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ABSTRACT

We establish global well-posedness and convergence of the score-based genera-
tive models (SGM) under general assumptions of initial data for score estimation.
For the smooth case, we start from a Lipschitz bound of the score function with
optimal time length. The optimality is validated by an example whose Lipschitz
constant of scores is bounded at initial but blows up in finite time. This neces-
sitates the separation of time scales in conventional bounds for non-log-concave
distributions. In contrast, our follow up analysis only relies on a local Lipschitz
condition and is valid globally in time. This leads to the convergence of numerical
scheme without time separation. For the non-smooth case, we show that the opti-
mal Lipschitz bound is O(1/t) in the point-wise sense for distributions supported
on a compact, smooth and low-dimensional manifold with boundary.

1 INTRODUCTION

Diffusion models (DM) have become the state-of-the-art tools lately in generative AI Song & Ermon
(2019); Song et al. (2021); Dhariwal & Nichol (2021) such as image synthesis Ho et al. (2022); Gao
et al. (2023). DMs first evolve data samples with stochastic differential equation (SDE) to gradually
inject Gaussian noise until a Gaussian distribution is reached. Then it approximates the drift in the
associated backward (time-reversed) SDE and generate a data sample from Gaussian noise. The
drift of the backward SDE contains the gradient of the forward logarithmic density (score) that
is estimated by solving a matching problem with deep neural network training. The reversibility
concept of SDEs dated back to Kolmogorov’s work Kolmogorov (1937) in 1937, and the general
score formula was derived by Anderson Anderson (1982) in 1982.

Theoretical study on the convergence of DM generated distribution to the target (data) distribution
typically assumes that the data distribution admits a density with respect to Lebesgue measure Lee
et al. (2022) among others. By also imposing that the score of the data distribution is Lipschitz
continuous, the score function of the forward process (the drift in the backward process) is well-
behaved (not exploding) as the backward time tends to zero when the desired target sample is to
be generated. However, this is not always observed in practice and experimentally the score can
blow up Kim et al. (2022). In particular, the explosion occurs at generation if the data distribution
satisfies the manifold hypothesis (MH) Tenenbaum et al. (2000); Goodfellow et al. (2016) which
is verified for image data in Brown et al. (2023). Under MH, Pidstrigach (2022) showed that the
limit of the continuous backward process with approximate score is well-defined and that the sample
distribution shares the same support as the target distribution under the integrability conditions on
the error of score matching. Also under MH, Bortoli (2022) found quantitative bounds on the 1-
Wasserstein distance between a compact target (data) distribution and the generative distribution of
DM by allowing the score function to explode as backward time approaches zero.

Both of the references (Pidstrigach (2022) and Bortoli (2022)), among others (Lee et al. (2022) for
Langevin MC, Huang et al. (2024) for ODE flows, Chang et al. (2024) for Föllmer flows), require
a (locally) Lipschitz estimate for the score function to ensure the well-posedness of the backward
SDEs and the approximation bound of the score matching and sampling process.

The goal of this paper is to provide sharp estimates that 1) confirm/improve the score assumptions
of the existing convergence theory, 2) give insight for the duration of the forward process so that the

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

backward process is well-defined, and 3) justify practical implementation of the backward process
(e.g. early stopping strategies or truncation Kim et al. (2022)).

Related work We are aware of the convergence bound of discrete schemes for backward processes
in Chen et al. (2023). Our convergence bound takes the KL chain inequality (Proposition C.3.Chen
et al. (2023)) as the building block. While equipped with sharp (local) Lipschitz bounds in the
paper, we achieved polynomial complexity of sampling in the general smooth p0 setting without
separated regimes of schedule. We are also aware of Bortoli (2022) which provides convergence
bound in Wasserstein distance under a singular p0 setting, supported on a compact manifold. Due
to the potential singular behaviour of the score, early stopping schedules are employed Kim et al.
(2022). Additional related work and comparison are discussed in Remark 3.3 for the Lipschitz bound
and in Remark 4.6 for the convergence and complexity bound. Our paper provides sharp Lipschitz
bounds of the singularities and therefore insights for the choices of schedules and loss normalization
between discretization points. In addition, the Lipschitz bounds hold generally for models sharing
the same forward process as OU, for example, the probability flow ODE (Equation (13) in Song
et al. (2020)).

The main contributions of this paper are:

• Realistic or sharp point-wise gradient and Hessian estimates of the score potential function
log p from commonly hypothesized data distributions.

• The first sharp example demonstrating the loss of Lipschtiz bound of the score function as
time gets large even with nice initial data.

• Well-posedness and convergence of the backward diffusion process up to time zero (the
generation time) in the smooth setting without separated regime of discretization.

• Characterization of the score (and its derivatives) in the setting of manifold hypothesis.

The rest of the paper is organized as follows. In Section 2, we first introduce settings of the diffusion
model and discretization schemes of the backward process. Later, we present the transformation that
relates the Fokker Planck equation with unbounded coefficients (density equation of forward pro-
cess) to the non-linear Hamilton Jacobi equation and heat equation, which serves as the foundation
of the analysis. The main theoretical results, Hessian estimate of score potential function log p, are
listed in Section 3. Based on these estimates, we establish well-posedness of the continous backward
process and convergence bound of discretization in Section 4. The details of the proofs are in the
Appendix.

2 PRELIMINARIES

2.1 BACKGROUND AND SETTING THE STAGE

A large class of generative diffusion models can be analyzed under the SDE framework Song et al.
(2021). It consists of two processes: forward and backward. The forward process, which relates to
training, is an Ornstein-Uhlenbeck (OU) process in Rn as follows:

dXt = −1

2
Xtdt+ dWt, for t ∈ [0, T ] (1)

where Wt is a standard Brownian motion, T is the final time such that the distribution of XT approx-
imates a normal distribution in Rn, namely N (0, In). The initial distribution X0 follows a target
(data) distribution in Rn during the generative task, denoted as p0. The backward process, which
relates to generation of new data, is defined as an ’inversion’ of forward process (1). More precisely,
with time reversal t′ = T − t,

dX̃t′ =

(
1

2
X̃t′ +∇ log p(T − t′, X̃t′)

)
dt′ + dW̃t′ for t′ ∈ [0, T ], (2)

where Wt′ is a standard Brownian motion (not necessarily being the same as Wt) and the initial
distribution X̃0 follows N (0, In). The term ∇ log p is introduced in Eq. (2) such that the marginal
distributions of the forward and backward processes are identical Anderson (1982).
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To be specific, let p := p(t, x) denote the probability distribution function of the forward process
(1), which solves the Fokker Planck equation with Cauchy data p0, namely{

∂tp = 1
2 (∇ · (xp) + ∆ p)

p(x, 0) = p0(x).
. (3)

We also denote Pt (Qt′ correspondingly) as the marginal distribution of Xt in (1) (X̃t′ in (2)). Given
initial distribution for (2) Q0 ∼ PT , then Anderson (1982): ∀t, Qt = PT−t. Especially, QT = P0

so data ∼ P0 can be generated by solving (2).

In practice, since no closed form expression of p0 is known, the p in (3) is not analytically available.
Thus ∇ log p is approximated by a neural network s := sθ(t, x), where θ denotes latent variables of
neural network and is omitted for simplicity of notation. The approximation is obtained by training
the neural network with an L2 score estimation loss, ∀t ∈ [0, T ],

Ex∼Pt
||sθ(t, x)−∇ log p(t, x)||2.

In the analysis, we assume an ϵ20 bounds for this estimation, see Assumption 2.1.

Given the approximation of score sθ, we employ the exponential scheme Zhang & Chen (2022)
with initial distribution N (0, In). More precisely, let δ = t0 ≤ t1 ≤ · · · ≤ tN = T be the
discretization points. δ = 0 for the normal setting and δ > 0 for the early-stopping setting. Then
with t′k = T − tN−k, the process in the discrete scheme is as follows:

dx̂t′ = (
1

2
x̂t′ + sθ(T − t′k, x̂t′k

))dt+ dŵt′ t′ ∈ [t′k, t
′
k+1], k = 0, · · · , N − 1, (4)

which admits an explicit solution, with µk ∼ N (0, In),

x̂t′k+1
= e

1
2 (t

′
k+1−t′k)x̂t′k

+ 2(e
1
2 (t

′
k+1−t′k) − 1)sθ(T − t′k, x̂t′k

)) +

√
e(t

′
k+1−t′k) − 1µk.

Due to the limited knowledge of p0 as well as the regularity of ∇ log p, we restrict ourselves to
uniform discretization points. Detailed selection is stated in the convergence theorems.

We assume the following bound of score approximation at the discretization points,
Assumption 2.1. Let tk be the discretization point of the scheme (4),

1

T

N∑
k=1

(tk − tk−1)Ex∼Ptk
∥∇ log p(tk, x)− sθ(tk, x)∥2 ≤ ϵ20.

2.2 FOUNDATIONAL IDEAS BASED ON NON-LINEAR HAMILTON JACOBI EQUATION

The foundation of our analysis is investigating the behaviour of log p as the solution of a non-linear
Hamilton Jacobi equation (HJE), which is well known to experts. For reader’s convenience, we
present it here.

We consider the score potential function1

q(t, x) = − log p(t, x)− |x|2

2

whose spatial gradient becomes the drift (score) in the backward (reverse time denoising and gener-
ation) process (2) of the diffusion model. The q function satisfies the following PDE:{

∂tq − 1
2∆q + 1

2 (x · ∇q + |∇q|2) = 0

q(0, x) = g(x),
(5)

where g(x) = − log p0(x)− |x|2/2, which is the non-Gaussian part of the likelihood function.

1Here we only consider the transform when the distribution of forward process Pt is absolutely continuous
with respect to Lebesgue measure. The transform and our analysis are valid for any t > 0 in the general case
and up to t = 0 when p0 is smooth.
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To simplify Eq.(5), we make a two step change of variables in time. First, let q̃(t, x) = q(t, et/2x),
then q̃ solves:

∂tq̃ = ∂tq + e
t
2x · ∇q(t, e

t
2x) =

e−t

2
(∆q̃ − |∇q̃|2).

