination) drops
the reward to 55.02%.

3.5. Patch nearest-neighbor tokenizer

Many MBRL methods based on TWMs use a VQ-VAE to
map between images and tokens. In this section, we de-

Algorithm 1 MBRL agent. See Appendix A.3 for details.

Input: number of environments Nenv,
environment dynamics Menv,
rollout horizon for environment Tenv and for TWM TWM,
background planning starting step TBP,
total number of environment steps Ttotal,
number of TWM updates N iters

WM and policy updates N iters
AC

Initialize: observations On
1 ∼ Menv for n = 1 : Nenv,

data buffer D = ∅,
TWM model M and parameters Θ,
AC model π and parameters Φ,
number of environment steps t = 0.
repeat

// 1. Collect data from environment
τnenv = rollout(On

1 , πΦ, Tenv,Menv), n = 1 : Nenv
D = D ∪ τ1:Nenv ; O1:N

1 = τ1:Nenv [−1] ; t+ = NenvTenv

// 2. Update policy on environment data
Φ = PPO-update-policy(Φ, τ1:Nenv )

// 3. Update world model
for it = 1 to N iters

WM do
τnreplay = sample-trajectory(D, TWM), n = 1 : Nenv

Θ = update-world-model(Θ, τ1:Nenv
replay )

end for

// 4. Update policy on imagined data
if t ≥ TBP then

for it = 1 to N iters
AC do

Õn
1 = sample-obs(D), n = 1 : Nenv

τnWM = rollout(Õn
1 , πΦ, TWM,MΘ), n = 1 : Nenv

Φ = PPO-update-policy(Φ, τ1:Nenv
WM )

end for
end if

until t ≥ Ttotal

scribe our alternative which leverages a property of Craftax-
classic: each observation is composed of 9× 9 patches of
size 7 × 7 each (see Figure 2[left]). Hence we propose to
(a) factorize the tokenizer by patches and (b) use a simpler
nearest-neighbor style approach to tokenize the patches.

Patch factorization. Unlike prior methods which process
the full image O into tokens (q1, . . . , qL) = enc(O), we
first divide O into L non-overlapping patches (p1, . . . , pL)
which are independently encoded into L tokens:

(q1, . . . , qL) = (enc(p1), . . . , enc(pL)) .

To convert the discrete tokens back to pixel space, we just
decode each token independently into patches, and rearrange
to form a full image:

(p̂1, . . . , p̂L) = (dec(q1), . . . , dec(qL)) .
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Factorizing the VQ-VAE on the L = 81 patches of each
observation boosts performance from 43.36% to 58.92%.

Nearest-neighbor tokenizer. On top of patch factorization,
we propose a simpler nearest-neighbor tokenizer (NNT)
to replace the VQ-VAE. The encoding operation for each
patch p ∈ [0, 1]h×w×3 is similar to a nearest neighbor
classifier w.r.t the codebook. The difference is that, if
the nearest neighbor is too far away, we add a new code
equal to p to the codebook. More precisely, let us denote
CNN = {e1, . . . , eK} the current codebook, consisting of K
codes ei ∈ [0, 1]h×w×3, and τ a threshold on the Euclidean
distance. The NNT encoder is defined as:

q = enc(p) =

 argmin
1≤i≤K

∥p− ei∥22 if min
1≤i≤K

∥p− ei∥22 ≤ τ

K + 1 otherwise.
(1)

The codebook can be thought of as a greedy approximation
to the coreset of the patches seen so far (Mirzasoleiman
et al., 2020). To decode patches, we simply return the code
associated with the codebook index, i.e. dec(qi) = eqi .

A key benefit of NNT is that once codebook entries are
added, they are never updated. A static yet growing code-
book makes the target distribution for the TWM stationary,
greatly simplifying online learning for the TWM. In contrast,
the VQ-VAE codebook is continually updated, meaning the
TWM must learn from a non-stationary distribution, which
results in a worse WM. Indeed, we show in Section 4.1 that
with patch factorization, and when h = w = 7—meaning
that the patches are aligned with the observation—replacing
the VQ-VAE with NNT boosts the agent’s reward from
58.92% to 64.96%. Figure 2[right] shows an example of
the first 64 code patches extracted by our NNT.

The main disadvantages of our approach are that (a) patch
tokenization can be sensitive to the patch size (see Fig-
ure 5[left]), and (b) NNT may create a large codebook if
there is a lot of appearance variation within patches. In
Craftax-classic, these problems are not very severe due to
the grid structure of the game and limited sprite vocabulary
(although continuous variations exist due to lighting and
texture randomness).

3.6. Block teacher forcing

Transformer WMs are typically trained by teacher forcing
which maximizes the log likelihood of the token sequence
generated autoregressively over time and within a timeslice:

LTF = log

T∏
t=1

L∏
i=1

Li
t , Li

t = p(qit+1|q1:L1:t , q
1:i−1
t+1 , a1:t) (2)

We propose a more effective alternative, which we call block
teacher forcing (BTF). BTF modifies both the supervision
and the attention of the TWM. Given the tokens from the

TWM

Attention maskSupervision

TWM
Teacher forcing with 
causal attention

Block teacher 
forcing with block 
causal attention

Block teacher forcing

Figure 3: Approaches for TWM training with L = 2, T =
2. qℓt denotes token ℓ of timestep t. Tokens in the same
timestep have the same color. We exclude action tokens for
simplicity. [Top] Usual autoregressive model training with
teacher forcing. [Bottom] Block teacher forcing predicts
token qℓt+1 from input token qℓt with block causal attention.

previous timesteps, BTF independently predicts all the latent
tokens at the next timestep, removing the conditioning on
previously generated tokens from the current step:

LBTF = log

T∏
t=1

L∏
i=1

L̃i
t , L̃i

t = p(qit+1|q1:L1:t , a1:t) (3)

Importantly BTF uses a block causal attention pattern (see
Figure 3), in which tokens within the same timeslice are
decoded in-parallel in a single forward pass. This attention
structure allows the model to reason jointly about the pos-
sible future states of all tokens within a timestep, before
sampling the tokens with independent readouts. This prop-
erty mitigates autoregressive drift. As a result, BTF returns
more accurate TWMs than fully AR approaches. Overall,
adding BTF increases the reward from 64.96% to 67.42%.
In addition, we find that BTF is twice as fast, even though
in theory, with key-value caching, BTF and AR both have
complexity O(L2T ) for generating all the L tokens at one
timestep, and O(L2T 2) for generating the entire rollout.
Finally, BTF shares a similarity with Retentive Environment
Models (REMs) (Cohen et al., 2024) in their joint predic-
tion of next-frame tokens. However, while REMs employ
a retentive network (Sun et al., 2023), BTF offers broader
applicability across any transformer architecture.

