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ABSTRACT

Diffusion Probabilistic Models (DPMs) have achieved considerable success in
generation. However, its training and sampling processes are confronted with the
problem of distribution mismatch. During the denoising process, the input data
distributions of the model are different during the training and inference stages,
which makes the model potentially generate inaccurate data. To obviate this, we
conduct an analysis of the training objective of DPM and theoretically prove that
the mismatch can be mitigated by Distributionally Robust Optimization (DRO),
which is equivalent to conducting robustness-driven Adversarial Training (AT)
on DPM. Furthermore, for the recently proposed consistency model (CM), which
distills the inference process of the DPM, we prove that its training objective
similarly faces the mismatch issue. Fortunately, such a problem is also mitigated by
AT. Thereafter, we propose to conduct efficient AT on both DPM and CM. Finally, a
series of empirical studies verify the effectiveness of AT in diffusion-based models.

1 INTRODUCTION

Diffusion Probabilistic Models (DPMs) (Ho et al., 2020; Song et al., 2020; Yi et al., 2024) have
demonstrated substantial success across a broad spectrum of generative tasks such as image syn-
thesis (Dhariwal & Nichol, 2021; Rombach et al., 2022; Ho et al., 2022a), video generation (Ho
et al., 2022b; Blattmann et al., 2023), text-to-image generation (Nichol et al.; Ramesh et al., 2022;
Saharia et al., 2022), etc. The primary mechanism of DPM involves a forward diffusion process
that incrementally introduces noise into the data, then the generation is driven by learning to reverse
the process from noise. Unlike the existing generative models, e.g., GAN (Goodfellow et al., 2014)
or VAE (Kingma & Welling, 2013) which directly transfer an easily sampled latent (e.g., Gaussian
noise) into the target data with one network function evaluation (NFE), the DPM gradually denoises
the noisy data, which involve a number of NFEs (Song et al., 2022; Salimans & Ho, 2022; Lu et al.,
2022b; Ma et al., 2024). However, such a noising then denoising process results in a distribution
mismatch between the training and sampling stages, which potentially leads to inaccurate generation.

Concretely, during the training stage, the model is learned to predict the noise in ground-truth noisy
data derived from the training set. In contrast, during the inference stage, the input distribution is
obtained from the output generated by the DPM in the previous step, which differs from the training
phase, caused by the inaccurate estimation of the score function due to training (Song et al., 2021;
Yi et al., 2023a) and the discretization error (Chen et al., 2022; Li et al., 2023; Xue et al., 2024b;a)
brought by sampling. Such distribution mismatches are referred to as Exposure Bias, which has been
discussed in auto-regressive language models (Bengio et al., 2015; Ranzato et al., 2016).

Recently, the aforementioned distribution mismatch problem in diffusion has been also recognized
by (Ning et al., 2023; Li & van der Schaar, 2024; Ren et al., 2024; Ning et al., 2024; Li et al., 2024;
Lou & Ermon, 2023). However, these studies are either built upon strong mismatch distributional
assumptions (e.g., Gaussian) (Ning et al., 2023; 2024; Ren et al., 2024) or require plenty of extra
computations (Li & van der Schaar, 2024). This indicates that a more practical solution to this problem
has been overlooked until now. To bridge this gap, we start from the discrete DPM introduced in (Ho
et al., 2020). Intuitively, although there is a mismatch between training and inference, the distributions
of generated intermediate noise in the inference stage are close to the ground-truth ones in the training
stage. Therefore, improving the distributional robustness (Yi et al., 2021; Namkoong, 2019; Shapiro,
2017) (which measures the robustness of the model to distributional perturbations in training data)
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of DPM mitigates the distribution mismatch problem. To do this, we refer to Distribution Robust
Optimization (DRO) (Shapiro, 2017; Namkoong, 2019), which aims to improve the distributional
robustness of models. Following this, we prove that the DRO problem on DPM is mathematically
equivalent to implementing robustness-driven Adversarial Training (AT) (Madry et al., 2018; Shafahi
et al., 2019; Yi et al., 2021) on DPM. 1 Following the DRO framework, we also analyze the recently
proposed diffusion-based Consistency Model (CM) (Song et al., 2023; Luo et al., 2023) which
distills the trajectory of DPM into a model with one NFE generation. We first prove that the training
objective of CM similarly has the mismatch issue as in multi-step DPM. Moreover, the issue can
also be mitigated similarly by implementing AT. Therefore, for both DPM and CM, we propose to
apply efficient AT (e.g., “Free-AT” (Shafahi et al., 2019)) during their training stages to mitigate the
distribution mismatch problem.2 Finally, we summarize our contributions as follows.

• We conduct an in-depth analysis of the diffusion-based models (DPM and CM) from a
theoretical perspective and systematically characterize its distribution mismatch problem.

• For both DPM and CM, we theoretically show that their mismatch problem is mitigated by
DRO, which is equivalent to implementing AT with proved error bounds during training.

• We propose to conduct efficient AT on both DPM and CM in various tasks, including
image generation on CIFAR10 32×32(Krizhevsky & Hinton, 2009) and ImageNet
64×64 (Deng et al., 2009), and zero-shot Text-to-Image (T2I) generation on MS-COCO
512×512 (Lin et al., 2014b). Extensive experimental results illustrate the effectiveness of
the proposed AT training method in alleviating the distribution mismatch of DPM and CM.

2 RELATED WORK

Distribution Mismatch in DPM. The problem is similar to the exposure bias in auto-regressive
language models (Bengio et al., 2015; Ranzato et al., 2016; Shen et al., 2016; Rennie et al., 2017;
Zhang et al., 2019c), whereas the next word prediction (Radford et al., 2019) relies on the current
model predicted tokens in the inference stage, which may be mismatched with the ground-truth one
taken in the training stage. Then, the similarity is clear, owing to the gradual denoising generation
process of DPM. As mentioned in Section 1, Ning et al. (2023) and Ning et al. (2024) propose to
add extra Gaussian perturbation during the training stage or data-dependent perturbation during the
inference stage, to mitigate the problem. Following this, several methods are further proposed. For
example, to reduce the accumulated difference between the intermediate noisy data in the training and
inference stages, Li et al. (2024) search for a suboptimal mismatched input time step of the model to
conduct inference. Li & van der Schaar (2024) and Ren et al. (2024) directly minimize the difference
between the generated intermediate noisy data and the ground truth ones. However, these methods
are either built on strong assumptions (Ning et al., 2023; 2024; Li et al., 2024; Ren et al., 2024) or
computationally expensive (Li & van der Schaar, 2024). Compared with them, we are the first to
explore the distribution mismatch problem from the perspective of DRO. Meanwhile, our proposed
AT with strong theoretical background is simple yet efficient, compared with the existing methods.

Adversarial Training and DRO. In this paper, we leverage the DRO (Shapiro, 2017; Namkoong,
2019; Yi et al., 2021; Sinha et al., 2018; Wang et al., 2022; Yi et al., 2023b) to improve the distri-
butional robustness of DPM and CM to mitigate the distribution mismatch problem. As in (Sinha
et al., 2018; Yi et al., 2021; Lee & Raginsky, 2018), we link the DRO with AT (Madry et al., 2018;
Goodfellow et al., 2015), which is designed to improve the input (instead of distributional) robustness
of the model. For supervised learning problems, the adversarial examples constructed by efficient AT
(Shafahi et al., 2019; Zhang et al., 2019a;b; Zhu et al., 2020; Jiang et al., 2020) have been proven to be
efficient augmented data to improve the robustness and generalization performance of models (Rebuffi
et al., 2021; Wu et al., 2020; Yi et al., 2021). In this paper, we further verify that the AT generated
adversarial augmented examples are also useful in generative models DPM and CM.

In addition, recent studies (Nie et al., 2022; Wang et al., 2023; Zhang et al., 2023) utilize DPM to
generate examples in adversarial training to improve the robustness of the classification model. This is

1Please note that the “adversarial” here is for perturbation to input training data, instead of the adversarial of
generator-discriminator in GAN (Goodfellow et al., 2014).

2Notably, the standard AT (Madry et al., 2018) solves a minimax problem that slows the training process.
The efficient AT has no extra computational cost compared to the standard training ones (Shafahi et al., 2019).
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quite different from the method in this paper, as we focus on employing AT during training of diffusion-
based model to improve its distributional robustness to alleviate the distribution mismatching.

3 PRELIMINARY

Diffusion Probabilistic Models. DPM (Sohl-Dickstein et al., 2015; Ho et al., 2020) constructs the
Markov chain xt by transition kernel q(xt+1 | xt) = N (

√
αt+1xt, (1−αt+1)I), where α1, · · · , αT

are in [0, 1]. Let ᾱt := Πt
s=1αs, and x0 ∼ q be ground-truth data. Then, for xt, it holds

xt =
√
ᾱtx0 +

√
1− ᾱtϵt t = 1, · · · , T, (1)

with ϵt ∼ N (0, I). The reverse process pθ(xt | xt+1) is parameterized as

pθ(xt | xt+1) = N (µθ(xt+1, t+ 1), σ2
t+1I), (2)

where σ2
t+1 = 1 − αt+1. To learn pθ(xt | xt+1), a standard method is to minimize the following

evidence lower bound of negative log-likelihood (NLL) (Ho et al., 2020),

−Eq [log pθ(x0)] ≤ Eq

[
− log

pθ(x0:T )

q(x1:T | x0)

]
. (3)

Here, minimizing the ELBO in the r.h.s. of above inequality links to pθ(xt | xt+1) since it is
equivalent to minimizing the following rewritten objective

min
θ

DKL(q(xT ) ∥ pθ(xT )) +

T−1∑
t=0

DKL(q(xt | xt+1) ∥ pθ(xt | xt+1))︸ ︷︷ ︸
Lt

 , (4)

as in (Ho et al., 2020; Bao et al., 2022; Yi et al., 2023a). Here, the conditional Kullback–Leibler (KL)
divergence DKL(q(xt | xt+1) ∥ p(xt | xt+1)) =

∫
q(xt | xt+1) log

q(xt|xt+1)
p(xt|xt+1)

dxtdxt+1 (Duchi,
2016), and minimizing Lt is equivalent to solve the following noise prediction problem

min
θ

E
[∥∥ϵθ(√ᾱtx0 +

√
1− ᾱtϵt, t)− ϵt

∥∥2] . (5)

We use ∥ · ∥p to denote ℓp-norm. Unless specified, the norm ∥ · ∥ refers to the ℓ2-norm ∥ · ∥2. Since
ᾱt → 0 for t→ T , x0 is obtained by conducting the reverse diffusion process pθ(xt | xt+1) starting
from xT ∼ N (0, I) and ϵ ∼ N (0, I), under the learned model ϵθ with

xt =
1

√
αt+1

(
xt+1 −

1− αt+1√
1− ᾱt+1

ϵθ(xt+1, t+ 1)

)
+
√

1− αt+1ϵ. (6)

Wasserstein Distance. For integer p > 0, Γ(µ, ν) as the set of union distributions with marginal
µ and ν, the Wasserstein p-distance (Villani et al., 2009) between distributions µ and ν with finite
p-moments is

Wp
p(µ, ν) = inf

γ∈Γ(µ,ν)
E(x,y)∼γ∥x− y∥pp. (7)

4 ROBUSTNESS-DRIVEN ADVERSARIAL TRAINING OF DIFFUSION MODELS

In this section, we formally show that the success of DPM relies on specific conditions, i.e., xt is
close to xt+1. Next, to mitigate the drawbacks brought by the restriction, we propose to consider
the distribution mismatch problem as discussed in Section 1, and connect the problem to a rewritten
ELBO. Finally, we apply DRO for this ELBO to mitigate the distribution mismatch problem and
finally link it to AT to be implemented in practice.