Then we consider q̄(t, x) = q̃(− log(1− t), x), then q̄ solves:{
∂tq̄ = 1

2 (∆q̄ − |∇q̄|2) t ∈ [0, 1)

q̄(0, x) = q0
. (6)

Remark 2.2. By a direct calculation

q̄(t, x) = q

(
− log(1− t),

1√
1− t

x

)
or equivalently, q(t, x) = q̄(1− e−t, e−t/2x). (7)

Furthermore,

∇q(t, x) = e−t/2∇q̄(1− e−t, e−t/2x) and, ∇2q(t, x) = e−t∇q̄(1− e−t, e−t/2x).

Lastly, we also define p̄(t, x) = e−q̄(t,x), which satisfies{
∂tp̄ = 1

2∆p̄ on (0, 1)× Rn

p̄(0, x) = h(x) = e−g(x).
. (8)

The solution of (8) is given by p̄(t, x) = 1

(2πt)
n
2

∫
Rn e

−|x−y|2
2t e−g(y) dy.

To derive reasonable point-wise estimates of gradients and Hessian of the score function q(t, x) that
does not involve 1/t, we will need the following assumption in relevant results. This assumption
also ensures the above integration is well-defined for t ∈ [0, 1], equivalently the well-posedness of
Fokker Planck equation (3) for t ∈ [0,∞).

Assumption 2.3. The tail distribution is upper bounded by some Gaussian distribution, i.e,

log p0(x)− log p0(0) ≤ α1−
1

2
(1− α2)|x|2

for constants α2 < 1 and α1 ∈ R. Without loss of generality we assume α2 ≥ 0.

Recalling definition of g, it is equivalent to

g(x)− g(0) ≥ −α2

2
|x|2 − α1, (9)

Note that Assumption 2.3 implies that the second order moment of the process is bounded, i.e.,

Ep0
||X||2 := M2 < ∞. (10)

Technically speaking, the g(0) could be absorbed into α1 in (9). We put it there just to track possible
dependence on the dimension n. Similarly, we adopt the following technical assumptions in the
relevant results to provide more flexibility to track such dependence.

Assumption 2.4. There exists x0, α2 ∈ [0, 1), α1 ∈ R such that

g(x)− g(x0)−∇g(x0) · (x− x0) ≥ −α2

2
|x− x0|2 − α1 ∀x ∈ Rn.

In particular, if g attains minimum at some point x0, then the Assumption 2.4 holds with α2 = α1 =
0. Also, if Assumption 2.4 holds, then Assumption 2.3 holds by adjusting the corresponding α2 and
α1 ∈ R depending on g(0) and x0, and vice versa. The notation (α·) is abused for simplicity of
subsequent derivations without affecting our estimation for dimension dependency.

4
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General notations Throughout this paper, for an n× n matrix A, we use the spectral norm

||A||2 = max
{v∈Rn: |v|=1}

|Av| = the largest eigenvalue of
√
AA⊤. (11)

In particular, for a map F : Rn → Rn,

||∇F ||2 ≤ L ⇔ |F (x)− F (y)| ≤ L|x− y|.

We also adopt the following notation when comparing two symmetric (Hessian) matrices,

A ⪯ B if B −A is semi-positive definite.

So for any symmetric matrix A, ∥A∥2 ≤ σ ⇔ −σIn ⪯ A ⪯ σIn. For a map u : Rn → Rn, D2u
denotes the Hessian matrix of the map.

3 SHARP HESSIAN BOUND OF SCORE POTENTIAL FUNCTION

The fundamental question, which is directly related to the well-posedness and convergence rate of
the diffusion model Bortoli (2022); Lee et al. (2022), is whether for any T > 0, there exists a
constant CT that depends only on T and the initial data such that

sup
[0,T ]×Rn

∥D2q(t, x)∥2 ≤ CT ?

The short time existence of uniform Hessian bound was known in previous literature (see Chen et al.
(2023); Mikulincer & Shenfeld (2024) for instance) when ||D2 log p0|| is bounded . From both a
mathematical and application perspective, a natural question is whether it could be extended to all
time. In Section 3.1 we provide the first example that shows the short time existence is optimal
in sense of lasting time. Precisely speaking, in the proof of Theorem 3.4, we construct an initial
distribution p0 such that the Hessian of log p loses global bound right at the limiting time. Inspired
by the counter-example, alternatively in Section 3.2 we provide a locally Lipschitz estimate that
lasts for t ∈ [0,∞). For the non-smooth case, in Section 3.3, we characterize the singular behaviour
of log p and its derivatives.

3.1 HESSIAN ESTIMATE OF SCORE POTENTIAL FUNCTION FOR FINITE TIME

The following short-time uniform Hessian, or similar formulations, have been obtained in some
previous works. See Remark 3.3 blow. The primary goal of this section is demonstrate that the
associated time threshold is sharp (Theorem 3.4).
Theorem 3.1. Let M0 be a nonnegative number. g ∈ C2(Rn)2.

(1) If D2g(x) ⪯ M1In, then

D2q(t, x) ⪯ e−tM1In for all (t, x) ∈ [0,∞)× Rn.

(2) If D2g(x) ⪰ −M0In, then for any T ∈
[
0,− log(1− 1

M0
)
)

, we have

D2q(t, x) ⪰ − M0

et −M0(et − 1)
In for all (t, x) ∈ (0, T ]× Rn.

Note that if M0 ≤ 1, then T ∈ [0,∞).

The proof is in Section C.1.As an immediate corollary, we have that
Corollary 3.2. Given data distribution p0 ∈ C2(Rn) follows −L1I ⪯ supx∈Rn D2 log p0(x) ⪯
L0I . Then we have finite time uniform bound of the Hessian: for any t ∈

[
0,− log(1− 1

L0+1 )
)

,

sup
Rn

∥D2 log p(t, x)∥2 ≤ Ct.

2The assumption is equivalent to log p0 ∈ C2(Rn).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where

Ct = max

(
L0 + 1

1− (L0 + 1)(et − 1)
− 1, e−t(L1 − 1) + 1

)
. (12)

Furthermore, if − log p0(x) is a convex function (L0 ≤ 0), the estimate bound is global,

0 ⪯ −D2 log p(t, x) ⪯ (e−tL1 + (1− e−t))In for all (t, x) ∈ [0,∞)× Rn.

Remark 3.3. The convex case has been also discussed in Lee et al. (2021) and it leads to single
modal distribution. Similar finite bound was also derived in Lemma C.9 in Chen et al. (2023), which
follows directly from the representation formula and the generalized Poincaré inequality for log-
concave probability measures. We are also aware of bounds similar to Theorem 3.1(2) obtained in
Brownian transport map setting Mikulincer & Shenfeld (2024) based on the representation formula
and the Brascamp-Lieb inequality that is related to the generalized Poincaré inequality. In this
section, we will present a new proof based on PDE (partial differential equation) method via using
the convex envelope as a barrier. Our approach is more robust, which does not rely on the represen-
tation formula and could be easily adjusted to more general situations. Results of a similar spirit
were also obtained in Kim & Milman (2012), where a generalization of Caffarelli’s contraction the-
orem Caffarelli (2000) is proven, also using a parabolic maximum principle, which is different from
our method. We will refer the reader as well to Mikulincer & Shenfeld (2023) and also Conforti
(2024), where related questions are investigated from a more probabilistic viewpoint. In addition,
we would like to point out that beyond the spatially global Hessian bound in the mentioned refer-
ences (including Mikulincer & Shenfeld (2024)) that will degenerate in finite time, we also provide
local Hessian bound that holds for any given finite interval, see Theorem 3.5.

Given the crucial role of Hessian bound in estimating convergence rate of diffusion model, an im-
portant remaining question was whether the lasting time given in Theorem 3.1 is optimal. The result
below is our main contribution in this aspect, which shows that the temporal bound − log

(
1− 1

M0

)
in the statements of Theorem 3.1 and Corollary 3.2 is sharp.
Theorem 3.4 (Loss of Uniform Hessian Bound). There exists a smooth nonnegative g satisfying
assumptions in Theorem 3.1 and Corollary 3.2 (M0 = M1 = 2) such that the corresponding q(t, x)
satisfies

sup
x∈Rn

||D2q (log 2, x) || = sup
x∈Rn

||D2q̄ (1/2, x) || = ∞.

Note that the number 1
2 can be changed to any given time by re-scaling the function q̄(λ2t, λx). The

detail of construction is in Section C.2

3.2 LOCAL ESTIMATE

The following theorem provides point-wise estimates of the score function, which can be quite
useful in dealing with more general situations. Technically speaking, g(x0) and Dg(x0) can be
absorbed into other parameters. Here we choose to display them to track the dependence of relevant
parameters on the dimension n.
Theorem 3.5. Suppose that p̄ = p̄(t, x) is the solution to heat equation (8). Let |v|1 = max{|v|, 1}
for v ∈ Rn. Fix x0 ∈ Rn.

(i) Given Assumption 2.3 and |∇g(x)| ≤ β1|x − x0| + β2 for β1, β2 ≥ 0. Then for all (t, x) ∈
[0, 1]× Rn,

|∇q̄(t, x)| ≤ 3β1√
1− α2

max{Cn, Cβ1,α2 |x− x0|1}+ β2. (13)

Here the two constants Cn = 2

√
(n+ 3) log

(
2(1+4β1)√

1−α2

)
+ 4n log n+ α1 + 1 + β2

2

β1
and Cβ1,α2

=

3
√
β1 + 1 + 6α2√

1−α2
.