4. Results
In this section, we report our experimental results on the
Craftax-classic benchmark. Each experiment is run on 8
H100 GPUs. All methods are compared after interacting
with the environment for Ttotal = 1M steps. All the methods
collect trajectories of length Tenv = 96 in Nenv = 48 envi-
ronment (in parallel). For MBRL methods, the imaginary
rollouts are of length TWM = 20, and we start generating
these (for policy training) after TBP = 200k environment
steps. We update the TWM N iters

WM = 500 times and the
policy N iters

AC = 150 times. For all metrics, we report the
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Table 1: Results on Craftax-classic after 1M environment interactions. * denotes results on Crafter, which may not exactly
match Craftax-classic. — means unknown. †denotes the reported timings on a single A100 GPU. Our DreamerV3 results are
based on the code from the author, but differ slightly from the reported number, perhaps due to hyperparameter discrepancies.
IRIS and ∆-IRIS do not report standard errors for the score.

Method Parameters Reward (%) Score (%) Time (min)

Human Expert NA ∗65.0± 10.5 ∗50.5± 6.8 NA

M1: Baseline 60.0M 31.93± 2.22 4.98± 0.50 560
M2: M1 + Dyna 60.0M 43.36± 1.84 8.85± 0.63 563

M3: M2 + patches 56.6M 58.92± 1.03 19.36± 1.42 746
M4: M3 + NNT 58.5M 64.96± 1.13 25.55± 0.86 1328

M5: M4 + BTF. Our best MBRL (fast) 58.5M 67.42± 0.55 27.91± 0.63 759
M5: M4 + BTF. Our best MBRL (slow) 58.5M 69.66± 1.20 31.77± 1.43 2749

Previous best MFRL (Moon et al., 2024) 4.0M ∗46.91± 2.41 ∗15.60± 1.66 —
Previous best MFRL (our implementation) 4.0M 47.40± 0.58 10.71± 0.29 26

Our best MFRL 55.6M 55.49± 1.33 16.77± 1.11 15

DreamerV3 (Hafner et al., 2023) 201M ∗53.2± 8. ∗14.5± 1.6 —
Our DreamerV3 201M 47.18± 3.88 — 2100

IRIS (Micheli et al., 2022) 48M ∗25.0± 3.2 ∗6.66 †8330
∆-IRIS (Micheli et al., 2024) 25M ∗35.0± 3.2 ∗9.30 †833

Curious Replay (Kauvar et al., 2023) — — ∗19.4± 1.6 —-

mean and standard error over 10 seeds as x(±y).

4.1. Climbing up the MBRL ladder

First, we report the normalized reward (the reward divided
by the maximum reward of 22) for a series of agents that
progressively climb our “MBRL ladder” of improvements
in Section 3. Figure 4 shows the reward vs. the number
of environment steps for the following methods, which we
detail in Appendix A.2:
• M1: Baseline. Our baseline MBRL agent, described in
Section 3.3, reaches a reward of 31.93%, and improves over
IRIS, which gets 25.0%.
• M2: M1 + Dyna. Training the policy on both (real)
environment and (imagined) TWM trajectories, as described
in Section 3.4, increases the reward to 43.36%.
• M3: M2 + patches. Factorizing the VQ-VAE over the
L = 81 observation patches, as presented in Section 3.5,
increases the reward to 58.92%.
• M4: M3 + NNT. With patch factorization, replacing the
VQ-VAE with NNT, as presented in Section 3.5, further
boosts the reward to 64.96%.
• M5: M4 + BTF. Our best MBRL (fast): Incorporating
BTF, as described in Section 3.6, leads to our best agent.
It achieves a reward of 67.42%, while BTF reduces the
training time by a factor of two.
• M5: M4 + BTF. Our best MBRL (slow): By increasing
the number of TWM training steps to N iters

WM = 4k, we obtain
our best agent, which reaches a reward of 69.66%. However,
due to substantial training times (∼ 2 days), we do not
include this agent in our ablation studies (Section 4.3) and
comparative studies (Section 4.4).

As in IRIS (Micheli et al., 2022), methods M1-3 use a

codebook size of 512. For M4 and M5, which use NNT,
we found it critical to use a larger codebook size of K =
4096 and a threshold of τ = 0.75. Interestingly, when
training in imagination begins (at step TBP = 200k), there
is a temporary drop in performance as the TWM rollouts do
not initially match the true environment dynamics, resulting
in a distribution shift for the policy.
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Figure 4: The ladder of improvements presented in Sec-
tion 3 progressively transforms our baseline MBRL agent
into a state-of-the-art method on Craftax-classic, reaching
a reward of 69.66 (averaged over 10 seeds) after 1M envi-
ronment steps. Training in imagination starts at step 200k,
indicated by the dotted vertical line.

4.2. Comparison to existing methods

Figure 1 compares the performance of our best MBRL and
MFRL agents against various previous methods. See also
Figure 9 in Appendix B for a plot of the score, and Table 1
for a detailed numerical comparison of the final performance.
First, we observe that our best MFRL agent outperforms
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Figure 5: [Left] MBRL performance decreases when NNT uses patches of smaller or larger size than the ground truth, but it
remains competitive. However, performance collapses if the patches are not quantized. [Middle] Removing any rung of the
ladder of improvements leads to a drop in performance. [Right] Warming up the world model before using it to train the
policy on imaginary rollouts is required for good performance. BP denotes background planning. For each method, training
in imagination starts at the color-coded vertical line, and leads to an initial drop in performance.

almost all of the previously published MFRL and MBRL
results, reaching a reward of 55.49% and a score of 16.77%5.
Second, our best MBRL agent achieves a new SOTA reward
of 69.66% and a score of 31.77%. This marks the first agent
to surpass human-level reward, derived from 100 episodes
played by 5 human expert players (Hafner, 2021). Note
that although we achieve superhuman reward, our score is
significantly below that of a human expert.

4.3. Ablation studies

We conduct ablation studies to assess the importance of
several components of our proposed MBRL agent. Results
are presented in Figure 5 and Table 2. All the TWMs are
trained for N iters

WM = 500 steps.

Impact of patch size. We investigate the sensitivity of
our approach to the patch size used by NNT. While our
best results are achieved when the tokenizer uses the oracle-
provided ground truth patch size of 7 × 7, Figure 5[left]
shows that performance remains competitive when using
smaller (5× 5) or larger (9× 9) patches.

The necessity of quantizing. Figure 5[left] shows that,
when the 7 × 7 patches are not quantized, but instead the
TWM is trained to reconstruct the continuous 7× 7 patches,
MBRL performance collapses. This is consistent with find-
ings in DreamerV2 (Hafner, 2021), which highlight that
quantization is critical for learning an effective world model.