4.1 HOW DOES DPM WORKS IN PRACTICE?

Notably, minimizing (4) potentially obtains a sharp NLL under target distribution q(x0). However,
in the following proposition, we show that (4) also implicitly minimizes the NLL of each xt.
Proposition 1. The minimization problem (4) is equivalent to minimizing an upper bound of
Eq[− log pθ(xt)] for any 0 ≤ t ≤ T .
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Figure 1: A comparison between standard training and the proposed distributional robust optimization
in (12). When minimizing DKL(q̃t(xt | xt+1) ∥ pθ(xt | xt+1)), the xt+1 is sampled from q̃t(xt+1),
such that both q̃t(xt+1) in training stage and pθ(xt+1) in inference stage are in BDKL

(q(xt+1), η0),
so that pθ(xt) tends to locates in BDKL

(q(xt), η0) as well as q̃t(xt). Then, the distributional
robustness captured by (12) guarantees the generated pθ(xt) always locates around q(xt) for all t.

The proof is provided in Appendix A. It shows that though (4) is proposed to generate x0 ∼ q(x0),
it also guides the model to generate xt such that pθ(xt) approximates the ground-truth distribution
q(xt). The conclusion is nontrivial as minimizing the ELBO of NLL Eq [− log pθ(x0)] does not
necessarily impose any restrictions on xt for t ≥ 1.

Next, we will further explain why (4) leads to a small NLL of xt. In Lt of (4), pθ(xt | xt+1)
approximates q(xt | xt+1) with xt+1 ∼ q(xt+1) representing ground-truth data. Consequently,
pθ(xt) approximates q(xt) by recursively applying such a relationship as in the following proposition.
Proposition 2. Suppose pθ(xt | xt+1) matches q(xt | xt+1) well such that

Lt = DKL(q(xt | xt+1) ∥ pθ(xt | xt+1)) ≤
γ

T
, (8)

and the discrepancy satisfies DKL(q(xT ) ∥ pθ(xT )) ≤ γ0, then for any 0 ≤ t ≤ T , we have

DKL(q(xt) ∥ pθ(xt)) ≤ DKL(q(xT ) ∥ pθ(xT )) + Lt ≤ γ0 +
(T − t)γ

T
. (9)

The results is similarly obtained in (Chen et al., 2023), while their result is applied for DKL(q(x0) ∥
pθ0

), which is narrowed compared with Proposition 2. The proof is provided in Appendix A, which
formally explains why (4) results in pθ(xt) approximating q(xt). However, this proposition is built
upon small Lt, and notably, the error introduced by Lt will be accumulated on the r.h.s. of (9), as
it increases w.r.t. t. This phenomenon is caused by the distribution mismatch problem discussed in
Section 1. Concretely, in (4), minimizing Lt learns the transition probability pθ(xt | xt+1) based on
xt+1 ∼ q(xt+1), while in practice, xt in (6) is generated from xt+1 ∼ pθ(xt+1). The error between
pθ(xt+1) and q(xt+1) will propagates into the error between pθ(xt) and q(xt) as in (9).

Therefore, owing to the existence of distribution mismatch, only if Lt is minimized, the gap between
pθ(xt) and q(xt) can be guaranteed. However, the following proposition proved in Appendix A
indicates that Lt is theoretically minimized with restrictions.
Proposition 3. Lt in (4) is well minimized, only if q(xt+1) is Gaussian or ∥xt+1 − xt∥ → 0.

In practice, the q(xt+1) is usually non-Gaussian. Besides, the gap ∥xt+1 − xt∥ is not necessarily
small, especially for samplers with few sampling steps, e.g., DDIM (Song et al., 2022), DPM-Solver
(Lu et al., 2022a). Therefore, in practice, the accumulated error in (9) caused by the distribution
mismatch problem may become large, and degenerate the quality of x0.

4.2 DISTRIBUTIONAL ROBUSTNESS IN DPM

Inspired by the discussion above, we propose a new training objective as the sum of NLLs under xt,

min
θ

L(θ) =
T∑

t=0

Eq [− log pθ(xt)] . (10)

Then the following proposition constructs ELBOs for each of Eq[− log pθ(xt)].

4
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Proposition 4. For any distribution q̃ satisfies q̃(xt) = q(xt) for specific t, we have
Eq [− log pθ(xt)] ≤ DKL(q̃(xt | xt+1) ∥ pθ(xt | xt+1))︸ ︷︷ ︸

L
q̃
t

+C, (11)

for a constant C independent of θ.

The proof is in Appendix A.2. This proposition generalizes the results in Proposition 1 since q̃ can be
taken as q in Proposition 1. During minimizing Lq̃

t , the transition probability pθ(xt | xt+1) matches
q̃(xt | xt+1), while xt+1 ∼ q̃(xt+1) in the training stage has no restriction. Thus, one may take
q̃(xt+1) ≈ pθ(xt+1), then in Lq̃

t , pθ(xt | xt+1) matches q̃(xt | xt+1) leads pθ(xt) ≈ q̃(xt) =

q(xt), which mitigates the distribution mismatch problem, when minimizing such Lq̃
t .

Unfortunately, for each t, obtaining such specific q̃t(xt+1) = pθ(xt+1) is computationally expensive
(Li & van der Schaar, 2024), which prevents us using desired q̃t(xt+1). However, we know pθ(xt+1)
is around q(xt+1). Therefore, by borrowing the idea from DRO (Shapiro, 2017), for each t, we
propose to minimize the maximal value of Lq̃t

t over all possible q̃t(xt+1) around q(xt+1). This leads
to a small Lpθ

t , as pθ(xt+1) locates around q(xt+1), so that is included in the “maximal range”.
Technically, the DRO-based EBLO of (11) is formulated as follows. Here pθ(xt+1) is supposed in
BDKL

(q(xt+1), η0), and it capatures the distributional robustness of pθ(xt | xt+1) w.r.t. input xt+1.

min
θ

T−1∑
t=0

LDRO
t (θ) = min

θ

T−1∑
t=0

sup
q̃t(xt+1)∈BDKL

(q(xt+1),η0)

DKL(q̃t(xt | xt+1) ∥ pθ(xt | xt+1));

s.t. q̃t(xt) = q(xt).

(12)

Here q̃t(xt+1) ∈ BDKL
(q(xt+1), η0) means DKL(q(xt+1) ∥ q̃t(xt+1)) ≤ η0. By solving problem

(12), if the desired q̃t(xt+1) = pθ(xt+1) is in BDKL
(q(xt+1), η0), then the conditional probability

in (12) transfers xt+1 ∼ pθ(xt+1) to target xt ∼ q(xt) is learned, which mitigates the distribution
mismatch problem. The theoretical clarification is in the following Proposition proved in Appendix
A.2, which indicates that small DRO loss (12) guarantees the quality of generated x0.
Proposition 5. If LDRO

t (θ) ≤ η0 in (12) for all t, and DKL(q(xT ) ∥ pθ(xT )) ≤ η0, then
DKL(q(x0) ∥ pθ(x0)) ≤ η0.

Up to now, we do not know how to compute the DRO-based training objective (12) we derived.
Fortunately, the following theorem corresponds (12) to a “perturbed” noise prediction problem similar
to (5). The theorem is proved in Appendix A.2.
Theorem 1. There exists δt depends on x0 and ϵt makes (13) equivalent to problem (12).

min
θ

T−1∑
t=0

Eq(x0),ϵt

[∥∥∥∥ϵθ(√ᾱtx0 +
√
1− ᾱtϵt + δt, t)− ϵt −

δt√
1− ᾱt

∥∥∥∥2
]
, (13)

This theorem connects the proposed DRO problem (12) with noise prediction problem (13). Naturally,
we can solve (13), if we know the exact δt. Fortunately, we have the following proposition to
characterize the range of δt, and it is proved in Appendix A.2.
Proposition 6. For η > 0 and δt in (13), ∥δt∥1 ≤ η holds with probability at least 1−

√
2(1− ᾱt)/η.

The proposition indicates that for any δt depends on x0, ϵt in (13), it is likely in a small range
(measured under any ℓp-norm, since they can bound each other in Euclidean space). Thus, to resolve
(13) (so that (12)), we propose to directly consider the following adversarial training (Madry et al.,
2018) objective with the perturbation δ is taken over its possible range as proved in Proposition 6,
which captures the input (instead of distribution) robustness of model ϵθ.

min
θ

T−1∑
t=0

Eq(x0)

[
Eq(xt|x0)

[
sup

δ:∥δ∥≤η

∥∥∥∥ϵθ(√ᾱtx0 +
√
1− ᾱtϵt + δ)− ϵt −

δ√
1− ᾱt

∥∥∥∥2
]]

. (14)

We present a fine-grained connection between (14) and classical AT in Appendix C. Notably, our
objective (14) is different from the ones in (Ning et al., 2023), whereas δ in it is a Gaussian, and ϵθ
predicts ϵt instead of ϵt + δ/

√
1− ᾱt as ours.

To make it clear, we summarize the rationale from DRO objective (12) to AT our objective (14).
Since Theorem 1 shows solving (12) is equivalent to (13), which conducts noise prediction (5) with a
perturbation δt in a small range added (Proposition 6). Thus, we propose to minimize the maximal
loss over the possible δt, which is indeed our AT objective (14).
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5 ADVERSARIAL TRAINING UNDER CONSISTENCY MODEL

Although the DPM generates high-quality target data x0, the multi-step denoising process (6) requires
numerous model evaluations, which can be computationally expensive. To resolve this, the diffusion-
based consistency model (CM) is proposed in (Song et al., 2023). Consistency model fθ(xt, t)
transfers xt ∼ q(xt) into a distribution that approximates the target q(x0). fθ is optimized by the
following consistency distillation (CD) loss 3

min
θ

LCD(θ) =

T−1∑
t=0

Ext+1∼q(xt+1) [d (fθ(Φt(xt+1), t), fθ(xt+1, t+ 1))] , (15)

where Φt(xt+1) is a solution of a specific ordinary differential equation (ODE) ((37) in Appendix
B) which is a deterministic function transfers xt+1 to xt, i.e., Φt(xt+1) ∼ q(xt), and d(x,y) is a
distance between x and y e.g., ℓ1, ℓ2 distance.
Remark 1. In (Song et al., 2023; Luo et al., 2023), the noisy data xt in (15) is described by an ODE
(37) in Appendix B. However, we use the discrete xt (1) here to unify the notations with Section 4.
The two frameworks are mathematically equivalent as all xt in (1) located in the trajectory of ODE
in (Song et al., 2023). More details of this claim refer to Appendix B.