(ii) Assume ||D2g(x)||2 ≤ L and Assumption 2.4. Then for all (t, x) ∈ [0, 1]× Rn,

||D2q̄(t, x)|| ≤ 10L2 + L

1− α2
max

{
C̃2

n, (C̃L,α2)
2(|x− x0 −∇g(x0)|1)2

}
, (14)

6
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|∂t∇q̄(t, x)| ≤ 48L2 + 2L
√
t(1− α2)

3
2

max
{
C̃3

n, (C̃L,α2
)3(|x− x0 −∇g(0)|1)3

}
. (15)

Here the two constants C̃n = 2

√
(n+ 3) log

(
2(1+4L)√

1−α2

)
+ 4n log n+ α1 + 1 and C̃L,α2

= 3
√
L+

1 + 6α2√
1−α2

.

The proof is in Section C.3. A simpler case with bounded ∇g is also discussed. See Remark C.2 for
another way to bound |∂t∇q̄(t, x)| by replacing L2

√
t

in (15) by O(nL3).

As an immediate corollary, we have

Corollary 3.6. Assume ||D2g(x)||2 ≤ L. Suppose that Assumption 2.4 holds and there exists
C0 > 0 such that, α1 ≤ C0n and |∇g(x0)| ≤ C

√
n. Then

||D2q̄(t, x)|| ≤ CL2
(
n log n+ L|x− x0 −∇g(x0)|2

)
|∂t∇q̄(t, x)| ≤ CL2

(
(n log n)

3
2 + L

√
L|x− x0 −∇g(x0)|3

)
.

Here C is a constant independent of L and n.

Note that the further assumptions of scale relates to normalization in n dimension.

Remark 3.7. Owing to 35 in the proof of Theorem 3.5, under the assumption of corollary 3.6, we
have for all m ∈ N

Ep(t,x)(|x(t)|m) ≤ O
(
L

m
2 (n log n)

m
2

)
This demonstrates that, if we only care about expectations of powers of D2q̄(t, x) or ∂t∇q̄(t, x),

∥D2q̄(t, x)∥2 behaves like O(L3n log n) and |∂t∇q̄(t, x)| behaves like O
(
L3

√
L(n log n)

3
2

)
. Note

that the point x0 itself plays no role in computing the expectation that is translation invariant in the
x variable.

Theorem 3.8. Let g(x) ∈ C0,1(Rn) satisfy the Assumption 2.3 and |∇g| ≤ C(|x|+1) for a positive
constant C. Then for any T > 0, the above (2) is well-posed.

Proof: Note that q(t, x) is a smooth function, hence locally Lipschitz continuous in x. Owing to
Theorem 4.1, it suffices to show that for q = − log p(t, x),

|∇q(t, x)| ≤ CT (|x|+ 1) for all (t, x) ∈ [0, T ]× Rn

for a constant CT depending on C and T . By (7), it is equivalent to showing that

|∇q̄(t, x)| ≤ CT (|x|+ 1) for all (t, x) ∈ [0, 1− e−T ]× Rn.

for a constant CT depending on C and T , which follows from Theorem 3.5.

3.3 COMPACTLY SUPPORTED DATA DISTRIBUTIONS

In this section, we look at the situation where the data distribution p0 is a positive measure with
compact support which is a typical situation in image generation Bortoli (2022). Due to the manifold
hypothesis, the support is typically a low dimension set. In this situation, what is important is the
asymptotic estimate as t → 0. Assume supp(p0) = D0 ⊂ BM (0). The following are two known
standard estimates(Bortoli (2022)).

(1) |∇q̄(t, x)| ≤ |x|+M

t
; (16)

(2) ||D2q̄(t, x)||2 ≤ 1

t
+

M2

t2
.

The proof is simple, which will be presented in Section C.4 for reader’s convenience. Some steps
will be used later. The main challenge is whether the above bounds can be improved in order to
derive better convergence rate, for instance, Theorem 3 in Bortoli (2022).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

I. We first demonstrate O(1/t) bound in (1) above is a typical situation that can not be improved.

Fixing x, denote by ȳt the weighted center of mass: ȳt =
∫
D0

ye
−|x−y|2

2t dπ0(y)

p̂ , where for the rest of

the proof, we denote p0(y)dy as dπ0(y) and p̂ =
∫
D0

e
−|x−y|2

2t dπ0(y). For a “regular” π0, as t → 0,

we expect the measure e
−|x−y|2

2t dπ0(y)
p̂ will concentrate on {y ∈ D0| |y − x| = d(x,D0)}. Thus,

lim
t→0

d(ȳt,Γx) = 0,

where Γx is the convex hull of {y ∈ D0| |y − x| = d(x,D0)}. Then

|∇q̄(t, x)| = |x− ȳt|
t

and lim inf
t→0

t|∇q̄(t, x)| ≥ d(x,Γx).

So if x /∈ Γx (typical situation for low dimension set D0), then |Dq̄(t, x)| = O(1/t). Hence the 1/t
blow up for the gradient bound is usually inevitable, which matches experimental observations Kim
et al. (2022). Accordingly, in real applications, the denoising process might only be traced back to a
certain t0 > 0, which is corresponding to an initial condition similar to p(t0, x).

II. We now turn our attention to the Hessian bound O(1/t2) in (2). According to Theorem 3 in
Bortoli (2022), if this bound is improved to O(1/t), a better convergence rate can be achieved. The
following theorem establishes that, in typical scenarios, the Hessian bound is O(1/t) rather than
O(1/t2), with the exception of a small set. Consequently, it might be reasonable in practice to
assume a Hessian bound of O(1/t) when analyzing convergence rates. Quantifying how frequently
this small set could impact the convergence rate remains a challenging problem due to its complex
topological structure in the case of nonconvex D0.

For simplicity and clarity, we assume that D0 is a low-dimensional smooth manifold with boundary,
though our results extend to manifolds with lower regularity. To illustrate the sharpness of our
conclusion, we provide an example in Example 3.10
Theorem 3.9. For 1 ≤ d ≤ n, assume that D0 ⊂ Rn is a d-dimensional compact smooth manifold
with boundary and π0 is comparable to the uniform distribution on D0. Then for almost everywhere
x ∈ Rn,

||D2q̄(t, x)||2 ≤ Cx

t
for t ∈ [0, 1].

Here Cx is a constant depending only on x and D0. If D0 is convex, then the above holds for all
x ∈ Rn.

Proof is in Section C.5. We would like to mention that the O(1/t) bound was also derived in Bortoli
(2022) for the very special cases, for instance, when p0 follows a uniform distribution product with
a normal distribution on a hypercube.

We will present a smooth non-convex D0 that shows the result of Theorem 3.9 is optimal.
Example 3.10. Let D0 ⊂ R2 be the domain obtained by removing a small square [0, 2] × [−1, 1]
from the big square [−2, 2]2 and then mollifying the corners to make it smooth. Here O = (0, 0).
The Y -shaped region

L = {x ∈ R2| there are more than one y such that |x− y| = d(x,D0)}.

We also choose π0 =
χD0

|D0|dx, i.e., the uniform distribution on D0, where |D0| is the area of D0.

We have that, ||D2q̄(t, x)||2 ≥ Cx/t
2 for x ∈ L and t ∈ (0, 1].

For reader’s convenience, we will verify the above when x = (θ, 0) for θ > 1 in Section C.6. The
other parts are left to interested readers as an exercise.

4 WELL-POSEDNESS AND CONVERGENCE UNDER SHARP LIPSCHITZ BOUND

As the starting point, we review a well-posedness condition of a general SDE with additive noise
where the drift term F is only locally lipschitz continuous.

8
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L

D0

O
x

x

y1

y2

1

1

1

Figure 1: In the above picture, Γx = {sy1 + (1− s)y2 : s ∈ [0, 1]}

Theorem 4.1. Given T > 0, suppose that F = F (t, x) ∈ C([0, T ] × Rn,Rn) satisfies that F is
locally Lipschitz continuous in x variable, i.e., for any M > 0, there exists a constant LM such that

|F (t, x)− F (t, y)| ≤ LM |x− y| for x, y ∈ BM (0) and t ∈ [0, T ]

and
|F (t, x)| ≤ C(|x|+ 1). for (t, x) ∈ [0, T ]× Rn. (17)

for a positive constant C. For any x0 ∈ Rn, the following SDE has a unique solution

dXt = F (t,Xt)dt+ dWt, t ∈ [0, T ], X0 = x0.

The proof is in Section C.7.
Remark 4.2. For simplicity, uniform Lipschitz continuity of F is often assumed to ensure the long-
term existence of solutions for ODEs and SODEs. The above Theorem says that local Lipschitz
continuity of F plus the linear growth condition (17) would be sufficient, which is a special case of
more general results ( see Theorem 2.4 and Theorem 3.1 in Chapter IV of Ikeda & Watanabe (2014)
for instance). For reader’s convenience, we presented the proof above for our special case.

Due to the limitation of global Hessian estimate, the convergence analysis is divided into the
following two cases by p0. The first case enjoys better complexity with respect to dimension
(N = O(n log2 n)) while has limitation in the final time T in the forward process. The second
case is valid globally in T while achieving polynomial complexity (N = O(n3 log2 n)).

In what follows we denote the distribution of the discrete backward process (4) at generation time T
as Q̂T .

Case I: p0 is (near) log-concave
Theorem 4.3. Assume the following global Hessian bound of p0,

−L1In ⪯ D2 log p0(x) ⪯ L0In.

Let q̂T be a distribution generated by the uniform discretization (δ = 0) of the exponential integrator
scheme (4), with an approximated score satisfying the Assumption 2.1. We also assume the p0 has
finite second order moment, namely M2 < ∞ in (10). For L0 > 0 and T < − log(1− 1

L0+1 ),

KL(P0∥Q̂T ) ≲ (M2 + n)e−T + Tϵ20 +
nT 2CT

2

N
, (18)

where CT defined in (12) depends on L0, L1, T .

If L0 ≤ 0, namely p0 is log-concave,

KL(P0∥Q̂T ) ≲ (M2 + n)e−T + Tϵ20 +
nT 2C2

N
, (19)

where C = supt∈[0,∞)(e
−tL1 + (1− e−t)) = max{L1, 1} < ∞.

