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Abstract

Although it is well known that exploration plays a key role in Reinforcement1

Learning (RL), prevailing exploration strategies for continuous control tasks in2

RL are mainly based on naive isotropic Gaussian noise regardless of the causality3

relationship between action space and the task and consider all dimensions of4

actions equally important. In this work, we propose to conduct interventions on5

the primal action space to discover the causal relationship between the action6

space and the task reward. We propose the method of State-Wise Action Refined7

(SWAR), which addresses the issue of action space redundancy and promote8

causality discovery in RL. We formulate causality discovery in RL tasks as a state-9

dependent action space selection problem and propose two practical algorithms10

as solutions. The first approach, TD-SWAR, detects task-related actions during11

temporal difference learning, while the second approach, Dyn-SWAR, reveals12

important actions through dynamic model prediction. Empirically, both methods13

provide approaches to understand the decisions made by RL agents and improve14

learning efficiency in action-redundant tasks.15

1 Introduction16

Although model-free RL has achieved great success in various challenging tasks and outperforms17

experts in most cases [21, 26, 17, 34, 4], the design of action space always requires elaboration. For18

example, in the game StarCraftII, hundreds of units can be selected and controlled to perform various19

actions. To tackle the difficulty in exploration caused by the extremely large action and state space,20

hierarchical action space design and imitation learning are used [27, 34] to reduce the exploration21

space. Both of those approaches require expert knowledge of the task. On the other hand, even in the22

context of imitation learning where expert data is assumed to be accessible, causal confusion will still23

hinder the performance of an agent [8]. Those defects motivate us to explore the causality-awareness24

of an agent that permits an agent to discover the causal relationship for the environment and select25

useful dimensions of action space during policy learning in pursuance of improved learning efficiency.26

Another motivating example is the in-hand manipulation tasks [2]: robotics equipped with touch27

sensors outperforms the policies learned without sensors by a clear margin in hand-in manipulation28

tasks [20], showing the importance of causality discovery between actions and feedbacks in RL. A29

similar example can be found in human learning: knowing nothing about how to control the finger30

joints flexibly may not hinder a baby learns to walk, and a baby has not learned how to walk can still31

learn to use forks and spoons skillfully, inspiring us to believe that the challenge for exploration can32

be greatly eased after the causality between action space and the given task is learned.33

In this work, the recent advance of instance-wise feature selection technique [38] is improved to be34

more suitable in large-scale state-wise action selection tasks and adapted to the time-series causal35

discovery setting to select state-conditioned action space in RL with redundant action space. With the36

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



Figure 1: Block diagram of INVASE in temporal difference learning. States and actions sampled
from replay buffer are fed into the selector network that predicts the selection probabilities of different
dimensions of actions. A selection mask is then generated according to such a selection probability
vector. The critic network and the baseline network are trained to minimize temporal difference error
with states and the selected dimension of actions and primal action respectively. The difference of
TD-Error is used to conduct a policy gradient to update the selector network.

proposed method, the agent learns to perform intervention, discover the true structural causal model37

(SCM) and select task-related actions for a given task, remarkably reduces the burden of exploration38

and obtains on-par learning efficiency as well as asymptotic performance compared with agents39

trained in the oracle settings where the action spaces are pruned according to given tasks manually.40

2 Preliminary41

Markov Decision Processes RL tasks can be formally defined as Markov Decision Processes42

(MDPs), where an agent interacts with the environment and learns to make decision at every timestep.43

Formally, we consider the deterministic MDP with a fixed horizon H 2 N+ denoted by a tuple44

(S,A, H, r, �, T , ⇢0), where S and A are the |S|-dimensional state and |A|-dimensional action space;45

r : S ⇥A 7! R denotes the reward function; � 2 (0, 1] is the discount factor indicating importance46

of present returns compared with long-term returns; T : S ⇥A 7! S denotes the transition dynamics;47