Next, we use the following theorem to illustrate that solving problem (15) indeed creates fθ(xt, t)
with distribution close target q(x0). The theorem is proved in Appendix B.

Theorem 2. For LCD(θ) in (15) with d(·, ·) is ℓ2 distance, then W1(fθ(xt, t),x0) ≤
√

tLCD(θ) 4.

Though solving problem (15) creates the desired CM fθ, computing the exact Φt(xt+1) involves
solving an ODE as pointed out in Appendix B. Thus, in practice (Song et al., 2023; Luo et al., 2023),
the Φt(xt+1) is approximated by a computable numerical estimation Φ̂t(xt+1, ϵϕ) of it, e.g., Euler
((42) in Appendix B.1) or DDIM (Song et al., 2023), where ϵϕ is a pretrained noise prediction model
as in (5). Therefore, the practical training objective of (15) becomes

min
θ

T−1∑
t=0

L̂CD(θ) = Ext+1∼q(zt)

[
d
(
fθ(Φ̂t(xt+1, ϵϕ), t), fθ(xt+1, t+ 1)

)]
. (16)

In (16), Φ̂t(xt+1, ϵϕ) is an estimation to Φt(xt+1), which causes an inaccurate training objective
L̂CD in (16), compared with target LCD (15). Thus, this results in the distribution mismatch problem
in CM, as in DPM of Section 4. However, similar to Section 4.2, if we train fθ with robustness to the
gap between Φ̂t(xt+1, ϵϕ) and Φt(xt+1), the distribution mismatch problem in CM is mitigated.

Technically, suppose Φt(xt+1) = Φ̂t(xt+1, ϵϕ) + δt(xt+1), we can consider minimizing the follow-
ing adversarial training objective of CM, if ∥δt(xt+1)∥ ≤ η uniformly over t, for some constant η,
so that the target Φt(xt+1) is included in the maximal range as well.

L̂Adv
CD (θ) =

T−1∑
t=0

Ext+1

[
sup

∥δ∥≤η

d
(
fθ(Φ̂t(xt+1, ϵϕ) + δ, t), fθ(xt+1, t+ 1)

)]
. (17)

By doing so, the learned model fθ can be robust to the perturbation brought by δt(xt+1), so that
results in a small LCD(θ), as well as the small W1(fθ(xT , T ),x0) as proved in Theorem 2. Next,
we use the following theorem to show that ∥δt(xt+1)∥ is indeed small, and minimizing L̂Adv

CD (θ)
results in fθ(xT , T ) with distribution approximates x0.
Theorem 3. Under proper regularity conditions, for 0 ≤ t < T , we have Ext+1

[∥δt(xt+1)∥] ≤ o(1).
On the other hand, it holds

W1(fθ(xT , T ),x0) ≤
√

T L̂Adv
CD (θ) + o(1). (18)

The theorem is proved in Appendix B.1, and it indicates that using the proposed adversarial training
objective (17) of CM indeed guarantees the learned CM transfers xT into data from q(x0).

3In practice, (15) is updated under target model fθ−(Φt(xt+1), t) with exponential moving average (EMA)
θ− under a stop gradient operation. (Song et al., 2023) find that it greatly stabilizes the training process. In this
section, we focus on the theory of consistency model and still use θ in formulas.

4Here W1(fθ(xt, t),x0) is the Wasserstein 1-distance between distributions of fθ(xt, t) and x0.
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Algorithm 1 Adversarial Training for Diffusion Model

1: Input: dataset D, model parameter θ, learning rate κ, loss weighting λ(·), adversarial steps K,
adversarial learning rate α

2: while do not converge do
3: Sample x ∼ D and t ∼ U [1, T ]
4: Sample ϵ ∼ N (0, I)
5: δ ← 0
6: for i = 1, 2, . . . ,K do

7: L ←
∥∥∥ϵθ(√ᾱtx0 +

√
1− ᾱtϵ+ δ)− ϵ− δ√

1−ᾱt

∥∥∥2 in (14)

8: δ ← δ + α · ∇δL
∥∇δL∥ ▷ maximize perturbation

9: θ ← θ − κ · ∇θL ▷ update model
10: end for
11: end while

Algorithm 2 Adversarial Training for Consistency Distillation

1: Input: dataset D, initial model parameter θ, learning rate κ, pretrained noise prediction model
ϵϕ, ODE solver Φ̂·(·, ϵϕ, metric d(·, ·), loss weighting λ(·), target model EMA µ, adversarial
steps K, adversarial learning rate α

2: θ− ← θ
3: while do not converge do
4: Sample x ∼ D and t ∼ U [0, T − 1]
5: Sample xt+1 from (1)
6: δ ← 0
7: for i = 1, 2, . . . ,K do
8: L ← λ(t)d(fθ(xt+1, t+ 1), fθ−(Φ̂t(xt+1, ϵϕ) + δ, t)) in (17)
9: δ ← δ + α · ∇δL

∥∇δL∥ ▷ maximize perturbation

10: θ ← θ − κ · ∇θL ▷ update model
11: θ− ← stopgrad(µθ− + (1− µ)θ)
12: end for
13: end while

6 EXPERIMENTS

6.1 ALGORITHMS

In the standard adversarial training method like Projected Gradient Descent (PGD) (Madry et al.,
2018), the perturbation δ is constructed by implementing numbers (3-8) of gradient ascents to δ
before updating the model, which slows down the training process. To resolve this, we adopt an
efficient implementation (Shafahi et al., 2019) in Algorithms 1, 2 to solve AT (14) and (17) of DPM
and CM, which has similar computational cost compared to standard training, and significantly
accelerate standard AT. Notably, unlike PGD, in Algorithms 1 and 2, every maximization step of
perturbation δ follows an update step of the model θ. Thus, the efficient AT do not require further
back propagations to construct adversarial samples as in PGD. We provide a comparison between our
efficient AT and standard AT (PGD) with the same update iterations of model θ in Appendix G.1.
Moreover, we observe that efficient AT can yield comparable and even better performance than PGD
while accelerating the training (2.6× speed-up), further verifying the benefits of our efficient AT. 5

6.2 PERFORMANCE ON DPM

Settings. The experiments are conducted on the unconditional generation on CIFAR-10 32×32
(Krizhevsky & Hinton, 2009) and the class-conditional generation on ImageNet 64 × 64 (Deng
et al., 2009). Our model and training pipelines in adopted from ADM (Dhariwal & Nichol, 2021)

5For the experts in AT, they would recognize that the AT in Algorithms 1, 2 actually constructs the adversarial
augmented data to improve the performance of the model (Zhu et al., 2020; Jiang et al., 2020; Yi et al., 2021).
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Table 1: Sample quality measured by FID ↓ of different sampling methods of DPM under different
NFEs on CIFAR10 32x32. All models are trained with same iterations (computational costs).

(a) IDDPM

Methods \ NFEs 5 8 10 20 50

ADM (original) 37.99 26.75 22.62 10.52 4.55

ADM (finetune) 36.91 26.06 21.94 10.58 4.34
ADM-IP 47.57 26.91 20.09 7.81 3.42
ADM-AT (Ours) 37.15 23.59 15.88 6.60 3.34

(b) DDIM

Methods \ NFEs 5 8 10 20 50

ADM (original) 34.28 14.34 11.66 7.00 4.68

ADM (finetune) 29.30 15.08 12.06 6.80 4.15
ADM-IP 43.15 15.72 10.47 4.58 4.89
ADM-AT (Ours) 26.38 12.98 9.30 4.40 3.07

(c) ES

Methods \ NFEs 5 8 10 20 50

ADM (original) 82.18 29.28 17.73 5.11 2.70

ADM (finetune) 63.46 24.80 17.03 5.19 2.52
ADM-IP 91.10 31.44 18.72 5.19 2.89
ADM-AT (Ours) 41.07 21.62 14.68 4.36 2.48

(d) DPM-Solver

Methods \ NFEs 5 8 10 20 50

ADM (original) 23.95 8.00 5.46 3.46 3.14

ADM (finetune) 22.98 7.61 5.29 3.41 3.12
ADM-IP 43.83 6.70 6.80 9.78 10.91
ADM-AT (Ours) 18.40 5.84 4.81 3.28 3.01

Table 2: Sample quality measured by FID ↓ of different sampling methods of DPM under different
NFEs on ImageNet 64x64. All models are trained with the same iterations (computational costs).

(a) IDDPM

Methods \ NFEs 5 8 10 20 50

ADM (original) 76.92 33.74 27.63 12.85 5.30

ADM (finetune) 78.87 33.99 27.82 12.80 5.26
ADM-IP 67.12 29.96 22.60 8.66 3.83
ADM-AT (Ours) 45.65 23.79 19.18 8.28 4.01

(b) DDIM

Methods \ NFEs 5 8 10 20 50

ADM (original) 60.07 20.10 14.97 8.41 5.65

ADM (finetune) 60.32 20.26 15.04 8.32 5.48
ADM-IP 76.51 26.25 18.05 8.40 6.94
ADM-AT (Ours) 43.04 16.08 12.15 6.20 4.67

(c) ES

Methods \ NFEs 5 8 10 20 50

ADM (original) 71.31 28.97 21.10 8.23 3.76

ADM (finetune) 72.30 29.24 21.58 8.25 3.64
ADM-IP 88.37 33.91 23.32 7.80 3.54
ADM-AT (Ours) 43.95 19.57 14.12 6.16 3.45

(d) DPM-Solver

Methods \ NFEs 5 8 10 20 50

ADM (original) 27.72 10.06 7.21 4.69 4.24

ADM (finetune) 27.82 9.97 7.22 4.64 4.15
ADM-IP 32.43 9.94 8.87 9.16 9.68
ADM-AT (Ours) 17.36 6.55 5.78 4.56 4.34

paper, where ADM is a UNet-type network (Ronneberger et al., 2015), with strong performance in
image generation under diffusion model.

To save training costs, our methods and baselines are fine-tuned from pretrained models, rather than
training from scratch. By doing so, we can efficiently assess the performance of methods, which
is more practical for general scenarios. We also explore training from scratch in Appendix G.2,
which also verifies the effectiveness of our method in this regime. During training, we fine-tune
the pretrained models (details are in Appendix E.1) with batch size 128 for 150K iterations under
learning rate 1e-4 on CIFAR-10, and batch size 1024 for 50K iterations under learning rate of
3e-4 on ImageNet. For the hyperparameters of AT, we select the adversarial learning rate α from
{0.05, 0.1, 0.5} and the adversarial step K from {3, 5}. More details are in Appendix E.1.

We use the Frechet Inception Distance (FID) (Heusel et al., 2017) to evaluate image quality. Unless
otherwise specified, 50K images are sampled for evaluation. Other results of metric Classification
Accuracy Score (CAS) (Ravuri & Vinyals, 2019) are in Appendix F.1 for comprehensive evaluation.

