
Under review as a conference paper at ICLR 2023

STABLE, EFFICIENT, AND FLEXIBLE MONOTONE
OPERATOR IMPLICIT GRAPH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Implicit graph neural networks (IGNNs) that solve a fixed-point equilibrium equa-
tion for representation learning can learn the long-range dependencies (LRD) in
the underlying graphs and show remarkable performance for various graph learn-
ing tasks. However, the expressivity of IGNNs is limited by the constraints for
their well-posedness guarantee. Moreover, when IGNNs become effective for
learning LRD, their eigenvalues converge to the value that slows down the con-
vergence, and their performance is unstable across different tasks. In this pa-
per, we provide a new well-posedness condition of IGNNs leveraging monotone
operator theory. The new well-posedness characterization informs us to design
effective parameterizations to improve the accuracy, efficiency, and stability of
IGNNs. Leveraging accelerated operator splitting schemes and graph diffusion
convolution, we design efficient and flexible implementations of monotone oper-
ator IGNNs that are significantly faster and more accurate than existing IGNNs.

1 INTRODUCTION

Implicit graph neural networks (IGNNs) that solve a fixed-point equilibrium equation for graph
representation learning can learn long-range dependencies (LRD) in the underlying graphs, showing
remarkable performance for various tasks [69; 39; 58; 63; 22]. Let G = (V,E) represent a graph,
where V is the set of nodes, and E ⊆ V × V is the set of edges. The connectivity of G can be
represented by the adjacency matrix A ∈ Rn×n with Aij = 1 if there is an edge connecting nodes
i, j ∈ V ; otherwise Aij = 0. Let X ∈ Rd×n be the initial node features whose i-th column xi ∈ Rd

is the initial feature of the i-th node. IGNN [39] learns the node representation by finding the fixed
point, denoted as Z∗, of the Picard iteration below

Z(k+1) = σ
(
WZ(k)G+ gB(X)

)
, for k = 0, 1, 2, · · · , (1)

0 100 200 300 400 500
Epoch

60

80

100

Ac
cu

ra
cy

(%
)

0 100 200 300 400 500
Epoch

46

48

50

52

54

Ac
cu

ra
cy

(%
)

Train Validate Test

0 100 200 300 400 500
Epoch

40

60

80

100

Ac
cu

ra
cy

(%
)

0 100 200 300 400 500
Epoch

34

36

38

40

42

Ac
cu

ra
cy

(%
)

Train Validate Test

Figure 1: Epoch vs. training, validation, and test
accuracy of IGNN for classifying directed chains.
First row: binary chains of length 100 (left) and
250 (right). Second row: three-class chains of
length 80 (left) and 100 (right).

where σ is the nonlinearity (e.g. ReLU), gB is
a function parameterized by B (e.g. gB(X) =
BXG), matrices W and B ∈ Rd×d are learnable
weights, and G is a graph-related matrix. In IGNN,
G is chosen as Â := D̂−1/2(I +A)D̂−1/2 with I

being the identity matrix and D̂ is the degree ma-
trix with D̂ii = 1+

∑n
j=1 Aij . IGNN constrains W

using a tractable projected gradient descent method
to ensure the well-posedness of Picard iteration at
the cost of limiting the expressivity of IGNNs. The
prediction of IGNN is given by fΘ(Z

∗), a func-
tion parameterized by Θ. IGNNs have several mer-
its: 1) The depth of IGNN is adaptive to partic-
ular data and tasks rather than fixed. 2) Training
IGNNs requires constant memory independent of their depth — leveraging implicit differentiation
[66; 2; 51; 13]. 3) IGNNs have better potential to capture LRD of the underlying graph compared
to existing GNNs, including GCN [75], GAT [73], SSE [23], and SGC [79]. The latter GNNs lack
the capability to learn LRD as they suffer from over-smoothing [56; 84; 62; 20]. Several methods
have been proposed to alleviate over-smoothing and hence improve learning LRD by adding resid-
ual connections [37; 21; 55], by geometric aggregation [65], by adding a fully-adjacent layer [3], by
improving breadth-wise backpropagation [59], and by adding oscillatory layers [27; 67].

1

Under review as a conference paper at ICLR 2023

Issue 1: Well-posedness of IGNN Limits Its Expressivity. One bottleneck of IGNN is that the
magnitude of W ’s eigenvalues has to be less than one for its well-posedness guarantee; see Sec. 2
for details. This limits the selection of W and thereby limits the expressivity of IGNNs.

Issue 2: When can IGNNs learn LRD? To understand when IGNN can learn LRD, we run IGNN
using the settings in [39] to classify directed chains. Directed chains is a synthetic dataset designed
to test the effectiveness of GNNs in learning LRD for node classification [71; 39]. Fig. 1 plots epoch
vs. accuracy of IGNN for the chain classification. Here, each epoch means iterating Equation (1)
until convergence and then updating W and B at the end. IGNN can classify the binary chain task
perfectly at length 100 but performs near random guesses when the length is 250, as illustrated in
Fig. 1. For the three-class chains, IGNN’s performance is very poor at chain length 100 but performs
quite well at length 80. We investigate the results above by studying the dynamics of eigenvalues of
the matrix |W |1. For illustrative purpose, we consider λ1(|W |) and λ2(|W |), the largest and the
second largest eigenvalue of |W | in magnitude. Fig. 2 (left) contrasts the evolution of the magni-
tude of λ1(|W |) and λ2(|W |) of IGNN when classifying nodes on chains with different lengths.
We see that the magnitude of both eigenvalues goes to 1 when IGNN becomes accurate. However,
Fig. 2 (right) shows that IGNN takes many more iterations in each epoch when the magnitude of
eigenvalues gets close to 1. Indeed, when λ1(|W |) → 1, the Lipschitz constant of the linear map
WZG + gB(X) is close to 1, slowing down the convergence of the Picard iterations. The results
in Fig. 2 echo our intuition; the representation of a given node aggregates one more hop of infor-
mation after each Picard iteration; when the magnitude of eigenvalues gets close to 1, Equation (1)
converges slowly so that IGNN can capture LRD before fixed point convergence.

We report the classification results of different lengths in Appendix I; these results show prevalently
that IGNNs suffer from two bottlenecks: 1) An inherent tradeoff between computational efficiency
and capability for learning LRD. 2) The performance of IGNNs, based on Picard iteration, is unsta-
ble in the sense that their performance varies substantially across tasks. In particular, starting from
random Gaussian initialization of W — the default initialization of W — IGNN cannot learn LRD
if none of the eigenvalues of W get close to 1 in magnitude.

1.1 OUR CONTRIBUTION

0 100 200 300 400 500
Epoch

0.00

0.25

0.50

0.75

1.00

1(|W|)
2(|W|)

0 100 200 300 400 500
Epoch

0

100

200

300

Ite

ra
tio

ns

100
250

0 100 200 300 400 500
Epoch

0.25

0.50

0.75

1.00

1(|W|)
2(|W|)

0 100 200 300 400 500
Epoch

0

100

200

300

Ite

ra
tio

ns

80
100

Figure 2: Epoch vs. the magnitude of
λ1(|W |) and λ2(|W |) and the iterations re-
quired for each epoch. First row: binary
chains, second row: Three-class chains.

We develop accurate, stable, and efficient monotone op-
erator IGNNs (MIGNNs)2. In particular, we derive a new
well-posedness condition for MIGNN leveraging mono-
tone operator theory; see Sec 2. The new well-posedness
condition informs us to design 1) a monotone param-
eterization of W , whose eigenvalues can take a much
wider range than that of IGNNs, to boost the expressiv-
ity of MIGNNs, addressing Issue 1. And 2) a Cayley
transform-based orthogonal parameterization of W to
improve the stability and efficiency of MIGNN for learn-
ing LRD, addressing Issue 2; see Sec. 3. Picard itera-
tion is inefficient or impossible to find the fixed point of
MIGNN with monotone or orthogonal parameterization. As such, we implement MIGNNs leverag-
ing Anderson-accelerated operator splitting schemes; see Sec. 4. We verify the efficacy of MIGNN
on various benchmark tasks; see Sec. 5.

1.2 ADDITIONAL RELATED WORK

We briefly review some representative related works in three directions: deep equilibrium models
(DEQs), GNNs, and orthogonal parameterizations for recurrent neural networks (RNNs).
DEQ. IGNN is related to DEQs [7; 26; 8], but the equilibrium equation of IGNN differs from DEQs
in that IGNN encodes graph structure. DEQs are a class of infinite depth weight-tied feedforward
neural networks with forward propagation using root-finding and backpropagation using implicit
differentiation. As a result, training DEQs only requires constant memory independent of the net-
work’s depth. Monotone operator theory has been used to guarantee the convergence of DEQs [77]
and to improve the robustness of implicit neural networks [44]. The convergence of DEQs has also

1The matrix |W | is obtained by taking the entry-wise absolute value of the matrix W .
2Starting from here, we use MIGNN to stress that the model is based on monotone operator theory.

2

Under review as a conference paper at ICLR 2023

been considered by constraining the network’s weights [49]. Linearized DEQs are studied in [46].
Jacobian regularization has been used to stabilize the training of DEQs [9]. Anderson-accelerated
DEQs with learned acceleration-related hyperparameters are also proposed [10].
Graph neural networks. Classical GNNs are defined by stacking explicitly defined graph filter-
ing layers. Examples include graph convolutional networks (GCNs) [17; 24; 48], recurrent GNNs
[38; 30; 57; 21] GraphSAGE [40], neural graph fingerprints [25], graph isomorphism network
(GIN) [80], message passing neural networks [36], graph attention networks (GATs) [73], GCNs
with convolution kernels learned based on paths (PAN [60] and pathGCN [28]), and higher-order
message passing networks [15; 14]. There are some recent advances in IGNNs: EIGNN removes the
nonlinearity in each intermediate iteration and derives a closed form of the infinite iterations [58],
convergent graph solver (CGS) is an IGNN model with convergence guarantees by constructing the
input-dependent linear contracting iterative maps [63], GIND leverages implicit nonlinear diffusion
to access infinite hops of neighbors [22]. In addition to Picard iteration, implicit GNNs have also
been defined by parametrizing the diffusion equation on graphs, see e.g. [18; 72; 19].
Orthogonal parameterization for deep learning. The fixed point iteration Equation (1) is related
to the hidden state updates of RNNs [66; 29; 2; 50]. Learning LRD is challenging for RNNs due
to exploding and vanishing gradient during backpropagation through time [76; 12; 64]. Enforcing
orthogonal parameterization for RNNs is an effective approach to overcome exploding and vanishing
gradients, benefiting RNNs for learning LRD [5; 78; 45; 74; 61; 41].

1.3 NOTATION

We denote scalars by lower- or upper-case letters and vectors/matrices by lower-/upper-case boldface
letters. For a vector a, we use ∥a∥/∥a∥∞ to denotes its ℓ2-/ℓ∞-norm. We use I to denote the identity
matrix whose dimension can be inferred from the context. For a matrix A, we denote its transpose as
A⊤, its inverse as A−1, its Frobenius norm/2-norm/∞-norm as ∥A∥F /∥A∥/|A∥∞, and we denote
its i-th largest eigenvalue in magnitude as λi(W). Given two matrices A and B, we denote their
Kronecker/entry-wise product as A ⊗ B/A ⊙ B, and denote A ≻ B (A ⪰ B) if A − B is
positive definite (semi-positive definite). We use vec(A) to denote the vectorization of the matrix A
in column-major order. The meaning of other notations can be inferred from the context.

2 WELL-POSEDNESS OF MIGNN: A MONOTONE OPERATOR PERSPECTIVE

In this section, we characterize the well-posedness of MIGNN leveraging monotone operator theory,
see Appendix B for a brief review of monotone operator theory. Using the Kronecker product3 and
vectorization of a matrix, we can rewrite Equation (1) into the following equivalent vectorized form

vec(Z(k+1)) = σ
(
G⊤ ⊗W vec(Z(k)) + vec(gB(X))

)
. (2)

Gu et al. propose the well-posedness condition of IGNN as λ1(|G⊤ ⊗W |) < 1, guaranteeing that
the unique fixed point of Equation (2) can be found by Picard iteration. Selecting G = Â, all
eigenvalues of G are in [−1, 1] with λ1(G) = 1. Therefore, well-posedness of IGNN is equivalent
to λ1(|W |) < 1 as λ1(|G⊤ ⊗ W |) = λ1(G)λ1(|W |) = λ1(|W |). Then, IGNN parameterizes
W by relaxing the well-posedness condition λ1(|W |) < 1 to ∥W ∥∞ < 1, which constrains the
magnitudes of eigenvalues of W to be less than 1.

We seek to apply the monotone operator theory to improve the expressivity and efficiency of existing
IGNNs. According to the monotone operator theory [68; 77], finding the fixed point of Equation (2)
is equivalent to solving the monotone inclusion problem: find 0 ∈ (F + G)(vec(Z)) with F and G
being two set-valued functions that are given below

F(vec(Z)) = (I −G⊤ ⊗W)vec(Z)− vec(gB(X)) and G = ∂f, (3)

where ∂f denotes the subgradient of a convex closed proper function f that satisfies σ = prox1f with
proxαf (x) ≡ argminz

{ 1
2∥x − z∥2 + αf(z)

}
. When σ is ReLU, then σ = proxαf for ∀α > 0 with

f being the indicator of the positive octant, i.e. f(x) = I{x ≥ 0}. The above monotone inclusion
problem admits a unique solution if the operator F is strongly monotone, i.e. I −G⊤ ⊗W ⪰ mI
or,

1

2

(
G⊤ ⊗W +G⊗W⊤)

⪯ (1−m)I.

Therefore, we obtain the following well-posedness condition for MIGNN:
3See Appendix D for a review of some properties about the Kronecker product.

3

Under review as a conference paper at ICLR 2023

Proposition 1 (Well-posedness condition for MIGNN). Let the non-linearity σ be ReLU and K =
1
2 (G

⊤ ⊗ W + G ⊗ W⊤). Then the MIGNN model Equation (2) is well-posed as long as K ⪯
(1−m)I for some m > 0. As K is symmetric, K ⪯ (1−m)I is equivalent to requiring that each
eigenvalue of K is no more than 1−m.

