GLOBAL WELL-POSEDNESS AND CONVERGENCE ANALYSIS OF SCORE-BASED GENERATIVE MODELS VIA SHARP LIPSCHITZ ESTIMATES

Anonymous authorsPaper under double-blind review

ABSTRACT

We establish global well-posedness and convergence of the score-based generative models (SGM) under general assumptions of initial data for score estimation. For the smooth case, we start from a Lipschitz bound of the score function with optimal time length. The optimality is validated by an example whose Lipschitz constant of scores is bounded at initial but blows up in finite time. This necessitates the separation of time scales in conventional bounds for non-log-concave distributions. In contrast, our follow up analysis only relies on a local Lipschitz condition and is valid globally in time. This leads to the convergence of numerical scheme without time separation. For the non-smooth case, we show that the optimal Lipschitz bound is O(1/t) in the point-wise sense for distributions supported on a compact, smooth and low-dimensional manifold with boundary.

1 Introduction

Diffusion models (DM) have become the state-of-the-art tools lately in generative AI Song & Ermon (2019); Song et al. (2021); Dhariwal & Nichol (2021) such as image synthesis Ho et al. (2022); Gao et al. (2023). DMs first evolve data samples with stochastic differential equation (SDE) to gradually inject Gaussian noise until a Gaussian distribution is reached. Then it approximates the drift in the associated backward (time-reversed) SDE and generate a data sample from Gaussian noise. The drift of the backward SDE contains the gradient of the forward logarithmic density (score) that is estimated by solving a matching problem with deep neural network training. The reversibility concept of SDEs dated back to Kolmogorov's work Kolmogorov (1937) in 1937, and the general score formula was derived by Anderson Anderson (1982) in 1982.

Theoretical study on the convergence of DM generated distribution to the target (data) distribution typically assumes that the data distribution admits a density with respect to Lebesgue measure Lee et al. (2022) among others. By also imposing that the *score of the data distribution is Lipschitz continuous*, the score function of the forward process (the drift in the backward process) is well-behaved (not exploding) as the backward time tends to zero when the desired target sample is to be generated. However, this is not always observed in practice and experimentally the score can blow up Kim et al. (2022). In particular, the explosion occurs at generation if the data distribution satisfies the *manifold hypothesis (MH)* Tenenbaum et al. (2000); Goodfellow et al. (2016) which is verified for image data in Brown et al. (2023). Under MH, Pidstrigach (2022) showed that the limit of the continuous backward process with approximate score is well-defined and that the sample distribution shares the same support as the target distribution under the integrability conditions on the error of score matching. Also under MH, Bortoli (2022) found quantitative bounds on the 1-Wasserstein distance between a compact target (data) distribution and the generative distribution of DM by allowing the score function to explode as backward time approaches zero.

Both of the references (Pidstrigach (2022) and Bortoli (2022)), among others (Lee et al. (2022) for Langevin MC, Huang et al. (2024) for ODE flows, Chang et al. (2024) for Föllmer flows), require a (locally) Lipschitz estimate for the score function to ensure the well-posedness of the backward SDEs and the approximation bound of the score matching and sampling process.

The goal of this paper is to provide sharp estimates that 1) confirm/improve the score assumptions of the existing convergence theory, 2) give insight for the duration of the forward process so that the

backward process is well-defined, and 3) justify practical implementation of the backward process (e.g. early stopping strategies or truncation Kim et al. (2022)).

Related work We are aware of the convergence bound of discrete schemes for backward processes in Chen et al. (2023). Our convergence bound takes the KL chain inequality (Proposition C.3.Chen et al. (2023)) as the building block. While equipped with sharp (local) Lipschitz bounds in the paper, we achieved polynomial complexity of sampling in the general smooth p_0 setting without separated regimes of schedule. We are also aware of Bortoli (2022) which provides convergence bound in Wasserstein distance under a singular p_0 setting, supported on a compact manifold. Due to the potential singular behaviour of the score, early stopping schedules are employed Kim et al. (2022). Additional related work and comparison are discussed in Remark 3.3 for the Lipschitz bound and in Remark 4.6 for the convergence and complexity bound. Our paper provides sharp Lipschitz bounds of the singularities and therefore insights for the choices of schedules and loss normalization between discretization points. In addition, the Lipschitz bounds hold generally for models sharing the same forward process as OU, for example, the probability flow ODE (Equation (13) in Song et al. (2020)).

The main contributions of this paper are:

- Realistic or sharp point-wise gradient and Hessian estimates of the score potential function log p from commonly hypothesized data distributions.
- The first sharp example demonstrating the loss of Lipschtiz bound of the score function as time gets large even with nice initial data.
- Well-posedness and convergence of the backward diffusion process up to time zero (the generation time) in the smooth setting without separated regime of discretization.
- Characterization of the score (and its derivatives) in the setting of manifold hypothesis.

The rest of the paper is organized as follows. In Section 2, we first introduce settings of the diffusion model and discretization schemes of the backward process. Later, we present the transformation that relates the Fokker Planck equation with unbounded coefficients (density equation of forward process) to the non-linear Hamilton Jacobi equation and heat equation, which serves as the foundation of the analysis. The main theoretical results, Hessian estimate of score potential function $\log p$, are listed in Section 3. Based on these estimates, we establish well-posedness of the continous backward process and convergence bound of discretization in Section 4. The details of the proofs are in the Appendix.

2 Preliminaries

2.1 BACKGROUND AND SETTING THE STAGE

A large class of generative diffusion models can be analyzed under the SDE framework Song et al. (2021). It consists of two processes: forward and backward. *The forward process*, which relates to training, is an Ornstein-Uhlenbeck (OU) process in \mathbb{R}^n as follows:

$$dX_t = -\frac{1}{2}X_t dt + dW_t, \quad \text{for } t \in [0, T]$$
(1)

where W_t is a standard Brownian motion, T is the final time such that the distribution of X_T approximates a normal distribution in \mathbb{R}^n , namely $\mathcal{N}(0,I_n)$. The initial distribution X_0 follows a target (data) distribution in \mathbb{R}^n during the generative task, denoted as p_0 . The backward process, which relates to generation of new data, is defined as an 'inversion' of forward process (1). More precisely, with time reversal t' = T - t,

$$d\tilde{X}_{t'} = \left(\frac{1}{2}\tilde{X}_{t'} + \nabla \log p(T - t', \tilde{X}_{t'})\right) dt' + d\tilde{W}_{t'} \quad \text{for } t' \in [0, T], \tag{2}$$

where $W_{t'}$ is a standard Brownian motion (not necessarily being the same as W_t) and the initial distribution \tilde{X}_0 follows $\mathcal{N}(0, I_n)$. The term $\nabla \log p$ is introduced in Eq. (2) such that the marginal distributions of the forward and backward processes are identical Anderson (1982).

To be specific, let p := p(t, x) denote the probability distribution function of the forward process (1), which solves the Fokker Planck equation with Cauchy data p_0 , namely

$$\begin{cases} \frac{\partial_t p}{\partial t} = \frac{1}{2} (\nabla \cdot (xp) + \Delta p) \\ p(x, 0) = p_0(x). \end{cases}$$
 (3)

We also denote P_t ($Q_{t'}$ correspondingly) as the marginal distribution of X_t in (1) ($\tilde{X}_{t'}$ in (2)). Given initial distribution for (2) $Q_0 \sim P_T$, then Anderson (1982): $\forall t, Q_t = P_{T-t}$. Especially, $Q_T = P_0$ so data $\sim P_0$ can be generated by solving (2).

In practice, since no closed form expression of p_0 is known, the p in (3) is not analytically available. Thus $\nabla \log p$ is approximated by a neural network $s := s_{\theta}(t, x)$, where θ denotes latent variables of neural network and is omitted for simplicity of notation. The approximation is obtained by training the neural network with an L_2 score estimation loss, $\forall t \in [0, T]$,

$$\mathbb{E}_{x \sim P_t} ||s_{\theta}(t, x) - \nabla \log p(t, x)||^2.$$

In the analysis, we assume an ϵ_0^2 bounds for this estimation, see Assumption 2.1.