Baselines. For experiments on diffusion models, we consider the following baselines. 1): the
original pretrained model. Compared with it, we verify whether the models are overfitting during
fine-tuning. 2): continue fine-tuning the pretrained model, which is fine-tuned with the standard
diffusion objective (5). Compared to it, we validate whether performance improvements come only
from more training costs. We also compare with the existing typical method to alleviate the DPM
distribution mismatch, 3): ADM-IP (Ning et al., 2023), which adds a Gaussian perturbation to the
input data to simulate mismatch errors during the training process. The last two fine-tuning baselines
are based on the same pretrained model and hyperparameters as in the original literature.
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Table 3: Results of LCM on MS-COCO 2014 validation set at 512×512 resolution in terms of FID ↓
and CLIP score ↑. All models are trained with the same setting (computational costs).

Methods FID ↓ CLIP Score ↑
1 step 2 step 4 step 8 step 1 step 2 step 4 step 8 step

LCM 25.43 12.61 11.61 12.62 29.25 30.24 30.40 30.47
LCM-AT (Ours) 23.34 11.28 10.31 10.68 29.63 30.43 30.49 30.53

Results. To verify the effectiveness of our AT method, we conduct experiments with four diffusion
samplers: IDDPM (Dhariwal & Nichol, 2021), DDIM (Song et al., 2022), DPM-Solver (Lu et al.,
2022b), and ES (Ning et al., 2024) under various NFEs. The sampler choices contain the three
most popular samplers: IDDPM, DDIM, DPM-Solver, and ES, a sampler that scales down the norm
of predicted noise to mitigate the distribution mismatch from the perspective of sampling. The
experimental results of CIFAR-10 and ImageNet are shown in Table 1 and Table 2, respectively.

As can be seen, the proposed AT for DPM significantly improves the performance of the original
pretrained model and outperforms the other baselines (continue fine-tuning and ADM-IP) overall for
all diffusion samplers and NFEs we take. Moreover, we have the following observarions.

1): Fewer (practically used) sampling steps (5,10) will result in larger mismatching errors, while
our AT method demonstrates significant improvements in this regime across various samplers, e.g.,
AT improves FID 27.72 to 17.36 under 5 NFEs DPM-Solver on ImageNet. This suggests that
our method is indeed effective in alleviating the distribution mismatch of DPM. The results also
indicate that our method consistently beats the baseline methods, regardless of stochastic (IDDPM)
or deterministic samplers (DDIM, DPM-Solver). 2): The ES sampler results show that our AT is
orthogonal to the sampling-based method to mitigate the distribution mismatch problem and can be
combined to further alleviate the issue. Notably, we further verify in Appendix G.2 that our methods
will not slow the convergence unlike AT in classification (Madry et al., 2018).

6.3 PERFORMANCE ON LATENT CONSISTENCY MODELS

Settings. We further evaluate the proposed AT for consistency models on text-to-image generation
tasks with Latent Consistency Models (Luo et al., 2023) Stable Diffusion (SD) v1.5 (Rombach et al.,
2022) backbone, which generates 512×512 images. Both our AT and the original LCM training
(baseline) are trained from scratch with the same hyperparameters (the IP method (Ning et al., 2023)
is not applied straightforwardly). The training set is LAION-Aesthetics-6.5+ (Schuhmann et al.,
2022) with hyperparameters following Song et al. (2023); Luo et al. (2023). We select the adversarial
learning rate α from {0.02, 0.05} and adversarial step K from {2, 3}. The models are trained with a
batch size of 64 for 100K iterations. More details are shown in Appendix E.2.

Following Luo et al. (2023) and Chen et al. (2024), we evaluate models on MS-COCO 2014 (Lin et al.,
2014a) at a resolution of 512×512 by randomly drawing 30K prompts from its validation set. Then,
we report the FID between the generated samples under these prompts and the reference samples
from the full validation set following Saharia et al. (2022). We also report CLIP scores (Hessel et al.,
2021) to evaluate the text-image alignment by CLIP-ViT-B/16.

Results. The methods are evaluated under various sampling steps in Table 3, which shows that the
LCM with AT consistently improves FID under various sampling steps. Besides, though the AT is
not specified to improve text-image alignment, we observe that it has comparable or even better CLIP
scores across various sampling steps, which shows that AT will not degenerate text-image alignment.

7 CONCLUSION

In this paper, we novelly introduce efficient Adversarial Training (AT) in the training of DPM and
CM to mitigate the issue of distribution mismatch between training and sampling. We conduct
an in-depth analysis of the DPM training objective and systematically characterize the distribution
mismatch problem. Furthermore, we prove that the training objective of CM similarly faces the
distribution mismatch issue. We theoretically prove that the mismatch can be mitigated by DRO
for both DPM and CM, which is equivalent to conducting AT. Experiments on image generation
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and text-to-image generation benchmarks verify the effectiveness of the proposed AT method in
alleviating the distribution mismatch of DPM and CM.
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A PROOFS IN SECTION 4

In this section, we present the proofs of the results in Section 4.

A.1 PROOFS IN SECTION 4.2

Proposition 1. The minimization problem (4) is equivalent to minimizing an upper bound of
Eq[− log pθ(xt)] for any 0 ≤ t ≤ T .

Proof. We prove the first equivalence, by Jensen’s inequality. For any 0 ≤ t < T , we have

− Eq [log pθ(xt)]

≤Eq

[
− log

pθ(xt:T )

q(xt+1:T | xt)

]

=Eq

− log pθ(xT )−
∑

t≤s<T

log
pθ(xs | xs+1)

q(xs+1 | xs)


=Eq

− log pθ(xT )−
∑

t≤s<T

log
pθ(xs | xs+1)

q(xs | xs+1)
· q(xs)

q(xs+1)


=Eq

− log
pθ(xT )

q(xT )
−
∑

t≤s<T

log
pθ(xs | xs+1)

q(xs | xs+1)
− log q(xt)


=DKL(q(xT ) ∥ pθ(xT )) + Eq

T−1∑
s=t

DKL(q(xs | xs+1) ∥ pθ(xs | xs+1))︸ ︷︷ ︸
Lt

+H(xt)

(19)

Taking t = 0, we prove the first equivalence. Besides that, the entropy H(xt) of xt is a constant for
θ given data distribution x0 for any 0 ≤ t < T . The second conclusion holds due to the non-negative
property of KL-divergence.

Proposition 2. Suppose pθ(xt | xt+1) matches q(xt | xt+1) well such that

Lt = DKL(q(xt | xt+1) ∥ pθ(xt | xt+1)) ≤
γ

T
, (8)

and the discrepancy satisfies DKL(q(xT ) ∥ pθ(xT )) ≤ γ0, then for any 0 ≤ t ≤ T , we have

DKL(q(xt) ∥ pθ(xt)) ≤ DKL(q(xT ) ∥ pθ(xT )) + Lt ≤ γ0 +
(T − t)γ

T
. (9)

Proof. We have the following decomposition due to the chain rule of KL-divergence

DKL(q(xt,xt+1) ∥ pθ(xt,xt+1)) = DKL(q(xt | xt+1) ∥ pθ(xt | xt+1)) +DKL(q(xt+1) ∥ pθ(xt+1))

= DKL(q(xt+1 | xt) ∥ pθ(xt+1 | xt)) +DKL(q(xt) ∥ pθ(xt)),
(20)

The transition probability pθ(xt | xt+1) matches q(xt | xt+1), so that the above equality implies

DKL(q(xt) ∥ pθ(xt))

=DKL(q(xt+1) ∥ pθ(xt+1)) +DKL(q(xt | xt+1) ∥ pθ(xt | xt+1))−DKL(q(xt+1 | xt) ∥ pθ(xt+1 | xt))

≤DKL(q(xt+1) ∥ pθ(xt+1)) +
γ

T
.

(21)
The proposition holds due to initial condition DKL(q(xT ) ∥ pθ(xT )) ≤ γ0 and simple induction.

Proposition 3. Lt in (4) is well minimized, only if q(xt+1) is Gaussian or ∥xt+1 − xt∥ → 0.
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Proof. Due to Bayes’ rule, we have

q(xt | xt+1) =
q(xt+1 | xt)q(xt)

q(xt+1)

∝ exp

(
−
∥∥xt+1 −

√
αt+1xt

∥∥2
2(1− αt+1)

+ log q(xt)− log q(xt+1)

)

∝ exp

(
−
∥∥xt+1 −

√
αt+1xt

∥∥2
2(1− αt+1)

+ ⟨∇x log q(xt+1),xt − xt+1⟩

)
·

exp

(
1

2
(xt − xt+1)

⊤∇2
x log q(xt+1)(xt − xt+1) +O(∥xt+1 − xt∥3)

)
.

(22)

As can be seen, the conditional probability can be approximated by Gaussian only if∇3
x log q(xt+1)

is zero or ∥xt+1 − xt∥3 is extremely small with high probability. The two conditions can be
respectively satisfied when q(xt) is a Gaussian or xt close to xt+1.

A.2 PROOFS IN SECTION 4.2

Proposition 4. For any distribution q̃ satisfies q̃(xt) = q(xt) for specific t, we have
Eq [− log pθ(xt)] ≤ DKL(q̃(xt | xt+1) ∥ pθ(xt | xt+1))︸ ︷︷ ︸

L
q̃
t

+C, (11)

for a constant C independent of θ.

Proof. W.o.l.g., suppose pθ(xt,xt+1) = pθ(xt | xt+1)q(xt+1) and q̃(xt,xt+1) = q̃(xt+1 |
xt)q(xt). By Jensen’s inequality, we have

Eq [− log pθ(xt)]

=−
∫

q(xt)

(
log

∫
pθ(xt,xt+1)dxt+1

)
dxt

=−
∫

q(xt)

(
log

∫
pθ(xt,xt+1)

q̃(xt+1 | xt)
q̃(xt+1 | xt)dxt+1

)
dxt

≤−
∫

q(xt)

(∫
log

pθ(xt,xt+1)

q̃(xt+1 | xt)
q̃(xt+1 | xt)dxt+1

)
dxt

=−
∫

q(xt)

(∫
q̃(xt+1 | xt) log

pθ(xt | xt+1)

q̃(xt+1 | xt)
dxt+1

)
dxt

−
∫

q(xt)

(∫
q̃(xt+1 | xt) log

q(xt+1)

q̃(xt+1 | xt)
dxt+1

)
dxt

=−
∫

q̃(xt,xt+1) log
pθ(xt | xt+1)

q̃(xt+1 | xt)
dxtdxt+1 + C1

=−
∫

q̃(xt,xt+1) log
pθ(xt | xt+1)

q̃(xt | xt+1)
· q(xt)

q̃(xt+1)
dxtdxt+1 + C1

=−
∫

q̃(xt,xt+1) log
pθ(xt | xt+1)

q̃(xt | xt+1)
dxtdxt+1 + C1 + C2

=DKL(q̃(xt | xt+1) ∥ pθ(xt | xt+1)) + C

=Lq̃
vlb(θ, t) + C,

(23)

where C, C1, C2 are all constants independent of θ.