We provide the proof of Proposition 1 in the appendix; similarly, the proof of all the subsequent
theoretical results are provided in the appendix. The well-posedness condition in Proposition 1
allows for more flexible parametrizations than [39] by enabling the real part of eigenvalues of W to
be in the range (−∞, 1) and the imaginary part to be arbitrary. Along with providing a more flexible
well-posedness condition for MIGNN, monotone operator theory guides us in designing efficient
algorithms for implementing MIGNN; see Sec. 4.

3 FLEXIBLE PARAMETERIZATION OF MIGNN
This section presents the monotone and orthogonal parameterizations of W for MIGNN in Equa-
tion (2). The monotone parameterization can enhance IGNN’s expressivity, and the orthogonal
parameterization can stabilize and accelerate the training of MIGNNs.

3.1 MONOTONE PARAMETERIZATION

Proposition 1 informs us to design a more expressive parameterization of W for MIGNN than that
used for IGNN leveraging monotone operator theory.
Proposition 2 (Monotone parameterization). Let G = (V,E) be a graph and let G be L/2 with
L := D−1/2(D−A)D−1/2 being the normalized Laplacian, where A is the adjacency matrix and
D is the degree matrix with Dii =

∑n
j=1 Aij . Then the MIGNN model Z(k+1) = σ

(
WZ(k)G +

gB(X)
)

is well-posed when the weight matrix W is parameterized as follows

W = (1−m)I −CC⊤ + F − F⊤, (4)

where C,F ∈ Rd×d are arbitrary matrices, and m > 0.

Remark 1. In monotone parameterization, we first set the graph-related matrix G to be L/2, whose
eigenvalues are in [0, 1]. In contrast, the range of the eigenvalues of Â used in IGNN, see Sec. 1, is
[−1, 1]. Next, we parameterize W as in Equation (4), whose eigenvalues have real part in (−∞, 1−
m]. Thus, 1

2 (G
⊤ ⊗ W + G ⊗ W⊤) ⪯ (1 − m)I , guaranteeing the well-posedness of MIGNN.

Moreover, W = (1−m)I−CC⊤+F −F⊤ describes all possible W that satisfy W ⪯ (1−m)I .

3.2 ORTHOGONAL PARAMETERIZATION

As discussed in Sec. 1, IGNN learns LRD when λ1(|W |) approaches 1 in magnitude. This is of-
ten not the case when starting from Gaussian random initialization — making IGNN unstable for
learning LRD. Inspired by the unitary RNN [5], we propose to use the orthogonal parameteriza-
tion [41; 54; 53] with a learnable scaling factor to stabilize MIGNN in learning LRD. In particular,
we parameterize W by the following scaled Cayley map

W = ϕ(γ)(I − S)(I + S)−1, (5)

where ϕ(·) is the sigmoid function and γ ∈ R is a learnable parameter ensuring ϕ(γ) ∈ (0, 1).
S = C−C⊤ is a skew-symmetric matrix with C ∈ Rd×d being an arbitrary parameterized matrix.
It is evident that MIGNN with the parameterization in Equation (5) is well-posed with G being Â
defined in Sec. 1. Also, all eigenvalues of (I − S)(I + S)−1 have magnitude 1, see a derivation in
Appendix E.3. To effectively learn LRD, MIGNN only requires the scalar ϕ(γ) to converge to 1.

4 ACCELERATED OPERATOR SPLITTING FOR IMPLEMENTING IGNNS

It is worth noting that monotone and orthogonal parameterizations are beyond the efficient con-
vergence regime of the Picard iteration. Thus, we leverage the operator splitting schemes to find
the fixed point of the equilibrium equation with monotone or orthogonal parameterization. Oper-
ator splitting schemes often converge faster than Picard iteration and can guarantee convergence
of IGNNs even when Picard iteration fails [68]. In particular, for small graphs and tasks where
learning LRD is not crucial, we use Anderson-accelerated forward-backward splitting (FB) to im-
plement MIGNN with monotone parameterization. For tasks that require learning LRD, we employ

4

Under review as a conference paper at ICLR 2023

Anderson-accelerated Peaceman-Rachford splitting (PR)4, with the Neumann series approximation
accompanied by diffusion convolution, to implement MIGNN with orthogonal parameterization.

We structure this section as follows: In Sec. 4.1, we present FB (Sec. 4.1.1)/PR (Sec. 4.1.2) for
finding the fixed point of MIGNNs using monotone/orthogonal parameterization. In Sec. 4.2, we
present backward propagation algorithms for updating the parameters of MIGNN.

4.1 FORWARD PROPAGATION FOR FINDING THE FIXED POINT

4.1.1 FB SPLITTING

We can find the fixed point of MIGNN in Equation (2) via FB splitting with iterative scheme

Z(k+1) := FFB
α (Z(k)) := proxα

f

(
Z(k) − α ·

(
Z(k) −WZ(k)G− gB(X)

))
, α > 0 is a constant. (6)

We provide a detailed implementation of FB splitting in Appendix F.1. Note that the Lipschitz con-
stant of the FB iteration is LFB :=

√
1− 2αm+ α2∥I −G⊤ ⊗W ∥2 [68, Section 5]. Therefore,

FB splitting converges to the fixed point if α < 2m/∥I − G⊤ ⊗ W ∥2. By choosing a proper α,
FB splitting can converge in the regime that Picard iteration does not. However, when the mono-
tone parameterization is used ∥W ∥ can be arbitrarily large. Thus α needs to be small to guarantee
the convergence of FB splitting, in which case the Lipschitz constant is close to 1, and the conver-
gence of FB splitting will be significantly slowed. FB splitting is appealing for learning with small
graphs and tasks where learning LRD is not crucial. In this case, we use monotone parameterization
to improve the expressivity of the model, and we denote the MIGNN with monotone parameteri-
zation using FB splitting as MIGNN-Mon. For large graphs and tasks that require learning LRD,
FB splitting suffers from slow convergence. Next, we will present PR splitting, which is better for
learning large-scale graphs and LRD. Furthermore, we argue that PR splitting is not suitable for
implementing MIGNN with monotone parameterization.

4.1.2 PR SPLITTING

PR splitting used in [77] is guaranteed to converge for a much broader choice of α and requires
fewer iterations than FB splitting. However, each iteration of PR splitting requires inverting large
matrices, which is computationally much more expensive and less scalable than FB splitting. PR
splitting finds the solution Z∗ of the MIGNN by letting Z∗ = proxαf (U

∗) where U∗ ∈ Rd×n is
obtained from the fixed-point iteration vec(U (k+1)) = FPR

α (vec(U (k))) := CFCG(vec(U (k))) with
CF and CG being the Cayley operators (see Appendix B for details) of F and G, respectively. Let
u(k) be the shorthand notation of vec(U (k)). Then we can formulate the PR splitting as follows

u(k+1) := FPR
α (u(k)) = 2V

(
2 proxα

f (u
(k))− u(k) + α vec(gB(X))

)
− 2 proxα

f (u
(k)) + u(k), (7)

where the matrix V := (I+α(I−G⊤⊗W))−1 and u(0) is the zero vector. With the parametriza-
tions discussed in Sec. 3, the linear operator F in Equation (3) is strongly monotone and L-Lipschitz
where L = ∥I −G⊤ ⊗W ∥. Therefore, its Cayley operator CF and hence FPR

α is contractive with
the optimal choice of α being 1/L, see [68, Section 6]. In particular, it is suggested to choose
α = 1/(1+ϕ(γ)) when using orthogonal parametrization W = ϕ(γ)(I−S)(1+S)−1. The pseu-
docode for the detailed implementation of PR splitting in Equation (7) can be found in Appendix F.1.

Remark 2. Douglas-Rachford (DR) splitting is another option for solving MIGNN, which is often
faster than PR. However, in our case PR is contractive, making it faster than DR for the same α.

PR splitting also benefits MIGNNs in learning LRD when an orthogonal parameterization is used.
To see this, we have the following Neumann series expansion of V (u(k))

V (u
(k)

) = (I+α(I−G
⊤⊗W))

−1
(u

(k)
) =

1

1 + α

(
I −

G⊤ ⊗ W

1 + 1/α

)−1

(u
(k)

) =
1

1 + α

∞∑
i=0

vec
(
W iU(k)Gi

)
(1 + 1/α)i

(8)

where the last equality follows from (A⊗B)k = Ak ⊗Bk, and (A⊗B)vec(C) = vec(BCA⊤)
for ∀A,B and C that satisfy dimensional consistency. Equation (8) indicates that each node can
access information from its ∞-hop neighbors in a single PR iteration for MIGNN with orthog-
onal parameterization. This cannot be said of monotone parameterization with large ∥W ∥, as

4For the sake of presentation, we denote Anderson-accelerated FB and PR splitting as FB and PR.

5

Under review as a conference paper at ICLR 2023

the Neumann series expansion in the last equality of Equation (8) no longer applies. Evaluating
1

1+α

(
I − G⊤⊗W

1+1/α

)−1
(u(k)) can be carried out by using Bartels–Stewart algorithm [11], which con-

verts computing V into diagonalizing the matrix G⊤ and W , respectively. From Equation (8), we
have

V (vec(U (k))) =
1

1 + α
vec

(
QW

[
H ⊙

(
Q−1

W U (k)QG⊤

)]
Q⊤

G⊤

)
(9)

where QG⊤ΛG⊤Q⊤
G⊤ and QWΛWQ−1

W are the eigen-decomposition of G⊤ and of W , respec-
tively, and H ∈ Rd×n whose (i, j)-th entry is Hij = 1/

(
1− 1

1+1/α (ΛW)ii(ΛG⊤)jj
). We provide

a proof of Equation (9) in Appendix E.4. According to Equation (9), one only needs to calculate
the eigen-decomposition of G once prior to training and the eigen-decomposition of W once per
epoch. The above matrix inversion procedure echos the idea of EIGNN [58]. MIGNN has multiple
layers, with each fixed point iteration representing one layer. In contrast, EIGNN is reducible to a
one-layer model; see Appendix A.2 for details on EIGNN.

Although PR splitting can capture LRD in a single iteration, computing V in Equation (7) requires
computationally prohibitive matrix inversion. We provide two remedies to address this issue for
MIGNN using orthogonal parameterization: 1) We use Neumann series expansion to approximate
the matrix inversion when orthogonal parameterization is used. 2) We replace the graph-related
matrix G with a generalized graph diffusion convolution matrix, e.g. heat kernel or the personalized
PageRank [34; 33]. Notice that the above two remedies do not work for MIGNN using monotone
parameterization since we can no longer use the Neumann series approximation. Therefore, MIGNN
with monotone parameterization using PR splitting is not scalable to learning large graphs.

Neumann series approximation. In the orthogonal parameterization of W we have ∥G⊤⊗W
1+1/α ∥ < 1,

ensuring efficient approximation of V in Equation (7) using only a few terms of its Neumann series
expansion. The K-th order Neumann series expansion of V (vec(U (k))) is given by

NK(vec(U (k))) :=
1

1 + α

K∑
i=0

vec
(
W iU (k)Gi

)
(1 + 1/α)i

. (10)

According to Equation (7), the K-th order Neumann series approximated PR iteration function,
denoted as F̃PR,K

α , can be written as follows

u(k+1) := F̃PR,K
α (u(k)) = 2NK

(
2 proxα

f (u
(k))−u(k) +α vec(gB(X))

)
− 2 proxα

f (u
(k))+u(k). (11)

Each node can access information from its K-hop neighbors using the K-th order Neumann series
approximated PR iteration, which is more efficient than the existing IGNN. Also, such a treatment
can significantly accelerate forward propagation. We can intuitively understand this as follows:
Each iteration of MIGNN, with K-th order Neumann series approximated PR iteration, aggregates
information from K-hop neighbors, enabling the use of much fewer iterations than that of IGNN,
which aggregates one hop per iteration. MIGNN can use a much smaller λ1(|W |) than IGNN to
reach the same number of hops, meaning MIGNN converges much faster than IGNN.

MIGNN with diffusion convolution. We can also improve MIGNNs for learning LRD using graph
diffusion convolution [34; 1], i.e. instead of using Â or L defined in the previous context, we can
set G to be the combination of higher powers of Â or L, so that each node aggregates features from
multi-hop neighbors at each iteration. In particular, we let G = D̃−1/2(A+ · · ·+AP)D̃−1/2 for
any positive integer P , where D̃ is the degree matrix with D̃ii =

∑n
j=1

∑P
k=1(A

k)ij ; other choices
of G can be found in [34]. We can show that the eigenvalues of D̃−1/2(A+ · · ·+AP)D̃−1/2 are
all within [−1, 1]; see E.4 for a proof. As such, the orthogonal parameterization of W still ensures
the well-posedness of MIGNN. We write the MIGNN with P -th order diffusion matrix G as follows

Z = σ(WZD̃−1/2(A+A2 + · · ·+AP)D̃−1/2 + gB(X)). (12)

We can further apply the operator splitting schemes to Equation (12). In particular, we denote the
model as MIGNN-NKDP when W is orthogonal, and Equation (12) is implemented using P -th
order diffusion and K-th order Neumann series approximated PR iteration.

Now we discussion the time complexity of MIGNN-NKDP . The P -th order diffusion matrix only
needs to be pre-computed once in preprocessing with time complexity O(nP |EP |) where n is the
number of nodes, and |EP | denotes the number of non-zero entries in AP . In each epoch, the

6

Under review as a conference paper at ICLR 2023

parameter K in the K-th order Neumann series affects the training time complexity linearly as
O(KMd|EP |) where M denotes the maximal number of iterations, and d is the feature dimension
which is much smaller than the number of nodes.

4.1.3 ANDERSON ACCELERATION

We have already seen that the main steps in both FB and PR splitting schemes involve solving
iterative equations, e.g. Equations (6) and (7), and we can utilize Anderson acceleration [4] to
accelerate the convergence of these iterative equations. We provide the detailed formulation and
pseudocode for Anderson-accelerated operator splitting-based MIGNNs in Appendix F.3.