⇢0 is the initial state distribution.48

We use ⇧ to represent the stationary deterministic policy class, i.e., ⇧ = {⇡ : S 7! A}. The49

learning objective of an RL algorithm is to find ⇡⇤ 2 ⇧ as the solution of the following optimization50

problem: max⇡2⇧ E⌧⇠⇢0,⇡,T [
P

H

t=1 �
t
rt] where the expectation is taken over the trajectory ⌧ =51

(s1, a1, r1, . . . , sH , aH , rH) generated by policy ⇡ under the environment T , starting from s0 ⇠ ⇢0.52

INVASE INVASE is proposed by [38] to perform instance-wise feature selection to reduce over-53

fitting in predictive models. The learning objective is to minimize the KL-Divergence of the full-54

conditional distribution and the minimal-selected-features-only conditional distribution of the out-55

come, i.e., minF L, with56

L = DKL(p(Y |X = x)||p(Y |X(F (x)) = x
(F (x)))) + �|F (x)|0. (1)

where F : X ! {0, 1}d is a feature selection function and |F (x)|0 denotes the cardinality (l057

norm) of selected features, i.e., the number of 1’s in F (x). 1
d is the dimension of input features.58

1To avoid confusion between state notion s 2 S and the selector notion S used in [38], F is used in this
work to represent the selector (i.e., mask generator).
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x
(F (x)) = F (x) � x denotes the element-wise product of x and generated mask m = F (x).59

Ideally, the optimal selection function F should be able to minimize the two terms in Equation (1)60

simultaneously.61

INVASE applies the Actor-Critic framework in the optimization of F through sampling, where62

f✓(·|x), parameterized by a neural network ✓ 2, is used as a stochastic actor. Two predictive networks63

C�(·), B (·) are considered as the critic and the baseline network used for variance reduction [36]64

and trained with the Cross-Entropy loss to produce return signal L, based on which f✓(·|x) can be65

optimized through policy gradient:66

E(x,y)⇠p[Em⇠f✓(·|x)[Lr✓ log f✓(·|x)]]. (2)
Finally, F (x) = (F1(x), ..., Fd(x)) can be get by sampling from f(·|x) = (f1(x), ..., fd(x)), with67

Fi(x) =

⇢
1, w.p. fi(·|x).
0, w.p. 1� fi(·|x).

(3)

3 Proposed Method68

The objective of this work is to carry out state-wise action selection in RL through intervention,69

and thereby enhance the learning efficiency with a pruned task-related action space after finding the70

correct causal model. Section 3.1 starts with the formalization of the action space refinery objective71

in RL tasks under the framework of causal discovery. Section 3.2 introduces SWAR, which improves72

the scalability of INVASE in high dimensional variable selection tasks. We integrate SWAR with73

deterministic policy gradient methods [25] in Section 3.3 to perform state-wise action space pruning,74

resulting in two practical causality-aware RL algorithms.75

3.1 Temporal Difference Objective with Structural Causal Models76

In modern RL algorithms, the most general approach is based on the Actor-Critic framework [15],77

where the critic Qw(s, a) approximates the return of given state-action pair (s, a) and guides the78

Actor to maximize the approximated return at state s. The Critic is optimized to reduce Temporal79

Difference (TD) error [29], defined as80

LTD = Esi,ai,ri,s
0
i⇠B[(ri + �Qw(s

0
i
, a

0
i
)�Qw(si, ai))

2]. (4)

where B = (si, ai, ri, s0i)i=1,2,... is the replay buffer used for off-policy learning [17, 10, 12, 28],81

and a
0
i
= ⇡(s0

i
) is the predicted action for state s

0
i
. In practice, the calculations of Qw(s0i, a

0
i
) are82

usually based on another set of slowly updated target networks for stability [10, 12]. Henceforth,83

TD-learning can be roughly simplified as regression with notion yi = ri + �Qw(s0i, a
0
i
):84

LTD = Esi,ai,ri,s
0
i⇠B[(yi �Qw(si, ai))