A.2.1 PROOF OF THEOREM 1

In this section, we prove the Theorem 1. To simplify the notation, let pθ(xt | xt+1) ∼
N (µθ(xt+1, t + 1), σt+1

6 in (6), then the optimal solution (Lemma 9 in (Bao et al., 2022)) of
minimizing Lq̃t

t+1 is
µθ(xt+1, t+ 1) = Eq̃t [xt | xt+1]. (24)

6Here σt+1 can be also optimized as in (Bao et al., 2022), but we find optimizing it in practice does not
improve the empirical results.
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For every specific t, we consider the following q̃t in (12) 7, such that

q̃t(xt+1 | xt) ̸= q(xt+1 | xt);

q̃t(xt+1) ̸= q(xt+1);

q̃t(x0:t) = q(x0:t).

q̃t(xt | x0,xt+1) = q(xt | x0,xt+1) = N (µt+1(x0,xt+1), σt).

(25)

where µt+1(x0,xt+1) =
√
ᾱt(1−αt+1)
1−ᾱt+1

x0 +
√
αt+1(1−ᾱt)

1−ᾱt+1
xt+1. The q̃t can be taken due to the

Bayesian rule. Next, we analyze the optimal formulation in (24). Due to the property of conditional
expectation, we have

µθ(xt+1, t+ 1) = Eq̃t [Eq̃t [xt | x0,xt+1] | xt+1] = µt+1 (Eq̃t [x0 | xt+1],xt+1) . (26)

As can be seen, the optimal transition rule is decided by the conditional expectation Eq̃t [x0 | xt+1]
for some q̃t(xt+1) ∈ BDKL

(q̃(xt+1), η0) in (12). Then, we have the following lemma to get the
desired conditional expectation.

Lemma 1. There exists some η ≥ η0 in (27) which makes (27) equivalent to problem (12).

min
θ

T−1∑
t=0

Eq̃t(x0) sup
q̃t(xt+1|x0)∈BDKL

(qt(xt+1|x0),η)

Eq̃t(xt+1|x0)

[
∥xθ(xt+1, t+ 1)− x0∥2

]
, (27)

where Epθ
[x0 | xt+1] = xθ(xt+1, t+ 1).

Proof. Let us check the training objective minθ supq̃t∈BDKL
(qt+1,η) DKL(q̃t(xt | xt+1) ∥ pθ(xt |

xt+1)). During this proof, we abbreviate BDKL
(qt+1(xt+1), η) as B. Since pθ(xt | xt+1) ∼

N (µθ(xt+1, t+ 1), σt+1), then

sup
q̃t(xt+1)∈B

DKL(q̃t(xt | xt+1) ∥ pθ(xt | xt+1))

∝− d

2
log 2πσ2

t+1 −
1

2σ2
t+1

sup
q̃t(xt+1)∈B

Eq̃(xt,xt+1)

[
∥xt − µθ(xt+1, t+ 1)∥2

]
.

(28)

As we consider σt+1 as constant, an analysis of the expectation term is enough. Due to

Eq̃t(xt,xt+1)

[
∥xt − µθ(xt+1, t+ 1)∥2

]
≥ inf

f
Eq̃t(x0,xt,xt+1)

[
∥xt − f(x0,xt+1)∥2

]
= Eq̃t(x0,xt,xt+1)

[
∥xt − Eq̃[xt | x0,xt+1]∥2

]
,

(29)

where the last term is invariant over q̃t ∈ B so that it is a uniform lower bound over all possible q̃t
and pθ(xt | xt+1). The above inequality indicates that the optimal µθ(xt+1, t+1) is achieved when
the left in (29) becomes the right in (29).

On the other hand, for any q̃t ∈ B, let us compute the gap such that

Eq̃t(xt,xt+1)

[
∥xt − µθ(xt+1, t+ 1)∥2

]
= Eq̃t

[
∥xt − Eq̃t [xt | x0,xt+1] + Eq̃t [xt | x0,xt+1]− µθ(xt+1, t+ 1)∥2

]
= Eq̃t

[
∥xt − Eq̃t [xt | x0,xt+1]∥2

]
+ Eq̃t

[
∥µθ(xt+1, t+ 1)− Eq̃t [xt | x0,xt+1]∥2

]
− 2Eq̃t [⟨xt − Eq̃t [xt | x0,xt+1],µθ(xt+1, t+ 1)− Eq̃t [xt | x0,xt+1]⟩]
= Eq̃t

[
∥xt − Eq̃t [xt | x0,xt+1]∥2

]
+

(√
ᾱt −

√
1− ᾱt − σ2

t+1

√
ᾱt+1

1− ᾱt+1

)
Eq̃t(x0,xt+1)

[
∥x0 − xθ(xt+1, t+ 1)∥2

]
,

(30)

where the equality is due to the property of conditional expectation leads to Eq̃t [⟨xt − Eq̃t [xt |
x0,xt+1],µθ(xt+1, t+1)−Eq̃t [xt | x0,xt+1]⟩] = 0, and rewriting Eq̃t [∥µθ(xt+1, t+1)−Eq̃t [xt |
x0,xt+1]∥2] as in equations (5)-(10) in (Ho et al., 2020). Due to this, we know that minimizing the

7We can do this since (12) only relates to q̃t(xt+1)
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square error is equivalent to minimizing the Eq̃t(xt,xt+1)[∥x0 − xθ(xt+1, t + 1)∥2]. On the other
hand, since q̃∗t ∈ B, then we have

DKL(q(xt+1 | x0) ∥ q̃∗t (xt+1 | x0))

=DKL(q(x0 | xt+1) ∥ q̃∗t (x0 | xt+1)) +DKL(q(xt+1) ∥ q̃∗t (xt+1))

≥η0.

(31)

Thus, we prove our conclusion.

Theorem 1. There exists δt depends on x0 and ϵt makes (13) equivalent to problem (12).

min
θ

T−1∑
t=0

Eq(x0),ϵt

[∥∥∥∥ϵθ(√ᾱtx0 +
√
1− ᾱtϵt + δt, t)− ϵt −

δt√
1− ᾱt

∥∥∥∥2
]
, (13)

Proof. By combining Lemma 1, suppose the supreme is attained under q̃t−1 such that xt ∼ q̃t−1(xt)
with

xt =
√
ᾱtx0 +

√
1− ᾱtϵt + δt, (32)

with δt depends on x0 and xt. Then we prove the conclusion.

A.2.2 PROOF OF PROPOSITION 5

Proposition 5. If LDRO
t (θ) ≤ η0 in (12) for all t, and DKL(q(xT ) ∥ pθ(xT )) ≤ η0, then

DKL(q(x0) ∥ pθ(x0)) ≤ η0.

Proof. This theorem can proved by induction. Since DKL(q(xT ) ∥ pθ(xT )) ≤ η0, then, let
q̃∗T−1(xT ) = pθ(xT ) and satisfies q̃∗T−1(xT ) = q(xT−1). The existence of such distribution is due
to Kolmogorov existence theorem (Shiryaev, 2016). Then, we have

DKL(q̃
∗
T−1(xT−1) ∥ pθ(xT−1)) ≤ DKL(q̃

∗
T−1(xT ) ∥ pθ(xT ))

+DKL(q̃
∗
T−1(xT−1 | xT ) ∥ pθ(xT−1 | xT ))

≤ LDRO
t (θ)

≤ η0,

(33)

where the first inequality is due to the definition of LDRO
t (θ) and q̃∗T−1(xT ) = pθ(xT ). Then, we

prove our conclusion by induction over t.

A.2.3 PROOF OF PROPOSITION 6

Proposition 6. For η > 0 and δt in (13), ∥δt∥1 ≤ η holds with probability at least 1−
√
2(1− ᾱt)/η.

Proof. Due to the definition of the first order Wasserstein distance W1(·, ·) (Villani et al., 2009) for
any specific x0, suppose

π∗ ∈ argmin
π(xt,x̃t)∈qt(xt|x0)×q̃t(x̃t|x0)

E [∥x̃t − xt∥1] , (34)

so that
Eπ∗ [∥x̃t − xt∥1] = W1(qt(xt | x0), q̃t(xt | x0)). (35)

Let δt be the one of (13) under π∗ derived by Lemma 1, then

P (∥δt∥1 ≥ η | x0) ≤
Eπ∗ [∥δt∥1]

η

=
W1(qt(xt | x0), q̃t(xt | x0))

η

≤
a

√
2(1− ᾱt)DKL(qt(xt | x0) ∥ q̃t(xt | x0))

η

≤

√
2(1− ᾱt)

η
,

(36)

where inequality a is due to the Talagrand’s inequality (Wainwright, 2019). Then we prove our
conclusion.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

B PROOFS IN SECTION 5

Next, we give the proof of results in Section 5. Firstly, let us check the definition of the Φt(xt+1).
For the variance-preserving stochastic differential equation in Song et al. (2022)

dzs = −βs

2
zsdt+

√
βsdWs. (37)

Due to the solution of zs in Song et al. (2023), we know zst has the same distribution with xt in (1)
for {st}Tt=1 satisfies

exp

(
−
∫ st

0

β(u)du

)
= ᾱt (s0 = 0). (38)

In the rest of this section, we use d(x,y) in (15) as ℓ2 distance ∥x− y∥2, whereas the conclusions
under other distance can be similarly derived. Owing the the discussion in above, similar to (Song
et al., 2023), when xt+1 = zst+1

, let Φt(xt+1) = Ψst(zst+1
), we can rewrite the objective (15) as

follows.

min
θ

LCD(θ) = min
θ

T−1∑
t=0

Ezst

[∥∥fθ(Ψst(zst+1), t)− fθ(zst+1 , t+ 1)
∥∥2] . (39)

Here zs follows the following reverse time ODE of (37) with z0 ∼ q(x0),

dzs = −βs

2

(
zs +

1

2
∇z log qs(zs)

)
︸ ︷︷ ︸

ϕs

ds, (40)

and such zs has the same distribution with the ones in (37) (Song et al., 2022), where qs is the
density of zs. Ψst(zst+1) = zst+1 −

∫ st+1

st
ϕs(zs)ds, which is a deterministic function of zst+1 ,

and fθ(zs0 , 0) = zs0 = z0.

Now, we are ready to prove the Theorem 2 as follows.

Theorem 2. For LCD(θ) in (15) with d(·, ·) is ℓ2 distance, then W1(fθ(xt, t),x0) ≤
√

tLCD(θ) 8.

Proof. Owing to the definition of W1-distance, and the discussion in above, we have

W1(fθ(xT , T ),x0) = W1(fθ(zsT , T ),zs0)

= W1

(
fθ(zsT , T ),Ψs0

(
Ψs1

(
· · ·ΨsT−1 (zsT )

)))
≤ E

[
∥fθ(zsT , T )−Ψs0

(
Ψs1

(
· · ·ΨsT−1 (zsT )

))
∥
]

≤
T−1∑
t=0

E
[∥∥fθ(zst+1 , t+ 1)− fθ(Ψst(zst+1), t)

∥∥]
≤
√

TLCD(θ),

(41)

where the first inequality is due to the definition of Wasserstein distance, the second and last
inequalities respectively use the triangle inequality and Schwarz’s inequality.