Given the approximation of score s_{θ} , we employ the exponential scheme Zhang & Chen (2022) with initial distribution $\mathcal{N}(0,I_n)$. More precisely, let $\delta=t_0\leq t_1\leq \cdots \leq t_N=T$ be the discretization points. $\delta=0$ for the normal setting and $\delta>0$ for the early-stopping setting. Then with $t'_k=T-t_{N-k}$, the process in the discrete scheme is as follows:

$$d\hat{x}_{t'} = (\frac{1}{2}\hat{x}_{t'} + s_{\theta}(T - t'_{k}, \hat{x}_{t'_{k}}))dt + d\hat{w}_{t'} \quad t' \in [t'_{k}, t'_{k+1}], \quad k = 0, \dots, N - 1,$$
 (4)

which admits an explicit solution, with $\mu_k \sim \mathcal{N}(0, I_n)$,

$$\hat{x}_{t'_{k+1}} = e^{\frac{1}{2}(t'_{k+1} - t'_k)} \hat{x}_{t'_k} + 2(e^{\frac{1}{2}(t'_{k+1} - t'_k)} - 1) s_{\theta}(T - t'_k, \hat{x}_{t'_k})) + \sqrt{e^{(t'_{k+1} - t'_k)} - 1} \mu_k.$$

Due to the limited knowledge of p_0 as well as the regularity of $\nabla \log p$, we restrict ourselves to uniform discretization points. Detailed selection is stated in the convergence theorems.

We assume the following bound of score approximation at the discretization points,

Assumption 2.1. Let t_k be the discretization point of the scheme (4),

$$\frac{1}{T} \sum_{k=1}^{N} (t_k - t_{k-1}) E_{x \sim P_{t_k}} \|\nabla \log p(t_k, x) - s_{\theta}(t_k, x)\|^2 \le \epsilon_0^2.$$

2.2 FOUNDATIONAL IDEAS BASED ON NON-LINEAR HAMILTON JACOBI EQUATION

The foundation of our analysis is investigating the behaviour of $\log p$ as the solution of a non-linear Hamilton Jacobi equation (HJE), which is well known to experts. For reader's convenience, we present it here.

We consider the score potential function¹

$$q(t,x) = -\log p(t,x) - \frac{|x|^2}{2}$$

whose spatial gradient becomes the drift (score) in the backward (reverse time denoising and generation) process (2) of the diffusion model. The q function satisfies the following PDE:

$$\begin{cases} \frac{\partial_t q - \frac{1}{2} \Delta q + \frac{1}{2} (x \cdot \nabla q + |\nabla q|^2) = 0\\ q(0, x) = g(x), \end{cases}$$
 (5)

where $g(x) = -\log p_0(x) - |x|^2/2$, which is the non-Gaussian part of the likelihood function.

¹Here we only consider the transform when the distribution of forward process P_t is absolutely continuous with respect to Lebesgue measure. The transform and our analysis are valid for any t > 0 in the general case and up to t = 0 when p_0 is smooth.

To simplify Eq.(5), we make a two step change of variables in time. First, let $\tilde{q}(t,x) = q(t,e^{t/2}x)$, then \tilde{q} solves:

 $\partial_t \tilde{q} = \partial_t q + e^{\frac{t}{2}} x \cdot \nabla q(t, e^{\frac{t}{2}} x) = \frac{e^{-t}}{2} (\Delta \tilde{q} - |\nabla \tilde{q}|^2).$

Then we consider $\bar{q}(t, x) = \tilde{q}(-\log(1-t), x)$, then \bar{q} solves:

$$\begin{cases} \frac{\partial_t \bar{q}}{\bar{q}} = \frac{1}{2} (\Delta \bar{q} - |\nabla \bar{q}|^2) & t \in [0, 1) \\ \bar{q}(0, x) = q_0 & \end{cases}$$
 (6)

Remark 2.2. By a direct calculation

$$\bar{q}(t,x) = q\left(-\log(1-t), \frac{1}{\sqrt{1-t}}x\right) \text{ or equivalently, } q(t,x) = \bar{q}(1-e^{-t},e^{-t/2}x). \tag{7}$$

Furthermore,

$$\nabla q(t,x) = e^{-t/2} \nabla \bar{q} (1 - e^{-t}, e^{-t/2}x)$$
 and, $\nabla^2 q(t,x) = e^{-t} \nabla \bar{q} (1 - e^{-t}, e^{-t/2}x)$.

Lastly, we also define $\bar{p}(t,x)=e^{-\bar{q}(t,x)}$, which satisfies

$$\begin{cases} \partial_t \bar{p} = \frac{1}{2} \Delta \bar{p} & \text{on } (0,1) \times \mathbb{R}^n \\ \bar{p}(0,x) = h(x) = e^{-g(x)}. \end{cases}$$
 (8)

The solution of (8) is given by $\bar{p}(t,x) = \frac{1}{(2\pi t)^{\frac{n}{2}}} \int_{\mathbb{R}^n} e^{\frac{-|x-y|^2}{2t}} e^{-g(y)} dy$.

To derive reasonable point-wise estimates of gradients and Hessian of the score function q(t,x) that does not involve 1/t, we will need the following assumption in relevant results. This assumption also ensures the above integration is well-defined for $t \in [0,1]$, equivalently the well-posedness of Fokker Planck equation (3) for $t \in [0,\infty)$.

Assumption 2.3. The tail distribution is upper bounded by some Gaussian distribution, i.e,

$$\log p_0(x) - \log p_0(0) \le \alpha_1 - \frac{1}{2}(1 - \alpha_2)|x|^2$$

for constants $\alpha_2 < 1$ and $\alpha_1 \in \mathbb{R}$. Without loss of generality we assume $\alpha_2 \geq 0$.

Recalling definition of g, it is equivalent to

$$g(x) - g(0) \ge -\frac{\alpha_2}{2}|x|^2 - \alpha_1,$$
 (9)

Note that Assumption 2.3 implies that the second order moment of the process is bounded, i.e.,

$$E_{p_0}||X||^2 := M_2 < \infty. (10)$$

Technically speaking, the g(0) could be absorbed into α_1 in (9). We put it there just to track possible dependence on the dimension n. Similarly, we adopt the following technical assumptions in the relevant results to provide more flexibility to track such dependence.

Assumption 2.4. There exists x_0 , $\alpha_2 \in [0,1)$, $\alpha_1 \in \mathbb{R}$ such that

$$g(x) - g(x_0) - \nabla g(x_0) \cdot (x - x_0) \ge -\frac{\alpha_2}{2} |x - x_0|^2 - \alpha_1 \quad \forall x \in \mathbb{R}^n.$$

In particular, if g attains minimum at some point x_0 , then the Assumption 2.4 holds with $\alpha_2 = \alpha_1 = 0$. Also, if Assumption 2.4 holds, then Assumption 2.3 holds by adjusting the corresponding α_2 and $\alpha_1 \in \mathbb{R}$ depending on g(0) and x_0 , and vice versa. The notation (α_0) is abused for simplicity of subsequent derivations without affecting our estimation for dimension dependency.

General notations Throughout this paper, for an $n \times n$ matrix A, we use the spectral norm

$$||A||_2 = \max_{\{v \in \mathbb{R}^n : |v|=1\}} |Av| = \text{the largest eigenvalue of } \sqrt{AA^\top}. \tag{11}$$

In particular, for a map $F: \mathbb{R}^n \to \mathbb{R}^n$,

$$||\nabla F||_2 \le L \quad \Leftrightarrow \quad |F(x) - F(y)| \le L|x - y|.$$

We also adopt the following notation when comparing two symmetric (Hessian) matrices,

$$A \leq B$$
 if $B - A$ is semi-positive definite.

So for any symmetric matrix A, $||A||_2 \le \sigma \Leftrightarrow -\sigma I_n \le A \le \sigma I_n$. For a map $u : \mathbb{R}^n \to \mathbb{R}^n$, D^2u denotes the Hessian matrix of the map.