2]. (5)
Assume there are only M < L actions are related to a specific task among the L-dimensional85

actions ai = a
(1)
i

, ..., a
(L)
i

, i.e., Qw(·, ·) is function of si, a
(1)
i

, ..., a
(M)
i

. Learning with the primal86

redundant action space will lead to around L+|S|
M+|S| times sample complexity [9, 39]. Therefore, we are87

motivated to improve the learning efficiency of Q by pruning those task-irrelevant action dimensions88

a
(M+1)
i

, ..., a
(L)
i

by finding an action selection function G, satisfying89

min
G,Qw

Esi,ai,ri,s
0
i⇠B[(y

0
i
�Qw(si, a

(G(ai|si))
i

))2] + �|G(ai|si)|0. (6)

where y
0
i
= ri + �Qw(s0i, a

0
G(a0

i|si)
i

).90

Such a problem can be addressed from the perspective of causal discovery. Formally, we can use91

the Structural Causal Models (SCMs) to represent the underlying causal structure of a sequential92

decision making process, as shown in Figure 2. Under this language, we use the notion of causal93

actions to denote a(1,...,M)
i

, and nuisance actions for other dimension of actions. In our work, we use94

IC-INVASE for causal discovery. Ideally, the action selection function G should be able to distinguish95

between nuisance action dimensions and the causal ones that has causal relation with either dynamics96

or reward mechanism. We present in the next section our causal discovery algorithms.97

2In this work, subscripts �, , ✓, w are used to denote the parameter of neural networks.
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Figure 2: SCM of temporal difference learning. Among all executable actions, there can be only
a subset have effect on the dynamical changes or the reward mechanism. In our work, we use
IC-INVASE as a causal discovery tool to distinguish the causal irrelevant actions and hence improve
learning efficiency.

3.2 Iterative Curriculum INVASE (IC-INVASE)98

Instead of directly applying INVASE to solve Equation (6). We first propose two improvements99

to make the vanilla INVASE more suitable for large-scale variable selection tasks as the action100

dimension in RL might be extremely large [34]. Specifically, the first improvement, based on101

curriculum learning, is introduced to tackle the exploration difficulty when � in Equation (1) is large,102

where INVASE tends to converge to poor sub-optimal solutions and prune all variables including the103

useful ones [38]. The second improvement is based on the iterative structure of variable selection104

tasks: the feature selection operator G can be applied multiple times to conduct hierarchical feature105

selection without introducing extra computation expenses.106

3.2.1 Curriculum Learning For High Dimensional Variable Selection107

The work of [3] first introduces Curriculum Learning to mimic human learning by gradually learn108

more complex concepts or handle more difficult tasks. Effectiveness of the method has been109

demonstrated in various set-ups [3, 19, 7, 35, 37]. In general, it should be easier to select M useful110

variables out of L input variables when M is larger. The most trivial case is to select all L variables,111

with an identical mapping x
(G(x)) = G(x)� x = x. Formally, we have112

Proposition 1 (Curriculum Property in Variable Selection). Assume M out of L variables are113

outcome-related, let M  N1 < N2  L, GN1(x) minimizes DKL(p(Y |X = x)||p(Y |X(G(x)) =114

x
(G(x)))) + �||G(x)|0 �N1|. Then115

GN2(x) minimizes DKL(p(Y |X = x)||p(Y |XG(x) = x
G(x)))+�||G(x)|0�N2| can be get through:116

GN2(x) 2 {GN1(x) _ [GN1(x)XOR 1]1N2�N1
},117

where [·]1N2�N1
means keep N2 �N1 none-zero elements unchanged while replacing other elements118

by 0.119

Proof. By the definition of the [·]1N2�N1
operator, ||G(x)|0 �N2| = 0 is minimized. On the other120

hand, starting from N1 = M , minimizing DKL(p(Y |X = x)||p(Y |X(G(x)) = x
(G(x)))) requires121

all the M outcome-related variables being selected by GN1 . Therefore, GN2 also minimizes the122

KL-divergence by the independent assumption of the other L�M variables with the outcomes.123

The proposition indicates the difficulty of selecting N useful out of L variables decreases monotoni-124

cally as N � M increase from M,M + 1, ..., L. In this work, two classes of practical curriculum125

are designed: 1. curriculum on the l0 penalty coefficient, and 2. curriculum on the proportion of126

variables to be selected.127

Curriculum on l0 Penalty Coefficient In this curriculum design, the penalty coefficient � in128