B.1 PROOF OF THEOREM 3

As pointed out in the above, the used Φ̂t(xt+1, ϵϕ) is a numerical estimator of Φt(xt+1). In the
sequel, let us consider Φ̂ is an Euler estimator as follows, whereas our analysis can be similarly
generalized to the other estimators.

Φ̂t(xt+1, ϵϕ) = Ψ̂st(zst+1 , ϵϕ) = zst+1 + (st+1 − st)
βst+1

2

(
zst+1 + ϵϕ(zst+1 , t+ 1)/

√
1− ᾱt+1

)
︸ ︷︷ ︸

ϕ̂st+1

,

(42)

8Here W1(fθ(xt, t),x0) is the Wasserstein 1-distance between distributions of fθ(xt, t) and x0.
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where
√
1− ᾱt+1ϵϕ(zst+1

, t+1) estimates∇z log qst+1
(zst+1

) as pointed out in (Song et al., 2020),
and the condition xt+1 = zst+1

is hold.

Next, we illustrate the used regularity conditions to derive Theorem 3.

Assumption 1. The discretion error of Ψ̂st(zst+1 , ϵϕ) is smaller than C(st+1 − st)
2 for constant C,

that says ∥∥∥∥Ψ̂st(zst+1 , ϵϕ)− zst+1 −
∫ st+1

st

ϕ̂s(zs)ds

∥∥∥∥ ≤ C(st+1 − st)
2 (43)

Assumption 2. The estimated score∇z log q̂s(z) has bounded expected error, i.e.,

Ez∼qst (z)

[∥∥∥ϕ̂st(z)− ϕst(z)
∥∥∥2] ≤ ϵ. (44)

for all 0 ≤ t < T .
Assumption 3. For the learned model fθ, it holds ∥fθ∥ ≤ D.

The Assumption 1 describes the discretion error of the Euler method under ODE with drift term
ϕ̂s, which can be satisfied under proper continuity conditions of model ϵϕ. On the other hand,
Assumption 2 describes the estimation error of ϕ̂st(z), which terms out to be the training objective of
obtaining it, see (Song et al., 2020) for more details. The Assumption 3 is natural, since fθ predicts
x0, which is usually an image data with bounded norm. Now, we are ready to prove the Theorem 3,
which is presented by proving the following formal version.
Theorem 4. Under Assumptions 1, 2, and 3, for all δst , we have Ezst

[∥δst(zst)∥] ≤ O(∆2
st +

ϵ
√

∆st) for ∆st = st+1 − st. Besides that, we have

W1(fθ(zT , T ),z0) ≤

√
T L̂Adv

CD (θ) +
4D2

η

[
C∆2

st + ϵO(
√

∆st)
]
. (45)

Proof. Noting that Φt(xt+1) = Ψst(zst+1
) and Φ̂t(xt+1, ϵϕ) = Ψ̂st(zst+1

, ϵϕ), the key problem is
to upper bound the difference between Ψ̂st(z, ϵϕ) and Ψst(z) for all t and z. To do so, we note that∥∥∥Ψ̂st(z, ϵϕ)−Ψst(z)

∥∥∥ ≤
∥∥∥∥Ψ̂st(z, ϵϕ)− z −

∫ st+1

st

ϕ̂s(zs)ds

∥∥∥∥+ ∥∥∥∥z −
∫ st+1

st

ϕ̂s(zs)ds−Ψst(z)

∥∥∥∥ ,
(46)

where the first one in r.h.s can be upper bounded by C(st+1 − st)
2 according to Assumption 1. On

the other hand, define dẑs

ds = ϕ̂s(ẑs), then when ẑst+1 = zst+1 = z and s ∈ [st, st+1].

d

ds
∥ẑs − zs∥2 =

〈
ẑs − zs, ϕ̂s(ẑs)− ϕs(zs)

〉
=
〈
ẑs − zs, ϕ̂s(ẑs)− ϕ̂s(zs) + ϕ̂s(zs)− ϕs(zs)

〉
≤ L∥ẑs − zs∥2 +

〈
ẑs − zs, ϕ̂s(zs)− ϕs(zs)

〉
≤
(
1

2
+ L

)
∥ẑs − zs∥2 +

1

2

∥∥∥ϕ̂s(zs)− ϕs(zs)
∥∥∥2 .

(47)

Taking expectation over z, by Gronwall’s inequality, Assumption 2 and ẑst+1
= zst+1

, we have

E
[
∥ẑst − zst∥

2] ≤ ∫ st+1

st

e(1/2+L)(s−st)

2
E
[
∥ϕ̂s(zs)− ϕs(zs)∥2

]
ds ≤ ϵ

4

∫ st+1

st

βse
(1/2+L)(s−st)ds.

(48)
Plugging this into (46), we know

E
[∥∥∥Ψ̂st(zst , ϵϕ)−Ψst(zst)

∥∥∥] ≤ C(st+1 − st)
2 + ϵO(

√
st+1 − st). (49)

By Markov’s inequality, we have

P
(∥∥∥Ψ̂st(zst , ϵϕ)−Ψst(zst)

∥∥∥ ≥ η
)
≤

E
[∥∥∥Ψ̂st(zst , ϵϕ)−Ψst(zst)

∥∥∥]
η

≤ 1

η

[
C(st+1 − st)

2 + ϵO(
√
st+1 − st)

]
.

(50)
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Thus,

E
[
∥fθ(xt+1, t+ 1)− fθ(Φt(xt+1), t)∥2

]
= E

[∥∥fθ(zst+1 , t+ 1)− fθ(Ψst(zst+1), t)
∥∥2]

= E
[∥∥∥fθ(zst+1 , t+ 1)− fθ(Ψ̂st(zst+1 + δst , ϵϕ), t)

∥∥∥]
= E

[(
1∥δst∥>η + 1∥δst∥≤η

)∥∥∥fθ(zst+1 , t+ 1)− fθ(Ψ̂st(zst+1 + δst , ϵϕ), t)
∥∥∥2]

≤ E

[
sup

∥δ∥≤η

∥∥∥fθ(zst+1 , t+ 1)− fθ(Ψ̂st(zst+1 + δst , ϵϕ), t)
∥∥∥]+ 4D2P

(
∥δst∥

2 ≥ η
)

≤ E

[
sup

∥δ∥≤η

∥∥∥fθ(zst+1 , t+ 1)− fθ(Ψ̂st(zst+1 + δ, ϵδ), t)
∥∥∥2]+ 4D2

η

[
C(st+1 − st)

2 + ϵO(
√
st+1 − st)

]
.

(51)
Taking sum over t and combining Theorem 2, we prove our conclusion.

Therefore, in this theorem, by taking ∆st = st+1 − st close to zero, we get the results in Theorem 3.

C THE CONNECTION TO STANDARD ADVERSARIAL TRAINING

In this section, we clarify why the proposed AT objective (14) is a general version of the standard AT
objective proposed in (Madry et al., 2018) used for classification problems.

For classification problem, given model fθ(x), data x, and label y, it aims to minimize the adversarial
training objective

min
θ

E(x,y)

[
sup

δ:∥δ∥≤η0

ℓ(fθ(x+ δ), y)

]
, (52)

for some loss function ℓ (e.g. cross entropy) and adversarial radius η0. However, the objective is not
directly generalized to the diffusion model, as its training objective is a regression problem instead
of classification (52). Thus, we should refer to the general version of adversarial training as in (Yi
et al., 2021; Sinha et al., 2018), where the training objective is minθ Ex[ℓθ(x)], and the adversarial
training objective becomes

min
θ

Ex

[
sup

δ:∥δ∥≤η0

ℓθ(x+ δ))

]
, (53)

where ℓθ is the parameterized loss function, and x is data. Then, we can conclude our objective (14)
follows the above formulation, such that the goal is represented as

min
θ

T−1∑
t=0

Ex0

[
Ext|x0

[
sup

δ:∥δ∥≤η0

ℓx0
θ (xt + δ)

]]
, (54)

compared with the original noise prediction objective minθ
∑T−1

t=0 Ex0

[
Ext|x0

[ℓx0

θ (xt)]
]

(5), such
that the loss function

ℓx0
θ (xt) =

∥∥∥∥ϵθ(t,xt)−
xt −

√
ᾱtx0√

1− ᾱt

∥∥∥∥2 . (55)

This clarifies the equivalence of our objective (14) to general adversarial training.

D ADVERSARIAL TRAINING ON CONSISTENCY TRAINING MODEL

In (Song et al., 2023), the consistency model can be even trained without estimator ϕ̂s. They prove
that the empirical consistency distillation loss L̂CD(θ) can be approximated by the following LCT (θ)

LCT (θ) =

T−1∑
t=0

Ext+1∼q(xt+1)

[
∥fθ(xt, t)− fθ(xt+1, t+ 1)∥2

]
. (56)
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In our adversarial regime, we can also prove that the desired L̂Adv
CD (θ) can be approximated by the

following LAdv
CT (θ) with adversarial perturbation

LAdv
CT (θ) =

T−1∑
t=0

Ext+1∼q(xt+1)

[
sup

∥δ∥≤η

∥fθ(xt + δ, t)− fθ(xt+1, t+ 1)∥2
]
. (57)

The results can be checked by the following theorem.
Theorem 5. Suppose fθ(xt, t) is twice continuously differentiable with a bounded second derivative.
Then

L̂Adv
CD (θ) ≲ LAdv

CT (θ) +O

(
T −

T∑
t=1

√
αt + Tη2

)
, (58)

where “≲” means approximately less than or equal.

Proof. Due to the continuity of fθ(x, t), for any δ with ∥δ∥ ≤ η, by Taylor’s expansion on xt+1

from xt + δ, we have

E
[
∥fθ(xt + δ, t)− fθ(xt+1, t+ 1)∥2

]
= E

[
∥fθ(xt+1, t)− fθ(xt+1, t+ 1)∥2

]
+ E

[
(fθ(xt+1, t)− fθ(xt+1, t+ 1))⊤∇fθ(xt+1, t)(xt + δ − xt+1)

]
+O

(
E
[
∥xt+1 − xt − δ∥2

])
.