Proof: We first apply Corollary 3.2 to attain global Hessian estimate in finite time. Then apply it to
Theorem 4.1 for well-posedness and Proposition A.3 for convergence rate.

9
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Remark 4.4. (i) A near linear complexity bound, N = O(n log2 n), is then established by (19)
under the log-concave distribution with T = O(log n).

(ii) Note all complexity bounds by Proposition A.3 requires T = O(log n) with second order moment
M2 ≲ n. This implies the optimal bound with Lipschitz of score L < ∞, requires N = O(n log2 n).

(iii) Furthermore in the near log-concave case, we consider the regime with smallness of L0 =
O( 1n ). Therefore maximal time of estimate in (18), turns to − log(1 − 1

L0+1 ) = O(log(n)). Then
in (18) with T = O(log(n)), the first term is bounded and CT defined in (12) is independent with
dimension n. The complexity bound in such case is also O(n log2 n).

Case II: General smooth p0
Theorem 4.5. Assume ||D2g(x)||2 ≤ L. Suppose that Assumption 2.4 holds and there exists C0 > 0
such that, α1 ≤ C0n and |∇g(x0)| ≤ C

√
n. Let q̂T be distribution generated by uniform discretiza-

tion of the exponential integrator scheme (4), with an approximated score satisfies Assumption 2.1.
We have,

KL(P0∥Q̂T ) ≲ (M2 + n)e−T + Tϵ20 +
CL6Tn(n log n)2

N

Proof: This is a direct consequence of Theorem C.5 to estimate truncation error in Proposition A.1.

In addition to the above cases, we also consider non-smooth p0 supported on compact manifold.
Restricted by the estimate in (16), we switch to the early stopping technique, namely δ > 0 in
discretization. Due to the measure zero set (see in Section 3.3), the convergence bound is not yet
optimal as shown in Section C.9.
Remark 4.6. Bounds in Theorem 4.3 and Theorem 4.5 are consequences of our new Lipschitz es-
timate Theorem 3.1 and Theorem 3.5 with Proposition A.1 from Chen et al. (2023). An important
feature of these new bounds is their uniformity in time (up to T , the mixing time of the forward
process). Though the complexity in Theorem 4.5 is O((n log n)3) in dimension with T = O(log n),
slightly higher than O((n log n)2) in Theorem 2.5 of Chen et al. (2023), our assumption on time dis-
cretization {tk}k during the sampling process (4) can be relaxed to uniform discretization. Hence
our theory requires no prior knowledge of the data distribution p0 and is more realistic.

We are also aware of two works which provide the linear in dimension (O(n)) complexity bounds.
Benton et al. (2024) utilizes a stochastic localization approach to attain the complexity bound 3

in the early stopping setting. A recent preprint Conforti et al. (2023) provides the linear bound
(Theorem 1 of Conforti et al. (2023)) in a setting similar to our Theorem 4.5 with analysis of relative
score process. In contrast to our work here, the approaches in Benton et al. (2024); Conforti et al.
(2023) estimate the expected Lipschitz bound of the score under the backward process X̃ in (2),
while our analysis is in the point-wise sense and hence applicable to the analysis of (approximated)
score acting on the approximated backward process x̂ in (4). Therefore our estimates readily apply
to complexity and convergence bounds in the Wasserstein metric. A sketch of proof is presented in
the appendix, Section C.10, which will be expanded in a future publication.

5 CONCLUSION

In this paper, we analyzed the Lipschitz bounds of the score in the SGM. Our bounds are sharp in
light of the constructed counter-examples. Based on the result, we provide the guarantees for SGM
in the framework where L2 accurate score estimator is available and smoothness assumption holds
on the data distribution. Our bounds for the non-smooth case characterize singular behaviours of the
score near the generation time, offering insights for model parameterization in practice.

Limitation Due to the limited knowledge of regularity factors of data distribution (e.g. optimal
Lipschitz constants), our bound cannot provide implementable guidance on seeking the optimal
schedule (which may require a separation of temporal regimes). Also in the manifold case, due to the
complex geometries, as shown in the non-smooth section, our theories cannot provide a justifiable
guidance of early stopping time. We will investigate these issues in a future study.

3in fact, the bound is O(n log2 n) due to Remark 4.4.
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In the appendix below, we present detailed proof of theorems along with existing results used in the
proof. Appendix A lists the KL-convergence theories of the diffusion model in Chen et al. (2023),
which is applied when showing our convergence bound. Appendix B contains the theories in Alvarez
et al. (1997) regarding the convexity result of second order differential equation of a very general
kind. It is applied when showing the semi-convexity of the HJ equation, which is part of the global
in space Hessian bound. Appendix C collects all the proofs and Appendix D discusses the broader
impact of the manuscript.

A CONVERGENCE THEORIES

In this section, we list some numerical algorithms and convergence theories related to the numerical
discretization of (2). They are due to Chen et al. (2023).

Convergence in distribution The key ingredient of the convergence theory is the following result
from the chain rule of KL divergence.
Proposition A.1 (Prop C.3. of Chen et al. (2023)). Given the score error estimation Assumption
2.1, the exponential integrator scheme (4) satisfies,

KL(Pδ∥Q̂T−δ) ≲ KL(PT ∥γn) + Tϵ20 +

N∑
k=1

∫ tk

tk−1

E∥∇ log p(t, X̃t)−∇ log p(tk, xtk)∥2dt,

where γn is the Uniform Gaussian distribution

The first term KL(PT ∥γn) in the estimate measures the distance between an the measure of OU
process to its invariant measure. When the data has finite second order moment, it turns to 0 as
T → ∞.
Proposition A.2 (Lem C.4 of Chen et al. (2023)). With finite second order moment Ep0

|X|2 < ∞,
for T > 1,

KL(PT , γn) ≤ (n+M2)e
−T .

The third term relates to local truncation error that depends on the regularity of the forward process.
Then Proposition A.1 can be further extended if the global Hessian estimate is available.
Proposition A.3 (Theorem 2.1 of Chen et al. (2023)). Given assumption of Proposition A.1 ,
∇ log pt is L-Lipschitz. For uniform discretization, the exponential integrator scheme (4) satisfies,

KL(P0∥Q̂T ) ≲ (M2 + n)e−T + Tϵ20 +
nT 2L2

N
.

B SEMI-CONVEXITY OF SECOND ORDER DIFFERENTIAL EQUATION

Here we list some important theories used to construct the finite time log-convexity of the density
of the forward process.

Given a function w(t, x), its convex envelop w∗∗(t, x) in x is defined as

w∗∗(t, x) = inf

{
n+1∑
i=1

λiw(t, zi)| x =

n+1∑
i=1

λizi,

n+1∑
i=1

λi = 1, λi ≥ 0, zi ∈ Rn

}
. (20)

Lemma B.1 (Prop 7 of Alvarez et al. (1997), Lemma 2 of Strömberg (2010)). Let w be a solution
of,

∂tw + F (t, x,∇w,D2w) = 0 (21)

The convex envelope w∗∗ of w is a supersolution of (21), under the following assumptions,

1. F is elliptic in the sense F (t, x, p, A) ≥ F (t, x, p, Ã) if A ≤ Ã.

2. (x,A) ∈ Rn × Sn
++ 7→ F (t, x, p, A−1) concave for all t and p. Here Sn

++ is the set of all
n× n positive definite matrices.
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3. w is coercive in the sense that

lim
x→∞

w(t, x)

|x|
= ∞, (22)

uniformly in t.

C PROOFS

In this section, we present proofs of the main theorems.

C.1 PROOF OF THEOREM 3.1

For (1), it is equivalent to showing that

D2q̄(t, x) ≤ M1In for all (t, x) ∈ [0, 1]× Rn.

This actually follows immediate from (36). Here we will present a standard PDE approach that does
not reply on the formula.

Let ξ be a given unit vector. By taking derivatives of (6), we deduce that v = qξξ satisfies

∂tv −
1

2
∆v +∇q̄ · ∇v = −|∇q̄ξ|2 ≤ 0 on (0, 1)× Rn.

Thanks to the standard maximum principle of parabolic equation, we have that

v(t, x) ≤ sup
x∈Rn

v(x, 0) = sup
x∈R2

qξξ ≤ M1.

The proof of (2) is more interesting. It is equivalent to showing that

D2q̄(t, x) ≥ − M0

1−M0t
In. (23)

Below we show a PDE approach that is base on modification of arguments in Strömberg (2010) for
obtaining semiconcavity of solutions to the general viscous Hamilton-Jacobi equations.

Fix δ1 > 0. Note that by D2g ⪰ −M0In,

g(x)− g(0)−∇g(0) · x ≥ −M0

2
|x|2.

Hence there exists a constant Cδ1 such that

g(x) ≥ −
(
M0

2
+ δ1

)
|x|2 − Cδ1 .

Let α and c be positive numbers satisfying that

θ(0) = α tan(αc) ≥ Mδ1 = M0 + 4δ1

Consider the following construction,

w = q̄ + θ(t)|x|2/2 + nΘ(t)/2, (24)

where,

θ(t) = α tan(αc+ αt), t < T ∗ =
π

2α
− c (25)

Θ(t) =

∫ t

0

θ(s)ds.

14
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We notice that Eq.(25) implies, θ(0) = α tan(αc) and θ′ − θ2 = α2. Then w satisfies the following
equation:

0 = ∂tw + F (t, x,∇w,∇2w) := ∂tw − 1

2
∆w +

1

2
|∇w|2 − θ(t)∇w · x− α2

2
|x|2. (26)

Now we consider the convex envelope (definition see (20)) of w, w∗∗ and aim to apply Lemma B.1
to show that w∗∗ is a supersolution of Eq.(26). After direct validation of the first two condition of
Lemma B.1, it resorts to coercivity assumption (22). To this end, we construct a solution q of the
equation ((6)) subjecting to q(0, x) ≤ ḡ(x):

q(t, x) = θ1(t)
|x|2

2
+ Θ1(t)

n

2
− Cδ1

where

θ1(t) =
1

t− 1
M0+2δ1

, Θ1(t) =

∫ t

0

θ1(t)dt. (27)

From Eq.(27), we know the construction holds for t ∈ [0, 1
M0+2δ1

). By revisiting (25),

sup
{α tan(αc)≥Mδ1

}

( π

2α
− c
)
= lim

{α→0+, α tan(αc)=Mδ1
}

( π

2α
− c
)
=

1

Mδ1

=
1

M + 4δ1

and

lim
{α→0+, α tan(αc)=Mδ1

}
θ(t) =

Mδ1

1−Mδ1t
.