Equation (1) is increased from 0 to a pre-determined number (e.g., 1.0). Increasing the value of �129

will lead to a larger penalty on the number of variables selected by the feature selector. Experiments130

in [38] has shown a large � always lead to a trivial selector that does not select any variable.131

Curriculum on the Proportion of Selected Features In this curriculum design, the proportion of132

variables to be selected, denoted by pr, is adjusted from the default setting 0 to a decreasing number133
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Algorithm 1 TD3 with TD-SWAR
Initialize critic networks C�1 , C�2 , baseline networks B 1 , B 2 and actor network ⇡⌫ , IC-INVASE
selector network G✓

Initialize target networks �01  �1, �02  �2,  0
1   1,  0

2   2, ⌫0  ⌫

Initialize replay buffer B
for t = 1, H do

Interact with environment and store transition tuple (s, a, r, s0) in B
Sample mini-batch of transitions {(s, a, r, s0)} from B
Calculate perturbed next action by ã ⇡⌫0(s0) + ✏, ✏ is sampled from a clipped Gaussian.
Select actions with target selector network
ã
(G(ã|s0))  G✓0(ã|s0)� ã

Calculate target critic value yc and baseline value yb:
yc  r + �mini=1,2 C�0

i
(s0, ã(G(ã|s0)))

yb  r + �mini=1,2 B 0
i
(s0, ã)

Update critics and baselines with selected actions:
a
(G(a|s))  G✓(a|s0)� a

�i  argmin�i MSE(yc, C�i(s, a
(G(a|s))))

 i  argmin i MSE(yb, B i(s, a))
Update IC-INVASE selector network by the policy gradient, with learning rate ⌘1:
✓  ✓ � ⌘1(lb � lc)r✓ logG✓(a|s), lb, lc are MSE
losses in the previous step.

Update ⌫ by the deterministic policy gradient, with learning rate ⌘2:
⌫  ⌫ � ⌘2raC�1(s, a)|a=⇡⌫(s)r⌫⇡⌫(s)

Update target networks, with ⌧ 2 (0, 1):
�
0
i
 ⌧�i + (1� ⌧)�0

i

 
0
i
 ⌧ i + (1� ⌧) 0

i

⌫
0  ⌧⌫ + (1� ⌧)⌫0

end for

from a pre-determined value (e.g., 0.5) to 0. i.e., the l0 penalty term �|G(x)|0 in Equation (1) is134

revised to be �||G(x)|0 � d · pr|, where d is the dimension of input x. When the proportion is set135

to be pr = 0.5, the selector will be penalized whenever less or more than half of all variables are136

selected. Such a curriculum design forces the feature selector to learn to select less but increasingly137

more important variables gradually.138

Thus, we get the learning objective of curriculum-INVASE:139

L = DKL(p(Y |X = x)||p(Y |X(G(x)) = x
(G(x)))) + �||G(x)|0 � d · pr|. (7)

where � increases from 0 to some value and pr decreases from a value in [0, 1) to 0.140

3.2.2 Iterative Variable Selection141

The second improvement proposed in this work is based on the iterative structure of variable selection142

tasks. Specifically, the G(x) mapping x 2 X to {0, 1}d is an iterative operator, which can be applied143

for multiple times to perform coarse-to-fine variable selection. Although in practice we follow [38]144

to apply an element-wise product in producing x
(G(x)): x(G(x)) = G(x)� x 2 X . In more general145

cases, the i-th element of x(G(x))
i

is146

x
(G(x))
i

=

⇢
1, if Gi(x) = 1.
⇤, if Gi(x) = 0.

(8)

where ⇤ can be an arbitrary identifiable indicator that represents the variable is not selected.147

On the other hand, once the outputs G(x) of the selector have been recorded, ⇤ can be replaced by148

any label-independent variable G(x)� z, where z ⇠ pz(·) is outcome-independent. Then x
(G(x))149

can be regarded as a new sample and be fed into the variable selector, resulting in a hierarchical150
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variable selection process:151

x
(1) = (G(x)� x)� (G(x)� z),

x
(2) = (G(x(1))� x

(1))� (G(x(1))� z),
...