Each rung matters. To isolate the impact of each individual
improvement, we remove each individual “rung” of our
ladder from our best MBRL agent. As shown in Figure
5[middle], each removal leads to a performance drop. This
underscores the importance of combining all our proposed
enhancements to achieve SOTA performance.

5The only exception is Curious Replay (Kauvar et al., 2023),
which builds on DreamerV3 with prioritized experience replay
(PER) to train the WM. However, PER is only better on a few
achievements; this improves the score but not the reward.

When to start training in imagination? Training the policy
on imaginary TWM rollouts requires a reasonably accurate
world model. This is why background planning (Step 4
in Algorithm 1) only begins after TBP environment steps.
Figure 5[right] explores the effect of varying TBP. Initiating
imagination training too early (TBP = 0) leads to perfor-
mance collapse due to the inaccurate TWM dynamics.

MFRL ablation. The final 3 rows in Table 2 show that
either removing the RNN or using a smaller model as in
Moon et al. (2024) leads to a drop in performance.

Table 2: Ablations results.

Method Reward (%) Score (%)

Our best MBRL (fast) 67.42± 0.55 27.91± 0.63

5× 5 quantized 57.28± 1.14 18.26± 1.18
9× 9 quantized 45.55± 0.88 10.12± 0.40
7× 7 continuous 21.20± 0.55 2.43± 0.09

Remove Dyna 55.02± 5.34 18.79± 2.14
Remove NNT 60.66± 1.38 21.79± 1.33

Remove NNT & patches 45.86± 1.42 10.36± 0.69
Remove BTF 64.96± 1.13 25.55± 0.86

Use TBP = 0 33.54± 10.09 12.86± 4.05

Best MFRL 55.49± 1.33 16.77± 1.11
Remove RNN 41.82± 0.97 8.33± 0.44
Smaller model 51.35± 0.80 12.93± 0.56

Annealing the number of policy updates: We linearly
increase the number of policy updates on imaginary rollouts
in Step 4 of Algorithm 1 from N iters

AC = 0 (when Ttotal = 0) to
N iters

AC = 300 (when Ttotal = 1M). This annealing technique
achieves a reward of 65.71%(±1.11), while removing the
drop in performance observed when we start training in
imagination. See Figure 10 Appendix C.

4.4. Comparing TWM rollouts

In this section, we compare the TWM rollouts learned by
three world models in our ladder, namely M1, M3 and our
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Figure 6: Rollout comparison for world models M1, M3 and M5 (fast). [Left] Symbol accuracies decrease with the TWM rollout step.
The stationary NNT codebook used by M5 makes it easier to learn a reliable TWM. [Right] Best viewed zoomed in. Map. All three
models accurately capture the agent’s motion. All models can struggle to use the history to generate a consistent map when revisiting
locations, however only M1 makes simple map errors in successive timesteps. Feasible hallucinations. M3 and M5 generate realistic
hallucinations that respect the game dynamics, such as spawning mobs and losing health. Infeasible hallucinations. M1 often does not
respect game dynamics; M1 incorrectly adds wood inventory, and incorrectly places a plant at the wrong timestep without the required
sapling inventory. M3 exhibits some infeasible hallucinations in which the monster suddenly disappears or the spawned cow has an
incorrect appearance. M5 rarely exhibits infeasible hallucinations. Figure 12 in Appendix D.4 shows more rollouts with similar behavior.

best model M5 (fast). To do so, we first create an evaluation
dataset of Neval = 160 trajectories, each of length Teval =
TWM = 20, collected during the training of our best MFRL
agent: Deval =

{
O1:Neval

1:Teval+1, a
1:Neval
1:Teval

, r1:Neval
1:Teval

}
. We evaluate

the quality of imagined trajectories generated by each TWM.
Given a TWM checkpoint at 1M steps and the nth trajectory
in Deval, we execute the sequence of actions an1:Teval

, starting
from On

1 , to obtain a rollout trajectory ÔTWM, n
1:Teval+1.

Quantitative evaluations. For evaluation, we leverage an
appealing property of Craftax-classic: each observation Ot

comes with an array of ground truth symbols St = (S1:R
t ),

with R = 145. Given 100k pairs (Ot, St), we train a CNN
fµ, to predict the symbols from the observation; fµ achieves
a 99% validation accuracy. Next, we use fµ to predict the
symbols from the generated rollouts. Figure 6[left] displays
the average symbol accuracy at each timestep t:

At =
1

NevalR

Neval∑
n=1

R∑
r=1

1(fr
µ(Ô

TWM, n
t ), Sr,n

t ), ∀t,

where 1(x, y) = 1 iff. x = y (and 0 o.w.), Sr,n
t denotes the

ground truth rth symbol in the array Sn
t associated with On

t ,
and fr

µ(Ô
TWM, n
t ) its prediction for the rollout observation.

As expected, symbol accuracies decrease with t as mistakes
compound over the rollouts. Our best method, which uses
NNT, achieves the highest accuracies for all timesteps, as
it best captures the game dynamics. This highlights that a
stationary codebook makes TWM learning simpler.

We include two additional quantitative evaluations in Ap-
pendix D, showing that M5 achieves the lowest tokenizer
reconstruction errors and rollout reconstruction errors.

Qualitative evaluations. Due to environment stochasticity,
TWM rollouts can differ from the environment rollout but

still be useful for learning in imagination—as long as they
respect the game dynamics. Visual inspection of rollouts in
Figure 6[right] reveals (a) map inconsistencies, (b) feasible
hallucinations that respect the game dynamics and (c) infea-
sible hallucinations. M1 can make simple mistakes in both
the map and the game dynamics. M3 and M5 both generate
feasible hallucinations of mobs, however M3 more often
hallucinates infeasible rollouts.

4.5. Craftax Full

Table 3: Results on Craftax after 1M environment interac-
tions. The previous SOTA scores are unknown.

Method Reward (%) Score (%)

Prev. SOTA MFRL 2.3 (symbolic) —
Our best MFRL 4.63± 0.20 1.22± 0.07

Prev. SOTA MBRL 6.59 —
Our best MBRL (slow) 7.20± 0.09 2.31± 0.04

Table 3 compares the performance of various agents on the
full version of Craftax (Matthews et al., 2024), a signifi-
cantly harder extension of Craftax-classic, with more levels
and achievements. While the previous SOTA agent reached
2.3% reward (on symbolic inputs), our MFRL agent reaches
4.63% reward. Similarly, while the recent SOTA MBRL
(Cohen et al., 2025) reaches 6.59% reward our MBRL agent
reaches a new SOTA reward of 7.20%. See Appendix E for
implementation details.