Then by choose suitable α and c, comparison principle of (6) which is equivalent to one of (8) says
that

q̄(t, x) ≥ q(t, x) for t ∈ [0,
1

Mδ1

)

and hence,

w ≥ (θ(t) + θ1(t))
|x|2

2
+ (Θ(t) + Θ1(t))

n

2
for t ∈ [0,

1

Mδ1

) (28)

Now turning back to Eq.(28), we know θ(t) + θ1(t) ≥ 2δ1 > 0 uniform in any closed subinterval
of t ∈ [0, 1

Mδ1
). This ensures the uniform coercivity requirement in Lemma B.1.

Summing up, by Lemma B.1, w∗∗ is a supersolution. On the other side, as convex envelope, w∗∗ ≤
w. Next, we want to utilize the comparison principle of (26) to show w∗∗ ≥ w for all t, which is
equivalent to Eq.(6) due to the construction (24). To do this, we only needs w∗∗(0, X) ≥ w(0, X),
equivalently w(0, X) is convex and it assured by θ(0) ≥ Mδ1 > M0.

Now we have w = w∗∗ for x ∈ Rd, t ∈ [0, T ∗], is convex. In particular, this implies that

D2q̄(t, x) ≥ −θ(t)In for (t, x) ∈ [0, T ∗]× Rn.

Hence we derive that for any T < 1
Mδ1

,

inf
[0,T ]×Rn

D2q̄(t, x) ≥ − Mδ1

1−Mδ1t
In. (29)

Then (23) follows by sending δ1 → 0.

Since the transform (7) only requires estimate of q̄ for t ∈ [0, 1], when M0 < 1, (29) holds for any
T < 1. Recalling transformation of q, the condition M0 < 1 is equivalent to − log p is convex.
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C.2 PROOF OF THEOREM 3.4: CONSTRUCTION OF EXAMPLE OF THE LOSS OF UNIFORM
HESSIAN BOUND

Precisely speaking, we will construct a one dimensional (n = 1) example of g(x) = G2(x) for a
smooth Lipschitz continuous function G satisfying that |G′(x)| ≤ 1, |g′′(x)| ≤ 2 = M0 = M1 and

lim sup
|x|→+∞

|q̄′′ (1/2, x)| = ∞.

For M > 0, let gM be the even function such that

gM (x) =


2M2 − x2, 0 ≤ x ≤ M

(x− 2M)2, M ≤ x ≤ 2M

0, x ≥ 2M.

Note that |g′′M | ≤ 2 independent of M . Let hM (t, x) be the solution to the following heat equation

ut −
1

2
∆u = 0 for (t, x) ∈ (0,∞)× R (30)

subject to hM (0, x) = e−gM (x).

Since hM is even in x, (hM )x(1/2, 0) = 0. Hence, we have

(log hM )xx(1/2, 0) =
(hM )xx(1/2, 0)

hM (1/2, 0)

=
e−2M2 ∫M

0
(4y2 + 2) dy + e−2M2 ∫ 2M

M
e−2(y−M)2(4(y − 2M)2 − 2) dy

e−2M2M + e−2M2
∫ 2M

M
e−2(y−M)2 dy +

∫∞
2M

e−y2 dy

:=
A+B

C +D + E
.

Clearly, for M ≥ 1,

A+B = 4e−2M2

∫ M

0

y2 dy + 4e−2M2

∫ 2M

M

e−2(y−M)2(y − 2M)2 dy > M3e−2M2

.

and
C +D + E ≤ 3Me−2M2

.

Thus

(log hM )xx(1/2, 0) >
M2

3
(31)

for all M ≥ 1.
Remark C.1. Note that gM is C1,1, not smooth. However, the estimates above still hold for suffi-
ciently fine mollifications of gM , so we may assume without loss of generality that gM is smooth.

Below we will choose a sequence 0 ≤ x1 ≤ x2 ≤ ... such that the terms in g :=
∑∞

k=1 gk(x− xk)
have disjoint support, and such that

(log p̄N )xx(1/2, xk) >
k2

3
, for k = 1, ..., N, (32)

where p̄N is the solution to (30) subject to p̄N (0, x) = e−
∑N

k=1 gk(x−xk). Note that p̄N (0, x) = 1
for x ≤ −2.

Suppose we have managed to do this. Note that

p̂ ≤ p̄N ≤ 1

where p̂ is the solution to (30) subject to p̂(0, x) = χ[−3,−2]. Then interior derivative estimates for
solutions of (30) imply that (log p̄N )xx(1/2, ·) converge locally uniformly on R as N → ∞ to
(log p̄)xx(1/2, ·, ), where q is the caloric function with initial data e−g . Therefore, (log p̄)xx(·, 0)
is bounded, but (log p̄)xx(1/2, ·) is unbounded (its values at xk are at least k2

3 ), as desired.
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We now explain how to choose xk. We will repeatedly use the fact that if h is a bounded smooth
function on R and h̃ is a compactly supported smooth function, then the caloric function with initial
data h+ h̃(·+S) converges in C2 as |S| → ∞ on compact subsets of {t > 0} to the caloric function
with initial data h.

First, we let x1 = 0. Then (32) with N = 1 follows immediately from (31). Now suppose we have
chosen x1 < ... < xM−1 such that the supports of gk(x − xk), 1 ≤ k ≤ M − 1 are disjoint and
(32) holds for N = M − 1. Using the above-mentioned fact and (31), if we take xM sufficiently
large, then (32) holds for N = M . Indeed, the inequality for k < M follows immediately from the
fact above, and the inequality for k = M follows from the fact above and the inequality (31), after
translating so that xM becomes 0. This completes the construction.

C.3 PROOF OF THEOREM 3.5

Without loss of generality, we may assume x0 = 0. It suffices to show the above for |x| ≥ 1. For
|x| ≤ 1, we can just replace |x| in all the final bounds with 1.

First, we prove (13). Without loss of generality, let g(0) = 0. Then

g(z) ≤ β 1
2
|z|2 + β2|z| for z ∈ Rn.

Recall that
p̄(t, x) = 1

(2πt)
n
2

∫
Rn e−

|x−y|2
2t h(y) dy

= 1

(π)
n
2

∫
Rn e−|y|2h(x−

√
2ty) dy.

Then
−∇q̄ = ∇p̄

p̄ = 1
p̄

1

(π)
n
2

∫
Rn e−|y|2h(x−

√
2ty)Dg dy

= 1
p̄

1

(π)
n
2

∫
Rn e−|y|2h(x−

√
2ty)Dg dy

(33)

Since ab ≤ a2 + b2

2 ,

g(x−
√
2ty) ≤ β1(|x|2 + 2|y|2) + β2(|x|+

√
2|y|) ≤ 2β1(|x|2 + 2|y|2) + β2

2

β1
,

we deduce that

p̄(t, x) ≥ e−
β2

2

β1
e−2β1|x|2

(π)
n
2

∫
Rn e−(1+4β1)|y|2 dy

= e−
β2

2

β1 e−2β1|x|2( 1
1+4β1

)
n
2 .

(34)

Then

|∇p̄| = 1

(π)
n
2

∣∣∣∫Rn e−|y|2Dh(x−
√
2ty) dy

∣∣∣ = 1

(π)
n
2

∣∣∣∫Rn e−|y|2hDg(x−
√
2ty) dy

∣∣∣
≤ 1

(π)
n
2

∫
Rn(β1|x|+

√
2β1|y|+ β2)e

−|y|2h(x−
√
2ty) dy

= (β1|x|+ β2)p̄+
√
2β1

(π)
n
2

∫
Rn |y|e−|y|2h(x−

√
2ty) dy.

Let

K̃ =
2√

1− α2
max

{
Cn,m

|x|
, 4
√

β1 + 1

}
,

where

Cn,m = 2

√
(n+ 3) log

(
2(1 + 4β1)√

1− α2

)
+ 4n log n+ α1 + Jm +

β2
2

β1
.
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Here for m ∈ N, Jm is the last positive integer such that er
2 ≥ rm for when r ≥ Jm. In particular,

J1 = J2 = J3 = 1 and Cn = Cn,m for m = 1, 2, 3.

Claim: If

K ≥ K0 = max

{
K̃,

6α2

1− α2

}
,

then for i = 1, 2, 3, ...,m,

Ti(x) =
1

p̄(t, x)

1

(π)
n
2

∫
y∈Rn

|y|ie−|y|2h(x−
√
2ty) dy ≤ Ki|x|i + 1 ≤ 2Ki|x|i. (35)

Clearly, Ti(0) = Ep(t,z)(|z|i).
Let us prove the claim. Note that

p̄(t, x)Ti = 1

(π)
n
2

∫
|y|≤K|x| |y|

ie−|y|2h(x−
√
2ty) dy + 1

(π)
n
2

∫
|y|≥K|x| |y|

ie−|y|2h(x−
√
2ty) dy

≤ Ki|x|ip̄(t, x) + 1

(π)
n
2

∫
|y|i≥K|x|

|y|ie−|y|2h(x−
√
2ty) dy︸ ︷︷ ︸

Ii

.