x
(n) = (G(x(n�1))� x

(n�1))� (G(x(n�1))� z),

(9)

where z ⇠ pz(·), and � is the element-wise sum operator. Moreover, if the distribution of irrelevant152

variable px(·) is known, applying the variable selection operator obtained from Equation (7) for153

multiple times with pz(·)
d
= px(·) has the meaning of hierarchical variable selection: after each154

operation, the most obvious 1�pr irrelevant variables are discarded. e.g., when pr = 0.5, ideally top-155

50%, 25%, 12.5% most important variables will be selected after the first three selection operations.156

In this work, a coarse approximation is utilized by selecting z to be z = 0 for simplicity. 3157

Combining those two improvements lead to an Iterative Curriculum version of INVASE (IC-INVASE)158

that addresses the exploration difficulty in high-dimensional variable selection tasks. Curriculum159

learning helps IC-INVASE to achieve better asymptotic performance, i.e., achieve higher True Positive160

Rate (TPR) and lower False Discovery Rate (FDR), while iterative application of the selection operator161

contributes to higher learning efficiency: selectors models with different level of TPR/FDR can be162

generated on-the-fly.163

3.3 State-Wise Action Refinery with IC-INVASE164

3.3.1 Temporal Difference State-Wise Action Refinery165

With the techniques introduced in the previous section, higher dimensional variable selection tasks166

can be better solved, therefore we are ready to use IC-INVASE to solve Equation (6). The resulting167

algorithm is called Temporal Difference State-Wise Action Refinery (TD-SWAR).168

In this work, TD3 [10] is used as the basic algorithm we build TD-SWAR up on. In addition to the169

policy network ⇡⌫ , double critic networks C�1 , C�2 and their corresponding target networks used170

in vanilla TD3, TD-SWAR includes an action selector model G✓ and two baseline networks B 1 ,171

B 2 following [38] to reduce the variance in policy gradient learning. Pseudo-code for the proposed172

algorithm is shown in Algorithm 1. And the block diagram in Figure 1 illustrates how different173

modules in TD-SWAR updates their parameters.174

3.3.2 Static Approximation: Model-Based Action Selection175

While IC-INVASE can be formally integrated with temporal difference learning, the learning stability176

is not guaranteed. Different from general regression tasks where the label for every instance is fixed177

across training, in temporal difference learning, the regression target is closely related to the present178

critic function C�, the policy ⇡⌫ that generates the transition tuples used for training, and the selector179

model of IC-INVASE itself. In this section, a static approach is proposed to approximately solve the180

challenge of instability in TD-SWAR 4.181

Other than applying the IC-INVASE algorithm to solve Equation (6), another way of leveraging182

IC-INVASE in action space pruning is to combine it with the model-based methods [11, 16, 13, 14],183

where a dynamic model P : S ⇥A 7! S is learned through regression:184

P = argmin
P

E(s,a,s0)⇠⇡,T (s
0 � P(s, a))2 (10)

Although the task of precise model-based prediction is in general challenging [24], in this work, we185

only adopt model-based prediction in action selection, and the target is action discovery other than186

precise prediction. As the dynamic models are always static across learning, such an approach can be187

much more stable than TD-SWAR. We name this method as Dyn-SWAR and present the pseudo-code188

in Algorithm 2, where we infuse IC-INVASE to Equation (10) and get the learning objective:189

min
G,P

E(s,a,s0)⇠⇡,T (s
0 � P(s, a(G(a|s))))2 (11)

3pz(·) may be learned through generative models to approximate px(·), and Equation (9) can be regarded as
a kind of data-augmentation or ensemble method. This idea is left for the future work.

4Analysis on the approximation is provided in Appendix A
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Algorithm 2 TD3 with Dyn-SWAR
Initialize critic networks Qw1 , Qw2 , Dynamics critic model C�, dynamic baseline model B , actor
network ⇡⌫ , and IC-INVASE selector network G✓

Initialize target networks w0
1  w1, w0

2  w2, ⌫0  ⌫

Initialize replay buffer B
for t = 1, H do

Interact with environment and store transition tuple (s, a, r, s0) in B
Sample mini-batch of transitions {(s, a, r, s0)} from B
Update dynamic critics and dynamic baselines with equation (10):
� argmin�MSE(s0, C�(s, a(G(a|s))))
  argmin MSE(s0, B (s, a))

Update IC-INVASE selector network by the policy gradient, with learning rate ⌘1:
✓  ✓ � ⌘1(lb � lc)r✓ logG✓(a|s), lb, lc are MSE
losses in the previous step.