3 SHARP HESSIAN BOUND OF SCORE POTENTIAL FUNCTION

The fundamental question, which is directly related to the well-posedness and convergence rate of the diffusion model Bortoli (2022); Lee et al. (2022), is whether for any T > 0, there exists a constant C_T that depends only on T and the initial data such that

$$\sup_{[0,T]\times\mathbb{R}^n} \|D^2 q(t,x)\|_2 \le C_T ?$$

The short time existence of uniform Hessian bound was known in previous literature (see Chen et al. (2023); Mikulincer & Shenfeld (2024) for instance) when $||D^2\log p_0||$ is bounded . From both a mathematical and application perspective, a natural question is whether it could be extended to all time. In Section 3.1 we provide the first example that shows the short time existence is optimal in sense of lasting time. Precisely speaking, in the proof of Theorem 3.4, we construct an initial distribution p_0 such that the Hessian of $\log p$ loses global bound **right** at the limiting time. Inspired by the counter-example, alternatively in Section 3.2 we provide a locally Lipschitz estimate that lasts for $t \in [0, \infty)$. For the non-smooth case, in Section 3.3, we characterize the singular behaviour of $\log p$ and its derivatives.

3.1 HESSIAN ESTIMATE OF SCORE POTENTIAL FUNCTION FOR FINITE TIME

The following short-time uniform Hessian, or similar formulations, have been obtained in some previous works. See Remark 3.3 blow. The primary goal of this section is demonstrate that the associated time threshold is sharp (Theorem 3.4).

Theorem 3.1. Let M_0 be a nonnegative number. $g \in C^2(\mathbb{R}^n)^2$.

(1) If
$$D^2g(x) \leq M_1I_n$$
, then

$$D^2q(t,x) \leq e^{-t}M_1I_n$$
 for all $(t,x) \in [0,\infty) \times \mathbb{R}^n$.

(2) If
$$D^2g(x) \succeq -M_0I_n$$
, then for any $T \in \left[0, -\log(1-\frac{1}{M_0})\right)$, we have

$$D^2q(t,x)\succeq -\frac{M_0}{e^t-M_0(e^t-1)}I_n \quad \textit{for all } (t,x)\in (0,T]\times \mathbb{R}^n.$$

Note that if $M_0 \leq 1$ *, then* $T \in [0, \infty)$ *.*

The proof is in Section C.1.As an immediate corollary, we have that

Corollary 3.2. Given data distribution $p_0 \in C^2(\mathbb{R}^n)$ follows $-L_1I \leq \sup_{x \in \mathbb{R}^n} D^2 \log p_0(x) \leq L_0I$. Then we have finite time uniform bound of the Hessian: for any $t \in \left[0, -\log(1 - \frac{1}{L_0 + 1})\right)$,

$$\sup_{\mathbb{R}^n} ||D^2 \log p(t, x)||_2 \le C_t.$$

²The assumption is equivalent to $\log p_0 \in C^2(\mathbb{R}^n)$.

where

$$C_t = \max\left(\frac{L_0 + 1}{1 - (L_0 + 1)(e^t - 1)} - 1, e^{-t}(L_1 - 1) + 1\right). \tag{12}$$

Furthermore, if $-\log p_0(x)$ is a convex function ($L_0 \le 0$), the estimate bound is global,

$$0 \leq -D^2 \log p(t,x) \leq (e^{-t}L_1 + (1-e^{-t}))I_n \quad \text{for all } (t,x) \in [0,\infty) \times \mathbb{R}^n.$$

Remark 3.3. The convex case has been also discussed in Lee et al. (2021) and it leads to single modal distribution. Similar finite bound was also derived in Lemma C.9 in Chen et al. (2023), which follows directly from the representation formula and the generalized Poincaré inequality for logconcave probability measures. We are also aware of bounds similar to Theorem 3.1(2) obtained in Brownian transport map setting Mikulincer & Shenfeld (2024) based on the representation formula and the Brascamp-Lieb inequality that is related to the generalized Poincaré inequality. In this section, we will present a new proof based on PDE (partial differential equation) method via using the convex envelope as a barrier. Our approach is more robust, which does not rely on the representation formula and could be easily adjusted to more general situations. Results of a similar spirit were also obtained in Kim & Milman (2012), where a generalization of Caffarelli's contraction theorem Caffarelli (2000) is proven, also using a parabolic maximum principle, which is different from our method. We will refer the reader as well to Mikulincer & Shenfeld (2023) and also Conforti (2024), where related questions are investigated from a more probabilistic viewpoint. In addition, we would like to point out that beyond the spatially global Hessian bound in the mentioned references (including Mikulincer & Shenfeld (2024)) that will degenerate in finite time, we also provide local Hessian bound that holds for any given finite interval, see Theorem 3.5.

Given the crucial role of Hessian bound in estimating convergence rate of diffusion model, an important remaining question was whether the lasting time given in Theorem 3.1 is optimal. The result below is our main contribution in this aspect, which shows that the temporal bound $-\log\left(1-\frac{1}{M_0}\right)$ in the statements of Theorem 3.1 and Corollary 3.2 is sharp.

Theorem 3.4 (Loss of Uniform Hessian Bound). There exists a smooth nonnegative g satisfying assumptions in Theorem 3.1 and Corollary 3.2 ($M_0 = M_1 = 2$) such that the corresponding q(t,x) satisfies

$$\sup_{x \in \mathbb{R}^n} ||D^2 q\left(\log 2, x\right)|| = \sup_{x \in \mathbb{R}^n} ||D^2 \bar{q}\left(1/2, x\right)|| = \infty.$$

Note that the number $\frac{1}{2}$ can be changed to any given time by re-scaling the function $\bar{q}(\lambda^2 t, \lambda x)$. The detail of construction is in Section C.2

3.2 LOCAL ESTIMATE

The following theorem provides point-wise estimates of the score function, which can be quite useful in dealing with more general situations. Technically speaking, $g(x_0)$ and $Dg(x_0)$ can be absorbed into other parameters. Here we choose to display them to track the dependence of relevant parameters on the dimension n.

Theorem 3.5. Suppose that $\bar{p} = \bar{p}(t, x)$ is the solution to heat equation (8). Let $|v|_1 = \max\{|v|, 1\}$ for $v \in \mathbb{R}^n$. Fix $x_0 \in \mathbb{R}^n$.

(i) Given Assumption 2.3 and $|\nabla g(x)| \leq \beta_1 |x - x_0| + \beta_2$ for $\beta_1, \beta_2 \geq 0$. Then for all $(t, x) \in [0, 1] \times \mathbb{R}^n$,

$$|\nabla \bar{q}(t,x)| \le \frac{3\beta_1}{\sqrt{1-\alpha_2}} \max\{C_n, C_{\beta_1,\alpha_2}|x-x_0|_1\} + \beta_2.$$
 (13)

Here the two constants $C_n = 2\sqrt{(n+3)\log\left(\frac{2(1+4\beta_1)}{\sqrt{1-\alpha_2}}\right) + 4n\log n + \alpha_1 + 1 + \frac{\beta_2^2}{\beta_1}}$ and $C_{\beta_1,\alpha_2} = 3\sqrt{\beta_1} + 1 + \frac{6\alpha_2}{\sqrt{1-\alpha_2}}$.

(ii) Assume $||D^2g(x)||_2 \leq L$ and Assumption 2.4. Then for all $(t,x) \in [0,1] \times \mathbb{R}^n$,

$$||D^2\bar{q}(t,x)|| \le \frac{10L^2 + L}{1 - \alpha_2} \max\left\{\tilde{C}_n^2, \ (\tilde{C}_{L,\alpha_2})^2 (|x - x_0 - \nabla g(x_0)|_1)^2\right\},\tag{14}$$

324
325
$$|\partial_t \nabla \bar{q}(t,x)| \le \frac{48L^2 + 2L}{\sqrt{t}(1-\alpha_2)^{\frac{3}{2}}} \max \left\{ \tilde{C}_n^3, \ (\tilde{C}_{L,\alpha_2})^3 (|x-x_0-\nabla g(0)|_1)^3 \right\}. \tag{15}$$

Here the two constants $\tilde{C}_n = 2\sqrt{(n+3)\log\left(\frac{2(1+4L)}{\sqrt{1-\alpha_2}}\right) + 4n\log n + \alpha_1 + 1}$ and $\tilde{C}_{L,\alpha_2} = 3\sqrt{L} + 1 + \frac{6\alpha_2}{\sqrt{1-\alpha_2}}$.