Our goal is to show that Ii ≤ p̄(t, x) when K ≥ K0. Since g(z) ≥ −α2|z|2 − α1, |y| ≥ K|x| and
K > 6α2

1−α2
,

g(x−
√
2ty) ≥ −α2

2

(
|x|+

√
2|y|
)2 − α1

> −α2|y|2
(

1
K + 1

)2 − α1

> α2|y|2
(

3
K + 1

)
− α1

≥ − (1+α2)
2 |y|2 − α1

Then
Ii ≤

eα1

(
√
π)n

∫
|y|≥K|x|

|y|ie−
(1−α2)|y|2

2 dy.

For convenience, denote K1 = K
√
1−α2

2 . Then

eα1

(
√
π)n

∫
|y|≥K|x| |y|

ie−
(1−α2)|y|2

2 dy = eα1

(
√
π)n

(
2√

1−α2

)n+i ∫
|z|≥K1|x| |z|

ie−2|z|2 dz

≤ eα1

(
√
π)n

(
2√

1−α2

)n+3 ∫
|z|≥K1|x| e

−|z|2 dz.

The last inequality is due to er
2 ≥ rm if r ≥ Jm and K1|x| ≥ Jm.

Note (∫ r

−r

e−t2 dt

)2

≥
∫
{w∈R2| |y|≤r}

e−|w|2 dw = π
(
1− e−r2

)
.

Combining with (1− t)n ≥ 1− nt for t ∈ [0, 1], we deduce∫
Qr

e−|y|2 dy =

(∫ r

−r

e−t2 dt

)n

≥ (
√
π)n

(
1− e−r2

)n
2 ≥ (

√
π)n

(
1− ne−r2

2

)
Here Qr = {y = (y1, y2, ..., yn)| |yi| ≤ r for i = 1, 2, ..., n}. Accordingly, for r ≥ 1,

1
(
√
π)n

∫
|y|≥r

e−|y|2 dy ≤ 1
(
√
π)n

∫
Rn\Qr

e−|y|2 dy + 1
(
√
π)n

∫
Qr\{|y|≤r} e

−|y|2 dy

≤ ne−r2

2 + 1
(
√
π)n

e−r2(2r)n < 2ne−r2rn

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

This implies that
1

(
√
π)n

∫
|z|<K1|x|

e−|z|2 ≤ 2ne−K2
1 |x|

2

(K1|x|)n .

Since K1 ≥ max{3
√
β1,

2
√
n logn
|x| },

e−2β1|x|2Kn
1 |x|ne−K2

1 |x|
2

≤ e−2β1|x|2e−
K2

1 |x|2

2 ≤ e−
K2

1 |x|2

4

Combining with

K2
1 |x|2

4
≥ K̃2|x|2

4
≥ (n+ 3) log

(
1 + 4β1√
1− α2

)
+ 16n log n+ α1 + 1 +

β2
2

β1
,

we obtain

e−2β1|x|2Ii ≤ 2neα1

(
2√

1− α2

)n+3

e−
K2

1 |x|2

4 ≤ e−
β2

2

β1 (1 + 4β1)
−n

2 .

By (34),
Ii ≤ p̄(t, x).

Hence (35) holds. As an immediate conclusion, we have that

|∇q̄| = |∇p̄|
p̄

≤ β1|x|+ β2 + 2β1

√
2K|x| < 3β1K|x|+ β2.

Secondly, to prove (14) and (15), we first assume that g(0) = 0 and ∇g(0) = 0, which will be
removed at the end. Then

|∇g(x)| ≤ L|x|.

Next we first verify (14). Note that

D2q̄ = A−B +∇q̄ ⊗∇q̄ (36)

Here
A =

1

p̄

1

(π)
n
2

∫
Rn

e−|y|2hD2g(x−
√
2ty) dy

and
B =

1

p̄

1

(π)
n
2

∫
Rn

e−|y|2h∇g ⊗∇g(x−
√
2ty) dy.

Here (u⊗ u)ij = uiuj is the outer product. By Cauchy inequality, B ≥ ∇q̄ ⊗∇q̄. Hence

D2q̄ ≤ A ≤ LIn.

For the other direction,
D2q̄ ≥ A− B ≥ −LIn − B.

So we just need to estimate the term B. Note that∣∣∣∣∣∣ 1

(π)
n
2

∫
Rn e−|y|2h∇g ⊗∇g(x−

√
2ty) dy

∣∣∣∣∣∣
2

≤ L2

(π)
n
2

∫
Rn(|x|+

√
2|y|)2e−|y|2h dy

≤ 2L2

(π)
n
2

∫
Rn(|x|2 + 2|y|2)e−|y|2h dy

≤ 2L2
(
|x|2p̄(t, x) + 2

π
n
2

∫
Rn |y|2e−|y|2h dy

)
.

Thanks to (35) for β1 = L, β2 = 0 and K = K0, we have that

||B||2 ≤ 2L2(|x|2 + 4K2
0 |x|2) < 10L2K2

0 |x|2.

Hence
||D2q̄||2 ≤ L+ ||B||2 < L+ 10L2K2

0 |x|2
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Then let us verify (15). Note that

∂t∇q̄(t, x) = C +D − ∂tq̄∇q̄.

with

|C| =
∣∣∣ 1√

2t
1
p̄

1

(π)
n
2

∫
Rn e−|y|2hD2g(x−

√
2ty) · y dy

∣∣∣ ≤ L√
2t

1
p̄

1

(π)
n
2

∫
Rn |y|e−|y|2h dy

≤ 2L√
2t
K|x| < 2L√

t
K|x|.

Also,
|D| =

∣∣∣ 1√
2t

1
p̄

1

(π)
n
2

∫
Rn e−|y|2h∇g ⊗∇g(x−

√
2ty) · y dy

∣∣∣
≤ 1√

2t
2L2

(π)
n
2

∫
Rn(|x|2|y|+ 2|y|3)e−|y|2h dy

< 1√
t

2L2|x|2

(π)
n
2

∫
Rn |y|e−|y|2h dy + 1√

t
4L2

(π)
n
2

∫
Rn |y|3e−|y|2h dy

≤ 2L2
√
t
(2K|x|3 + 4K3|x|3)

< 12L2
√
t
K3|x|3.

Finally,
|∂tq̄| =

∣∣∣ 1√
2t

1
p̄

1

(π)
n
2

∫
Rn e−|y|2h∇g(x−

√
2ty) · y dy

∣∣∣
≤ L√

2t
1
p̄

1

(π)
n
2

∫
Rn(|x||y|+

√
2|y|2)e−|y|2h dy

≤ L√
2t
(2K|x|2 + 2

√
2K2|x|2) ≤ 6L√

t
K2|x|2.

Also,
|∇q̄| ≤ 2L(1 +

√
2)K|x| < 6LK|x|.

Hence

|∂tq̄∇q| ≤ 36L2

√
t
K3|x|3.

So
|∂t∇q̄(t, x)| ≤ 2L√

t
K|x|+ 1√

t
12L2K3|x|3 + 36L2

√
t
K3|x|3

≤ 50L2
√
t
K3|x|3.

At last, for a general g, we consider

g0(x) = g(x)− g(0)−∇g(0) · x.
and q̄0(t, x) be the corresponding score function. Then we have

g0(0) = 0, ∇g0(0) = 0 and q̄0(t, x) = q̄(t, x+∇g(0)).

Hence (14) and (15) hold for general cases.
Remark C.2. In the proof of (15), we may also bound ∂tq̄ use the equation

∂tq̄ =
1

2
(∆q̄ − |∇q̄|2)

together with bounds for ∆q̄ and |∇q̄|2. Note ∇g(x−
√
ty) = ∇g(x) + rt for |rt| ≤ L

√
t|y|. Then

term D in the proof

D = 1√
2t

1
p̄

1

(π)
n
2

∫
Rn e−|y|2h∇g ⊗∇g(x−

√
2ty) · y dy

= ∂tq̄∇g(x) +O(L2K3|x|3).

This will lead to a bound of ∂t∇q̄ by replacing L2
√
t

in (15) by O(nL3). The details are left to
interested readers as an exercise.
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Below are other simple situations that we can obtain global uniform bound of the Hessian, which
follows immediately from (33) and (36).
Theorem C.3. Let L1 and L2 be two positive constants such that

|∇g| ≤ L1 and ||D2g||2 ≤ L2.

Then
|∇q̄(t, x)| ≤ L1 and − (L2 + L2

1)In ≤ D2q(t, x) ≤ L2In

C.4 PROOF OF (16)

We first prove the blow up bound of the gradient (1) in (16). Note that Dq̄ = −Dp̄
p̄ and

p̄(t, x) = 1

(2πt)
n
2

∫
Rn e−

|x−y|2
2t dπ0(y)

= 1

(2πt)
n
2

∫
D0

e−
|x−y|2

2t dπ0(y).

Then

∇p̄(t, x) = − 1

(2πt)
n
2

∫
D0

(x− y)

t
e−

|x−y|2
2t dπ0(y).

Since D0 ⊂ BM (0)

|∇p̄(t, x)| ≤ |x|+M

t
p̄(t, x).

Next we prove the blow up bound of Hessian (2) in (16). Note that

−D2q̄(t, x) =
D2p̄

p̄
− ∇p̄⊗∇p̄

p̄2
= −δij

t
+

1

t2
A−B

p̂2(t, x)
.

Here p̂(t, x) =
∫
D0

e−
|x−y|2

2t dπ0(y),

Aij = p̂(t, x)

∫
D0

(xi − yi)(xj − yj)e
−|x−y|2

2t dπ0(y)

and
Bij =

∫
D0

(xi − yi)e
−|x−y|2

2t dπ0(y) ·
∫
D0

(xj − yj)e
−|x−y|2

2t dπ0(y)

= p̂2(t, x)xixj − p̂(t, x)
∫
D0

(xiyj + xjyi)e
−|x−y|2

2t dπ0(y)+

+
∫
D0

yie
−|x−y|2

2t dπ0(y) ·
∫
D0

yje
−|x−y|2

2t dπ0(y)

Hence (A−B)ij

p̂(t, x)

∫
D0

yiyje
−|x−y|2

2t dπ0(y)−
∫
D0

yie
−|x−y|2

2t dπ0(y) ·
∫
D0

yje
−|x−y|2

2t dπ0(y) (37)

So it is easy to see that
||A−B||2 ≤ M2p̂2(t, x).