Calculate perturbed next action by ã ⇡⌫0(s0) + ✏, ✏ is sampled from a clipped Gaussian.
Select actions with selector network
ã
(G(ã|s0))  G✓0(ã|s0)� ã

Calculate target critic value y and update critic networks:
y  r + �mini=1,2 Qw

0
i
(s0, ã(G(ã|s0)))

wi  argminwi MSE(y,Qwi(s, a
(G(a|s))))

Update ⌫ by the deterministic policy gradient, with learning rate ⌘2:
⌫  ⌫ � ⌘2raQw1(s, a)|a=⇡⌫(s)r⌫⇡⌫(s)

Update target networks, with ⌧ 2 (0, 1):
w

0
i
 ⌧wi + (1� ⌧)w0

i

⌫
0  ⌧⌫ + (1� ⌧)⌫0

end for

+10

+10

+10

+10

(a) 4Rew.-Maze (b) Pendulum (c) Walker2d (d) LunarLander (e) BipedalWalker

Figure 3: Environments used in experiments

4 Experiment190

In this section, we apply our proposed methodologies to five continuous control RL tasks characterized191

by redundant action spaces, wherein our methods facilitate causality-aware RL. We also present a192

quantitative comparison between IC-INVASE and the standard INVASE on synthetic datasets in193

Appendix B, which serves to underscore the enhanced scalability of our approach.194

In the present set of experiments, we employed five RL environments (Figure 5), detailed in Table195

1 5. The symbol |S| designates the dimension of the state space for each task, while |A| signifies196

the dimension of the action space relevant to the task, and |Ared.| represents the dimension of the197

redundant action space incorporated into each task. These surplus dimensions of actions don’t impact198

state transitions or reward calculations, but it is essential for an agent to identify these redundant199

dimensions for efficient learning.200

We assessed both TD-SWAR, which combines IC-INVASE with temporal difference learning, and201

its static counterpart, Dyn-SWAR, which employs IC-INVASE in dynamics prediction. The results202

are benchmarked against two base conditions: the Oracle, where redundant action dimensions are203

5For comprehensive descriptions of the environments, please consult Appendix C
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Table 1: Tasks used in evaluating SWAR in temporal difference learning

TASK/DIMENSION |S| |A| |Ared.|
PENDULUM-V0 3 1 100
FOURREWARDMAZE 2 2 100
LUNARLANDERCONTINUOUS-V2 8 2 100
BIPEDALWALKER-V3 24 4 100
WALKER2D-V2 17 6 100

(a) FourRewardMaze (b) Pendulum (c) Walker2d

(d) LunarLander (e) BipedalWalker

Figure 4: Performance of agents in five different environments. The curves shows averaged learning
progress and the shaded areas show standard deviation.

manually removed; and TD3, which is the standard TD3 algorithm devoid of any explicit action204

redundancy reduction.205

In our experimental findings, we observed that Dyn-SWAR’s deployment demonstrates superior206

efficiency with respect to both sample complexity and computational cost. In contrast, TD-SWAR207

requires a persistent update of all parameters for the IC-INVASE selector to maintain congruence with208

the real-time policy and value networks, given the fluctuating regression label over time. However,209

the Dyn-SWAR selector necessitates a significantly reduced data set for training, specifically between210

10,000 and 25,000 timesteps of environmental interaction. This attribute can seamlessly integrate211

with the warm-up technique utilized in TD3 [10]. Namely, the Dyn-SWAR selector could be trained212

with warm-up transition tuples gathered during the random exploration phase, and then remain static213

throughout the subsequent learning process. Compared to traditional RL configurations that generally214

require millions of environmental interactions, the training of Dyn-SWAR incurs only a minuscule215

computational cost.216

These findings are illustrated in Figure 4. Across all environments, agent learning with IC-INVASE217

in both TD- and Dyn- methods exceeds the performance of the standard TD3 baseline. Dyn-SWAR218

achieves a learning efficiency that is on par with oracle benchmarks. However, the performance of219