(59)
Due to the Taylor’s expansion fθ(xt + δ, t) = fθ(xt+1, t) + ∇fθ(xt+1, t)(xt + δ − xt+1) +
O(∥xt+1 − xt − δ∥2). Then, from the formulation of xt, we know E

[
∥xt+1 − xt − δ∥2

]
=

O(1−√αt + η2). Noting that due to definition of st, we have

E[xt | xt+1 = zst+1 ] = E[zst | zst+1 ]

=
1

√
αt+1

(
zst+1 − (1− αt+1)∇x log qst+1(zst+1)

)
= exp

(
1

2

∫ st+1

st

βsds

)(
zst+1 −

(
1− e

∫ st+1
st

βsds
)
∇z log qst+1(zst+1)

)
≈
(
1 +

1

2

∫ st+1

st

βsds

)
zst+1 +

1

2

∫ st+1

st

βsds∇z log qst+1(zst+1)

≈ Ψ̂st(zst+1 ,
√

1− ᾱt+1∇z log qst+1),

(60)

where the first equality is due to Tweedie’s formula i.e., Lemma 11 in (Bao et al., 2022), the “≈” is
due to ea ≈ 1 + a when a→ 0, and the last ≈ is due to Euler-Mayaruma discretion. Due to this, we
notice that

E
[
(fθ(xt+1, t)− fθ(xt+1, t+ 1))⊤∇fθ(xt+1, t)(xt + δ − xt+1) | xt+1 = zst+1

]
= E

[
(fθ(xt+1, t)− fθ(xt+1, t+ 1))⊤∇fθ(xt+1, t)

(
E
[
xt + δ | xt+1 = zst+1

]
− xt+1

)
| xt+1 = zst+1

]
≈ E

[
(fθ(zst+1 , t)− fθ(zst+1 , t+ 1))⊤∇fθ(zst+1 , t)

(
Ψ̂st(zst+1 ,∇z log qst+1) + E[δ | zst+1 ]− zt+1

)]
,

(61)
where the first equality is due to the property of conditional expectation, and the second “≈” is due to
(60). Combining this with (59), we have

E
[
∥fθ(xt + δ, t)− fθ(xt+1, t+ 1)∥2 | xt+1 = zst+1

]
= E

[∥∥fθ(zst + δ, t)− fθ(zst+1 , t+ 1)
∥∥2 | zst+1

]
= E

[∥∥fθ(zst+1 , t)− fθ(zst+1 , t+ 1)
∥∥2]

+ E
[
(fθ(zst+1 , t)− fθ(zst+1 , t+ 1))⊤∇fθ(zst+1 , t)

(
Ψ̂st(zst+1 ,∇z log qst+1) + E[δ | zst+1 ]− zst+1

)]
+O(1−

√
αt + η2)

= E
[∥∥∥fθ(Ψ̂st(zst+1 ,∇z log qst+1) + δ, t)− fθ(zst+1 , t+ 1)

∥∥∥2]+O(1−
√
αt + η2),

(62)
where the last equality is due to Taylor’s expansion from fθ(Ψ̂st(zst+1

,∇z log qst+1
) + δ, t) to

fθ(zst+1 , t). Due to the arbitrariness of δ, we prove our conclusion.
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E IMPLEMENTATION DETAILS

E.1 HYPERPARAMETERS OF DIFFUSION MODELS

For the diffusion models, all methods adopt the ADM model (Dhariwal & Nichol, 2021) as the
backbone and follow the same training pipeline. Following existing work (Dhariwal & Nichol, 2021;
Ning et al., 2023), we train models using the AdamW optimizer (Loshchilov & Hutter, 2019) with
mixed precision training and the EMA rate is set to 0.9999. For CIFAR-10, the pretrained ADM is
trained using a batch size of 128 for 250K iterations with a learning rate set to 1e-4. For ImageNet,
the pretrained model is trained with a batch size of 1024 for 400K iterations, employing a learning
rate of 3e-4. The models are trained in a cluster of NVIDIA Tesla V100s. More hyperparameters are
reported in Table 4.

Table 4: Hyperparameters of diffusion model on each datasets.

Hyperparameters CIFAR10 32× 32 ImageNet 64× 64

Channels 128 192
Batch size 128 1024
Learning rate 1e-4 3e-4
Fine-tuning iterations 200K 200K
Dropout 0.3 0.1
Noise schedule Cosine Cosine

E.2 HYPERPARAMETERS OF LATENT CONSISTENCY MODELS

For experiments on Latent Consistency Models (LCM) (Luo et al., 2023), we train models on
LAIOIN-Aesthetic-6.5+ (Schuhmann et al., 2022) at the resolution of 512×512, comprising 650K
text-image pairs with predicted aesthetic scores higher than 6.5. Stable Diffusion v1.5 (Rombach
et al., 2022) is adopted as the teacher model and initialized the student and target models in the latent
consistency distillation framework. We set the range of the guidance scale [wmin, wmax] = [3, 5]
during training and use w = 4 in sampling because it performs better in our preliminary experiments,
which is similar to DMD (Yin et al., 2024). The models are trained in a cluster of NVIDIA Tesla
V100s. Both models of our AT and the original LCM training are trained from scratch with the
same hyperparameters. We select the adversarial learning rate α from {0.02, 0.05} and adversarial
step K from {2, 3}. More details of hyperparameters are shown in Table 5 and other details of
implementations can be found in the original LCM paper (Luo et al., 2023).

Table 5: Hyperparameters of latent consistency model.

Hyperparameters LAIOIN-Aesthetic-6.5+

Batch size 64
Learning rate 8e-6
Training iterations 100K
EMA rate of target model 0.95
Conditional guidance scale [wmin, wmax] [3, 5]

F ADDITIONAL RESULTS

F.1 RESULTS OF CLASSIFICATION ACCURACY SCORE

Classification Accuracy Score (CAS) (Ravuri & Vinyals, 2019) is proposed to evaluate the utility of
the images produced by the generative model for downstream classification tasks. The underlying
motivation for this metric is that if the generative model captures the real data distribution, the
real data distribution can be replaced by the model-generated data and achieve similar results on
downstream tasks like image classification.
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Table 6: Comparasion of CAS of different methods on CIFAR-10 32×32 dataset.

Methods CAS

Real 92.5

only using the synthetic data.
ADM 91.0
ADM-IP 89.2
ADM-AT (Ours) 91.6
using the synthetic data with real data.
ADM 95.0
ADM-IP 94.9
ADM-AT (Ours) 95.4

Following the evaluation pipeline in Ravuri & Vinyals (2019), we train the image classifier in two
settings: only on synthetic data or real data augmented with synthetic data, and use the classifier to
predict labels on the test set of real data. Synthetic images are generated with a DDIM sampler under
20 NFEs. We use ResNet-18 (He et al., 2016) as the image classifier and train it for 200 epochs with a
learning rate of 0.1 and a batch size of 128. We report CAS in the CIFAR-10 dataset at a resolution
of 32×32 in Table 6. The results indicate that our method consistently performs better than other
baseline methods on CAS metric in both settings. Although CAS with synthetic data cannot surpass
real data, it demonstrates significant potential for enhancing classifier accuracy when employed as an
augmentation technique alongside real data.

Table 7: Comparasion of AT with TS-DDIM on CIFAR10 32×32. Both models are based on the
ADM backbone. The results of TS are taken directly from the original paper.

Methods \ NFEs 50 20 10 5

ADM-TS-DDIM 3.52 5.35 10.73 26.94
ADM-AT (Ours) 3.07 4.40 9.30 26.38

F.2 COMPARISON TO TS-DDIM

Li et al. (2024) introduces another approach named Time-Shift (TS) to alleviate the DPM distribution
mismatch by searching for coupled time steps in sampling. Table 7 shows the comparison between
our AT method with TS on CIFAR-10 with the DDIM Sampler. Both methods are based on the
ADM pretrained model (Dhariwal & Nichol, 2021) as a backbone, which is the same as Section 6.2.
We observe our method consistently better than the TS method across various sampling steps.

F.3 RESULTS OF MORE NFES

We present results obtained with various samplers under 100 or 200 NFEs on CIFAR10 32x32 and
ImageNet 64x64 in Table 8 and Table 9, respectively. The results show that our method is still
effective for samplers under hundreds of NFEs.

F.4 RESULTS OF MORE METRICS

We present the results of more generation quality metrics, including sFID, Inception Score (IS),
Precision, and Recall, on CIFAR10 32x32 (Table 10 and Table 11) and ImageNet 64x64 (Table 12
and Table 13). The evaluation is performed following Dhariwal & Nichol (2021). We observe that
our method shows effectiveness across these metrics.
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Table 8: Sample quality measured by FID ↓ of various sampling methods of DPM under 100 or 200
NFEs on CIFAR10 32x32.

Methods IDDPM DDIM ES DPM-Solver
100 200 100 200 100 200 100 200

ADM-FT 3.34 3.02 4.02 4.22 2.38 2.45 2.97 2.97
ADM-IP 2.83 2.73 6.69 8.44 2.97 3.12 10.10 10.11
ADM-AT (Ours) 2.52 2.46 3.19 3.23 2.18 2.35 2.83 3.00

Table 9: Sample quality measured by FID ↓ of various sampling methods of DPM under 100 or 200
NFEs on ImageNet 64x64.

Methods IDDPM DDIM ES DPM-Solver
100 200 100 200 100 200 100 200

ADM-FT 3.88 3.48 4.71 4.38 3.07 2.98 4.20 4.13
ADM-IP 3.55 3.08 8.53 10.43 3.36 3.31 9.75 9.77
ADM-AT (Ours) 3.35 3.16 4.58 4.34 3.05 3.10 4.31 4.10

Table 10: Comparison of sFID ↓ and IS ↑ on CIFAR10 32x32.

(a) IDDPM

5 8 10 20 50
sFID IS sFID IS sFID IS sFID IS sFID IS

ADM 20.95 8.25 25.03 8.51 23.56 8.50 16.01 9.14 6.81 9.49
ADM-IP 25.81 7.02 24.51 8.04 19.02 8.50 8.99 9.28 5.32 9.66
ADM-AT 19.78 8.71 25.67 8.66 23.09 8.77 6.01 9.30 5.04 9.65

(b) DDIM

5 8 10 20 50
sFID IS sFID IS sFID IS sFID IS sFID IS

ADM 12.75 7.76 8.53 8.62 8.39 8.70 6.19 9.08 4.99 9.19
ADM-IP 15.53 7.55 8.00 8.98 7.12 9.15 5.30 9.41 5.64 9.49
ADM-AT 12.56 7.97 7.93 8.90 7.08 8.90 5.37 9.17 4.66 9.51

(c) ES

5 8 10 20 50
sFID IS sFID IS sFID IS sFID IS sFID IS

ADM 27.39 6.14 14.91 8.33 10.04 8.79 5.45 9.55 4.12 9.62
ADM-IP 34.70 5.73 16.84 8.23 10.89 8.88 4.94 9.59 4.08 9.70
ADM-AT 16.84 6.97 10.33 8.60 8.00 8.95 4.78 9.65 4.04 9.77

(d) DPM-Solver

5 8 10 20 50
sFID IS sFID IS sFID IS sFID IS sFID IS

ADM 11.82 8.00 5.79 9.12 5.05 9.41 4.43 9.78 4.32 9.82
ADM-IP 26.46 7.09 5.93 9.19 5.49 9.45 7.53 9.66 8.37 9.75
ADM-AT 11.19 8.43 5.10 9.35 5.29 9.65 4.75 10.03 4.59 9.93

G MORE ANALYSIS

G.1 EFFICIENT AT VS STANDARD AT

In this section, we conduct an ablation of the AT method in diffusion model training. We compare
the performance of our used efficient AT and a standard AT method PGD on CIFAR-10 dataset at
the resolution of 32×32. The adversarial step K is set to be 3 for both methods. We fine-tune both
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Table 11: Comparison of Precision (P) ↑ and Recall (R) ↑ on CIFAR10 32x32.