4.2 BACKWARD PROPAGATION FOR UPDATING MIGNNS

We derive backpropagation for MIGNN based on implicit differentiation [35; 7; 26]. Recall that
the vectorized MIGNN vec(Z) = σ

(
G⊤ ⊗W vec(Z) + vec(gB(X))

)
, has equilibrium point

vec(Z∗). For any loss function ℓ and any parameter θ (W or B), we have

∂ℓ

∂θ
=

∂ℓ

∂vec(Z∗)

(
I − J

(
G⊤ ⊗W

))−1 ∂σ
(
G⊤ ⊗W vec(Z∗) + vec(gB(X))

)
∂θ

(13)

where J is the Jacobian of σ evaluated at G⊤ ⊗ W vec(Z∗) + vec(gB(X)). The values of the
first and last term in Equation (13) can be found through automatic differentiation by running one
more iteration in the forward pass. Note that the product of the first two terms remains the same for
any θ. Hence one only needs to compute it once in each backward pass. However, it can still be
expensive to find (∂ℓ)/(∂vec(Z∗))(I−J

(
G⊤ ⊗W

)
)−1. Following [77, Theorem 2], the operator

splitting methods can be used in the backward pass so that computing (I −J(G⊤ ⊗W))−1 can be
converted into computing V = (I−(G⊤⊗W))−1, which is already calculated in the forward pass;
see Appendix F.2. Similar to the forward propagation, the backpropagation can also benefit from
Anderson acceleration using an iterative formulation, and we provide more details in Appendix F.2.

5 EXPERIMENTAL RESULTS

In this section, we compare the performance of MIGNN-Mon (MIGNN with monotone parameter-
ization implemented via FB splitting) and MIGNN-NKDP (MIGNN with orthogonal parameter-
ization implemented via PR splitting accompanied by K-th order Neumann series approximation
and P -th order graph diffusion convolution) with IGNN and several other popular GNNs on various
graph classification tasks at both node and graph levels. We aim to show that 1) MIGNN-Mon is
significantly more expressive than IGNN for both node and graph classifications, and 2) MIGNN-
NKDP can learn LRD effectively, efficiently, and stably. The hyperparameters used in each model
are provided in Appendix K. We conduct all experiments using NVIDIA RTX 3090 graphics cards.

5.1 DIRECTED CHAIN CLASSIFICATION

50 100 150 200 250 300
Chain Length

60

80

100

Ac
cu

ra
cy

(%
)

50 100 150 200
Chain Length

40

60

80

100

Ac
cu

ra
cy

(%
)

IGNN
IGNN-D5

MIGNN-N3D3
MIGNN-N3D5

Figure 3: The accuracy of IGNN and MIGNN of dif-
ferent configurations for classifying directed chains
of different lengths. Left: binary classification (c =
2). Right: three-class classification (c = 3).

To show that MIGNNs can capture LRD in the
underlying graphs, we test them on the syn-
thetic chain task using the experimental setup
from [58]. The chain task dataset comprises of c
classes and nc single-linked directed chains, each
containing l nodes. For each chain, only the fea-
ture on the first node encodes the label informa-
tion. The data is partitioned into training, validation, and test sets of 5%, 10%, and 85%, respectively.
We consider binary (c = 2) and three-class classification (c = 3) problems over several different
chain lengths. For IGNN, we use the experimental settings used in [71]. For MIGNN, we consider
MIGNN-NKDP for this task. Fig. 3 shows the averaged test accuracy over 5 random seeds of
different models for classifying directed chains of length ranging from 50 to 300 in an increment
of 50 for the binary case and from 40 to 200 in an increment of 20 for the three-class case. For
binary classification, MIGNN-N3D3 and MIGNN-N3D5 both score perfectly for all random initial-
izations of the considered chain lengths. For the three-class task, both MIGNN models achieve high
accuracy consistently with the higher order diffusion models, and the higher order diffusion model
outperforms the lower order diffusion model on longer chains. In contrast, the accuracy of IGNN
is much lower and less stable than that of MIGNNs, and in general, IGNN’s performance becomes
worse as the chain length increases. We provide an ablation study of the impact of the order of

7

Under review as a conference paper at ICLR 2023

Neumann series approximation and graph diffusion convolution on the chain classification accuracy
and computational time in Appendix G and H, respectively.

We can also set G to be the diffusion matrix in Equation (12) to enhance IGNN’s capability in
learning LRD. E.g. we can equip IGNN with a diffusion matrix of order 5, and we denote the
resulting model as IGNN-D5. Fig. 3 further contrasts the performance of diffusion enhanced models,
and we observe that MIGNN is more consistent and more accurate as the chain length increases.

0 200 400 600 800 1000
Epoch

40

60

80

100

Ac
cu

ra
cy

(%
)

0 200 400 600 800 1000
Epoch

0

100

200

300

Ite

ra
tio

ns

0 200 400 600 800
Epoch

0.0

0.2

0.4

0.6

Ti
m

e
El

ap
se

d
(s

) IGNN
N2D5

Figure 4: The accuracy and efficiency of MIGNN-N2D5 over IGNN for
three class chains, of length 140, classification.

Based on the operator split-
ting theory, we expect that
MIGNNs are more computa-
tionally efficient than IGNNs
when both models can accu-
rately classify the chain nodes.
Fig. 4 compares the accuracy
and computational efficiency
of MIGNN-N2D5 over IGNN for three-class chain classification. We see that MIGNN-N2D5 sta-
bly approaches perfect accuracy compared to IGNN, which abruptly changes around epoch 400.
When both models accurately classify the chains, MIGNN-N2D5 requires fewer iterations and less
computational time than IGNN.

5.2 GRAPH NODE CLASSIFICATION

In this subsection, we contrast MIGNN-Mon and MIGNN-
N1D1 with some existing GNNs for several benchmark
graph node classification tasks, including Cora, Citeseer,
and Pubmed; each dataset’s statistics of nodes/edge/average
shortest path length between nodes are 2485/5069/5.27,
2120/3679/9.31, and 19717/44324/6.34, respectively. We use the

Datasets Cora Citeseer Pubmed
Geom-GCN [65] 85.27 77.99 90.05

GCNII [21] 88.49 77.08 89.57
APPNP [32] 85.09 75.73 79.73

GCN+GDC [34] 83.58 73.35 78.72
GIND [22] 88.25 76.81 89.22
IGNN [39] 85.80 75.24 87.66

EIGNN [80] 85.89 75.31 87.92
MIGNN-Mon 86.82 76.59 88.00

MIGNN-N5D1 87.04 74.91 83.55

Table 1: Node classification mean ac-
curacy (%) for 10-fold cross-validation.

training procedure outlined in [22] and report the mean accuracy of 10-fold cross validation in
Table 1. The MIGNN-Mon outperforms the implicit model benchmarks IGNN and EIGNN on all
three tasks. We provide an ablation study of the impact of the order of Neumann series and graph
diffusion convolution for graph node classification in Appendix G and H, respectively.

5.3 GRAPH CLASSIFICATION

0 200 400 600 800 1000
Epoch

0

5

10

15

1(
|W

|)

Fold-1
Fold-5
Fold-10

Figure 5: λ1(|W |) of MIGNN-
Mon vs. Epoch on MUTAG.

In this subsection, we verify that MIGNN-Mon can be more ex-
pressive than IGNN for graph classification since the eigenvalues of
monotone parameterization are more flexible than IGNN. We con-
sider five bioinformatics-related graph classification benchmarks:
MUTAG, PTC, COX2, PROTEINS, and NCI1 [81], and some de-
tails of these datasets are provided in Appendix J. The training is
performed using 10-fold cross-validation using the experimental
setup of [71]. The averaged test accuracy and standard deviation across the 10 folds are shown
in Table 2. For both IGNN and MIGNN-Mon, we use the hyperparameters outlined in [71]. We
present the results for both IGNN and MIGNN-Mon in Table 2. Clearly, MIGNN-Mon outperforms
IGNN on all tasks. To verify our theory, we report on the evolution of λ1(|W |) for three of the
ten folds of MUTAG in Fig. 5. For all of the folds λ1(|W |) exceeds one. Table 2 also reports the
accuracy of MIGNN-N3D1 against several baseline models where it performs better than IGNN and
GIND on all tasks and achieves the best accuracy on COX2 and PROTEINS tasks among all stud-
ied models. These results show that learning LRD effectively is vital for classifying these graphs.
We provide an ablation study of the impact of the order of Neumann series and graph diffusion
convolution on classification accuracy and computational time in Appendix G and H, respectively.

5.4 LARGER SCALE GRAPH NODE CLASSIFICATION

We further show the advantages of MIGNN-NKDP over IGNN and other GNNs for a larger scale
graph node classification task — Amazon co-purchasing dataset, which contains 334863 nodes,
925872 edges, and the diameter of the graph is 44 [82]. We provide more details of the Amazon
co-purchasing dataset in Appendix J. As in [23], we train on portions of the graph ranging from
5% to 9%, and test on sets representing 10% of the total graph. We then report both Macro-F1
and Micro-F1 consistent with [71]. Fig. 6 contrasts the computational cost of MIGNN-N1D1 with

8

Under review as a conference paper at ICLR 2023

Datasets MUTAG PTC COX2 PROTEINS NCI1
graphs/Avg # nodes 188/17.9 344/25.5 467/41.2 1113/39.1 4110/29.8

WL [70] 84.1 ± 1.9 58.0 ± 2.5 83.2 ± 0.2 74.7 ± 0.5 84.5 ± 0.5
DCNN [6] 67.0 56.6 — 61.3 62.6

DGCNN [83] 85.8 58.6 — 75.5 74.4
GIN [80] 89.4 ± 5.6 64.6 ± 7.0 — 76.2 ± 3.4 82.7 ± 1.7

FDGNN [31] 88.5 ± 3.8 63.4 ± 5.4 83.3 ± 2.9 76.8 ± 2.9 77.8 ± 1.6
IGNN [39] 76.0 ± 13.4 60.5 ± 6.4 79.7 ± 3.4 76.5 ± 3.4 73.5 ± 1.9
GIND [22] 89.3 ± 7.4 66.9 ± 6.6 84.8 ± 4.2 77.2 ± 2.9 78.8 ± 2.9
GSN [16] 92.2 ± 7.5 68.2 ± 7.2 — 76.6 ± 5.0 83.5 ± 2.0
SIN [15] — — — 76.5 ± 3.3 82.8 ± 2.2
CIN [14] 92.7 ± 6.1 68.2 ± 5.6 — 77.0 ± 4.3 83.6 ± 1.4

MIGNN-Mon 81.8 ± 9.1 72.6 ± 6.7 85.0 ± 5.3 77.9 ± 3.4 73.6 ± 2.0
MIGNN-N1D1 86.1 ± 9.1 70.9 ± 6.5 86.5 ± 2.8 79.0 ± 3.3 78.4 ± 1.2
MIGNN-N3D1 91.4 ± 7.5 71.2 ± 3.2 88.2 ± 4.1 80.1 ± 3.8 80.8 ± 1.81

Table 2: Graph classification mean accuracy (%) ± standard deviation for 10-fold cross-validation. We take
the results of the baseline models from [22] which are consistent with our reproduced results.

IGNN using 5% of the graph for training. λ1(|W |) of MIGNN-N1D1 is much smaller than that
of IGNN, implying faster convergence of MIGNN-N1D1 than IGNN as confirmed by the fact that
MIGNN-N1D1 saves significantly on the number of iterations and computational time over IGNN.

0 1000 2000 3000 4000 5000
Epoch

0.75

0.80

0.85

0.90

0.95

1(
|W

|)

0 1000 2000 3000 4000 5000
Epoch

4

6

8
Ti

m
e

El
ap

se
d

(s
)

0 1000 2000 3000 4000 5000
Epoch

0

50

100

Ite

ra
tio

ns

IGNN
MIGNN-N1D1

Figure 6: Epoch vs. λ1(|W |), the time required for each epoch, and iterations required for each epoch of
IGNN and MIGNN-N1D1 for the Amazon dataset with 5% training portion.

0.05 0.06 0.07 0.08 0.09
Fraction

75

80

85

90
M

icr
o-

F1
 (%

)

0.05 0.06 0.07 0.08 0.09
Fraction

75.0

77.5

80.0

82.5

85.0

M
ac

ro
-F

1
(%

)

GCN
SGC
SSE
IGNN
MIGNN-N1D1

Figure 7: Fraction vs. Micro-F1 (left) and Macro-
F1 (right) training accuracy on the Amazon dataset.

Fig. 7 contrasts MIGNN-N1D1 with baseline mod-
els when trained on portions of the graph ranging
from 5% to 9%. We see that MIGNN-N1D1 out-
performs almost all baseline models over all differ-
ent portions of the graph for the training. Though
MIGNN-N1D1 does not outperform IGNN signifi-
cantly, MIGNN-N1D1 enjoys significant computa-
tional advantages over IGNN.

5.5 PHYSICAL DIFFUSION IN NETWORKS

200 300 400 500
Number of Pores

0.000

0.005

0.010

0.015

M
SE

IGNN MIGNN-N1D1 MIGNN-N3D3 MIGNN-Mon

Figure 8: The average MSE of 500
sampled test iterations vs. the num-
ber of pores. The error bars repre-
sent the standard error of the pre-
diction. MIGNN with different pa-
rameterizations outperforms IGNN
by a significant amount.

We further consider a physical problem of fluid flow in porous
media, following [63]. The model is a 3D graph whose nodes and
edges correspond to pore chambers and throats. We sample train-
ing graphs of different sizes between 100 and 500, which are gen-
erated to fit into 0.1 m3 cubes. We aim to predict the equilibrium
pressures Z∗ inside pore networks G. We train MIGNN to min-
imize the mean-squared error (MSE) between the prediction and
Z∗. We utilize the experimental setup of [63] and include their
reported results for IGNN. Both IGNN and MIGNN use the same
encoder and decoder architecture. Graphs of 50 − 200 nodes are
sampled in training and 1000 test graphs are generated for pore
counts from 200 to 500. Fig. 8 shows the MSE for the test graphs as the number of nodes (pores)
varies from 200 to 500. MIGNN with both monotone and orthogonal parameterizations outperform
IGNN by a significant margin. For this task of learning physical diffusion in networks, CGS [63]
performs better than MIGNN and IGNN in accuracy. As a future direction, we plan to integrate
the idea of the learnable graph-related matrix G that is used in CGS with our proposed MIGNN to
further improve the performance of MIGNN for learning physical diffusion in networks.

6 CONCLUDING REMARKS

We propose MIGNN based on a monotone operator viewpoint of IGNN. In particular, MIGNN can
be parameterized more flexibly than the benchmark IGNN. We provide efficient implementations of
MIGNN that integrates diffusion convolution leveraging different operator splitting schemes with
Anderson acceleration. Numerically, MIGNN remarkably outperforms the existing IGNN in accu-
racy, stability, computational efficiency, and learning LRD. As IGNNs are closely related to RNNs,
an interesting future direction is to explore if the ideas from other RNN architectures [42; 59] can
be adapted to the improvement of IGNNs.