TD-SWAR in tasks of higher dimensions (Walker2d-v2 and BipedalWalker-v3) indicates significant220

potential for enhancement. Accordingly, future work should prioritize enhancing the stability and221

scalability of instance-wise variable selection within temporal difference learning.222
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5 Related Work223

Instance-Wise Feature Selection While traditional feature selection method like LASSO [31]224

aims at finding globally important features across the whole dataset, instance-wise feature selection225

try to discover the feature-label dependency on a case-by-case basis. L2X [5] performs instance-226

wise feature selection through mutual information maximization with the technique of Gumbel227

softmax. L2X requires pre-determined hyper-parameter k to indicate how many features should be228

selected for each instance, which limits its performance while the number of label-relevant features229

varies across instances. In this work, we build our instance-wise action selection model on top of230

INVASE [38], where policy gradient is applied to replace the Gumbel softmax trick and the size of231

chosen features per instance is more flexible. [32] considers instance-wise feature selection problems232

in time-series setting, and build generative models to capture counterfactual effects in time series233

data. Their work enables evaluation of the importance of features over time, which is crucial in the234

context of healthcare. [18] formally defines different types of feature redundancy and leverages235

mutual information maximization in instance-wise feature group discovery and introduces theoretical236

guidance to find the optimal number of different groups.237

Our work is distinguished from previous works for instance-wise feature selection in two aspects.238

First, while previous works focus on static scenarios like classification and regression, this work focus239

on temporal difference learning where there is no static label. Second, the scalability of previous240

methods in variable selection is challenged as there might exist hundreds of redundant actions in the241

context of RL.242

Dimension Reduction in RL In the context of RL, attention models [33] have been applied to243

interpret the behaviors of learned policies. [30] proposes to perceive the state information through a244

self-attention bottleneck in vision-based RL tasks, which concentrates on the state space redundancy245

reduction with image inputs. The work of [22] also applies the attention mechanism to learn task-246

relevant information. The proposed method achieves state-of-the-art performance on Atari games247

with image input while being more understandable with top-down attention models.248

Different from those papers, this work considers relatively tight state representations (vector input),249

and focuses on the task-irrelevant action reduction. We aim at finding the task-related actions and250

improving the learning efficiency without wasting samples in learning the task-irrelevant dimensions251

of actions. Our work is most closely related to AE-DQN [39] in that we both consider the problem of252

redundant action elimination. AE-DQN tackles action space redundancy with an action-elimination253

network that eliminates sub-optimal actions. Yet its discussion is limited in the discrete settings. In254

contrast, our work focuses on action elimination in continuous control tasks.255

6 Conclusion and Future Work256

In this study, we address the issue of pruning the action space in action redundant RL tasks. We employ257

the recent advancements in instance-wise feature selection technology (INVASE), incorporating both258

curriculum learning and iterative processes, to aim for improved scalability and efficiency. This259

leads to the creation of the IC-INVASE method, which is then adapted to the RL environment where260

we introduce two novel algorithms, TD-SWAR and Dyn-SWAR, to implement causality-conscious261

RL. The former algorithm directly addresses the issue of action redundancy in temporal difference262

learning, whereas the latter algorithm leverages model-based prediction to capture dynamic causality.263

Experimental evidence from a range of tasks underscores the importance of causality-awareness for264

RL agents to achieve efficient learning in action-redundant settings.265

As for future research, the iterative characteristic of this method could be further investigated to266

apply ensemble methods in variable selection. Additionally, the design of a more appropriate267

curriculum could enhance the fusion of multiple curricula. From the RL perspective, the stability of268

TD-SWAR could be further optimized to enhance sample efficiency. The design of the curriculum269

could potentially offer benefits. For instance, an agent might initially learn to identify actions of270

general importance before concentrating on discerning state-dependent crucial actions. Furthermore,271

the selection process can be extended to include both the state space and action space, allowing for272

efficient temporal difference learning that is mindful of the causal relationships among states, actions,273

and the task at hand. Additionally, model-based prediction could be broadened to anticipate future274

returns.275
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