4.6. Additional experiments on MinAtar

To further validate the robustness of our approach, we con-
duct additional experiments on MinAtar (Young & Tian,
2019), another grid world environment. MinAtar imple-
ments four simplified Atari 2600 games. Each game has
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Figure 7: Our best MBRL agent leads to significant gains over our tuned MFRL agent on each MinAtar game.

symbolic binary observations of size 10× 10×K (K is the
number of objects of the game) and binary rewards.

We first tune our model-free RL agent on the MinAtar
games, keeping the same architecture as described in our
paper, with minor adjustments to the PPO hyperparameters,
detailed in Appendix F. Second, we develop our model-
based RL agent as in Craftax-classic, by integrating our
three proposed improvements. We retain the majority of the
MBRL hyperparameters from Craftax-classic, with minor
modifications, which we detail in Appendix F.

Figure 7 displays the evaluation performance of our pro-
posed methods M1-5 (defined as in Section 4.1) on each
game after 1 million environment steps, averaged over 10
seeds. Every 50k training steps, we evaluate each agent
on 32 environments and 2k steps per environments. Figure
8 summarizes these results by first (a) normalizing each
game such that the MFRL agent achieves a reward of 1.0,
before (b) averaging the performance of all agents across the
games. Notably, our MBRL agents’ performance increase
as we climb the ladder on MinAtar, highlighting the gen-
erality of our three proposed improvements. Furthermore,
our best MBRL agent significantly outperforms our best
MFRL agent, achieving an average normalized reward of
2.41 across the four MinAtar games.
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Figure 8: Averaged normalized reward on MinAtar.

Finally, Table 4 compares the performance of our best
MBRL and MFRL agents at 1M steps, further emphasizing

the significant performance improvements achieved by our
proposed MBRL agent.

Table 4: Best MFRL and best MBRL rewards after 1M steps
on each MinAtar game.

Game MFRL MBRL

Asterix 7.47± 1.02 44.81± 3.54
Breakout 77.8± 2.28 93.92± 1.44
Freeway 65.3± 1.16 71.12± 0.13

SpaceInvaders 131.9± 3.32 186.16± 1.25

5. Conclusion and future work
In this paper, we present three improvements to vision-
based MBRL agents which use transformer world models
for background planning: Dyna with warmup, patch nearest-
neighbor tokenization and block teacher forcing. We also
present improvements to the MFRL baseline, which may
be of independent interest. Collectively, these improve-
ments result in a MBRL agent that achieves a significantly
higher reward and score than previous SOTA agents on the
challenging Craftax-classic benchmark, and surpasses ex-
pert human reward for the first time. Our improvements
also transfer to MinAtar environments. In the future, we
plan to examine how well our techniques generalize beyond
grid-world environments. However, we believe our current
results will already be of interest to the community.

We see several paths to build upon our method. Prioritized
experience replay is a promising approach to accelerate
TWM training, and an off-policy RL algorithm could im-
prove policy updates by mixing imagined and real data. In
the longer term, we would like to generalize our tokenizer
to extract patches and tokens from large pre-trained models,
such as SAM (Ravi et al., 2024) and Dino-V2 (Oquab et al.,
2024). This inherits the stable codebook of our approach,
but reduces sensitivity to patch size and “superficial” ap-
pearance variations. To explore this direction, and other
non-reconstructive world models which cannot generate fu-
ture pixels, we plan to modify the policy to directly accept
latent tokens generated by the TWM.
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A. Algorithmic details
A.1. Our Model-free RL agent

We first detail our new state-of-the-art MFRL agent. As mentioned in the main text, it relies on an actor-critic policy network
trained with PPO.

A.1.1. MFRL ARCHITECTURE

We summarize our MFRL agent in Algorithm 2 and further detail it below.

Algorithm 2 MFRL agent

Input: Image Ot, last hidden state ht−1, parameters Φ.
Output: action at, value vt, new hidden state ht.
zt = ImpalaCNNΦ(Ot)
ht, yt = RNNΦ([ht−1, zt])
at ∼ πΦ([yt, zt])
vt = VΦ([yt, zt])

Imapala CNN architecture: Each Craftax-classic image Ot of size 63× 63× 3 goes through an Impala CNN (Espeholt
et al., 2018b). The CNN consists of three stacks with channel sizes of (64, 64, 128). Each stack is composed of (a) batch
normalization (Ioffe & Szegedy, 2015), (b) a convolutional layer with kernel size 3× 3 and stride of 1, (c) a max pooling
layer with kernel size 3× 3 and stride of 2, and (d) two ResNet blocks (He et al., 2016). Each ResNet block is composed of
(a) a ReLU activation followed by a batch normalization, (b) a convolutional layer with kernel size 3× 3 and stride of 1.
The CNN last layer output, of size 8× 8× 128 passes through a ReLU activation, then gets flattened into an embedding
vector of size 8192, which we call zt.

RNN architecture: The CNN output zt (a) goes through a layer norm operator, (b) then gets linearly mapped to a
256-dimensional vector, (c) then passes through a ReLU activation, resulting in the new input for the RNN. The RNN then
updates its hidden state, and outputs a 256-dimensional vector yt, which goes through another ReLU activation.

Actor and critic architecture: Finally, the CNN output zt and the RNN output yt are concatenated, resulting in the
8448-dimensional embedding input shared by the actor and the critic networks. For the actor network, this shared input
goes through (a) a layer normalization (Lei Ba et al., 2016), (b) a fully-connected network whose 2048-dimensional output
goes through a ReLU, (c) two dense residual blocks whose 2048-dimensional output goes through a ReLU, (d) a last layer
normalization and (e) a final fully-connected network which predicts the action logits.

Similarly, for the critic network, the shared input goes through (a) a layer normalization, (b) a fully-connected network
whose 2048-dimensional output goes through a ReLU, (c) two dense residual blocks whose 2048-dimensional output goes
through a ReLU, (d) a last layer normalization and (e) a final layer which predicts the value (which is a float).

A.1.2. PPO TRAINING

We train our MFRL agent with the PPO algorithm (Schulman et al., 2017). PPO is a policy gradient algorithm, which we
briefly summarize below.

Training objective: We assume we are given a trajectory, τ = (O1:T+1, a1:T , r1:T , done1:T , h0:T ) collected in the
environment, where donet is a binary variable indicating whether the current state is a terminal state, and ht is the RNN
hidden state collected while executing the policy. Algorithm 4 discusses how we collect such a trajectory.

Given the fixed current actor-critic parameters Φold, PPO first runs the actor-critic network on τ , starting from the hidden
state h0 and returns two sequences of values v1:T+1 = VΦold(O1:T+1) and probabilities πΦold(at|Ot)

6. It then defines the
generalized advantage estimation (GAE) as in Schulman et al. (2015):

At = δt + (1− donet)γλAt+1 = δt + (1− donet)
(
γλδt+1 + . . .+ (γλ)T−tδT

)
. ∀t ≤ T

6We drop the ImpalaCNN and the RNN for simplicity.
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where
δt = rt + (1− donet)γvt+1 − vt.