9

Under review as a conference paper at ICLR 2023

REFERENCES

[1] Sami Abu-El-Haija, Amol Kapoor, Bryan Perozzi, and Joonseok Lee. N-gcn: Multi-scale
graph convolution for semi-supervised node classification. In uncertainty in artificial intelli-
gence, pp. 841–851. PMLR, 2020.

[2] Luis B. Almeida. A learning rule for asynchronous perceptrons with feedback in a combina-
torial environment. In Artificial neural networks: concept learning, pp. 102–111, 1990.

[3] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practi-
cal implications. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=i80OPhOCVH2.

[4] Donald G. Anderson. Iterative procedures for nonlinear integral equations. Journal of the ACM
(JACM), 12(4):547–560, 1965.

[5] Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural net-
works. In International Conference on Machine Learning, pp. 1120–1128, 2016.

[6] James Atwood and Don Towsley. Diffusion-convolutional neural networks. In Advances in
Neural Information Processing Systems, volume 29, 2016.

[7] Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Deep equilibrium models. Advances in Neural
Information Processing Systems, 32, 2019.

[8] Shaojie Bai, Vladlen Koltun, and J. Zico Kolter. Multiscale deep equilibrium models. In
Proceedings of the 34th International Conference on Neural Information Processing Systems,
2020.

[9] Shaojie Bai, Vladlen Koltun, and J. Zico Kolter. Stabilizing equilibrium models by Jacobian
regularization. In International Conference on Machine Learning, pp. 554–565. PMLR, 2021.

[10] Shaojie Bai, Vladlen Koltun, and J Zico Kolter. Neural deep equilibrium solvers. In Inter-
national Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=B0oHOwT5ENL.

[11] Richard H. Bartels and George W. Stewart. Solution of the matrix equation ax+ xb= c [f4].
Communications of the ACM, 15(9):820–826, 1972.

[12] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with
gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2):157–166, 1994.

[13] Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe Llinares-
López, Fabian Pedregosa, and Jean-Philippe Vert. Efficient and modular implicit differentia-
tion. arXiv preprint arXiv:2105.15183, 2021.

[14] Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Liò, Guido F Montufar,
and Michael Bronstein. Weisfeiler and Lehman go cellular: CW networks. Advances in Neural
Information Processing Systems, 34:2625–2640, 2021.

[15] Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Otter, Guido F Montufar, Pietro Liò,
and Michael Bronstein. Weisfeiler and Lehman go topological: Message passing simplicial
networks. In International Conference on Machine Learning, pp. 1026–1037. PMLR, 2021.

[16] Giorgos Bouritsas, Fabrizio Frasca, Stefanos P Zafeiriou, and Michael Bronstein. Improving
graph neural network expressivity via subgraph isomorphism counting. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2022.

[17] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and deep
locally connected networks on graphs. In International Conference on Learning Representa-
tions, 2014.

10

https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=B0oHOwT5ENL
https://openreview.net/forum?id=B0oHOwT5ENL

Under review as a conference paper at ICLR 2023

[18] Ben Chamberlain, James Rowbottom, Maria I. Gorinova, Michael Bronstein, Stefan Webb, and
Emanuele Rossi. GRAND: Graph neural diffusion. In Proceedings of the 38th International
Conference on Machine Learning, volume 139, pp. 1407–1418. PMLR, 18–24 Jul 2021. URL
https://proceedings.mlr.press/v139/chamberlain21a.html.

[19] Benjamin Paul Chamberlain, James Rowbottom, Davide Eynard, Francesco Di Giovanni, Xi-
aowen Dong, and Michael M. Bronstein. Beltrami flow and neural diffusion on graphs. In
Advances in Neural Information Processing Systems, 2021.

[20] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the
over-smoothing problem for graph neural networks from the topological view. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 34 (04), pp. 3438–3445, 2020.

[21] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International Conference on Machine Learning, pp. 1725–1735.
PMLR, 2020.

[22] Qi Chen, Yifei Wang, Yisen Wang, Jiansheng Yang, and Zhouchen Lin. Optimization-induced
graph implicit nonlinear diffusion. In International Conference on Machine Learning, pp.
3648–3661. PMLR, 2022.

[23] Hanjun Dai, Zornitsa Kozareva, Bo Dai, Alex Smola, and Le Song. Learning steady-states of
iterative algorithms over graphs. In International conference on machine learning, pp. 1106–
1114. PMLR, 2018.

[24] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. Advances in neural information processing
systems, 29, 2016.

[25] David Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel,
Alan Aspuru-Guzik, and Ryan P. Adams. Convolutional networks on graphs for learning
molecular fingerprints. In Advances in Neural Information Processing Systems, volume 28,
2015.

[26] Laurent El Ghaoui, Fangda Gu, Bertrand Travacca, Armin Askari, and Alicia Tsai. Implicit
deep learning. SIAM Journal on Mathematics of Data Science, 3(3):930–958, 2021.

[27] Moshe Eliasof, Eldad Haber, and Eran Treister. PDE-GCN: Novel architectures for graph
neural networks motivated by partial differential equations. Advances in Neural Information
Processing Systems, 34:3836–3849, 2021.

[28] Moshe Eliasof, Eldad Haber, and Eran Treister. pathGCN: Learning general graph spatial
operators from paths. In International Conference on Machine Learning, pp. 5878–5891.
PMLR, 2022.

[29] Jeffrey L. Elman. Finding structure in time. Cognitive Science, 14(2):179–211, 1990.

[30] Claudio Gallicchio and Alessio Micheli. Graph echo state networks. In The 2010 international
joint conference on neural networks (IJCNN), pp. 1–8. IEEE, 2010.

[31] Claudio Gallicchio and Alessio Micheli. Fast and deep graph neural networks. In Proceedings
of the AAAI conference on artificial intelligence, volume 34 (04), pp. 3898–3905, 2020.

[32] Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In International Conference on Learning
Representations, 2018.

[33] Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Combining neural
networks with personalized pagerank for classification on graphs. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?
id=H1gL-2A9Ym.

[34] Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph
learning. In Advances in Neural Information Processing Systems, volume 32, 2019.

11

https://proceedings.mlr.press/v139/chamberlain21a.html
https://openreview.net/forum?id=H1gL-2A9Ym
https://openreview.net/forum?id=H1gL-2A9Ym

Under review as a conference paper at ICLR 2023

[35] Jean C. Gilbert. Automatic differentiation and iterative processes. Optimization methods and
software, 1(1):13–21, 1992.

[36] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
Neural message passing for quantum chemistry. In Proceedings of the 34th International
Conference on Machine Learning, volume 70, pp. 1263–1272. PMLR, 06–11 Aug 2017. URL
https://proceedings.mlr.press/v70/gilmer17a.html.

[37] Shunwang Gong, Mehdi Bahri, Michael M Bronstein, and Stefanos Zafeiriou. Geometrically
principled connections in graph neural networks. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 11415–11424, 2020.

[38] Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in graph
domains. In Proceedings. 2005 IEEE international joint conference on neural networks, vol-
ume 2, pp. 729–734, 2005.

[39] Fangda Gu, Heng Chang, Wenwu Zhu, Somayeh Sojoudi, and Laurent El Ghaoui. Implicit
graph neural networks. In Proceedings of the 34th International Conference on Neural Infor-
mation Processing Systems, 2020.

[40] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Advances in Neural Information Processing Systems, volume 30, 2017.

[41] Kyle Helfrich, Devin Willmott, and Qiang Ye. Orthogonal recurrent neural networks with
scaled cayley transform. In International Conference on Machine Learning, pp. 1969–1978.
PMLR, 2018.

[42] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9
(8):1735–1780, 1997.

[43] Roger A. Horn and Charles R. Johnson. Topics in matrix analysis, 1991. Cambridge University
Presss, Cambridge, 37:39, 1991.

[44] Saber Jafarpour, Alexander Davydov, Anton Proskurnikov, and Francesco Bullo. Robust Im-
plicit Networks via Non-Euclidean Contractions. In Advances in Neural Information Process-
ing Systems, volume 34, pp. 9857–9868, 2021. URL https://proceedings.neurips.
cc/paper/2021/hash/51a6ce0252d8fa6e913524bdce8db490-Abstract.
html.

[45] Li Jing, Yichen Shen, Tena Dubcek, John Peurifoy, Scott Skirlo, Yann LeCun, Max Tegmark,
and Marin Soljačić. Tunable efficient unitary neural networks (eunn) and their application to
rnns. In Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pp. 1733–1741. JMLR. org, 2017.

[46] Kenji Kawaguchi. On the theory of implicit deep learning: Global convergence with implicit
layers. In International Conference on Learning Representations, 2021. URL https://
openreview.net/forum?id=p-NZIuwqhI4.

[47] David Kincaid and Ward Cheney. Numerical analysis, brooks. Cole Publishing Company, 20:
10–13, 1991.

[48] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In Proceedings of the 5th International Conference on Learning Representations,
2017. URL https://openreview.net/forum?id=SJU4ayYgl.

[49] J. Zico Kolter and Gaurav Manek. Learning stable deep dynamics mod-
els. In Advances in Neural Information Processing Systems, volume 32,
2019. URL https://proceedings.neurips.cc/paper/2019/file/
0a4bbceda17a6253386bc9eb45240e25-Paper.pdf.

[50] J. Zico Kolter, David Duvenaud, and Matt Johnson. Deep implicit layers - neural odes,
deep equilibirum models, and beyond. http://implicit-layers-tutorial.org/,
2020.

12

https://proceedings.mlr.press/v70/gilmer17a.html
https://proceedings.neurips.cc/paper/2021/hash/51a6ce0252d8fa6e913524bdce8db490-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/51a6ce0252d8fa6e913524bdce8db490-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/51a6ce0252d8fa6e913524bdce8db490-Abstract.html
https://openreview.net/forum?id=p-NZIuwqhI4
https://openreview.net/forum?id=p-NZIuwqhI4
https://openreview.net/forum?id=SJU4ayYgl
https://proceedings.neurips.cc/paper/2019/file/0a4bbceda17a6253386bc9eb45240e25-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/0a4bbceda17a6253386bc9eb45240e25-Paper.pdf
http://implicit-layers-tutorial.org/

Under review as a conference paper at ICLR 2023

[51] Steven George Krantz and Harold R. Parks. The implicit function theorem: history, theory, and
applications. Springer Science & Business Media, 2002.

[52] Jure Leskovec, Lada A. Adamic, and Bernardo A Huberman. The dynamics of viral marketing.
ACM Transactions on the Web (TWEB), 1(1):5–es, 2007.

[53] Mario Lezcano Casado. Trivializations for gradient-based optimization on manifolds. Ad-
vances in Neural Information Processing Systems, 32, 2019.

[54] Mario Lezcano-Casado and David Martınez-Rubio. Cheap orthogonal constraints in neural
networks: A simple parametrization of the orthogonal and unitary group. In International
Conference on Machine Learning, pp. 3794–3803. PMLR, 2019.

[55] Guohao Li, Matthias Müller, Bernard Ghanem, and Vladlen Koltun. Training graph neural
networks with 1000 layers. In International conference on machine learning, pp. 6437–6449.
PMLR, 2021.

[56] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional net-
works for semi-supervised learning. In Thirty-Second AAAI conference on artificial intelli-
gence, 2018.

[57] Yujia Li, Richard Zemel, Marc Brockschmidt, and Daniel Tarlow. Gated graph sequence neural
networks. In Proceedings of ICLR’16, 2016.

[58] Juncheng Liu, Kenji Kawaguchi, Bryan Hooi, Yiwei Wang, and Xiaokui Xiao. Eignn: Efficient
infinite-depth graph neural networks. In Advances in Neural Information Processing Systems,
pp. 18762–18773, 2021.

[59] Denis Lukovnikov and Asja Fischer. Improving breadth-wise backpropagation in graph neural
networks helps learning long-range dependencies. In Proceedings of the 38th International
Conference on Machine Learning, volume 139, pp. 7180–7191. PMLR, 18–24 Jul 2021. URL
https://proceedings.mlr.press/v139/lukovnikov21a.html.

[60] Zheng Ma, Junyu Xuan, Yu Guang Wang, Ming Li, and Pietro Liò. Path integral based con-
volution and pooling for graph neural networks. Advances in Neural Information Processing
Systems, 33:16421–16433, 2020.

[61] Zakaria Mhammedi, Andrew Hellicar, Ashfaqur Rahman, and James Bailey. Efficient orthogo-
nal parametrisation of recurrent neural networks using householder reflections. In Proceedings
of the 34th International Conference on Machine Learning-Volume 70, pp. 2401–2409. JMLR.
org, 2017.

[62] Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for
node classification. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=S1ldO2EFPr.

[63] Junyoung Park, Jinhyun Choo, and Jinkyoo Park. Convergent graph solvers. In Interna-
tional Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=ItkxLQU01lD.

[64] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent
neural networks. In International Conference on Machine Learning, pp. 1310–1318, 2013.

[65] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-GCN:
Geometric graph convolutional networks. In International Conference on Learning Represen-
tations, 2020. URL https://openreview.net/forum?id=S1e2agrFvS.

[66] Fernando Pineda. Generalization of back propagation to recurrent and higher order neural
networks. In Neural information processing systems, 1987.

[67] T Konstantin Rusch, Ben Chamberlain, James Rowbottom, Siddhartha Mishra, and Michael
Bronstein. Graph-coupled oscillator networks. In International Conference on Machine Learn-
ing, pp. 18888–18909. PMLR, 2022.

13

https://proceedings.mlr.press/v139/lukovnikov21a.html
https://openreview.net/forum?id=S1ldO2EFPr
https://openreview.net/forum?id=ItkxLQU01lD
https://openreview.net/forum?id=ItkxLQU01lD
https://openreview.net/forum?id=S1e2agrFvS

Under review as a conference paper at ICLR 2023

[68] Ernest K. Ryu and Stephen Boyd. Primer on monotone operator methods. Appl. Comput.
Math, 15(1):3–43, 2016.

[69] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfar-
dini. The graph neural network model. IEEE transactions on neural networks, 20(1):61–80,
2008.

[70] Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt.
Efficient graphlet kernels for large graph comparison. In Artificial intelligence and statistics,
pp. 488–495. PMLR, 2009.

[71] SwiftieH. Implicit graph neural networks. https://github.com/SwiftieH/IGNN,
2020.