The proof is in Section C.3. A simpler case with bounded ∇g is also discussed. See Remark C.2 for another way to bound $|\partial_t \nabla \bar{q}(t,x)|$ by replacing $\frac{L^2}{\sqrt{t}}$ in (15) by $O(nL^3)$.

As an immediate corollary, we have

Corollary 3.6. Assume $||D^2g(x)||_2 \le L$. Suppose that Assumption 2.4 holds and there exists $C_0 > 0$ such that, $\alpha_1 \le C_0 n$ and $|\nabla g(x_0)| \le C\sqrt{n}$. Then

$$||D^2 \bar{q}(t,x)|| \le CL^2 \left(n \log n + L|x - x_0 - \nabla g(x_0)|^2 \right) |\partial_t \nabla \bar{q}(t,x)| \le CL^2 \left((n \log n)^{\frac{3}{2}} + L\sqrt{L}|x - x_0 - \nabla g(x_0)|^3 \right).$$

Here C is a constant independent of L and n.

Note that the further assumptions of scale relates to normalization in n dimension.

Remark 3.7. Owing to 35 in the proof of Theorem 3.5, under the assumption of corollary 3.6, we have for all $m \in \mathbb{N}$

$$\mathbb{E}_{p(t,x)}(|x(t)|^m) \le O\left(L^{\frac{m}{2}}(n\log n)^{\frac{m}{2}}\right)$$

This demonstrates that, if we only care about expectations of powers of $D^2 \bar{q}(t,x)$ or $\partial_t \nabla \bar{q}(t,x)$, $\|D^2 \bar{q}(t,x)\|_2$ behaves like $O(L^3 n \log n)$ and $|\partial_t \nabla \bar{q}(t,x)|$ behaves like $O\left(L^3 \sqrt{L}(n \log n)^{\frac{3}{2}}\right)$. Note that the point x_0 itself plays no role in computing the expectation that is translation invariant in the x variable.

Theorem 3.8. Let $g(x) \in C^{0,1}(\mathbb{R}^n)$ satisfy the Assumption 2.3 and $|\nabla g| \leq C(|x|+1)$ for a positive constant C. Then for any T > 0, the above (2) is well-posed.

Proof: Note that q(t,x) is a smooth function, hence locally Lipschitz continuous in x. Owing to Theorem 4.1, it suffices to show that for $q=-\log p(t,x)$,

$$|\nabla q(t,x)| \leq C_T(|x|+1)$$
 for all $(t,x) \in [0,T] \times \mathbb{R}^n$

for a constant C_T depending on C and T. By (7), it is equivalent to showing that

$$|\nabla \bar{q}(t,x)| \le C_T(|x|+1)$$
 for all $(t,x) \in [0,1-e^{-T}] \times \mathbb{R}^n$.

for a constant C_T depending on C and T, which follows from Theorem 3.5.

3.3 Compactly Supported Data Distributions

In this section, we look at the situation where the data distribution p_0 is a positive measure with compact support which is a typical situation in image generation Bortoli (2022). Due to the manifold hypothesis, the support is typically a low dimension set. In this situation, what is important is the asymptotic estimate as $t \to 0$. Assume $\operatorname{supp}(p_0) = D_0 \subset \overline{B_M(0)}$. The following are two known standard estimates(Bortoli (2022)).

(1)
$$|\nabla \bar{q}(t,x)| \le \frac{|x|+M}{t};$$
 (16)
(2) $||D^2 \bar{q}(t,x)||_2 \le \frac{1}{t} + \frac{M^2}{t^2}.$

The proof is simple, which will be presented in Section C.4 for reader's convenience. Some steps will be used later. The main challenge is whether the above bounds can be improved in order to derive better convergence rate, for instance, Theorem 3 in Bortoli (2022).

I. We first demonstrate O(1/t) bound in (1) above is a typical situation that can not be improved.

Fixing x, denote by \bar{y}_t the weighted center of mass: $\bar{y}_t = \frac{\int_{D_0} y e^{\frac{-|x-y|^2}{2t}} d\pi_0(y)}{\hat{p}}$, where for the rest of the proof, we denote $p_0(y)dy$ as $d\pi_0(y)$ and $\hat{p} = \int_{D_0} e^{\frac{-|x-y|^2}{2t}} d\pi_0(y)$. For a "regular" π_0 , as $t \to 0$,

we expect the measure $\frac{e^{\frac{-|x-y|^2}{2t}}d\pi_0(y)}{\hat{p}}$ will concentrate on $\{y \in D_0 | |y-x| = d(x,D_0)\}$. Thus,

$$\lim_{t \to 0} d(\bar{y}_t, \Gamma_x) = 0,$$

where Γ_x is the convex hull of $\{y \in D_0 | |y - x| = d(x, D_0)\}$. Then

$$|\nabla \bar{q}(t,x)| = \frac{|x - \bar{y}_t|}{t} \quad \text{and} \quad \liminf_{t \to 0} t |\nabla \bar{q}(t,x)| \ge d(x,\Gamma_x).$$

So if $x \notin \Gamma_x$ (typical situation for low dimension set D_0), then $|D\bar{q}(t,x)| = O(1/t)$. Hence the 1/t blow up for the gradient bound is usually inevitable, which matches experimental observations Kim et al. (2022). Accordingly, in real applications, the denoising process might only be traced back to a certain $t_0 > 0$, which is corresponding to an initial condition similar to $p(t_0, x)$.

II. We now turn our attention to the Hessian bound $O(1/t^2)$ in (2). According to Theorem 3 in Bortoli (2022), if this bound is improved to O(1/t), a better convergence rate can be achieved. The following theorem establishes that, in typical scenarios, the Hessian bound is O(1/t) rather than $O(1/t^2)$, with the exception of a small set. Consequently, it might be reasonable in practice to assume a Hessian bound of O(1/t) when analyzing convergence rates. Quantifying how frequently this small set could impact the convergence rate remains a challenging problem due to its complex topological structure in the case of nonconvex D_0 .

For simplicity and clarity, we assume that D_0 is a low-dimensional smooth manifold with boundary, though our results extend to manifolds with lower regularity. To illustrate the sharpness of our conclusion, we provide an example in Example 3.10

Theorem 3.9. For $1 \le d \le n$, assume that $D_0 \subset \mathbb{R}^n$ is a d-dimensional compact smooth manifold with boundary and π_0 is comparable to the uniform distribution on D_0 . Then for almost everywhere $x \in \mathbb{R}^n$,

$$||D^2\bar{q}(t,x)||_2 \le \frac{C_x}{t}$$
 for $t \in [0,1]$.

Here C_x is a constant depending only on x and D_0 . If D_0 is convex, then the above holds for all $x \in \mathbb{R}^n$.

Proof is in Section C.5. We would like to mention that the O(1/t) bound was also derived in Bortoli (2022) for the very special cases, for instance, when p_0 follows a uniform distribution product with a normal distribution on a hypercube.

We will present a smooth non-convex D_0 that shows the result of Theorem 3.9 is optimal.

Example 3.10. Let $D_0 \subset \mathbb{R}^2$ be the domain obtained by removing a small square $[0,2] \times [-1,1]$ from the big square $[-2,2]^2$ and then mollifying the corners to make it smooth. Here O=(0,0). The Y-shaped region

$$L = \{x \in \mathbb{R}^2 | \text{ there are more than one } y \text{ such that } |x - y| = d(x, D_0)\}.$$

We also choose $\pi_0 = \frac{\chi_{D_0}}{|D_0|} dx$, i.e., the uniform distribution on D_0 , where $|D_0|$ is the area of D_0 .

We have that, $||D^2\bar{q}(t,x)||_2 \ge C_x/t^2$ for $x \in L$ and $t \in (0,1]$.

For reader's convenience, we will verify the above when $x=(\theta,0)$ for $\theta>1$ in Section C.6. The other parts are left to interested readers as an exercise.

4 Well-posedness and Convergence under Sharp Lipschitz Bound

As the starting point, we review a well-posedness condition of a general SDE with additive noise where the drift term F is only locally lipschitz continuous.