PPO also defines the TD targets qt = At + vt.

PPO optimizes the parameters Φ, to minimize the objective value:

LPPO(Φ) =
1

T

T∑
t=1

{
−min (rt(Φ)At, clip(rt(Φ))At)) + λTD(VΦ(Ot)− qt)

2 − λentH(πΦ(.|Ot))
}
, (4)

where clip(u) ensures that u lies in the interval [1− ϵ, 1 + ϵ], rt(Φ) is the probability ratio rt(Φ) =
πΦ(at|Ot)
πΦold(at|Ot)

and H is
the entropy operator.

Algorithm: Algorithm 3 details the PPO-update-policy, which is called in Steps 1 and 4 in our main Algorithm 1 to update
the PPO parameters on a batch of trajectories. PPO allows multiple epochs of minibatch updates on the same batch and
introduces two hyperparameters: a number of minibatches Nmb (which divides the number of environments Nenv), and a
number of epochs N epoch.

Algorithm 3 PPO-update-policy

Input: Actor-critic model (π, V ) and parameters Φ
Trajectories τ1:Nenv = (O1:Nenv

1:T+1, a
1:Nenv
1:T , r1:Nenv

1:T , done1:Nenv
1:T , h1:Nenv

0:T )

Number of epochs N epoch and of minibatches Nmb

PPO objective value parameters γ, λ, ϵ
Learning rate lr and max-gradient-norm
Moving average mean µtarget, standard deviation σtarget and discount factor α

Output: Updated actor-critic parameters Φ

Initialize: Define Φold = Φ
Compute the values v1:Nenv

1:T+1 = VΦold(O
1:Nenv
1:T+1)

Compute PPO GAEs and targets A1:Nenv
1:T , q1:Nenv

1:T = GAE(r1:Nenv
1:T , v1:Nenv

1:T+1, γ, λ)

Standardize PPO GAEs A1:Nenv
1:T =

A1:Nenv
1:T −mean(A1:Nenv

1:T )

std(A1:Nenv
1:T )

for ep = 1 to N epoch do
for k = 1 to Nmb do
N start = (k − 1)

(
Nenv/N

mb
)
+ 1, N end = k

(
Nenv/N

mb
)
+ 1

// Standardize PPO target
Update µtarget = αµtarget + (1− α)mean(qN

start:N end

1:T )

Update σtarget = ασtarget + (1− α)std(qN
start:N end

1:T )

Standardize qN
start:N end

1:T = (qN
start:N end

1:T − µtarget)/σtarget

// Run the actor-critic network
Define h̃N start:N end

0 = hN start:N end

0

for t = 1 to T + 1 do
znt = ImpalaCNNΦ(O

n
t ) ; h̃n

t = RNNΦ([h̃
n
t−1, z

n
t ]) for n = N start : N end

Compute V n
Φ ([ynt , z

n
t ]) and πn

Φ([y
n
t , z

n
t ]) for n = N start : N end

end for

// Take a gradient step
Compute Ln

PPO(Φ) using Equation (4) for n = N start : N end

Define the minibatch loss LPPO(Φ) =
1

Nmb

∑N end

n=N start Ln
PPO(Φ)

Update Φ = Adam (Φ, clip-gradient(∇ΦLPPO(Φ),max-norm), lr)
end for

end for
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We make a few comments below:

• We use gradient clipping on each minibatch to control the maximum gradient norm, and update the actor-critic parameters
using Adam (Kingma, 2014) with learning rate of 0.00045.

• During each epoch and minibatch update, we initialize the hidden state h̃0 from its value h0 stored while collecting the
trajectory τ .

• In Algorithm 3, we introduce two changes to the standard PPO objective, described in Equation (4). First, we standardize
the GAEs (ensure they are zero mean and unit variance) across the batches. Second, similar to Moon et al. (2024), we
maintain a moving average with discount factor α for the mean and standard deviation of the target qt and we update the
value network to predict the standardized targets.

Implementation: Note that for implementing PPO, we start from the code available in the purejaxrl library (Lu et al.,
2022) at https://github.com/luchris429/purejaxrl/blob/main/purejaxrl/ppo.py.

A.1.3. HYPERPARAMETERS

Table 5 displays the PPO hyperparameters used for training our SOTA MFRL agent.

Table 5: MFRL hyperpameters

Module Hyperparameter Value

Environment Number of environments Nenv 48
Rollout horizon in environment Tenv 96

Sizes Image size 63× 63× 3
CNN output size 8× 8× 128
RNN hidden layer size 256
AC input size 8448
AC layer size 2048

PPO γ 0.925
λ 0.625
ϵ clipping 0.2
TD-loss coefficient λTD 1.0
Entropy loss coefficient λent 0.01
PPO target discount factor α 0.95

Learning Optimizer Adam (Kingma, 2014)
Learning rate 0.00045
Max. gradient norm 0.5
Learning rate annealing (MFRL) True (linear schedule)
Number of minibatches (MFRL) 8
Number of epochs (MFRL) 4

MBRL experiments. We make two additional changes to PPO in the MBRL setting, and keep all the other hyperparameters
fixed. First, we do not use learning rate annealing for MBRL, while MFRL uses learning rate annealing (with a linear
schedule). Second, as we discuss in Section A.3.3, the differences between the PPO updates on real and imaginary
trajectories lead to varying the number of minibatches and epochs.

Craftax experiments. We also keep all but two of our PPO hyperparameters fixed for Craftax (full), which we discuss in
Appendix E.
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A.2. Model-based modules

In this section, we detail the two key modules for model-based RL: the tokenizer and the transformer world model.

A.2.1. TOKENIZER

Training objective: Given a Craftax-classic image Ot and a codebook C = {e1, . . . , eK}, an encoder E returns a feature
map Zt = (Z1

t , . . . , Z
t
L). Each feature Zℓ

t gets quantized, resulting into L tokens Qt = (q1t , . . . , q
L
t )—which serves as

input to the TWM—then projected back to Ẑt = (eq1t , . . . eqLt ). Finally, a decoder D decodes Ẑt back to the image space:
Ôt = D(Ẑt). Following Van Den Oord et al. (2017); Micheli et al. (2022), we define the VQ-VAE loss as:

LVQ-VAE(E ,D, C) = λ1∥Ot − Ôt∥1 + λ2∥Ot − Ôt∥22 + λ3∥sg(Zt)− Ẑt∥22 + λ4∥Zt − sg(Ẑt)∥22, . (5)

where sg is the stop-gradient operator. The first two terms are the reconstruction loss, the third term is the codebook loss and
the last term is a commitment loss.