[72] Matthew Thorpe, Tan Minh Nguyen, Hedi Xia, Thomas Strohmer, Andrea Bertozzi, Stanley
Osher, and Bao Wang. GRAND++: Graph neural diffusion with a source term. In Inter-
national Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=EMxu-dzvJk.

[73] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and
Yoshua Bengio. Graph attention networks. In International Conference on Learning Rep-
resentations, 2018. URL https://openreview.net/forum?id=rJXMpikCZ.

[74] Eugene Vorontsov, Chiheb Trabelsi, Samuel Kadoury, and Chris Pal. On orthogonality and
learning recurrent networks with long term dependencies. In Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70, pp. 3570–3578. JMLR. org, 2017.

[75] Max Welling and Thomas N. Kipf. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2016.

[76] Paul J. Werbos. Generalization of backpropagation with application to a recurrent gas market
model. Neural networks, 1(4):339–356, 1988.

[77] Ezra Winston and J. Zico Kolter. Monotone operator equilibrium networks. In Advances in
neural information processing systems, volume 33, pp. 10718–10728, 2020.

[78] Scott Wisdom, Thomas Powers, John Hershey, Jonathan Le Roux, and Les Atlas. Full-capacity
unitary recurrent neural networks. In Advances in Neural Information Processing Systems, pp.
4880–4888, 2016.

[79] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger.
Simplifying graph convolutional networks. In International conference on machine learning,
pp. 6861–6871. PMLR, 2019.

[80] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryGs6iA5Km.

[81] Pinar Yanardag and S.V.N. Vishwanathan. Deep graph kernels. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
1365–1374, 2015.

[82] Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based on
ground-truth. In Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics, pp.
1–8, 2012.

[83] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learn-
ing architecture for graph classification. In Proceedings of the AAAI conference on artificial
intelligence, volume 32 (1), 2018.

[84] Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. In Inter-
national Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=rkecl1rtwB.

14

https://github.com/SwiftieH/IGNN
https://openreview.net/forum?id=EMxu-dzvJk
https://openreview.net/forum?id=EMxu-dzvJk
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=rkecl1rtwB
https://openreview.net/forum?id=rkecl1rtwB

Under review as a conference paper at ICLR 2023

A A BRIEF REVIEW OF IGNN AND RELATED MODELS

A.1 IGNN: FORWARD AND BACKWARD PROPAGATION

IGNN employs a projected gradient descent method in the training phase to ensure their pro-
posed well-posedness condition is satisfied. In forward propagation, IGNN finds the equilibrium
through direct Picard iteration. During backward propagation, IGNN uses the implicit function the-
orem at the equilibrium to compute the gradient. The computationally expensive terms related to

∂ℓ
∂vec(Z∗)

(
I − J

(
G⊤ ⊗W

))−1
(see Section 4.2 for notations) is also computed implicitly through

Picard iteration.

A.2 EIGNN, CGS, AND GIND

EIGNN Efficient infinite-depth graph neural networks (EIGNN) is an implicit graph neural net-
work model proposed by Liu et al. [58] whose counterpart in explicit GNN is simple graph convo-
lution (SGC) [79]. The main update step in EIGNN is given by

Z(k+1) = γg(F)Z(k)G+X (14)

where Z(·) denotes the hidden feature, G is the normalized augmented adjacency matrix Â
(See Section 1), X is the input feature, g(F) is the weight matrix which is parameterized to guar-
antee convergence, and γ is a constant scalar in (0, 1). Note that, there is no non-linearity in the
fixed-point Equation (14) and this allows EIGNN to find the equilibrium by the following closed
formula:

lim
k→∞

vec
(
Z(k+1)

)
= (I − γ(G⊤ ⊗ g(F)))−1 vec(X). (15)

For computation efficiency consideration, the matrix inverse operation is reduced to eigenvalue de-
composition of G⊤ and g(F) where the eigenvalue decomposition G⊤ is pre-calculated before
training.

CGS Convergent graph solver (CGS) is an implicit graph neural network proposed by Park et al.
in [63] where the fixed point equation in use can be described as follows

Z(k+1) = γZ(k)Gθ + gB(X) (16)

where Z(·) is the hidden feature, γ is the contraction factor, Gθ ∈ Rn×n is the graph-related matrix
that is learnable and gB(X) is the input-dependent bias term. Similar to the EIGNN case, the
linearity in Equation 16 allows the fixed point to be found by a closed formula.

GIND The optimization-induced graph implicit nonlinear diffusion (GIND) is an implicit graph
neural network proposed by Chen et al. [22]. GIND involves a fixed point iteration equation of the
following form:

Z(k+1) = −W⊤σ(W (Z(k) + gB(X))G)G⊤, (17)

where Z(·) is the hidden feature, W is the weight matrix, gB(X) is some input-dependent bias
term, and G is a normalization of the adjacency matrix A. The precise definition of G is given
as G := D̂−1/2A/

√
2 where D̂ is the degree matrix of the augmented adjacency matrix A + I

given as D̂ii := 1 +
∑

j Aij . The weight matrix W is parameterized so that ∥W ∥∥G∥ < 1.
Similar to IGNN, the Picard iteration is employed to find the fixed point. The authors claimed that
the new fixed-point equation (Equation 17) represents a nonlinear diffusion process with anisotropic
properties while IGNN only represents a linear isotropic diffusion. However, we observe that GIND
is closely related to the following simple variant of IGNN where the main change is to

Z(k+1) = σ
(
W (−W⊤)Z(k)G⊤G+W gB(X)G

)
(18)

where the notations are the same as in Equation 17. In fact, once ∥W ∥∥G∥ < 1, and assuming σ is a
non-expansive activation function (for example, tanh, ReLU, ELU), then Equation 18 is contractive
and hence its fixed point exists. Let Z∗ be the fixed-point of Equation (18), then we claim that

15

Under review as a conference paper at ICLR 2023

Z̃ = −W⊤Z∗G⊤ is the fixed point of Equation (17) with the same W , G, and gB(X) used in
both Equation 18 and Equation 17. This can be seen from the following direct calculation:

Z̃ = −W⊤Z∗G⊤

= −W⊤σ
(
W (−W⊤)Z∗G⊤G+W gB(X)G

)
G⊤

= −W⊤σ
(
WZ̃G+W gB(X)G

)
G⊤

= −W⊤σ
(
W (Z̃ + gB(X))G

)
G⊤.

B A BRIEF REVIEW OF MONOTONE OPERATOR THEORY

B.1 OPERATORS

In this section, we briefly review the definition and basic theory of monotone operators, more details
can be found in [68]. We sat T is a (set-valued) operator if T maps a point in Rd to a subset of Rd.
and we denote this as T : Rd ⇒ Rd. We define the graph of an operator as

Gra T = {(x,u)|u ∈ T (x)}.

Mathematically, an operator and its graph are equivalent. In other words, we can view T : Rd ⇒ Rd

as a point-to-set mapping and as a subset of Rd × Rd.

Many notions for functions can be extended to operators. For example, the domain and range of an
operator T are defined as

dom T = {x | T (x) ̸= ∅}, range T = {y | y = T (x),x ∈ Rd}.

If T and S are two operators, we define their composition as

T ◦ S(x) = T S(x) = T (S(x)),

and their sum as
(T + S)(x) = T (x) + S(x).

Alternately, we can define the operator composition and sum using their graphs,

T S =
{
(x, z) | ∃ y (x,y) ∈ S, (y, z) ∈ T

}
,

T + S =
{
(x,y + z) | (x,y) ∈ T , (x, z) ∈ S

}
.

The identity (I) and zero (0) operators are defined as follows

I = {(x,x) | x ∈ Rd}, 0 = {(x,0) | x ∈ Rd}.

We say an operator T is L-Lipschitz (L > 0) if

∥T (x)− T (y)∥ ≤ L∥x− y∥, ∀x,y ∈ dom T ,

i.e.,
∥u− v∥ ≤ L∥x− y∥, ∀(x,u), (y,v) ∈ T .

The inverse operator of T is defined as

T −1 = {(y,x) | (x,y) ∈ T }.

When 0 ∈ T (x), we say that x is a zero of T . We write the zero set of an operator T as

Zer T = {x | 0 ∈ T (x)} = T −1(0).

16

Under review as a conference paper at ICLR 2023

B.2 MONOTONE OPERATORS

An operator T on Rd is said to be monotone if

⟨u− v,x− y⟩ ≥ 0, ∀(x,u), (y,v) ∈ T ,

where ⟨·, ·⟩ denotes the inner product between two vectors. Equivalently, we can express mono-
tonicity as

⟨T (x)− T (y),x− y⟩ ≥ 0, ∀x,y ∈ Rd.

Furthermore, we say the operator T is maximal monotone if there is no other monotone operator
S s.t. Gra T ⊂ Gra S properly. In other words, if the monotone operator T is not maximal,
then there exists (x,u) /∈ T s.t. T ∪ {(x,u)} is still monotone. A continuous monotone function
F : Rd → Rd is maximal monotone.

An operator T : Rd ⇒ Rd is B-strongly monotone or B-coercive if B > 0 and

⟨u− v,x− y⟩ ≥ B∥x− y∥2, ∀(x,u), (y,v) ∈ T .

We say T is strongly monotone if it is B-strongly monotone for some unspecified constant B ∈
(0,∞). In particular, a linear operator F(x) = Gx + h for G ∈ Rd×d and h ∈ Rd is maximal
monotone if and only if G + G⊤ ⪰ 0 (0 stands for the matrix whose entries are all zero) and
B-strongly monotone if 1

2 (G +G⊤) ⪰ BI . Similarly, a subdifferentiable operator ∂f is maximal
monotone if and only if f is a convex closed proper (CCP) function.

An operator T is β-cocoercive or β-inverse strongly monotone if β > 0 and

⟨u− v,x− y⟩ ≥ β∥u− v∥2, ∀(x,u), (y,v) ∈ T .

We say T is cocoercive if it is β-cocoercive for some unspecified constant β ∈ (0,∞). In particular,
if the linear operator F(x) = Gx + h is B-strongly monotone and L-Lipschitz, then F is B

L2 -
cocoercive.

C A BRIEF REVIEW OF OPERATOR SPLITTING SCHEMES

In this section, we provide a brief review of a few celebrated operator splitting schemes for solving
fixed-point equilibrium equations.

C.1 RESOLVENT AND CAYLEY OPERATORS

The resolvent and Cayley operators of an operator T is defined as, respectively, as follows

RT = (I + αT)−1,

and
CT = 2RT − I,

where α > 0 is a constant. The resolvent and Cayley operators are both non-expansive, i.e. they both
have Lipschitz constant L ≤ 1 for any maximal monotone operator T , and the resolvent operator
RT is contractive (i.e. L < 1) for strongly monotone T , the Cayley operator CT is contractive for
strongly monotone and Lipschitz T .

There are two well-known properties associated with the resolvent operators:

• First, when F(x) = Gx+ h is a linear operator, then

RF (x) =
(
I + αG

)−1
(x− αh).

• Second, when F = ∂f for some CCP function f , then the resolvent is given by the follow-
ing proximal operator

RF (x) = proxαf (x) := argmin
z

{1
2
∥x− z∥2 + αf(z)

}
.

17

Under review as a conference paper at ICLR 2023

C.2 OPERATOR SPLITTING SCHEMES

Operator splitting schemes refer to methods to find a zero in a sum of operators (assumed here to be
maximal monotone), i.e. find x s.t.

0 ∈ (F + G)(x).

We present a few popular operator splitting schemes for solving the above monotone inclusion prob-
lem.

• Forward-backward splitting (FB): Consider the monotone inclusion problem

findx∈Rd 0 ∈ (F + G)(x),

where F and G are maximal monotone and F is single-valued. Then for any α > 0, we
have

0 ∈ (F + G)(x) ⇔ 0 ∈ (I + αG)(x)− (I − αF)(x)

⇔ (I + αG)(x) ∋ (I − αF)(x)

⇔ x = RG(I − αF)(x).

Therefore, x is a solution if and only if it is a fixed point of RG(I − αF). Moreover,
assume F is β-cocoercive, then the Picard iteration using forward-backward splitting can
be written as

x(k+1) = RG(x
(k) − αFx(k)),

which converges if α ∈ (0, 2β) and Zer(F + G) ̸= ∅.

• Peaceman-Rachford splitting (PR): Consider the following monotone inclusion problem

findx∈Rd 0 ∈ (F + G)(x),

where F and G are maximal monotone. For any α > 0, we have

0 ∈ (F + G)(x) ⇔ 0 ∈ (I + αF)(x)− (I − αG)(x)
⇔ 0 ∈ (I + αF)(x)− CG(I + αG)(x)
⇔ 0 ∈ (I + αF)(x)− CG(z), z ∈ (I + αG)(x)
⇔ CG(z) ∈ (I + αF)RG(z), x = RG(z)

⇔ RFCG(z) = RG(z), x = RG(z)

⇔ CFCG(z) = z, x = RG(z).

Therefore, x is a solution if and only if there is a solution of the fixed-point equilibrium
equation z = CFCG(z) and x = RG(z), which is called Peaceman-Rachford splitting.

• Douglas-Rachford splitting (DR): Sometimes the operator CFCG is merely nonexpansive,
the Picard iteration with PR given below

z(k+1) = CFCG(z(k))

is not guaranteed to converge. To guarantee convergence, we note that for any ∀α > 0, we
have

0 ∈ (F + G)(x) ⇔
(1
2
I +

1

2
CFCG

)
(z) = z, x = JG(z).

And the above splitting is called Douglas-Rachford splitting. The Picard iteration with DR
can be written as follows

x(k+1/2) = RG(z
(k))

x(k+1) = RF (2x
(k+1/2) − z(k))

z(k+1) = z(k) + x(k+1) − x(k+1/2)

which converges for any α > 0 if Zer(F + G) ̸= ∅.

18

Under review as a conference paper at ICLR 2023

D PROPERTIES OF KRONECKER PRODUCT

In this section, we collect some Kronecker product results that are used in this paper.
Definition 1. Let A ∈ Rp×q , B ∈ Rr×s be two matrices. Their Kronecker product A×B ∈ Rpr×qs

is defined as follows:

A⊗B =

 A11B . . . A1qB
...