Thus (16) holds.

C.5 PROOF OF THEOREM 3.9

Since π0 is comparable to the uniform distribution, there exists a constant C such that for any
measurable subset U ⊂ D0

1

C
Hd(U) ≤ π0(S) ≤ CHd(U)

Here Hd(·) is the d-dimensional Hausdorff measure. Hereafter, we write

(i) ∂D0: the d− 1 dimensional boundary of D0. Moreover, for y ∈ D0;
(ii) Ty(D0) ⊂ Rn: the d-dimensional tangent space of D0 at y;
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(iii) Ny(D0) ⊂ Rn: the n− d dimensional orthogonal complement of Ty(D0);
(iv) T ′

y(D0) ⊂ Rn: the d−1-dimensional tangent space of ∂D0 at y ∈ ∂D0. Note that T ′
y(D0)

is a subspace of Ty(D0);
(v) N ′

y(D0) ⊂ Rn: the n+ 1− d dimensional orthogonal complement of T ′
y(D0). Ny(D0) is

a subspace of N ′
y(D0)

Let
S = {x ∈ Rn| there exists a unique yx ∈ D0 such that |x− yx| = d(x,D0)}.

Then Rn\S has zero measure since d(x,D0) is differentiable almost everywhere.

Write
S1 = {x ∈ S| yx ∈ D0\∂D0} and S2 = {x ∈ S| yx ∈ ∂D0},

W1 =

{
x ∈ S1| lim inf

y∈D0→yx

|x− y|2 − |x− yx|2

|y − yx|2
> 0

}
,

W2 =

{
x ∈ S2| x− yx ∈ Nyx

(D0) and lim inf
y∈D0→yx

|x− y|2 − |x− yx|2

|y − yx|2
> 0

}
,

and

W3 =

{
x ∈ S2| x− yx /∈ Nyx

(D0) and lim inf
y∈∂D0→yx

|x− y|2 − |x− yx|2

|y − yx|2
> 0

}
.

Note that
if y ∈ D0\∂D0, then x− yx ∈ Nyx

(D),
if y ∈ ∂D0, then x− yx ∈ N ′

yx
(D).

Step 1: We show that S\
(
∪3
i=1Wi

)
= (S1\W1)∪ (S2\W2)∪ (S2\W3) has zero measure. We will

prove this for S1\W1, The proofs for the other two are similar. Apparently, if x ∈ S, then for all
t ∈ (0, 1), yX̃t

= yx and X̃t ∈ W for X̃t = yx + t(x− yx). Also,

For y ∈ D0\∂D0, write
Γy = {x ∈ S1\W1| yx = y}.

By compactness argument, it is easy to show that for given x ∈ S and r > 0, there exists a rx > 0,
such that yx̃ ∈ Br(yx) for any x̃ ∈ Brx(x) ∩ S . Hence to prove that S1\W has zero measure, it
suffices to show that for any y0 ∈ D0, if Γy0 is not empty, then there exists r0 > 0 such that

∪y∈Br0
(y0)∩D0

Γy ⊂ {y + t(y, v)| y ∈ Br0(y0), v ∈ Ny(D0) and |v| = 1} (38)

for a locally Lipschitz continuous function

t(y, v) : Br0(y0)×Ny(D0) → (0,∞).

By suitable translation and rotation, we may assume y0 = 0 and in a neighbourhood V of 0,

D0 ∩ V = V ∩ {(y′, F (y′))| y′ ∈ Rd}, (39)

where F = (F (d+1), F (d+2), ..., F (n)) : Rd → Rn−d is smooth map satisfying ∇F (0) = 0 and
F (0) = 0. Choose x ∈ Γy0

. Let v = x
|x| ∈ Ny(D0) and t > 0, let

Htv(y
′) = |tv − (y′, F (y′))|2.

Since x ∈ W1, D2Htv(0) can not be a positive definite matrix for t = |x|. Meanwhile, for 0 < t <
|x|, ytx = y0 and tx ∈ W1, which implies that D2Htv(0) is positive definite for t ∈ [0, |x|). Hence
t = |x| is the first moment such that D2

tvH(0) has a zero eigenvalue. Which is equivalent to

the largest eigenvalue of the d× d matrix
n∑

k=d+1

tvkF
(k)
y′
iy

′
j
(0) is 1.

Therefore, for y ∈ Br(y0) and v ∈ Ty(D0) with |v| = 1, if the largest eigenvalue λ(y, v) of the
matrix

∑n
k=d+1 vkF

(k)
y′
iy

′
j
(y) is positive, we set

t(y, v) =
1

λ(y, v)
.
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Then (38) holds.

Step 2: We will verify that if x ∈ ∪3
i=1Wi, then

|D2q̄(t, x)| ≤ Cx

t
for all t ∈ (0, 1].

Case 1: Assume that x ∈ W1. Without loss of generality, we may assume yx = 0 and use the
representation as (39). Choose r > 0 such that

(i)Vr = {(y′, F (y′))| |y′| < r} ⊂ D0;

(ii) Then there exits αx, βx > 0 such that for y ∈ Vr,

αx|y − yx|2 ≥ |x− y|2 − |x− yx|2 ≥ βx|y − yx|2 for y ∈ D0. (40)

For k ≥ 1 and k
√
t ≤ r, write

Vt,k =
{
(y′, F (y′))| |y′| < k

√
t
}

Thanks to the left upper bound in (40),∫
D0

e
−|x−y|2

2t dπ0 ≥
∫
Vt,1

e
−|x−y|2

2t dπ0 ≥ O

(
t
d
2 e−

|x−yx|2
2t

)
.

Recall that yx = 0. To see the dependence on yx, we keep yx in the computations below instead of
replacing it by 0. Note∫

D0

|y − yx|2e
−|x−y|2

2t dπ0 ≤
∫
Vr

|y − yx|2e
−|x−y|2

2t dπ0 + Ce−
|x−yx|2+δr

2t

for some δr > 0.

Also, ∫
Vr

|y − yx|2e
−|x−y|2

2t dπ0 =
∑∞

k=0

∫
{y∈Vt,k+1\Vt,k} |y − yx|2e

−|x−y|2
2t dπ0

≤ Ct · t d
2 e−

|x−yx|2
2t

∑∞
k=1(k + 1)2e−k = O

(
t
d
2 e−

|x−yx|2
2t

)
t.

Hence ∫
D0

|y − yx|2e
−|x−y|2

2t dπ0(y)

p̂
≤ Ct (41)

Recall that
p̂(t, x) =

∫
D0

e
−|x−y|2

2t dπ0(y) = (
√
2πt)np̄(t, x).

Then for 1 ≤ i, j ≤ n and yx = (a1, a2, ..., an),∣∣∣∣∣
∫
D0

yiyje
−|x−y|2

2t dπ0(y)

p̂(t,x) −
∫
D0

yie
−|x−y|2

2t dπ0(y)

p̂(t,x) ·
∫
D0

yje
−|x−y|2

2t dπ0(y)

p̂(t,x)

∣∣∣∣∣ =∣∣∣∣∣
∫
D0

(yi−ai)(yj−aj)e
−|x−y|2

2t dπ0(y)

p̂(t,x) −
∫
D0

(yi−ai)e
−|x−y|2

2t dπ0(y)

p̂(t,x) ·
∫
D0

(yj−aj)e
−|x−y|2

2t dπ0(y)

p̂(t,x)

∣∣∣∣∣
≤ Ct.

The last equality follows from (41) and the Cauchy inequality. Therefore, (37) leads to

|D2q̄(t, x)| ≤ Cx

t
.

Case 2: x ∈ W2. The proof is similar to Case 1.

Case 3: x ∈ W3. By suitable translation and rotation, we may assume yx = 0 and in a neighborhood
of 0 ∈ Rd,

D0 ∩ V = Ṽr = {(y′, F (y′))| y′ = (y′1, ..., y
′
d) ∈ Ωf,r},
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where F : Rd → Rn−d is smooth map satisfying that ∇F (0) = 0. Also,

Ωf,r = {z = (z′, zd)| z′ = (z1, z2, .., zd−1) ∈ Rd−1, |z′| < r; zd ≥ f(z1, z2, .., zd−1)}.

for a smooth function f : Rd−1 → R subject to ∇f(0) = 0. Then

T0(D0) = {(v, 0, ..., 0) ∈ Rn | v ∈ Rd}

and the d− 1 dimensional tangent plane to ∂D0 at yx = 0 is

∂T0(D0) = {(v′, 0, 0, ..., 0) ∈ Rn | v′ ∈ Rd−1}.

Thus
x = x− yx = (0, ...0︸ ︷︷ ︸

d−1

, θx, zx)

for some θx > 0 and zx ∈ Rn−d. To see the dependence on yx, as in Case 1, we keep yx in the
computations below instead of replacing it by 0.

Then for y′′ ∈ Rd−1 and y = (y′′, yd, F (y′′, yd)) ∈ D0,

|x− y|2 − |x− yx|2 = 2θx(yd − f(y′)) +O(|y − yx|2). (42)

Write
H(y) = |x− y|2 − |x− yx|2 = H(y′′, yd, F (y′′, yd)).

Since x ∈ W3,
H(y′′, f(y′′), F (y′′, f(y′′))) ≥ δx|y′′|2.

Therefore, there exists r > 0 and M > 0 such that

|x− y|2 − |x− yx|2 ≥ θx
M

(yd − f(y′)) + δx|y − yx|2 for all y ∈ Ṽr.

Write
Rt,k = {(y′, yd, F (y′, yd)) ∈ Ω| |y′| ≤ k

√
t and 0 ≤ yd − f(y′) ≤ kt}.

Thanks to (42),

p̂(t, x) =

∫
D0

e
−|x−y|2

2t dπ0 ≥
∫
D0∩Rt,1

e
−|x−y|2

2t dπ0 ≥ O

(
td+

1
2 e−

|x−yx|2
2t

)
.