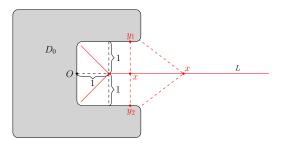


Figure 1: In the above picture, $\Gamma_x = \{ sy_1 + (1 - s)y_2 : s \in [0, 1] \}$

Theorem 4.1. Given T > 0, suppose that $F = F(t, x) \in C([0, T] \times \mathbb{R}^n, \mathbb{R}^n)$ satisfies that F is locally Lipschitz continuous in x variable, i.e., for any M > 0, there exists a constant L_M such that

$$|F(t,x) - F(t,y)| \le L_M |x-y|$$
 for $x, y \in B_M(0)$ and $t \in [0,T]$

and

$$|F(t,x)| \le C(|x|+1). \quad for (t,x) \in [0,T] \times \mathbb{R}^n. \tag{17}$$

for a positive constant C. For any $x_0 \in \mathbb{R}^n$, the following SDE has a unique solution

$$dX_t = F(t, X_t)dt + dW_t, \quad t \in [0, T], \ X_0 = x_0.$$

The proof is in Section C.7.

Remark 4.2. For simplicity, uniform Lipschitz continuity of F is often assumed to ensure the long-term existence of solutions for ODEs and SODEs. The above Theorem says that local Lipschitz continuity of F plus the linear growth condition (17) would be sufficient, which is a special case of more general results (see Theorem 2.4 and Theorem 3.1 in Chapter IV of Ikeda & Watanabe (2014) for instance). For reader's convenience, we presented the proof above for our special case.

Due to the limitation of global Hessian estimate, the convergence analysis is divided into the following two cases by p_0 . The first case enjoys better complexity with respect to dimension $(N = \mathcal{O}(n\log^2 n))$ while has limitation in the final time T in the forward process. The second case is valid globally in T while achieving polynomial complexity $(N = \mathcal{O}(n^3 \log^2 n))$.

In what follows we denote the distribution of the discrete backward process (4) at generation time T as \hat{Q}_T .

Case I: p_0 is (near) log-concave

Theorem 4.3. Assume the following global Hessian bound of p_0 ,

$$-L_1 I_n \leq D^2 \log p_0(x) \leq L_0 I_n.$$

Let \hat{q}_T be a distribution generated by the uniform discretization ($\delta=0$) of the exponential integrator scheme (4), with an approximated score satisfying the Assumption 2.1. We also assume the p_0 has finite second order moment, namely $M_2 < \infty$ in (10). For $L_0 > 0$ and $T < -\log(1 - \frac{1}{L_0 + 1})$,

$$KL(P_0||\hat{Q}_T) \lesssim (M_2 + n)e^{-T} + T\epsilon_0^2 + \frac{nT^2C_T^2}{N},$$
 (18)

where C_T defined in (12) depends on L_0 , L_1 , T.

If $L_0 \leq 0$, namely p_0 is log-concave,

$$KL(P_0||\hat{Q}_T) \lesssim (M_2 + n)e^{-T} + T\epsilon_0^2 + \frac{nT^2C^2}{N},$$
 (19)

where
$$C = \sup_{t \in [0,\infty)} (e^{-t}L_1 + (1 - e^{-t})) = \max\{L_1, 1\} < \infty.$$

Proof: We first apply Corollary 3.2 to attain global Hessian estimate in finite time. Then apply it to Theorem 4.1 for well-posedness and Proposition A.3 for convergence rate.

Remark 4.4. (i) A near linear complexity bound, $N = \mathcal{O}(n \log^2 n)$, is then established by (19) under the log-concave distribution with $T = \mathcal{O}(\log n)$.

(ii) Note all complexity bounds by Proposition A.3 requires $T = \mathcal{O}(\log n)$ with second order moment $M_2 \leq n$. This implies the optimal bound with Lipschitz of score $L < \infty$, requires $N = \mathcal{O}(n \log^2 n)$.

(iii) Furthermore in the near log-concave case, we consider the regime with smallness of $L_0 = \mathcal{O}(\frac{1}{n})$. Therefore maximal time of estimate in (18), turns to $-\log(1-\frac{1}{L_0+1}) = \mathcal{O}(\log(n))$. Then in (18) with $T = \mathcal{O}(\log(n))$, the first term is bounded and C_T defined in (12) is independent with dimension n. The complexity bound in such case is also $\mathcal{O}(n\log^2 n)$.

Case II: General smooth p_0

Theorem 4.5. Assume $||D^2g(x)||_2 \le L$. Suppose that Assumption 2.4 holds and there exists $C_0 > 0$ such that, $\alpha_1 \le C_0 n$ and $|\nabla g(x_0)| \le C_0 n$. Let \hat{q}_T be distribution generated by uniform discretization of the exponential integrator scheme (4), with an approximated score satisfies Assumption 2.1. We have,

$$KL(P_0||\hat{Q}_T) \lesssim (M_2 + n)e^{-T} + T\epsilon_0^2 + \frac{CL^6Tn(n\log n)^2}{N}$$

Proof: This is a direct consequence of Theorem C.5 to estimate truncation error in Proposition A.1.

In addition to the above cases, we also consider non-smooth p_0 supported on compact manifold. Restricted by the estimate in (16), we switch to the early stopping technique, namely $\delta > 0$ in discretization. Due to the measure zero set (see in Section 3.3), the convergence bound is not yet optimal as shown in Section C.9.

Remark 4.6. Bounds in Theorem 4.3 and Theorem 4.5 are consequences of our new Lipschitz estimate Theorem 3.1 and Theorem 3.5 with Proposition A.1 from Chen et al. (2023). An important feature of these new bounds is their uniformity in time (up to T, the mixing time of the forward process). Though the complexity in Theorem 4.5 is $\mathcal{O}((n\log n)^3)$ in dimension with $T = \mathcal{O}(\log n)$, slightly higher than $\mathcal{O}((n\log n)^2)$ in Theorem 2.5 of Chen et al. (2023), our assumption on time discretization $\{t_k\}_k$ during the sampling process (4) can be relaxed to uniform discretization. Hence our theory requires no prior knowledge of the data distribution p_0 and is more realistic.

We are also aware of two works which provide the linear in dimension $(\mathcal{O}(n))$ complexity bounds. Benton et al. (2024) utilizes a stochastic localization approach to attain the complexity bound 3 in the early stopping setting. A recent preprint Conforti et al. (2023) provides the linear bound (Theorem 1 of Conforti et al. (2023)) in a setting similar to our Theorem 4.5 with analysis of relative score process. In contrast to our work here, the approaches in Benton et al. (2024); Conforti et al. (2023) estimate the expected Lipschitz bound of the score under the backward process \tilde{X} in (2), while our analysis is in the point-wise sense and hence applicable to the analysis of (approximated) score acting on the approximated backward process \hat{x} in (4). Therefore our estimates readily apply to complexity and convergence bounds in the Wasserstein metric. A sketch of proof is presented in the appendix, Section C.10, which will be expanded in a future publication.

5 CONCLUSION

In this paper, we analyzed the Lipschitz bounds of the score in the SGM. Our bounds are sharp in light of the constructed counter-examples. Based on the result, we provide the guarantees for SGM in the framework where L_2 accurate score estimator is available and smoothness assumption holds on the data distribution. Our bounds for the non-smooth case characterize singular behaviours of the score near the generation time, offering insights for model parameterization in practice.

Limitation Due to the limited knowledge of regularity factors of data distribution (e.g. optimal Lipschitz constants), our bound cannot provide implementable guidance on seeking the optimal schedule (which may require a separation of temporal regimes). Also in the manifold case, due to the complex geometries, as shown in the non-smooth section, our theories cannot provide a justifiable guidance of early stopping time. We will investigate these issues in a future study.

³in fact, the bound is $\mathcal{O}(n \log^2 n)$ due to Remark 4.4.