...
Ap1B . . . ApqB

The following identities about Kronecker product hold:

• (A⊗B)⊤ = A⊤ ⊗B⊤ ∀A ∈ Rp×q, B ∈ Rr×s

• ∥A⊗B∥ = ∥A∥∥B∥ ∀A ∈ Rp×q, B ∈ Rr×s

• ∥A⊗B∥∞ = ∥A∥∞∥B∥∞ ∀A ∈ Rp×q, B ∈ Rr×s

• (A⊗B)vec(C) = vec(BCA⊤) ∀A ∈ Rs,r,B ∈ Rp×q,C ∈ Rq×r

• (A⊗B)⊗C = A⊗ (B ⊗C) ∀A ∈ Rm,n,B ∈ Rp×q,C ∈ Rr×s

• A⊗ (B +C) = A⊗B +A⊗C ∀A ∈ Rp×q,B,C ∈ Rr×s

• (A+B)⊗C = A⊗C +B ⊗C ∀A,B ∈ Rp×q,C ∈ Rr×s

• (A⊗B)(C ⊗D) = AC ⊗BD ∀A ∈ Rp×q,B ∈ Rr×s,C ∈ Rq×k,D ∈ Rs×l

Proposition 3 ([43, Theorem 4.2.12]). Let A ∈ Rn×n and B ∈ Rm×m. If we denote the eigenvalue
sets of A and B as Λ(A) = {λ1(A), . . . , λn(A)} and Λ(B) = {λ1(B), . . . , λm(B)}, then the
eigenvalue set of A⊗B is Λ(A⊗B) = {λi(A) · λj(B), i = 1, . . . , n, j = 1, . . . ,m}.

E TECHNICAL PROOFS

E.1 LIPSCHITZ CONSTANT VS. LARGEST MAGNITUDE OF EIGENVALUE

Let f(Z) = WZG+B be a linear map. With slight abuse of notation, we still denote the vectorized
version of f as f which reads f(vec(Z)) = (G⊤ ⊗ W)vec(Z) + vec(B) (See Appendix D for
properties of the Kronecker product). The Lipschitz constant Lip∞(f) of the linear map f with
respect to the ℓ∞ vector norm is exactly the ∞-norm ∥G ⊗W ∥∞ = ∥G⊤∥∞∥W ∥∞. Recall the
following general result about matrix norm and the largest magnitude of eigenvalue.
Theorem 1 ([47, Theorem 4 in Section 4.6]). The largest magnitude of eigenvalue λ1(A) of a
matrix A satisfies

λ1(A) = inf
∥·∥M

∥A∥M

in which the infimum is taken over all subordinate matrix norms ∥ · ∥M including 2-norm and ∞-
norm.

Meanwhile, note that one has ∥W ∥∞ = ∥ |W | ∥∞ by definition. Hence one has Lip∞(f) =
∥G⊤∥∞∥W ∥∞ ≥ λ1(G

⊤)λ1(|W |). Note that, when G is the normalized adjacency matrix of
undirected graph Â, we have λ1(G

⊤) = λ1(G) = 1 and hence we have Lip∞(f) ≥ λ1(|W |).

E.2 PROOFS FOR SECTION 2

Proof of Proposition 1. First recall the operator splitting problem 3 in Section 1:

find 0 ∈ (F + G)(vec(Z)),

where
F(vec(Z)) = (I −G⊤ ⊗W)vec(Z)− vec(gB(X)) and G = ∂f,

here f is the indicator of the positive octant, i.e. f(x) = I{x ≥ 0} for which we have proxαf equals
σ, the ReLU activation function, for all α > 0. Note that, from the condition K = 1

2

(
G⊤ ⊗W +

G⊗W⊤) ⪯ (1−m)I , one has G⊤ ⊗W ⪯ (1−m)I and hence

I −G⊤ ⊗W ⪰ mI

19

Under review as a conference paper at ICLR 2023

which says F is m-strongly monotone for some m > 0. As the function F is a linear and hence
continuous function defined on the entire Rd×n, it is then automatically maximal monotone once
it is monotone. Since f is a CCP function, its subdifferential operator G = ∂f is maximal mono-
tone. In particular, as the linear map F is single-valued, we can apply the FB splitting scheme in
Appendix C.2 as the following: for any α > 0, we have

0 ∈ (F + G)(vec(Z)) ⇔ vec(Z) = RG(I − αF)(vec(Z)).

⇔ vec(Z) = proxα
f

(
vec(Z)− α ·

(
vec(Z)−G⊤ ⊗W vec(Z)− vec(gB(X))

))
,

⇔ vec(Z) = σ
(
vec(Z)− α ·

(
vec(Z)−G⊤ ⊗W vec(Z)− vec(gB(X))

))
.

When α = 1 in the last above, we recover the MIGNN model 2:

vec(Z) = σ(G⊤ ⊗W vec(Z) + vec(gB(X))

This shows the equivalence between finding a fixed point of MIGNN model 2 and finding a zero
of the operator splitting problem 3. Therefore, when K ⪯ (1 −m)I , the linear map F is strongly
monotone and Lipschitz, the monotone splitting problem and hence the MIGNN model is well-
sposed, see Appendix C.2.

E.3 PROOFS FOR SECTION 3

The following properties of the Cayley map are used in this paper.

Proposition 4. Let S be a skew-symmetric matrix. Then its image under the Cayley map Cay(S) :=
(I − S)(I + S)−1 is an orthogonal matrix, and hence the magnitude of all its eigenvalues is 1.

Proof. To verify that the Cayley map is well-defined, it suffices to show that −1 is not an eigenvalue
of S. This can be derived from the general fact that each eigenvalue of any skew-symmetric matrix
is purely imaginary. To see this, let λ be an eigenvalue of S with corresponding eigenvector v where
both λ and v possibly contain complex numbers. Let vH and SH denote the conjugate transpose of
the vector v and the matrix S respectively. We then have

vHSv = vH(λv) = λ|v|2C,

where ||C denotes the Euclidean norm for a complex vector. At the same time, one has

vHSv = (SHv)Hv = (−Sv)Hv = −λ̄|v|2C,

where λ̄ denotes the complex conjugate of λ. Hence λ = −λ, that is λ is purely imaginary. This
concludes the proof that (I − S)(I + S)−1 is well-defined.

Note that (I −S)(I +S)−1
(
(I − S)(I + S)−1

)⊤
= (I −S)(I +S)−1(I +S)(I −S)−1 = I .

Therefore, (I − S)(I + S)−1 is (real) orthogonal.

In the last part, we present a short proof that the magnitude of all eigenvalues of a (real) orthogonal
matrix O equals 1. Let λO be an eigenvalue of O and w is its eigenvector. Then we have

|λO||w|2C = (Ow)H(Ow) = wHOHOw = (Ow)H(Ow) = wHO⊤Ow = |w|2C.

Hence, |λO| = 1.

Proof of Proposition 2. Since the normalized Laplacian L is symmetric, we have

K =
1

2

(
1

2
L⊤ ⊗W +

1

2
L⊗W⊤

)
=

1

2
L⊗

(
1

2

(
W +W⊤)) .

The property of Kronecker product (Theorem 3) tells us that the eigenvalues of K are the products
of the eigenvalues of L and

(
1
2 (W +W⊤)

)
. Therefore, the MIGNN model satisfies the well-

posedness condition in Proposition 1 once

λi

(
1

2
L

)
λj

(
1

2
(W +W⊤)

)
≤ 1−m

20

Under review as a conference paper at ICLR 2023

for all eigenvalues from 1
2L and

(
1
2 (W +W⊤)

)
. Notice that 1

2L is positive semi-definite and all
its eigenvalues are within [0, 1]. Therefore, W guarantees the well-posedness of MIGNN as long as
all eigenvalues satisfy

λi

(
1

2
(W +W⊤)

)
≤ 1−m.

When W = (1−m)I−CC⊤+F −F⊤, we have 1
2 (W +W⊤) = (1−m)I−CC⊤. As CC⊤

is positive semi-definite, all eigenvalues of 1
2 (W +W⊤) are no more than (1−m).

E.4 PROOFS FOR SECTION 4

The following result about Kronecker product is adapted from [58] which we include here for com-
pleteness.

Proof of Formula 9 used in Section 4. Since G⊤ is symmetric, it admits an eigen-decomposition
G⊤ = QG⊤ΛG⊤Q⊤

G⊤ where QG⊤ is orthogonal and hence satisfies Q−1
G⊤ = QG⊤ . As W is

diagonalizable, it admits a eigen-decomposition W = QWΛWQ−1
W . Then we can write

G⊤ ⊗W = [QG⊤ΛG⊤Q⊤
G⊤]⊗ [QWΛWQ−1

W] = [QG⊤ ⊗QW][ΛG⊤ ⊗ΛW][Q⊤
G⊤ ⊗Q−1

W]

Let n = dim(G) and d = dim(W), we have

Ind = In ⊗ Id = [QG⊤InQ
⊤
G⊤]⊗ [QW ImQ−1

W] = [QG⊤ ⊗QW][In ⊗ Im][Q⊤
G⊤ ⊗Q−1

W]

Therefore, for some matrix B ∈ Rd×n,

V (vec(U)) =
1

1 + α

(
Ind −

α

1 + α
(G⊤ ⊗W)

)−1

(vec(U))

=
1

1 + α

(
Ind −

α

1 + α
(G⊤ ⊗W)

)−1

(vec(U))

1

1 + α

(
[QG⊤ ⊗QW]

[
Ind −

α

1 + α
ΛG⊤ ⊗ΛW

] [
Q⊤

G⊤ ⊗Q−1
W

])−1

(vec(U))

1

1 + α

(
[QG⊤ ⊗QW]

[
Ind −

α

1 + α
ΛG⊤ ⊗ΛW

]−1 [
Q⊤

G⊤ ⊗Q−1
W

])
(vec(U))

Note that
[
Ind − α

1+αΛG⊤ ⊗ΛW

]
is a diagonal matrix whose inverse is given by the diagonal

matrix Diag(vec(H)) where the entires of H is given as Hij := 1/
(
1− α

1+α (ΛW)ii(ΛG⊤)jj

)
.

Here the notation Diag(v) denotes the diagonal matrix that has v as its diagonal for any vector v.
From this we have,

V (vec(U)) =
1

1 + α

(
[QG⊤ ⊗QW] Diag(vec(H))

[
Q⊤

G⊤ ⊗Q−1
W

])
(vec(U))

=
1

1 + α
([QG⊤ ⊗QW] Diag(vec(H)) vec(Q−1

W UQG⊤)

=
1

1 + α
[QG⊤ ⊗QW] vec

(
H ⊙ [Q−1

W UQG⊤]
)

=
1

1 + α
vec
(
QW [H ⊙ [Q−1

W UQG⊤]]Q⊤
G⊤

)
where ⊙ denotes entry-wise multiplication.

For the reader’s convenience, we present the following fact that implies D̃−1/2(A + A2 + · · · +
AP)D̃−1/2 has its eigenvalues within [−1, 1] which is used in MIGNN with diffusion convolution
(Equation 12).
Proposition 5. Let S ∈ Rn×n be non-singular symmetric matrix and let D be the degree matrix
defined as the diagonal matrix where Dii =

∑n
j=1 |Sij |. Since S is non-singular, D−1/2 is well-

defined. Then the normalization S̃ := D−1/2SD−1/2 of S has its eigenvalues with [−1, 1].

21

Under review as a conference paper at ICLR 2023

Proof. Note that, the normalization S̃ satisfies

S̃⊤ = D−1/2S⊤D−1/2 = D−1/2SD−1/2 = S̃,

that is, S̃ is symmetric. To complete the proof, it then suffices to show that both I+ S̃ and I− S̃ are
positive semi-definite. Indeed, from the construction, both symmetric matrices D − S and D + S
are diagonal dominant, and their diagonal entries are positive, hence they are positive semi-definite
by Gershgorin’s Circle Theorem. Meanwhile, for any vector v ∈ Rn, we have

v⊤(I + S̃)v = v⊤(I +D−1/2SD−1/2)v

= v⊤D−1/2(D + S)D−1/2v

= (D−1/2v)⊤(D + S)(D−1/2v)

≥ 0

This shows that I + S̃ is positive semi-definite. Similarly, one can derive that I − S̃ is positive
semi-definite from D − S is positive semi-definite.

F MIGNN VIA ANDERSON-ACCELERATED OPERATOR SPLITTING SCHEMES

In this section, we present the pseudocodes of Anderson-accelerated MIGNN operator splitting
schemes discussed in Section 4.

F.1 PSEUDOCODE FOR MIGNN WITH OPERATOR SPLITTING SCHEMES

FB Splitting. The detail of the FB splitting scheme iteration function Equation (6) of solving
MIGNN is presented in Algorithm 1.
Algorithm 1 FB-forward-MIGNN

Z := 0; err := 1
while err > ϵ do

Z(+) := (1− α)Z + αWZG+ αgB(X)

Z(+) := proxα
f (Z

(+))

err := ∥Z(+)−Z∥
∥Z(+)∥

Z := Z(+)

end while
return Z

PR splitting. The details of the PR splitting scheme encoded in the iteration function Equation (7)
of solving MIGNN is presented in Algorithm 2.
Algorithm 2 PR-forward-MIGNN

z,u = vec(U) := 0; err := 1; V := (I + α(I −G⊤ ⊗W))−1

while err > ϵ do
z(1/2) := proxα

f (u)

u(1/2) := 2z(1/2) − u
z(+) := V (u(1/2) + α vec(gB(X)))

u(+) := 2z(+) − u(1/2)

err := ∥u(+)−u∥
∥u(+)∥

z,u := z(+),u(+)

end while
return proxα

f (u)

F.2 MORE DETAILS ON BACKWARD PROPAGATION

In the backward propagation, the following result from [77] allows us to convert the computing of
the inverse Jacobian term (I − J(G⊤ ⊗ W))−⊤ to the (transpose of) matrix inverse term V =
(I −G⊤ ⊗W))−1 which is already calculated in the forward pass.

22

Under review as a conference paper at ICLR 2023

Proposition 6 (Adapted from [77, Theorem 3]). Let vec(Z∗) be the fixed point of the MIGNN
model (2) and J is the Jacobian σ of the non-linearity at the G⊤ ⊗ W vec(Z∗) + vec(gB(X)).
For any v ∈ Rn the solution u∗ of the equation

u∗ = (I − J(G⊤ ⊗W))−⊤v

is given by
u∗ = v + (G⊗W⊤)ũ∗

where ũ is a solution of the operator splitting problem 0 ∈ (F̃ + G̃)(ũ), with operators defined as

F̃ (ũ) =
(
I −G⊗W⊤) (ũ), G̃(ũ) = Dũ− v (19)

where D is the diagonal matrix defined by J = (I +D)−1 (where Dii = ∞ if Jii = 0).