Note that ∫
D0

|y − yx|2e
−|x−y|2

2t dπ0 ≤
∫
Ṽr

|y − yx|2e
−|x−y|2

2t dπ0 + Ce−
|x−yx|2+δr

2t .

Also, ∫
Ṽr

|y − yx|2e
−|x−y|2

2t dπ0 =
∑∞

k=0

∫
D0∩(Rt,k+1\Rt,k)

|y − yx|2e
−|x−y|2

2t dπ0

≤ Ct · td+ 1
2 e−

|x−yx|2
2t

∑∞
k=1(k + 1)2e−k = tO

(
td+

1
2 e−

|x−yx|2
2t

)
.

Hence ∫
D0

|y − ȳx|2e
−|x−y|2

2t dπ0(y)

p̂
≤ Ct

Then by the same argument in the end of Case 1, we deduce that

||D2q̄(t, x)||2 ≤ Cx

t
.

Finally, if D0 is convex, then it is clear that S = Rn and W1 = S1 and W2 ∪W3 = S2. Hence the
O( 1t ) bound holds for all x ∈ Rn.
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C.6 PROOF OF EXAMPLE 3.10

Proof: For given x ∈ R2, denote by ȳt the weighted center of mass:

ȳt =

∫
D0

ye
−|x−y|2

2t dπ0(y)

p̂

Note that as t → 0, the measure e
−|x−y|2

2t dπ0(y)
p̂ will concentrate on {y ∈ D0| |y − x| = d(x,D0)}.

Thus,
lim
t→0

d(ȳt,Γx) = 0,

where Γx is the convex hull of {y ∈ D0| |y − x| = d(x,D0)}. According to the computation in the
proof of (16), we have that

−∆q̄ =− n

t
+

p̂
∫
D0

|y|2e
−|x−y|2

2t dπ0(y)−
∣∣∣∫D0

ye
−|x−y|2

2t dπ0(y)
∣∣∣2

t2p̂2

=−∆q̄ = −n

t
+

∫
D0

|y − ȳt|2e
−|x−y|2

2t dπ0(y)

t2p̂
,

where the second term is like a variance. If x = (θ, 0) for some θ > 0, there are two points y1 and
y2 such that

|x− y1| = |x− y2| = d(x,D0).

Due to the symmetry, we must have that

e
−|x−y|2

2t dπ0(y)

p̂
→ 1

2
δy1

+
1

2
δy2

and lim
t→+∞

yt =
y1 + y2

2
.

Accordingly,

lim
t→0

∫
D0

|y − ȳt|2e
−|x−y|2

2t dπ0(y)

p̂
=

|y1 − y2|2

4
,

leading to

−∆q̄(t, x) ≥ Cx

t2
for t ∈ (0, 1].

C.7 PROOF OF THEOREM 4.1

Lemma C.4. Given T > 0, suppose that F = F (t, x) ∈ C([0, T ] × Rn,Rn) satisfies that F is
locally Lipschitz continuous in x variable, i.e., for any M > 0, there exists a constant LM such that

|F (t, x)− F (t, y)| ≤ LM |x− y| for x, y ∈ BM (0) and t ∈ [0, T ]

and
|F (t, x)| ≤ C(|x|+ 1). for (t, x) ∈ [0, T ]× Rn.

for a positive constant C. Then for any x0 ∈ Rn, the following equation has a unique solution{
Ẋ(t) = F (t,X(t)) t ∈ [0, T ]

X(0) = x0.

Proof: The uniqueness follows from standard ODE theory. We just need to establish the global
existence. Let w(t) = |X(t)|2. Then

ẇ(t) ≤ C1w(t) + C2

for two positive constants C1 and C2 depending only on C. Hence for all t ≥ 0,

e−C1tw(t) ≤ |x0|2 +
C2

C1

(
1− e−C1t

)
.

Hence the solution can be extended to T .
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Proof of Theorem 4.1 It suffices to notice that for each fixed sample ω, Y (t) = Y (t, ω) =
Xt(ω)−Wt(ω) just satisfies the regular ODE for any fixed sample{

dY (t) = F (t, Y +W (t))dt t ∈ [0,∞)

Y (0) = x0.

Hence the Corollary follows from Theorem C.4 and the well known fact that Wt(ω) ∈ C([0, T ],Rn)
for a.e. ω.

C.8 PROOF OF THEOREM 4.5

The key ingredient is the following estimates on truncation error.
Theorem C.5. Assume ||D2g(x)||2 ≤ L. Suppose that Assumption 2.4 holds and there exists
C0 > 0 such that, α1 ≤ C0n and |∇g(x0)| ≤ C

√
n. we have that for fixed T ≤ 1 and tk = kT

N ,
N∑
i=1

∫ tk

tk−1

E||∇q̄(tk, x(tk))−∇q̄(t, x(t))||2 dt ≤ CL6Tn(n log n)2

N
(43)

Here C is a constant independent of n and L.

Proof:It suffices to show that for s > t ∈ [0, T ],

E||∇q̄(s, x(s))−∇q̄(t, x(t))||2 ≤ CL6(s− t)n3 log n

According to Lemma C.6 in Chen et al. (2023), it suffices to show that
E||∇q̄(t, x(t) + z)−∇q̄(t, x(t))||2 ≤ Cn2(s− t). (44)

Here z ∼ N (0, C(s− t)).

Owing to (14) of Theorem 3.5 in our paper and max{a, b} ≤ a+ b,

||D2q̄(t, x)|| ≤ C(|x|2 + n log n),

where C depends on (L,C0, α2). See (11) for the definition of the spectral norm || · ||2 of n × n
matrix. Then

||∇q̄(t, x(t) + z)−∇q̄(t, x(t))||2 ≤ C(1 + |x(t)|4 + |z|4 + (n log n)2)|z|2.
Note that E(z2) ≤ Cn(s− t) and E(z4) ≤ Cn2(s− t)2. Moreover, by Cauchy inequality

E(|x(t)|4z2) ≤
√
(E(x8(t))E(z4) ≤ Cn(n log n)2(s− t).

The last inequality is due to Ep(t,x)(x(t)
8) ≤ C(n log n)4 from Remark. Hence (44)holds.

Remark C.6. In the proof of Theorem C.5, instead of using Lemma C.6 in Chen et al. (2023), we
may also use (15) from Theorem 3.5 to bound the difference between time,

E||∇q̄(s, x(t))−∇q̄(t, x(t))||2 ≤ C(s− t)2n4(log n)3.

This will lead to an extra term Cn4(logn)3

N2 on the right hand side of (43). The proof is similar. Note

that when N = O(n2), n4(logn)3

N2 ⪯ n3(logn)2

N .
Remark C.7. We are aware of the difference of ∇ log p and ∇q̄ due to the translation (7), while our
Lipschitz estimate is uniform in time, hence similar results of Theorem C.5 holds for ∇ log p.

C.9 CONVERGENCE BOUNDS UNDER COMPACT SUPPORT MANIFOLD ASSUMPTION

Theorem C.8. We assume supp(p0) = D0 ⊂ BM (0) and the density is smoothly defined on D0.
With early stopping δ > 0, Let Q̂T−δ be distribution generated by uniform discretization of the
exponential integrator scheme (4), with an approximated score satisfies Assumption 2.1.

If L1 > 0

KL(Pδ∥Q̂T−δ) ≲ (M2 + d)e−T + Tϵ20 +
dT 2L2

δ

N
,

where Lδ = 1 + 1
δ + M2

δ2 .

Proof: Lδ is computed from (16). Then Proposition A.3 is applied.
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C.10 SKETCH OF PROOF OF WASSERSTEIN DISTANCE BOUND

Here we provide a sketch proof to a Wasserstein distance bound with full details left in a future
publication. A key ingredient is to estimate the backward process X̃t in (2) and its discretized
approximation x̂t in (4). The two processes are coupled by the same Brownian path and initial
value, hence,

d∥X̃t − x̂t∥
dt

=
1

2
∥X̃t − x̂t∥+

1

∥X̃t − x̂t∥
⟨X̃t − x̂t,∇ log p(T − t, X̃t)− sθ(T − t′k, x̂t′k

)⟩

⩽
1

2
∥X̃t − x̂t∥+ ∥∇ log p(T − t, X̃t)− sθ(T − t′k, x̂t′k

)∥, (45)

where t ∈ [t′k, t
′
k+1]. Then we turn to the inequality,

∥∇ log p(T − t, X̃t)− sθ(T − t′k, x̂t′k
)∥

⩽∥∇ log p(T − t, X̃t)−∇ log p(T − t′k, X̃t′k
)∥+ ∥∇ log p(T − t′k, X̃t′k

)−∇ log p(T − t′k, x̂t′k
)∥

+ ∥∇ log p(T − t′k, x̂t′k
)− sθ(T − t′k, x̂t′k

)∥, (46)

where the last term on the right hand side of (46) relates to the approximation error of the score.
With the Lipschitz bound (Theorem 3.5) in hand, we estimate the first two terms, while noticing that
the Lipschitz constant grows linearly while the diffusion process X̃t has exponential tail.

The bound for E∥X̃T − x̂T ∥ follows by taking expectation of (45) and using a Gronwall type in-
equality, thus implying a bound on the Wasserstein distance W 2(Law(xT ),Law(x̂T )). The bound
on W 2(Law(X̃T ), P0) then follows from a stability analysis of X̃ with respect to the initial distri-
bution, per standard arguments as in Bortoli (2022); Chen et al. (2023).

D BROADER IMPACT

Diffusion model is one of the most influential generative models in the AI era. Our theory gives
theoretical guarantee of the lifespan of diffusion model with minimal assumption of data distribution.
We discovered a theoretical characterization in the point-wise sense (stronger than prior works) on
the singular behavior near generation time related to the manifold hypothesis. This provides insight
for model parameterization and convergence rate improvement in practical implementations.
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