We now discuss the different VQ and VQ-VAE architectures used by the models M1-5 in the ladder described in Section 4.1.

Default VQ-VAE: Our baseline model M1, and our next model M2 build on IRIS VQ-VAE (Micheli et al., 2022) and fol-
low the authors’ code: https://github.com/eloialonso/iris/blob/main/src/models/tokenizer/
nets.py. The encoder uses a convolutional layer (with kernel size 3× 3 and stride 1), then five residual blocks with two
convolutional layers each (with kernel size 3× 3, stride 1 and ReLU activation). The channel sizes of the residual blocks
are (64, 64, 128, 128, 256). A downsampling is applied on the first, third and fourth blocks. Finally, a last convolutional
layer with 128 channels returns an output of size 8× 8× 128. The decoder follows the reverse architecture. Each of the
L = 64 latent embeddings gets quantized individually, using a codebook of size K = 512, to minimize Equation (5). We
use codebook normalization, meaning that each code in the codebook C has unit L2 norm. Similarly, each latent embedding
Zℓ
t l gets normalized before being quantized. As in IRIS, we use λ1 = 1, λ2 = 0, λ3 = 1, λ4 = 0.25. We train with Adam

and a learning rate of 0.001.

VQ-VAE(patches): For the next model M3, the encoder is a two-layers MLP that maps each flattened 7× 7× 3 patch to a
128-dimensional vector, using a ReLU activation. Similarly, the decoder learns a linear mapping from the embedding vector
back to the flattened patches. Each embedding gets quantized individually, using a codebook of size K = 512, and codebook
normalization, to minimize Equation (5). Following Micheli et al. (2024), we use λ1 = 0.1, λ2 = 1, λ3 = 1, λ4 = 0.02.

Nearest neighbor tokenizer: NNT does not use Equation (5) and directly adds image patches to a codebook of size
K = 4096, using a Euclidean threshold τ = 0.75.

A.2.2. TRANSFORMER WORLD MODEL

Training objective: We train the TWM on real trajectories (from the environment) of TWM = 20 timesteps sampled from
the replay buffer (see Algorithm 1). We set TWM = 20 as it is the largest value that will fit into memory on 8 H100 GPUs.

Given a trajectory τ = (O1:T+1, a1:T , r1:T , done1:T ), the input to the transformer is the sequence of tokens:

(q11 , . . . , q
L
1 , a1, . . . q

1
T , . . . , q

L
T , aT ),

where enc(Ot) = (q1t , . . . , q
L
t ) and qit ∈ {1, . . . ,K} where K is the codebook size. These tokens are then embedded using

an observation embedding table and an action embedding table. After several self-attention layers (using the standard causal
mask or the block causal mask introduced in Section 3.6), the TWM returns a sequence of output embeddings:

(E(q11), . . . , E(qL1 ), E(a1), . . . E(q1T ), . . . , E(qLT ), E(aT )).

The TWM then output embeddings are then used to decode the following predictions:

(1) Following (Micheli et al., 2022), E(at) passes through a reward head and predicts the logits of the reward rt.

(2) E(at) also passes through a termination head and predicts the logits of the termination state donet.
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(3) Without block teacher forcing, E(qit) passes through an observation head and predicts the logits of the next codebook
index at the same timestep E(qi+1

t ), when t ≤ L− 1. Similarly E(at) passes through an observation head and predicts the
logits of the first codebook index at the next timestep E(q1t+1).

(3’) With block teacher forcing, E(qit) passes through an observation head and predicts the logits of the same codebook
index at the next timestep E(qit+1).

TWM is then trained by summing three losses:

(1) The first loss is the cross-entropy for the reward prediction. Note that Craftax-classic provides a (sparse) reward of 1 for
the first time each achievement is“unlocked” in each episode. In addition, it gives a smaller (in magnitude) but denser reward,
penalizing the agent by 0.1 for every point of damage taken, and rewarding it by 0.1 for every point recovered. However, we
found that we got better results by ignoring the points damaged and recovered, and using a binary reward target, which
we implemented by setting the target reward to 1 when the reward collected is higher than 0.5, and to 0 otherwise. This is
similar to the recommendations in Farebrother et al. (2024), where the authors show that value-based RL methods work
better when replacing MSE loss for value functions with cross-entropy on a quantized version of the return.

(2) The second loss is the cross-entropy for the termination predictions.

(3 The third loss is the cross-entropy for the codebook predictions, where the predicted codes vary between 1 and the
codebook size K.

Architecture: We use the standard GPT2 architecture (Radford et al., 2019). We use a sequence length TWM = 20 due to
memory constraints. We implement key-value caching to generate rollouts fast. Table 6 details the different hyperparameters.

Table 6: Hyperparameters for the transformer world model

Module Hyperparameter Value

Environment Sequence length TWM 20

Architecture Embedding dimension 128
Number of layers 3
Number of heads 8
Mask Causal or Block causal
Inference with key-value caching True
Positional embedding RoPE (Su et al., 2024)

Learning Embedding dropout 0.1
Attention dropout 0.1
Residual dropout 0.1
Optimizer Adam (Kingma, 2014)
Learning rate 0.001
Max. gradient norm 0.5
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A.3. Our Model-based RL agent

In this section, we detail how we combine the different modules above to build our SOTA MBRL agent, which is described
in Algorithm 1 in the main text.

A.3.1. COLLECTING ENVIRONMENT ROLLOUT OR TWM ROLLOUT

Algorithm 4 presents the rollout method, which we call in Steps 1 and 4 of Algorithm 1. It requires a transition function
which can either be the environment or the TWM.

Algorithm 4 Environment rollout or TWM rollout

Input: Initial observation O1,
Previous M observations Opast = (O−M+1, . . . , O0) if available else Opast = ∅,
AC model π and parameters Φ,
Rollout horizon T ,
An environment transition Menv or a TWM M with parameters Θ.

Output: A trajectory τ = (O1:T+1, a1:T , r1:T , done1:T , h0:T )

Initialize: hidden state h0 = 0 if Opast = ∅ else set h−M = 0
if Opast ̸= ∅ then

// Burn-in the hidden state
for m = 1 to M do
z−M+m = ImpalaCNNΦ(O−M+m)
h−M+m = RNNΦ([h−M−1+m, z−M+m])

end for
end if

Initialize: τ = (h0)

for t = 1 to T do
// Run the actor network
zt = ImpalaCNNΦ(Ot)
ht = RNNΦ([ht−1, zt])
at ∼ πΦ([ht, zt])

// Collect reward and next observation
if environment rollout then
Ot+1, rt, donet ∼ Menv(Ot, at)

else if TWM rollout then
Qt = (q1t , . . . , q

L
t ) = enc(Ot)

Qt+1 ∼ pΘ(Qt+1|Q1:t, a1:t)
Ot+1 = dec(Qt+1)
rt ∼ pΘ(rt|Q1:t, a1:t)
donet ∼ pΘ(donet|Q1:t, a1:t)

end if
τ+ = (Ot, at, rt, donet, ht)

end for
τ+ = (OT+1)

Below we discuss various components of Algorithm 4.