Note that, since the non-linearity σ is applied entry-wise, the Jacobian J is a diagonal matrix,
and its diagonal entries consist of the vectorization of the Jacobian ∂σ(WZG⊤)

∂Z |Z∗ . Therefore, the
Jacobian J and hence D can be efficiently computed. We provide the pseudo-codes of FB and PR
splitting schemes for the backward propagation described in the above proposition as Algorithm 3
and Algorithm 4 respectively and their Anderson-accelerated version can be found in Algorithm 7
and Algorithm 8.

FB backward propagation We now present the pseudo-code of FB splitting method (Algo-
rithm 3) for the backward propagation with the procedure described in Proposition 6.
Algorithm 3 FB-backward-MIGNN

u = vec(U) := 0; err := 1; v := ∂ℓ
∂vec(Z∗)

while err > ϵ do
u(+) := (1− α)u+ α vec(W⊤UG⊤)

u
(+)
i :=

{
u
(+)
i +αvi

1+α(1+Dii)
if Dii < ∞

0 if Dii = ∞
err := ∥u(+)−u∥

∥u(+)∥

u := u(+)

end while
Set U := vec−1(u)
return v + vec(W⊤UG⊤)

Let u(k) be the intermediate variable, the procedure of applying FB splitting on monotone splitting
problem 19 can be summarized as finding the fixed-point u∗ of the following iteration function

u(k+1) := BFB
α (u(k)) = (I + αD)−1((1− α)u(k) + αW⊤v). (20)

PR backward propagation We now present the pseudo-code of PR splitting method (Algo-
rithm 4) for the backward propagation with the procedure described in Proposition 6.
Algorithm 4 PR-backward-MIGNN

y := 0;u = vec(U) := 0; err := 1; v := ∂ℓ
∂vec(Z∗) ; V := (I + α(I −G⊤ ⊗W))−1

while err > ϵ do

u
(1/2)
i :=

{
yi+αvi

1+α(1+Dii)
if Dii < ∞

0 if Dii = ∞
y(1/2) := 2u(1/2) − y
u(+) := V ⊤y(1/2)

y(+) := 2u(+) − y(1/2)

err := ∥y(+)−y∥
∥y(+)∥

y,u := y(+),u(+)

end while

Compute u where ui :=

{
yi+αvi

1+α(1+Dii)
if Dii < ∞

0 if Dii := ∞
Set U := vec−1(u)
return v + vec(W⊤UG⊤)

23

Under review as a conference paper at ICLR 2023

Let y(k) be the intermediate variable, the procedure of applying PR splitting on Equation (19) can
be summarized as first finding the fixed-point y∗ of the following iteration function

y(k+1) := BPR
α (y(k)) = 2V ⊤

(
2(I + αD)−1(y(k) + αv)− y(k)

)
−2(I+αD)−1(y(k)+αv)+y(k)

(21)
and then the final solution of the operator splitting problem is ũ = (I + αD)−1(y∗ + αv).

F.3 ANDERSON ACCELERATION

We first introduce the general Anderson acceleration scheme. Let f : Rn → Rn be a function s.t.
the Lipschitz constant L(f) < 1. Therefore, the function f admits a unique fixed point and can be
obtained through Picard iteration. Let h(x) = f(x) − x be the residual function. Let x(0) be the
initial guess, β ∈ (0, 1) be a relaxation parameter, and m > 1 be an integer parameter. Then the
Anderson acceleration update x(k) as

x(k+1) = (1− β)

m∑
i=0

γ
(k)
i x(k−m+i) + β

m∑
i=0

γ
(k)
i h

(
x(k−m+i)

)
(22)

where the coefficients γ(k) =
(
γ
(k)
0 , . . . , γ

(k)
m

)⊤
are determined by a least-square problem as the

following:

min
γ=(γ0,...,γm)⊤

∥∥∥∥∥
m∑
i

h(x(k−m+i))γi

∥∥∥∥∥ s.t.
m∑
i=0

γi = 1.

Note that, when β = 1, the trivial weight γ(k) = (0, . . . , 0, 1)⊤ recovers Picard iteration. Therefore,
when the Picard iteration converges, the Anderson acceleration also converges and typically faster.

In Algorithm 5, we present the FB MIGNN forward propagation with Anderson acceleration on the
FB iteration function FFB

α which is introduced in Section 4 and recalled here:

Z(k+1) := FFB
α (Z(k)) := proxαf

(
Z(k) − α ·

(
Z(k) −WZ(k)G− gB(X)

))
.

Algorithm 5 MIGNN-FB-Forward: FB MIGNN forward propagation

Input: initial point Z(0) := 0, FB damping parameter α, AA relaxation parameter β, max storage size
m ≥ 1.
Compute F (0) = FPB

α (Z(0)),H(0) = F (0) −Z(0).
for k = 1, . . . ,K do

Set mk = min(m, k)

Compute F (k) = FPB
α

(
Z(k)

)
, H(k) = F (k) −Z(k)

Update H := (H(k−mk), . . . ,H(k))

Determine γ(k) =
(
γ
(k)
0 , . . . , γ

(k)
mk

)⊤
that solves

min
γ=(γ0,...,γmk)

⊤
∥Hγ∥ s.t.

mk∑
i=0

γi = 1.

Set

Z(k+1) := β

mk∑
i=0

γ
(k)
i FPB

α (Z((k−mk)+i)) + (1− β)

mk∑
i=0

γ
(k)
i Z((k−mk)+i).

end for
return Z(k+1)

In Algorithm 6, we present the PR MIGNN forward propagation with Anderson acceleration on the
PR iteration function FPR

α which is introduced in Section 4 and recalled here:

u(k+1) := FPR
α (u(k)) = 2V

(
2 proxα

f (u
(k))− u(k) + α vec(gB(X))

)
− 2 proxα

f (u
(k)) + u(k), (23)

24

Under review as a conference paper at ICLR 2023

Algorithm 6 MIGNN-PR-forward: PR MIGNN forward propagation

Input: initial point u(0) = vec(U (0)) := 0, PR damping parameter α, AA relaxation parameter
β, max storage size m ≥ 1.
Compute f (0) := FPR

α (u(0)),h(0) := f (0) − u(0).
for k = 1, . . . ,K do

Set mk := min(m, k)
Compute f (k) := FPR

α

(
u(k)

)
, h(k) := f (k) − u(k)

Update H := (h(k−mk), . . . ,h(k))

Determine γ(k) =
(
γ
(k)
0 , . . . , γ

(k)
mk

)⊤
that solves

min
γ=(γ0,...,γmk)

⊤
∥Hγ∥ s.t.

mk∑
i=0

γi = 1.

Set

u(k+1) := β

mk∑
i=0

γ
(k)
i FPR

α (u((k−mk)+i)) + (1− β)

mk∑
i=0

γ
(k)
i u((k−mk)+i).

end for

Set U (k+1) := vec−1(u(k+1))
return proxαf (U

(k+1))

The FB iteration function for the backpropagation BFB
α is introduced in Appendix F.2 and recalled

here:

u(k+1) := BFB
α (u(k)) = (I + αD)−1((1− α)u(k) + αW⊤v). (24)

We now present the Anderson-accelerated FB MIGNN backward propagation as Algorithm 7.

Algorithm 7 MIGNN-FB-Backward: FB MIGNN backward propagation

Input: initial point u(0) := vec(U) := 0, v := ∂ℓ
∂vec(Z∗) , PR damping parameter α, AA relax-

ation parameter β, max storage size m ≥ 1.
Compute f (0) := BFB

α (u(0)),h(0) := f (0) − u(0).
for k = 1, . . . ,K do

Set mk := min(m, k)
Compute f (k) := BFB

α

(
u(k)

)
, h(k) := f (k) − u(k)

Update H := (h(k−mk), . . . ,h(k))

Determine γ(k) =
(
γ
(k)
0 , . . . , γ

(k)
mk

)⊤
that solves

min
γ=(γ0,...,γmk)

⊤
∥Hγ∥ s.t.

mk∑
i=0

γi = 1.

Set

u(k+1) := β

mk∑
i=0

γ
(k)
i BFB

α (u((k−mk)+i)) + (1− β)

mk∑
i=0

γ
(k)
i u((k−mk)+i).

end for

Set U (k+1) := vec−1(u(k+1))
return v + vec(W⊤U (k+1)G⊤)

25

Under review as a conference paper at ICLR 2023

The PR iteration function for the backpropagation BPR
α is introduced in Appendix F.2 and recalled

here: let y(k) be the intermediate variable,

y
(k+1)

:= B
PR
α (y

(k)
) = 2V

⊤
(
2(I + αD)

−1
(y

(k)
+ αv) − y

(k)
)
− 2(I + αD)

−1
(y

(k)
+ αv) + y

(k) (25)

and then the final solution of the operator splitting problem is ũ = (I +αD)−1(y∗ +αv). We now
present the Anderson-accelerated PR MIGNN backward propagation as Algorithm 8.

Algorithm 8 MIGNN-PR-Backward: PR MIGNN backward propagation

Input: initial point y(0) := 0, v := ∂ℓ
∂vec(Z∗) , PR damping parameter α, AA relaxation parameter

β, max storage size m ≥ 1.
Compute f (0) := BPR

α (y(0)),h(0) := f (0) − y(0).
for k = 1, . . . ,K do

Set mk := min(m, k)
Compute f (k) := BPR

α

(
y(k)

)
, h(k) := f (k) − y(k)

Update H := (h(k−mk), . . . ,h(k))

Determine γ(k) =
(
γ
(k)
0 , . . . , γ

(k)
mk

)⊤
that solves

min
γ=(γ0,...,γmk)

⊤
∥Hγ∥ s.t.

mk∑
i=0

γi = 1.

Set

y(k+1) := β

mk∑
i=0

γ
(k)
i BPR

α (y((k−mk)+i)) + (1− β)

mk∑
i=0

γ
(k)
i y((k−mk)+i).

end for

Compute u(k+1) where u
(k+1)
i :=

{
y
(k+1)
i +αvi

1+α(1+Dii)
if Dii < ∞

0 if Dii = ∞
Set U (k+1) := vec−1(u(k+1))
return v + vec(W⊤U (k+1)G⊤)

G EFFECTS OF THE ORDER OF NEUMANN SERIES EXPANSION

In this section, we perform ablation studies on the effects of the order of the Neumann series for
approximating matrix (I + α(I −G⊤ ⊗W))−1 in MIGNN-NKDP with fixed P = 1. We study
the performance of MIGNN-NKDP for synthetic directed chain classification, benchmark graph
node and graph classification.

G.1 DIRECTED CHAIN CLASSIFICATION

Examining the Neumann series expansion for the synthetic chain classification task demonstrates
the trade-off between accuracy and time complexity. We train MIGNN-NKD1 for three-class clas-
sification, where the order K ranges from 1 to 5 in increments of 1. Fig. 9 plots the resulting test
accuracy, number of iterations, and time elapsed for each training epoch.

We make three observations as the order of the Neumann series increases. First the accuracy in-
creases with respect to the order with diminishing returns. Second the number of iterations increases
relative to the order up 3. Finally the time elapsed also increases with respect to the order up to 4
and 5 which are similar. These observations underscore the trade-off between accuracy and time
complexity as the order increases.

26

Under review as a conference paper at ICLR 2023

0 200 400 600 800 1000
Epoch

35.0

37.5

40.0

42.5

Ac
cu

ra
cy

(%
)

0 200 400 600 800 1000
Epoch

10

20

30

40

Ite

ra
tio

ns

0 200 400 600 800 1000
Epoch

0.1

0.2

0.3

0.4

Ti
m

e
(s

)

N1D1 N2D1 N3D1 N4D1 N5D1

Figure 9: Comparison of Neumann expansion for accuracy, number of iterations, and elapsed time using
three-class chain classifications with chain length 140.

G.2 NODE CLASSIFICATION

The graph node classification tasks also highlight the trade-off between accuracy and time complex-
ity. We train MIGNN-NKD1 using 10-fold cross validation on Cora, Citeseer and Pubmed. We
consider K in the range from 1 to 5, incrementing by 1. The mean test accuracy and time elapsed
along with their standard deviations are reported in Table 3.

Datasets Cora (Accuracy) Cora (Time) Citeseer (Accuracy) Citeseer (Time) Pubmed (Accuracy) Pubmed (Time)
MIGNN-N1D1 86.7 ± 1.81 0.384 ± 0.036 69.8 ± 6.8 0.149 ± 0.022 80.9 ± 3.97 0.151 ± 0.015
MIGNN-N2D1 86.8 ± 1.37 0.467 ± 0.039 73.2 ± 5.1 0.203 ± 0.022 83.1 ± 0.66 0.184 ± 0.016
MIGNN-N3D1 86.8 ± 1.55 0.514 ± 0.021 73.6 ± 5.2 0.242 ± 0.025 83.3 ± 0.76 0.216 ± 0.017
MIGNN-N4D1 86.7 ± 1.40 0.622 ± 0.055 74.8 ± 2.3 0.261 ± 0.025 83.6 ± 0.67 0.241 ± 0.020
MIGNN-N5D1 87.0 ± 1.42 0.698 ± 0.064 74.9 ± 2.3 0.292 ± 0.015 83.6 ± 0.66 0.272 ± 0.024

Table 3: Graph node classification mean accuracy (%) ± standard deviation for 10-fold cross-validation.

For node classification we see a very clear trend across all datasets. Both the accuracy and time
elapsed increase with the order of the Neumann expansion. However, the accuracy scales with
diminishing returns; notice N4 and N5 have the same accuracy for both Citeseer and Pubmed.

G.3 GRAPH CLASSIFICATION

In this subsection, we apply MIGNN-NKD1 to classify the MUTAG dataset, where K ranges from
1 to 5 incrementing by 1. Fig. 10 plots the test accuracy, the number of iterations, and the time
elapsed for training one fold of the 10-fold cross validation.

0 100 200 300 400 500
Epoch

60

70

80

90

Ac
cu

ra
cy

(%
)

0 100 200 300 400 500
Epoch

20

25

30

Ite

ra
tio

ns

0 100 200 300 400 500
Epoch

0.4

0.6

0.8

1.0

Ti
m

e
El

la
ps

ed
 (s

) N1D1 N2D1 N3D1 N4D1 N5D1

Figure 10: Comparison of Neumann expansion for accuracy, number of iterations and elapsed time using the
first fold of the MUTAG graph data set.