REFERENCES

- O. Alvarez, J.-M. Lasry, and P.-L. Lions. Convex viscosity solutions and state constraints. *Journal de mathématiques pures et appliquées*, 76 (3):265–288, 1997.
 - B. Anderson. Reverse-time diffusion equation models. Stoch. Process. Appl., 12(3):313–326, 1982.
- Joe Benton, Valentin De Bortoli, Arnaud Doucet, and George Deligiannidis. Nearly \$d\$-linear convergence bounds for diffusion models via stochastic localization. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=r5njV3BsuD.
 - V. De Bortoli. Convergence of denoising diffusion models under the manifold hypothesis. *Transactions on Machine Learning Research*, 2022.
 - B. Brown, A. Caterini, B. Ross, J. Cresswell, and G. Loaiza-Ganem. Verifying the union of manifolds hypothesis for image data. *ICLR*, 2023.
 - L. Caffarelli. Monotonicity properties of optimal transportation¶ and the fkg and related inequalities. *Communications in Mathematical Physics*, 214:547–563, 2000.
 - J. Chang, Z. Ding, Y. Jiao, R. Li, and J. Yang. Deep conditional generative learning: Model and error analysis. *arXiv* preprint arXiv:2402.01460, 2024.
 - H. Chen, H. Lee, and J. Lu. Improved analysis of score-based generative modeling: User-friendly bounds under minimal smoothness assumptions. In *International Conference on Machine Learning*, pp. 4735–4763. PMLR, 2023.
 - G. Conforti. Weak semiconvexity estimates for Schrödinger potentials and logarithmic Sobolev inequality for Schrödinger bridges. *Probability Theory and Related Fields*, pp. 1–27, 2024.
 - Giovanni Conforti, Alain Durmus, and Marta Gentiloni Silveri. Score diffusion models without early stopping: finite Fisher information is all you need. *arXiv e-prints*, pp. arXiv–2308, 2023.
 - P. Dhariwal and A. Nichol. Diffusion models beat GANs on image synthesis. *NeurIPS*, 34:8780–8794, 2021.
 - S. Gao, P. Zhou, M-M. Cheng, and S. Yan. Masked diffusion transformer is a strong image synthesizer. *ICCV*, 2023.
 - I. Goodfellow, Y. Bengio, and A. Courville. *Deep Learning*. MIT press, 2016.
 - J. Ho, C. Saharia, W. Chan, D. Fleet, M. Norouzi, and T. Salimans. Cascaded diffusion models for high fidelity image generation. *J. Mach. Learn. Res.*, 3(47):1–33, 2022.
 - D. Huang, J. Huang, and Z. Lin. Convergence analysis of probability flow ODE for score-based generative models. *arXiv preprint arXiv:2404.09730*, 2024.
- N. Ikeda and S. Watanabe. Stochastic differential equations and diffusion processes. Elsevier, 2014.
- D. Kim, S. Shin, K. Song, W. Kang, and I. Moon. Soft truncation: A universal training technique of score-based diffusion model for high precision score estimation. *ICML*, 162:11201–11228, 2022.
 - Y-H. Kim and E. Milman. A generalization of Caffarelli's contraction theorem via (reverse) heat flow. *Mathematische Annalen*, 354(3):827–862, 2012.
- A. Kolmogorov. Zur Umkehrbarkeit der statistischen Naturgesetze (Engl.: On the reversibility of the statistical laws of nature). *Math. Ann.*, 113:766–772, 1937.
 - H. Lee, C. Pabbaraju, A. Sevekari, and A. Risteski. Universal approximation for log-concave distributions using well-conditioned normalizing flows. *arXiv* preprint arXiv:2107.02951, 2021.
 - H. Lee, J. Lu, and Y. Tan. Convergence for score-based generative modeling with polynomial complexity. *Advances in Neural Information Processing Systems*, 35:22870–22882, 2022.

- D. Mikulincer and Y. Shenfeld. On the Lipschitz properties of transportation along heat flows. In *Geometric Aspects of Functional Analysis: Israel Seminar (GAFA) 2020-2022*, pp. 269–290. Springer, 2023.
- D. Mikulincer and Y. Shenfeld. The Brownian transport map. *Probability Theory and Related Fields*, pp. 1–66, 2024.
- J. Pidstrigach. Score-based generative models detect manifolds. NeurIPS, 2022.
- Y. Song and S. Ermon. Generative modeling by estimating gradients of the data distribution. *NeurIPS*, 2019.
 - Y. Song, J. Sohl-Dickstein, D. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based generative modeling through stochastic differential equations. *ICLR*, 2021.
 - Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. *arXiv* preprint *arXiv*:2011.13456, 2020.
 - T. Strömberg. Semiconcavity estimates for viscous Hamilton–Jacobi equations. *Archiv der Mathematik*, 94(6):579–589, 2010.
 - J. Tenenbaum, V. Silva, and J. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319–2323, 2000.
- Q. Zhang and Y. Chen. Fast sampling of diffusion models with exponential integrator. *arXiv* preprint *arXiv*:2204.13902, 2022.

In the appendix below, we present detailed proof of theorems along with existing results used in the proof. Appendix A lists the KL-convergence theories of the diffusion model in Chen et al. (2023), which is applied when showing our convergence bound. Appendix B contains the theories in Alvarez et al. (1997) regarding the convexity result of second order differential equation of a very general kind. It is applied when showing the semi-convexity of the HJ equation, which is part of the global in space Hessian bound. Appendix C collects all the proofs and Appendix D discusses the broader impact of the manuscript.

A CONVERGENCE THEORIES

In this section, we list some numerical algorithms and convergence theories related to the numerical discretization of (2). They are due to Chen et al. (2023).

Convergence in distribution The key ingredient of the convergence theory is the following result from the chain rule of KL divergence.

Proposition A.1 (Prop C.3. of Chen et al. (2023)). Given the score error estimation Assumption 2.1, the exponential integrator scheme (4) satisfies,

$$KL(P_{\delta} \| \hat{Q}_{T-\delta}) \lesssim KL(P_{T} \| \gamma_{n}) + T\epsilon_{0}^{2} + \sum_{k=1}^{N} \int_{t_{k-1}}^{t_{k}} E \| \nabla \log p(t, \tilde{X}_{t}) - \nabla \log p(t_{k}, x_{t_{k}}) \|^{2} dt,$$

where γ_n is the Uniform Gaussian distribution

The first term $\mathrm{KL}(P_T \| \gamma_n)$ in the estimate measures the distance between an the measure of OU process to its invariant measure. When the data has finite second order moment, it turns to 0 as $T \to \infty$.

Proposition A.2 (Lem C.4 of Chen et al. (2023)). With finite second order moment $E_{p_0}|X|^2 < \infty$, for T > 1,

$$KL(P_T, \gamma_n) \le (n + M_2)e^{-T}.$$

The third term relates to local truncation error that depends on the regularity of the forward process. Then Proposition A.1 can be further extended if the global Hessian estimate is available.

Proposition A.3 (Theorem 2.1 of Chen et al. (2023)). Given assumption of Proposition A.1, $\nabla \log p_t$ is L-Lipschitz. For uniform discretization, the exponential integrator scheme (4) satisfies,

$$KL(P_0||\hat{Q}_T) \lesssim (M_2 + n)e^{-T} + T\epsilon_0^2 + \frac{nT^2L^2}{N}.$$

B Semi-convexity of second order differential equation

Here we list some important theories used to construct the finite time log-convexity of the density of the forward process.

Given a function w(t, x), its convex envelop $w^{**}(t, x)$ in x is defined as

$$w^{**}(t,x) = \inf \left\{ \sum_{i=1}^{n+1} \lambda_i w(t,z_i) | x = \sum_{i=1}^{n+1} \lambda_i z_i, \sum_{i=1}^{n+1} \lambda_i = 1, \ \lambda_i \ge 0, z_i \in \mathbb{R}^n \right\}.$$
 (20)

Lemma B.1 (Prop 7 of Alvarez et al. (1997), Lemma 2 of Strömberg (2010)). Let w be a solution of,

$$\partial_t w + F(t, x, \nabla w, D^2 w) = 0 \tag{21}$$

The convex envelope w^{**} of w is a supersolution of (21), under the following assumptions,

- 1. F is elliptic in the sense $F(t, x, p, A) \ge F(t, x, p, \tilde{A})$ if $A \le \tilde{A}$.
- 2. $(x,A) \in \mathbb{R}^n \times S^n_{++} \mapsto F(t,x,p,A^{-1})$ concave for all t and p. Here S^n_{++} is the set of all $n \times n$ positive definite matrices.