Parallelism. Note that in Algorithm 1, we call Algorithm 4 in parallel starting from Nenv observations O1:Nenv
1 (for

environment rollouts) or Õ1:Nenv
1 (for TWM rollouts).

Burn-in. The first time we collect data in the environment, we initialize the hidden state to zeros. The next time, we use
burn-in to refresh the hidden state before rolling out the policy (Kapturowski et al., 2018). We do so by passing the M
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observations prior to O1 to the policy, which updates the hidden state of the policy using the latest parameters. (To use
burn-in TWM rollout, we sample a trajectory of length M + 1 in Step 4 of Algorithm 1.) To enable burn-in, when collecting
data, in Step 1 of Algorithm 1, we must also store the last M environment observations (O−M+1, . . . , O0) prior to O1.

TWM sampling. As explained in the main text, sampling from the distribution Qt+1 ∼ pΘ(Qt+1|Q1:t, a1:t) is different
when using (or not) block teacher forcing. For the former, the tokens of the next timestep (q1t+1, . . . , q

L
t+1) are sampled in

parallel, while for the latter, they are sampled autoregressively.

Maximum buffer size. To avoid running out of memory, we use a maximum buffer size and restrict the data buffer D in
Algorithm 1 to contain at most the last 128k observations. When the buffer is at capacity, we remove the oldest observations
before adding the new ones. We use flashbax (Toledo et al., 2023) to implement our replay buffer in JAX.

A.3.2. WORLD MODEL UPDATE

In practice, we decompose the world model updates into two steps. First, we update the tokenizer N iters
tok times. Second, we

update the TWM N iters
TWM times. For both updates, we use Nmb training

WM = 3 minibatches. That is, Step 3 of Algorithm 1 is
implemented as in Algorithm 5.

Algorithm 5 Step 3 of Algorithm 1

for it = 1 to N iters
tok do

for k = 1 to Nmb training
WM do

N start = (k − 1)
(
Nenv/N

mb training
WM

)
+ 1, N end = k

(
Nenv/N

mb training
WM

)
+ 1

τnreplay = sample-trajectory(D, TWM), n = 1 : Nenv

Θ = update-tokenizer(Θ, τN
start:N end

replay ) with Equation (5)
end for

end for
for it = 1 to N iters

TWM do
for k = 1 to Nmb training

WM do
N start = (k − 1)

(
Nenv/N

mb training
WM

)
+ 1, N end = k

(
Nenv/N

mb training
WM

)
+ 1

τnreplay = sample-trajectory(D, TWM), n = 1 : Nenv

Θ = update-TWM(Θ, τN
start:N end

replay ) following Appendix A.2.2
end for

end for

We always set N iters
TWM = 500 to perform a large number of gradient updates. For M1-3, we set N iters

tok = 500 as well, but for
M5 we reduce it to N iters

tok = 25 for the sake of speed—since NNT only adds new patches to the codebook.

A.3.3. PPO POLICY UPDATE

Finally, the PPO-policy-update procedure called in Steps 1 and 4 of Algorithm 1 follows Algorithm 3.

When using PPO for MBRL, we found it critical to use different numbers of minibatches and different numbers of epochs
on the trajectories collected on the environment and with TWM.

In particular, as the trajectories collected in imagination are longer, we reduce the number of parallel environments, and
use Nmb

env = 8 and Nmb
WM = 1. This guarantees that the PPO updates are on batches of comparable sizes—6× 96 for real

trajectories, and 48× 20 for imaginary trajectories.

In addition, while the environment trajectories are limited, we can simply rollout our TWM to collect more imaginary
trajectories. Consequently, we set N epoch

env = 4, and N epoch
WM = 1.

Finally, we do not use learning rate annealing for MBRL training.
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A.3.4. HYPERPARAMETERS

Table 7 summarizes the main parameters used in our MBRL training pipeline.

Table 7: MBRL main parameters

Hyperparameter Value

Number of environments Nenv 48
Rollout horizon in environment Tenv 96
Rollout horizon for TWM TWM 20
Burn-in horizon M 5
Buffer size 128, 000
Number of tokenizer updates N iters

tok (with VQ-VAE) 500
Number of tokenizer updates N iters

tok (with NNT) 25
Number of TWM updates N iters

TWM 500

Number of minibatches for TWM training Nmb training
WM 3

Background planning starting step TBP 200k
Number of policy updates N iters

AC 150
Number of PPO minibatches in environment Nmb

env 8
Number of PPO minibatches in imagination Nmb

WM 1

Number of epochs in environment N epoch
env 4

Number of epochs in imagination N epoch
WM 1

Learning rate annealing False
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B. Comparing scores
Figure 9 completes the two main Figures 1 and 4 by reporting the scores the different agents. Specifically, Figure 9[left]
compares our best MBRL and MFRL agents to the best previously published MBRL and MFRL agents. Figure 9[right]
displays the scores for the different agents on our ladder of improvements.
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Figure 9: [Left] In addition to reaching higher rewards, our best MBRL and MFRL agents also achieve higher scores
compared to the best previously published MBRL and MFRL results. [Right] MBRL agents’ scores increase as they climb
up the ladder of improvements.

C. Annealing the number of policy updates
Figure 10 compares our best MFRL agent (with fast training) to an agent trained by annealing the number of policy updates
in imaginary rollouts.
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Figure 10: Progressively increasing the number of policy updates from N iters
AC = 0 (when Ttotal = 0 env. steps) to N iters

AC = 300
(when Ttotal = 1M) removes the drop in performance observed otherwise when we start training in imagination.

21



Improving Transformer World Models for Data-Efficient RL

D. Additional world model comparisons
This section complements Section 4.4 and presents two additional results to compare the different world models.
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Figure 11: TWM performance.[Left] Tokenizer L2 reconstruction error, averaged over rollouts. Lower is better. By
construction, our best MBRL agent, which uses NNT, constantly reaches the lowest error, as NNT directly adds observation
patches to its codebook. [Right] TWM rollouts L2 observation reconstruction error, averaged over rollouts. Lower is better.
M3 and M5, which both use patch factorization, achieve the lowest errors.