(a) IDDPM

5 8 10 20 50
P R P R P R P R P R

ADM 0.54 0.47 0.59 0.45 0.61 0.46 0.64 0.52 0.68 0.58
ADM-IP 0.54 0.39 0.59 0.43 0.61 0.46 0.66 0.54 0.68 0.59
ADM-AT 0.52 0.47 0.57 0.45 0.62 0.46 0.68 0.55 0.69 0.59

(b) DDIM

5 8 10 20 50
P R P R P R P R P R

ADM 0.57 0.47 0.59 0.52 0.61 0.52 0.64 0.52 0.63 0.60
ADM-IP 0.57 0.44 0.62 0.53 0.63 0.56 0.65 0.60 0.65 0.61
ADM-AT 0.59 0.46 0.62 0.52 0.63 0.54 0.65 0.58 0.66 0.61

(c) ES

5 8 10 20 50
P R P R P R P R P R

ADM 0.54 0.37 0.60 0.48 0.61 0.52 0.64 0.52 0.63 0.60
ADM-IP 0.46 0.32 0.58 0.45 0.62 0.51 0.67 0.58 0.68 0.60
ADM-AT 0.61 0.45 0.64 0.51 0.65 0.54 0.65 0.58 0.66 0.61

(d) DPM-Solver

5 8 10 20 50
P R P R P R P R P R

ADM 0.61 0.47 0.65 0.58 0.65 0.59 0.66 0.61 0.63 0.62
ADM-IP 0.49 0.32 0.65 0.58 0.65 0.59 0.62 0.58 0.61 0.56
ADM-AT 0.62 0.49 0.65 0.59 0.65 0.61 0.67 0.62 0.65 0.61

models from the same pretrained ADM model with 100K update iterations of the model. The results
are shown in Table 14. We report the results of 4 sampler settings (method-NFEs): IDDPM-50,
DDIM-50, ES-20, and DPM-Solver-10.

We observe that efficient AT achieves performance comparable to or even better than PGD with the
same model update iterations while accelerating the training (2.6× speed-up). Thus, we propose
applying the efficient AT method for our adversarial training framework.

G.2 CONVERGENCE OF AT ON DIFFUSION MODELS

100K 150K 200K
Iterations

5

6

7

8

9

FI
D

DDIM-50
Method
ADM
ADM-IP
ADM-AT (ours)

Figure 2: The convergence of methods trained from scratch on CIFAR-10 32 × 32. We use the
DDIM sampler with 50 NFEs for sampling.
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Table 12: Comparison of sFID ↓ and IS ↑ on ImageNet 64x64.

(a) IDDPM

5 8 10 20 50
sFID IS sFID IS sFID IS sFID IS sFID IS

ADM 26.17 12.55 36.34 22.61 40.52 26.55 26.08 39.10 11.35 45.68
ADM-IP 40.90 12.19 47.98 23.47 37.72 27.86 25.06 39.40 6.75 44.87
ADM-AT 24.82 14.50 37.04 23.84 36.50 30.03 22.83 39.12 5.69 46.25

(b) DDIM

5 8 10 20 50
sFID IS sFID IS sFID IS sFID IS sFID IS

ADM 27.74 14.30 14.27 25.88 12.78 28.29 8.84 33.54 6.31 38.08
ADM-IP 52.08 10.21 16.40 22.03 11.70 25.94 9.09 32.04 15.14 31.62
ADM-AT 25.49 14.82 10.68 26.62 9.22 29.29 6.41 34.33 4.66 39.36

(c) ES

5 8 10 20 50
sFID IS sFID IS sFID IS sFID IS sFID IS

ADM 34.55 13.29 42.32 24.98 34.44 29.36 14.44 40.45 6.41 45.36
ADM-IP 44.81 10.07 41.01 22.44 30.12 27.66 10.13 39.50 4.67 44.69
ADM-AT 29.72 16.49 33.58 27.85 27.64 31.94 10.22 42.18 5.10 45.59

(d) DPM-Solver

5 8 10 20 50
sFID IS sFID IS sFID IS sFID IS sFID IS

ADM 25.70 24.34 11.08 34.77 8.05 37.45 5.35 40.54 4.69 41.31
ADM-IP 42.68 16.93 7.47 33.85 7.22 33.57 14.74 31.29 18.99 30.32
ADM-AT 20.79 26.32 7.60 34.89 6.36 36.51 4.51 38.79 4.22 39.10
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Figure 3: The convergence of methods fine-tuned from a same pretrained model on CIFAR-10
32× 32. We compare the performance of methods on various samplers.

In classification tasks, adding adversarial perturbations usually slows the convergence of model
training (Zhu et al., 2020). We are interested to see whether AT also affects the convergence of the
diffusion training process.

Firstly, we explore the convergence of models trained from scratch. We utilize DDIM as the sampler
with 50 NFEs and the results are shown in Figure 2. We observe that our AT method and ADM-IP
exhibit slower convergence compared to ADM at the beginning (before 100K iterations), while as
training more iterations (200K), our AT method shows a notable advantage.

Moreover, we explore the convergence of models under fine-tuning setting and the results are shown
in Figure 3. We observe under this setting, when given a pretrained diffusion model like ADM,
fine-tuning it with our proposed AT improves performance faster than other baselines. Overall, we
observe that incorporating AT with a diffusion framework does not affect the convergence of the
model much, especially in the fine-tuning setting.
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Table 13: Comparison of Precision (P) ↑ and Recall (R) ↑ on ImageNet 64x64.

(a) IDDPM

5 8 10 20 50
P R P R P R P R P R

ADM 0.34 0.48 0.46 0.50 0.51 0.48 0.65 0.52 0.73 0.57
ADM-IP 0.39 0.39 0.50 0.45 0.56 0.48 0.68 0.55 0.73 0.60
ADM-AT 0.40 0.50 0.50 0.50 0.55 0.49 0.69 0.52 0.77 0.59

(b) DDIM

5 8 10 20 50
P R P R P R P R P R

ADM 0.42 0.47 0.54 0.56 0.58 0.58 0.65 0.60 0.69 0.61
ADM-IP 0.38 0.40 0.51 0.53 0.55 0.57 0.63 0.61 0.62 0.61
ADM-AT 0.44 0.43 0.58 0.55 0.62 0.56 0.69 0.59 0.72 0.61

(c) ES

5 8 10 20 50
P R P R P R P R P R

ADM 0.40 0.44 0.52 0.47 0.58 0.48 0.69 0.55 0.73 0.59
ADM-IP 0.37 0.35 0.49 0.44 0.56 0.49 0.68 0.57 0.72 0.60
ADM-AT 0.44 0.46 0.58 0.48 0.63 0.49 0.73 0.55 0.76 0.59

(d) DPM-Solver

5 8 10 20 50
P R P R P R P R P R

ADM 0.51 0.49 0.65 0.58 0.67 0.60 0.69 0.62 0.69 0.62
ADM-IP 0.39 0.44 0.64 0.60 0.64 0.60 0.59 0.60 0.57 0.59
ADM-AT 0.56 0.50 0.68 0.57 0.69 0.59 0.72 0.60 0.71 0.61

Table 14: Comparison of different AT methods used in our AT framework. All models are trained
with the same model-updating iterations while the efficient AT has less training time.

Methods FID Training Time
IDDPM-50 DDIM-50 ES-20 DPM-Solver-10 Speedup

Standard AT PGD-3 4.02 3.37 6.42 7.60 1.0×
Efficient AT (Ours) 3.97 3.42 5.98 6.05 2.6×

Table 15: Comparison of different adversarial learning rate α of our AT framework on CIFAR10
32x32. IDDPM is adopted as the inference sampler.

α \ NFEs 5 8 10 20 50

α = 0.05 51.72 32.09 25.48 10.38 4.36
α = 0.1 37.15 23.59 15.88 6.60 3.34
α = 0.5 63.73 40.08 27.57 7.23 3.42

Table 16: Comparison of different adversarial learning rate α of our AT framrwork on ImageNet
64x64. IDDPM is adopted as the inference sampler.

α \ NFEs 5 8 10 20 50

α = 0.1 56.92 27.39 24.06 10.17 5.82
α = 0.5 45.65 23.79 19.18 8.28 4.01
α = 0.8 46.92 28.46 22.47 9.70 4.25
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Table 17: Comparison of different perturbation norms (l1, l2 l∞) of our AT framework on CIFAR10
32x32.

Perturbation Norm IDDPM-50 DDIM-50 ES-20 DPM-Solver-10

l1 4.45 4.91 4.72 5.05
l2 3.34 3.07 4.36 4.81
l∞ 3.87 3.63 4.48 5.32

G.3 MORE ABLATION STUDY

Ablation on α We investigate the impact of adversarial learning rate α in our framework. The
results of various α on CIFAR10 32x32 and ImageNet 64x64 are shown in Table 15 and Table 16,
respectively. We observe that α set to 0.1 is better on CIFAR10 32x32 and α = 0.5 is better for
ImageNet 64x64. That says, the image in larger size corresponds to larger optimal perturbation
level α. We speculate this is because we use the perturbation measured under ℓ2-norm, where the
ℓ2-norm of vector will increase with its dimension.

Ablation on perturbation norm During our experiments, we adopt ℓ2-adversarial perturbation.
Actually, perturbations in Euclidean space under different ℓp norm are equivalent with each other, e.g.,
for vector δ ∈ Rd, it holds ∥δ∥∞ ≤ ∥δ∥2 ≤

√
d∥δ∥∞. Therefore, we select ∥ · ∥2 as representation

in our paper. Next, we explore the proposed ADM-AT under different adversarial perturbations.

The results are in Table 17. We found that our method under ℓ2-perturbation is more stable and indeed
has better performance, thus we suggest to use ℓ2-perturbation as in the main body of this paper.

G.4 QUALITATIVE COMPARISONS

Figure 4: The qualitative comparsions of ADM-AT (top, FID 6.60), ADM-IP (middle, FID 7.81), and
ADM (bottom, FID 10.58) on CIFAR10 32 × 32. We use the IDDPM sampler with 20 NFEs for
sampling.

Figure 4, 5, 6, 7 show the qualitative comparisons between our proposed AT method and baselines.
Our proposed AT method generates more realistic and higher-fidelity samples. We attribute this to
our AT algorithm mitigates the distribution mismatch problem.
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Figure 5: The qualitative comparsions of ADM-AT (top, FID 6.20), ADM-IP (middle, FID 8.40)
and ADM (bottom, FID 8.32) on ImageNet 64× 64. We use the DDIM sampler with 20 NFEs for
sampling.

Figure 6: The qualitative comparsions of LCM (left) and LCM-AT (right) with one-step generation.
The text prompt is A photo of beautiful mountain with realistic sunset and blue lake, highly detailed,
masterpiece.

Figure 7: The qualitative comparsions of LCM (left) and LCM-AT (right) with one-step generation.
The text prompt is Astronaut in a jungle, cold color palette, muted colors, detailed, 8k.
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