703 3. w is coercive in the sense that

$$\lim_{x \to \infty} \frac{w(t, x)}{|x|} = \infty, \tag{22}$$

uniformly in t.

C PROOFS

In this section, we present proofs of the main theorems.

C.1 PROOF OF THEOREM 3.1

For (1), it is equivalent to showing that

$$D^2 \bar{q}(t,x) \le M_1 I_n$$
 for all $(t,x) \in [0,1] \times \mathbb{R}^n$.

This actually follows immediate from (36). Here we will present a standard PDE approach that does not reply on the formula.

Let ξ be a given unit vector. By taking derivatives of (6), we deduce that $v=q_{\xi\xi}$ satisfies

$$\partial_t v - \frac{1}{2} \Delta v + \nabla \bar{q} \cdot \nabla v = - |\nabla \bar{q}_\xi|^2 \leq 0 \quad \text{on } (0,1) \times \mathbb{R}^n.$$

Thanks to the standard maximum principle of parabolic equation, we have that

$$v(t,x) \le \sup_{x \in \mathbb{R}^n} v(x,0) = \sup_{x \in \mathbb{R}^2} q_{\xi\xi} \le M_1.$$

The proof of (2) is more interesting. It is equivalent to showing that

$$D^{2}\bar{q}(t,x) \ge -\frac{M_{0}}{1 - M_{0}t}I_{n}.$$
(23)

Below we show a PDE approach that is base on modification of arguments in Strömberg (2010) for obtaining semiconcavity of solutions to the general viscous Hamilton-Jacobi equations.

Fix $\delta_1 > 0$. Note that by $D^2 g \succeq -M_0 I_n$,

$$g(x) - g(0) - \nabla g(0) \cdot x \ge -\frac{M_0}{2}|x|^2.$$

Hence there exists a constant C_{δ_1} such that

$$g(x) \ge -\left(\frac{M_0}{2} + \delta_1\right)|x|^2 - C_{\delta_1}.$$

Let α and c be positive numbers satisfying that

$$\theta(0) = \alpha \tan(\alpha c) \ge M_{\delta_1} = M_0 + 4\delta_1$$

Consider the following construction,

$$w = \bar{q} + \theta(t)|x|^2/2 + n\Theta(t)/2,$$
 (24)

where,

$$\theta(t) = \alpha \tan(\alpha c + \alpha t), \quad t < T^* = \frac{\pi}{2\alpha} - c$$

$$\Theta(t) = \int_0^t \theta(s) ds.$$
(25)

We notice that Eq.(25) implies, $\theta(0) = \alpha \tan(\alpha c)$ and $\theta' - \theta^2 = \alpha^2$. Then w satisfies the following equation:

$$0 = \partial_t w + F(t, x, \nabla w, \nabla^2 w) := \partial_t w - \frac{1}{2} \Delta w + \frac{1}{2} |\nabla w|^2 - \theta(t) \nabla w \cdot x - \frac{\alpha^2}{2} |x|^2.$$
 (26)

Now we consider the convex envelope (definition see (20)) of w, w^{**} and aim to apply Lemma B.1 to show that w^{**} is a supersolution of Eq.(26). After direct validation of the first two condition of Lemma B.1, it resorts to coercivity assumption (22). To this end, we construct a solution \underline{q} of the equation ((6)) subjecting to $q(0,x) \leq \overline{g}(x)$:

$$\underline{q}(t,x) = \theta_1(t)\frac{|x|^2}{2} + \Theta_1(t)\frac{n}{2} - C_{\delta_1}$$

where

$$\theta_1(t) = \frac{1}{t - \frac{1}{M_0 + 2\delta_1}}, \quad \Theta_1(t) = \int_0^t \theta_1(t)dt.$$
 (27)

From Eq.(27), we know the construction holds for $t \in [0, \frac{1}{M_0 + 2\delta_1})$. By revisiting (25),

$$\sup_{\{\alpha\tan(\alpha c)\geq M_{\delta_1}\}}\left(\frac{\pi}{2\alpha}-c\right)=\lim_{\{\alpha\rightarrow 0^+,\ \alpha\tan(\alpha c)=M_{\delta_1}\}}\left(\frac{\pi}{2\alpha}-c\right)=\frac{1}{M_{\delta_1}}=\frac{1}{M+4\delta_1}$$

and

$$\lim_{\{\alpha \to 0^+, \ \alpha \tan(\alpha c) = M_{\delta_1}\}} \theta(t) = \frac{M_{\delta_1}}{1 - M_{\delta_1}t}.$$

Then by choose suitable α and c, comparison principle of (6) which is equivalent to one of (8) says that

$$\bar{q}(t,x) \geq \underline{q}(t,x) \quad \text{for } t \in [0, \frac{1}{M_{\delta_1}})$$

and hence,

$$w \ge (\theta(t) + \theta_1(t)) \frac{|x|^2}{2} + (\Theta(t) + \Theta_1(t)) \frac{n}{2} \quad \text{for } t \in [0, \frac{1}{M_{\delta_1}})$$
 (28)

Now turning back to Eq.(28), we know $\theta(t)+\theta_1(t)\geq 2\delta_1>0$ uniform in any closed subinterval of $t\in[0,\frac{1}{M_{\delta_1}})$. This ensures the uniform coercivity requirement in Lemma B.1.

Summing up, by Lemma B.1, w^{**} is a supersolution. On the other side, as convex envelope, $w^{**} \leq w$. Next, we want to utilize the comparison principle of (26) to show $w^{**} \geq w$ for all t, which is equivalent to Eq.(6) due to the construction (24). To do this, we only needs $w^{**}(0,X) \geq w(0,X)$, equivalently w(0,X) is convex and it assured by $\theta(0) \geq M_{\delta_1} > M_0$.

Now we have $w=w^{**}$ for $x\in R^d, t\in [0,T^*]$, is convex. In particular, this implies that

$$D^2 \bar{q}(t,x) \ge -\theta(t)I_n$$
 for $(t,x) \in [0,T^*] \times \mathbb{R}^n$.

Hence we derive that for any $T < \frac{1}{M_{\delta_1}}$,

$$\inf_{[0,T]\times\mathbb{R}^n} D^2 \bar{q}(t,x) \ge -\frac{M_{\delta_1}}{1 - M_{\delta_1} t} I_n.$$
(29)

Then (23) follows by sending $\delta_1 \to 0$.

Since the transform (7) only requires estimate of \bar{q} for $t \in [0,1]$, when $M_0 < 1$, (29) holds for any T < 1. Recalling transformation of q, the condition $M_0 < 1$ is equivalent to $-\log p$ is convex.

C.2 PROOF OF THEOREM 3.4: CONSTRUCTION OF EXAMPLE OF THE LOSS OF UNIFORM HESSIAN BOUND

Precisely speaking, we will construct a one dimensional (n = 1) example of $g(x) = G^2(x)$ for a smooth Lipschitz continuous function G satisfying that $|G'(x)| \le 1$, $|g''(x)| \le 2 = M_0 = M_1$ and

$$\lim_{|x| \to +\infty} \sup_{|\bar{q}''} (1/2, |x|) = \infty.$$

For M > 0, let g_M be the even function such that

$$g_M(x) = \begin{cases} 2M^2 - x^2, & 0 \le x \le M \\ (x - 2M)^2, & M \le x \le 2M \\ 0, & x \ge 2M. \end{cases}$$

Note that $|g_M''| \le 2$ independent of M. Let $h_M(t, x)$ be the solution to the following heat equation

$$u_t - \frac{1}{2}\Delta u = 0 \quad \text{for } (t, x) \in (0, \infty) \times \mathbb{R}$$
 (30)

subject to $h_M(0,x) = e^{-g_M(x)}$.