Unlike the directed chains and node classification tasks, the graph classification does not show sig-
nificant improvements from higher order Neumann expansion on this fold. However, from Table 2,
we observe that over 10-fold cross validation diffusion improves the results. Although the accuracy
and iteration count remain similar among all orders, the time elapsed still scales with the order.

H EFFECTS OF THE ORDER OF GRAPH DIFFUSION CONVOLUTION

In this section, we use MIGNN-NKDP with fixed K = 1 and varying order of graph diffusion
P to study the effects of the order of graph diffusion convolution. We report the performance of
MIGNN benchmarking on synthetic directed chain classification, benchmark graph node and graph
classification tasks.

H.1 DIRECTED CHAIN CLASSIFICATION

The three-class chain classification task benefits tremendously for high orders of diffusion. We train
MIGNN-N1DP on chain lengths of 140, where P ranges from 1 to 5 incrementing by 1. Fig. 11
plots the test accuracy, number of iterations, and time elapsed for each training epoch.

27

Under review as a conference paper at ICLR 2023

0 200 400 600 800 1000
Epoch

30

40

50

60

70

Ac
cu

ra
cy

(%
)

0 200 400 600 800 1000
Epoch

10

15

20

Ite

ra
tio

ns

0 200 400 600 800 1000
Epoch

0.08

0.10

0.12

0.14

Ti
m

e
(s

)

N1D1 N1D2 N1D3 N1D4 N1D5

Figure 11: Comparison of graph diffusion convolution for accuracy, number of iterations and elapsed time
using three-class chains of length 140.

For diffusion convolution we make two observations. First, the accuracy scales with the order of
diffusion with a remarkable gap between D3 and D4. Second, the iteration count and time elapsed
remain relatively constant among all orders, with D1 standing out as the least among all others.

Our theory informs us of the following: 1) Accuracy scaling occurs when the introduced P -hop
edges contain relevant information for the task 2) Time elapsed scales relative to the number of
edges in the higher order graph diffusion matrix. Our observations support our theory and strongly
suggest using diffusion as an inexpensive improvement to simple learning tasks.

H.2 NODE CLASSIFICATION

In this subsection, we study the effects of the order of diffusion convolution on the node classification
tasks outlined in the citation datasets (Cora, Citeseer, Pubmed). We consider MIGNN-N1DP with
P ranging from 1 to 3 with an increment of 1. Table 4 reports the test accuracy and the time elapsed
for each epoch for different MIGNN models. We observe that diffusion does provide any benefit for
graph node classification.

Datasets Cora (Accuracy) Cora (Time) Citeseer (Accuracy) Citeseer (Time) Pubmed (Accuracy) Pubmed (Time)
MIGNN-N1D1 86.7 ± 1.81 0.384 ± 0.036 69.8 ± 6.8 0.141 ± 0.017 80.9 ± 3.97 0.151 ± 0.015
MIGNN-N1D2 86.5 ± 1.30 0.367 ± 0.032 69.3 ± 6.5 0.146 ± 0.021 77.6 ± 4.82 0.410 ± 0.040
MIGNN-N1D3 83.7 ± 1.33 0.766 ± 0.021 68.0 ± 7.0 0.164 ± 0.057 83.3 ± 0.76 6.25 ± 1.14

Table 4: Graph node classification mean accuracy (%) ± standard deviation for 10-fold cross-validation.

H.3 GRAPH CLASSIFICATION

We further apply MIGNN-N1DP to classify the MUTAG dataset, where P ranges from 1 to 5
incrementing by 1. Fig. 12 plots the test accuracy, number of iterations, and time elapsed for each
epoch for different MIGNN models.

0 100 200 300 400 500
Epoch

40

60

80

Ac
cu

ra
cy

(%
)

0 100 200 300 400 500
Epoch

20

25

30

Ite

ra
tio

ns

0 100 200 300 400 500
Epoch

0.4

0.5

0.6

0.7

Ti
m

e
El

la
ps

ed
 (s

) N1D1 N1D2 N1D3 N1D4 N1D5

Figure 12: Comparison of diffusion convolution for accuracy, number of iterations and elapsed time using the
first fold of the MUTAG graph data set.

We observe that higher order diffusion convolution has little impact on the time complexity when
each connected subgraph is small relative to the underlying graph.

28

Under review as a conference paper at ICLR 2023

I MORE DISCUSSION ON WHEN IGNNS BECOME EXPRESSIVE FOR
LEARNING LRD

In this section, we further confirm the interconnection between the accuracy of IGNN for classifying
directed chains and the eigenvalues of |W |. The accuracy and number of iterations of IGNN and the
dynamics of the two leading eigenvalues are plotted in Figs. 13 and 14, respectively, for the binary
and three-class cases. These results confirm the phenomena we have discussed in Sec. 1.

0 100 200 300 400 500
Epoch

60

80

100

Ac
cu

ra
cy

(%
)

0 100 200 300 400 500
Epoch

0.4

0.6

0.8

1.0

1(|W|)
2(|W|)

0 100 200 300 400 500
Epoch

0

100

200

300

Ite

ra
tio

ns

Chain Length
100

(a) (b) (c)

0 100 200 300 400 500
Epoch

60

80

100

Ac
cu

ra
cy

(%
)

Train Validate Test
0 100 200 300 400 500

Epoch

0.4

0.6

0.8

1.0

1(|W|)
2(|W|)

0 100 200 300 400 500
Epoch

0

100

200

300

Ite

ra
tio

ns
Chain Length

150

(d) (e) (f)

0 100 200 300 400 500
Epoch

48

50

52

54

56

Ac
cu

ra
cy

(%
)

0 100 200 300 400 500
Epoch

0.2

0.4 1(|W|)
2(|W|)

0 100 200 300 400 500
Epoch

4

6

8

10

12

Ite

ra
tio

ns

Chain Length
200

(g) (h) (i)

0 100 200 300 400 500
Epoch

48

50

52

Ac
cu

ra
cy

(%
)

0 100 200 300 400 500
Epoch

0.1

0.2

0.3
1(|W|)
2(|W|)

0 100 200 300 400 500
Epoch

4

6

8

10

Ite

ra
tio

ns

Chain Length
250

(j) (k) (l)

0 100 200 300 400 500
Epoch

48

50

Ac
cu

ra
cy

(%
)

0 100 200 300 400 500
Epoch

0.0

0.1

0.2

0.3

0.4

1(|W|)
2(|W|)

0 100 200 300 400 500
Epoch

2.5

5.0

7.5

10.0

12.5

Ite

ra
tio

ns

Chain Length
300

(m) (n) (o)
Figure 13: In the first column, the training, test, and validation accuracies of IGNN are depicted for several
varying chain lengths. In the second column, the corresponding top two eigenvalues are plotted. The third
column depicts the number of Picard iterations for each chain length. When IGNN becomes accurate for chain
classification, the corresponding λ1(|W |) becomes close to 1 and requires substantially more iterations for the
Picard iteration to converge.

29

Under review as a conference paper at ICLR 2023

0 100 200 300 400 500
Epoch

34

36

38

40

42

Ac
cu

ra
cy

(%
)

0 100 200 300 400 500
Epoch

0.1

0.2

0.3

0.4

0.5

1(|W|)
2(|W|)

0 100 200 300 400 500
Epoch

8

10

12

Ite

ra
tio

ns

Chain Length
100

(a) (b) (c)

0 100 200 300 400 500
Epoch

40

60

80

100

Ac
cu

ra
cy

(%
)

Train Validate Test
0 100 200 300 400 500

Epoch

0.4

0.6

0.8

1.0

1(|W|)
2(|W|)

0 100 200 300 400 500
Epoch

0

100

200

300

Ite

ra
tio

ns

Chain Length
120

(d) (e) (f)

0 100 200 300 400 500
Epoch

34

36

38

40

Ac
cu

ra
cy

(%
)

0 100 200 300 400 500
Epoch

0.2

0.4

0.6

1(|W|)
2(|W|)

0 100 200 300 400 500
Epoch

2.5

5.0

7.5

10.0

12.5

Ite

ra
tio

ns

Chain Length
140

(g) (h) (i)

0 100 200 300 400 500
Epoch

34

36

38

40

Ac
cu

ra
cy

(%
)

0 100 200 300 400 500
Epoch

0.1

0.2

0.3

0.4
1(|W|)
2(|W|)

0 100 200 300 400 500
Epoch

6

8

10

Ite

ra
tio

ns

Chain Length
160

(j) (k) (l)

0 100 200 300 400 500
Epoch

32

34

36

38

Ac
cu

ra
cy

(%
)

0 100 200 300 400 500
Epoch

0.1

0.2

0.3

0.4

0.5

1(|W|)
2(|W|)

0 100 200 300 400 500
Epoch

4

6

8

10

Ite

ra
tio

ns

Chain Length
180

(m) (n) (o)
Figure 14: The first column shows the training, test, and validation accuracies of IGNN for several chain
lengths of three classes. In the second column, we plot the corresponding top two eigenvalues. In the third
column, we plot the number of Picard iterations for each chain length. As the maximum eigenvalue of the sys-
tem approaches 1, IGNN becomes more accurate for chain classification at the cost of a significantly increased
number of training iterations.

J DETAILS ABOUT DATASETS

Synthetic chains dataset. To evaluate the LRD learning ability of models, we construct synthetic
chains dataset as in Gu et al. [39]. Both binary classification and multiclass classification are con-
sidered. Let c be the number of classes, that is, there are c types of chains. The label information is
only encoded as a one-hot vector in the first c-dimensions of the node feature of the starting nodes
of each chain. With c classes, nc chains for each class, and l nodes in each chain, the chain dataset
has c× nc × l nodes in total.

Bioinformatics datasets. MUTAG is a dataset of 188 mutagenic aromatic and heteroaromatic
nitro compounds. PTC is a dataset of 344 chemical compounds that report carcinogenicity for male

30

Under review as a conference paper at ICLR 2023

and female rats. COX2 is a dataset of 467 cyclooxygenase-2 (COX-2) inhibitors. PROTEINS is a
dataset of 1113 secondary structure elements (SSEs). NCI1 is a public dataset from the National
Cancer Institute (NCI) and is a subset of balanced datasets of chemical compounds screened for the
ability to suppress or inhibit the growth of a panel of human tumor cell lines.

Amazon product co-purchasing network. This dataset contains 334863 nodes (representing
goods), 925872 edges, and 58 label types. An edge is formed between two nodes if the represented
goods have been purchased together [52].

Pore networks. The pore network is a simulated dataset that models fluid flow in porous media.
Each porous network is randomly generated inside a cubic domain of width 0.1m by Delaunay
or Voronoi tessellation. The prediction of equilibrium pressure in a pore network under physical
diffusion is introduced as a GNN task in [63]. The GNN model prediction accuracy is compared
with the ground truth obtained through solving the diffusion equation directly, see [63, Appendix C]
for more details.

Citation dataset. Cora and Citeseer are large citation datasets that describe the presence of specific
words in publications. Pubmed is a large citation dataset that contains information about papers
classified for studying one of the three diabetes. The following table adapted from [33] describes
the statistics of the three datasets.

Dataset Type Classes Features Nodes Edges Label rate Avg. SP
Cora Citation 7 2879 2810 7981 0.047 5.27

Citeseer Citation 6 3703 2110 3668 0.036 9.31
Pubmed Citation 3 500 19717 44324 0.003 6.34

Table 5: Dataset statistics. The shortest path length is denoted by Avg. SP.

K DETAILS ABOUT HYPERPARAMETERS

The default parameter settings for MIGNN are the following. For the fixed-point schemes α =
0.9, β = 0.9, the default maximum iteration is 300, the tolerance is 1e-6, and convergence is mea-
sured in the ℓ∞-norm of the difference between two consecutive fixed point iterations. The learnable
parameter is initialized to γ = 1.0.

Synthetic chains dataset. For both binary and three-class classification we use the parameters
outlined by IGNN [71]. In both classification tasks we make the same modifications. We set the
clipping and dropout to 0.

Citation dataset. In the citation datasets we follow the training procedure used by GIND [22].
For the Cora dataset we set the weighted-decay to 1e-4 and the fixed-point tolerance to 1e-3. For all
three models we set the fixed-point α = 0.5, and the number of hidden layers to 64.

Bioinformatics datasets. In the bioinformatics datasets we follow the training procedure used by
IGNN [71]. On the C12 dataset for MIGNN-Mon, we use α = 0.5. On all other datasets we extend
the number of training epochs to 500.

Amazon product co-purchasing network. In the Amazon product co-purchasing dataset we fol-
low the training procedure used by IGNN [71].

Pore networks. In the physical diffusion pore networks we follow the training procedure used by
CGS [63] and the default parameter values for MIGNN.

31

	Introduction
	Our contribution
	Additional related work
	Notation

	Well-posedness of MIGNN: A Monotone Operator Perspective
	Flexible Parameterization of MIGNN
	Monotone parameterization
	Orthogonal parameterization

	Accelerated Operator Splitting for Implementing IGNNs
	Forward propagation for finding the fixed point
	FB splitting
	PR splitting
	Anderson acceleration

	Backward propagation for updating MIGNNs

	Experimental Results
	Directed chain classification
	Graph node classification
	Graph classification
	Larger scale graph node classification
	Physical diffusion in networks

	Concluding Remarks
	A Brief Review of IGNN and Related Models
	IGNN: Forward and backward propagation
	EIGNN, CGS, and GIND

	A Brief Review of Monotone Operator Theory
	Operators
	Monotone operators

	A Brief Review of Operator Splitting Schemes
	Resolvent and Cayley operators
	Operator splitting schemes

	Properties of Kronecker product
	Technical Proofs
	Lipschitz constant vs. Largest magnitude of eigenvalue
	Proofs for Section 2
	Proofs for Section 3
	Proofs for Section 4

	MIGNN via Anderson-Accelerated Operator Splitting Schemes
	Pseudocode for MIGNN with operator splitting schemes
	More details on backward propagation
	Anderson acceleration

	Effects of the Order of Neumann Series Expansion
	Directed chain classification
	Node classification
	Graph classification

	Effects of the Order of Graph Diffusion Convolution
	Directed chain classification
	Node classification
	Graph classification

	More Discussion on When IGNNs Become Expressive for Learning LRD
	Details about datasets
	Details about hyperparameters