D.1. Tokenizer reconstruction error

We first use the evaluation dataset Deval (introduced in Section 4.4) to compare the tokenizer reconstruction error of our
world models M1, M3, and M5—using the checkpoints at 1M steps. To do so, we independently encode and decode each
observation On

t ∈ Deval, to obtain a tokenizer reconstruction Ôtok, n
t . Figure 11[left] compares the average L2 reconstruction

errors over the evaluation dataset:
1

(T + 1)Neval

Neval∑
n=1

Teval+1∑
t=1

∥Ôtok, n
t −On

t ∥22,

showing that all three models achieve low L2 reconstruction error. However our best model M5, which uses NNT, reaches
a very low reconstruction error from the first iterations, since it directly adds image patches to its codebook rather than
learning the codes online.

D.2. Rollout reconstruction error

Second, given a sequence of observations in a TWM rollout ÔTWM, n
1:Teval+1, and the corresponding sequence of observations

in the environment On
1:Teval+1 (which both have executed the same sequence of actions), Figure 11[right] compares the

observation L2 reconstruction errors at each timestep t (averaged over the evaluation dataset):

Et =
1

Neval

Neval∑
n=1

∥ÔTWM, n
t −On

t ∥22, ∀t.

As expected, the errors increase with t as mistakes compound over the rollout. Our best method and M3, which both uses
patch factorization, achieve the lowest reconstruction errors.

D.3. Symbol extractor architecture

Herein, we discuss the symbol extractor architecture introduced in Section 4.4. fµ consists of (a) a first convolution layer
with kernel size 7× 7, stride of 7, and channel size 128, which extracts a feature for each patch, (b) a ReLU activation, (c) a
second convolution layer with kernel size 1×1, a stride of 1, and a channel size 128, (d) a second ReLU activation, (e) a final
linear layer which transforms the 3D convolutional output into a 2D array of logits of size 145∗17 = 1345—where R = 145
is the number of ground truth symbols associated with each image of Craftax-classic and each symbol Sr

t ∈ {1, . . . , 17}.
The symbol extractor is trained with a cross-entropy loss between the predicted symbol logits and their ground truth values
St, and achieves a 99.0% validation accuracy.
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D.4. Rollout comparison

In Figure 12, we show an additional rollout that exhibits similar properties to those in Figure 6[right]. M1 and M3 make
more simple mistakes in the map layout. All models generate predictions that can be inconsistent with the game dynamics.
However the errors by M1 and M3 are more severe, as M5’s mistake relates to the preconditions of the make sword action.

M1

M5: 
our best

True 
rollout

Rollouts v2

M3

Infeasible hallucinationMap inconsistency Feasible hallucinationRollout annotations

Figure 12: Additional rollout comparison for world models M1, M3 and M5. Best viewed zoomed in. Map. All models
exhibit some map inconsistencies. M1 can make simple mistakes after the agent moves. Both M3 and M5 have map
inconsistencies after the sleep actions, however the mistakes for M3 are far more severe. Feasible hallucinations. All
models make feasible hallucinations when the agent exposes a new map region. The sleep action is stochastic, and only
sometimes results in the agent sleeping after taking the action. As a result, M3 and M5 make reasonable generations in
predicting that the agent does not sleep in the final frame. Infeasible hallucinations. M1 generates cells that do not respect
the game dynamics, such as spawning a plant without taking the place plant action, and creating a block type that cannot
exist in that location. M3 turns the agent to face downwards without the down action. M5 makes the wood sword despite the
precondition of having wood inventory not being satisfied.
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E. Comparing Craftax-classic and Craftax (full)
This section complements Section 4.5 and discusses the main differences between Craftax-classic and Craftax.

The first and second block Table 8 compares both environments. Note that we only use the first five parameters in our
experiments in Section 4.5.

The third and fourth blocks report the parameters used by our best MFRL and MBRL agents. In Craftax (full), for MFRL,
we use Nenv = 64 environments and a rollout length Tenv = 64. Our SOTA MBRL agent uses Tenv = 96, Nenv = 48, and
and TWM = 20 as in Craftax-classic. We reduced the buffer size to 48k to fit in GPU.

All the others PPO parameters are the same as in Table 5.

Table 8: Environment Craftax-classic vs Craftax (full)

Module Hyperparameter Classic Full

Environment (used) Image size 63× 63 130× 110
Patch size 7× 7 10× 10
Grid size 9× 9 13× 13
Action space size 17 43
Max reward (# achievements) 22 226

Environment (not used) Symbolic (one-hot) input size 1345 8268
Max cardinality of each symbol 17 40
Number of levels 1 10

MFRL parameters Number of environments Nenv 48 64
Rollout horizon in environment Tenv 96 64

MBRL parameters Number of environments Nenv 48 48
Rollout horizon in environment Tenv 96 96
Rollout horizon for TWM TWM 20 20
Rollout horizon for TWM TWM 20 20
Buffer size 48, 000 128, 000
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F. Adapting Craftax-classic parameters to solve MinAtar
This section details the adaptations we made to our pipeline for solving the MinAtar environments, presented in Section 4.6.
First, Table 9 outlines the modifications to our MFRL agent. Notably, we incorporate layer normalization (Ba et al., 2016)
and Swish activation function (Ramachandran et al., 2017) within the ImpalaCNN architecture. Furthermore, we found it
beneficial for the actor and critic networks to share weights up to their distinct final linear layers. We also adjust some PPO
hyperparameters.

Table 9: MFRL changes for MinAtar

Module Parameter Craftax Minatar

Environment Image size 63× 63× 3 10× 10×K

ImpalaCNN Normalization Batch normalization Layer normalization
Activation ReLU Swish
Shared network False True

PPO γ 0.925 0.95
λ 0.625 0.75
PPO target discount factor α 0.95 0.925

These modifications result in a solid MFRL agent, whose performance is detailed in Section 4.6. We then develop our
MBRL agent on top by implementing the changes outlined in Table 10. Specifically, we decompose each MinAtar image
into 25 patches of size 2× 2×K each. In addition, we increase (a) the number of TWM updates to from 500 to 2k and (b)
the number of policy updates in imagination from 150 to 2k. Critically, to address the high cost of bad actions in certain
games (e.g. Breakout), we assign a weight of 10 to the cross-entropy losses of the reward and of the done states. This
strongly penalizes inaccurate predictions of terminal states in imaginary rollouts. Additionally, we observe a potential issue
during training in imagination where the agent could collapse to output the same action consistently. To mitigate this “action
collapse” and promote exploration, we increase the entropy coefficient in the imagination phase from 0.01 to 0.05.

Table 10: MBRL changes for MinAtar

Module Parameter Craftax Minatar

Tokenizer Patch size 7× 7× 3 2× 2×K
Grid size 9× 9 5× 5

Training Number of policy updates N iters
AC 150 2, 000

Number of TWM updates N iters
TWM 500 2, 000

Termination and reward weight 1 10
PPO entropy coeff. in imagination 0.01 0.05

Note that all the MinAtar games use the same hyperparameters.
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