Since h_M is even in x, $(h_M)_x(1/2, 0) = 0$. Hence, we have

$$(\log h_M)_{xx}(1/2, 0) = \frac{(h_M)_{xx}(1/2, 0)}{h_M(1/2, 0)}$$

$$= \frac{e^{-2M^2} \int_0^M (4y^2 + 2) \, dy + e^{-2M^2} \int_M^{2M} e^{-2(y-M)^2} (4(y - 2M)^2 - 2) \, dy}{e^{-2M^2} M + e^{-2M^2} \int_M^{2M} e^{-2(y-M)^2} \, dy + \int_{2M}^{\infty} e^{-y^2} \, dy}$$

$$:= \frac{A + B}{C + D + E}.$$

Clearly, for M > 1,

$$A + B = 4e^{-2M^2} \int_0^M y^2 \, dy + 4e^{-2M^2} \int_M^{2M} e^{-2(y-M)^2} (y - 2M)^2 \, dy > M^3 e^{-2M^2}.$$

and

$$C + D + E \le 3Me^{-2M^2}.$$

Thus

$$(\log h_M)_{xx}(1/2,0) > \frac{M^2}{3} \tag{31}$$

for all $M \geq 1$.

Remark C.1. Note that g_M is $C^{1,1}$, not smooth. However, the estimates above still hold for sufficiently fine mollifications of g_M , so we may assume without loss of generality that g_M is smooth.

Below we will choose a sequence $0 \le x_1 \le x_2 \le \dots$ such that the terms in $g := \sum_{k=1}^{\infty} g_k(x - x_k)$ have disjoint support, and such that

$$(\log \bar{p}_N)_{xx}(1/2, x_k) > \frac{k^2}{3}, \quad \text{for } k = 1, ..., N,$$
 (32)

where \bar{p}_N is the solution to (30) subject to $\bar{p}_N(0,x) = e^{-\sum_{k=1}^N g_k(x-x_k)}$. Note that $\bar{p}_N(0,x) = 1$ for $x \le -2$.

Suppose we have managed to do this. Note that

$$\hat{p} < \bar{p}_N < 1$$

where \hat{p} is the solution to (30) subject to $\hat{p}(0,x)=\chi_{[-3,-2]}$. Then interior derivative estimates for solutions of (30) imply that $(\log \bar{p}_N)_{xx}(1/2, \cdot)$ converge locally uniformly on \mathbb{R} as $N \to \infty$ to $(\log \bar{p})_{xx}(1/2, \cdot)$, where q is the caloric function with initial data e^{-g} . Therefore, $(\log \bar{p})_{xx}(\cdot, 0)$ is bounded, but $(\log \bar{p})_{xx}(1/2, \cdot)$ is unbounded (its values at x_k are at least $\frac{k^2}{3}$), as desired.

We now explain how to choose x_k . We will repeatedly use the fact that if h is a bounded smooth function on $\mathbb R$ and $\tilde h$ is a compactly supported smooth function, then the caloric function with initial data $h+\tilde h(\cdot+S)$ converges in C^2 as $|S|\to\infty$ on compact subsets of $\{t>0\}$ to the caloric function with initial data h.

First, we let $x_1=0$. Then (32) with N=1 follows immediately from (31). Now suppose we have chosen $x_1 < ... < x_{M-1}$ such that the supports of $g_k(x-x_k)$, $1 \le k \le M-1$ are disjoint and (32) holds for N=M-1. Using the above-mentioned fact and (31), if we take x_M sufficiently large, then (32) holds for N=M. Indeed, the inequality for k < M follows immediately from the fact above, and the inequality for k=M follows from the fact above and the inequality (31), after translating so that x_M becomes 0. This completes the construction.

C.3 Proof of Theorem 3.5

Without loss of generality, we may assume $x_0 = 0$. It suffices to show the above for $|x| \ge 1$. For $|x| \le 1$, we can just replace |x| in all the final bounds with 1.

First, we prove (13). Without loss of generality, let q(0) = 0. Then

$$g(z) \le \beta_{\frac{1}{2}}|z|^2 + \beta_2|z|$$
 for $z \in \mathbb{R}^n$.

Recall that

$$\bar{p}(t,x) = \frac{1}{(2\pi t)^{\frac{n}{2}}} \int_{\mathbb{R}^n} e^{-\frac{|x-y|^2}{2t}} h(y) \, dy$$
$$= \frac{1}{(\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} e^{-|y|^2} h(x - \sqrt{2t}y) \, dy.$$

Then

$$-\nabla \bar{q} = \frac{\nabla \bar{p}}{\bar{p}} = \frac{1}{\bar{p}} \frac{1}{(\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} e^{-|y|^2} h(x - \sqrt{2t}y) Dg \, dy
= \frac{1}{\bar{p}} \frac{1}{(\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} e^{-|y|^2} h(x - \sqrt{2t}y) Dg \, dy$$
(33)

Since $ab \le a^2 + \frac{b^2}{2}$,

$$g(x - \sqrt{2t}y) \le \beta_1(|x|^2 + 2|y|^2) + \beta_2(|x| + \sqrt{2}|y|) \le 2\beta_1(|x|^2 + 2|y|^2) + \frac{{\beta_2}^2}{\beta_1},$$

we deduce that

$$\bar{p}(t,x) \geq e^{-\frac{\beta_2^2}{\beta_1}} \frac{e^{-2\beta_1|x|^2}}{(\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} e^{-(1+4\beta_1)|y|^2} dy$$

$$= e^{-\frac{\beta_2^2}{\beta_1}} e^{-2\beta_1|x|^2} \left(\frac{1}{1+4\beta_1}\right)^{\frac{n}{2}}.$$
(34)

Then

$$\begin{split} |\nabla \bar{p}| &= \frac{1}{(\pi)^{\frac{n}{2}}} \left| \int_{\mathbb{R}^n} e^{-|y|^2} Dh(x - \sqrt{2t}y) \, dy \right| = \frac{1}{(\pi)^{\frac{n}{2}}} \left| \int_{\mathbb{R}^n} e^{-|y|^2} h Dg(x - \sqrt{2t}y) \, dy \right| \\ &\leq \frac{1}{(\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} (\beta_1 |x| + \sqrt{2}\beta_1 |y| + \beta_2) e^{-|y|^2} h(x - \sqrt{2t}y) \, dy \\ &= (\beta_1 |x| + \beta_2) \bar{p} + \frac{\sqrt{2}\beta_1}{(\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} |y| e^{-|y|^2} h(x - \sqrt{2t}y) \, dy. \end{split}$$

Let

$$\tilde{K} = \frac{2}{\sqrt{1 - \alpha_2}} \max \left\{ \frac{C_{n,m}}{|x|}, \ 4\sqrt{\beta_1} + 1 \right\},\,$$

where

$$C_{n,m} = 2\sqrt{(n+3)\log\left(\frac{2(1+4\beta_1)}{\sqrt{1-\alpha_2}}\right) + 4n\log n + \alpha_1 + J_m + \frac{{\beta_2}^2}{\beta_1}}.$$

Here for $m \in \mathbb{N}$, J_m is the last positive integer such that $e^{r^2} \ge r^m$ for when $r \ge J_m$. In particular, $J_1 = J_2 = J_3 = 1$ and $C_n = C_{n,m}$ for m = 1, 2, 3.

Claim: If

$$K \ge K_0 = \max \left\{ \tilde{K}, \frac{6\alpha_2}{1 - \alpha_2} \right\},$$

then for i = 1, 2, 3, ..., m,

$$T_i(x) = \frac{1}{\bar{p}(t,x)} \frac{1}{(\pi)^{\frac{n}{2}}} \int_{y \in \mathbb{R}^n} |y|^i e^{-|y|^2} h(x - \sqrt{2t}y) \, dy \le K^i |x|^i + 1 \le 2K^i |x|^i. \tag{35}$$

Clearly, $T_i(0) = \mathbb{E}_{p(t,z)}(|z|^i)$.

Let us prove the claim. Note that

$$\bar{p}(t,x)T_{i} = \frac{1}{(\pi)^{\frac{n}{2}}} \int_{|y| \le K|x|} |y|^{i} e^{-|y|^{2}} h(x - \sqrt{2t}y) \, dy + \frac{1}{(\pi)^{\frac{n}{2}}} \int_{|y| \ge K|x|} |y|^{i} e^{-|y|^{2}} h(x - \sqrt{2t}y) \, dy
\le K^{i} |x|^{i} \bar{p}(t,x) + \underbrace{\frac{1}{(\pi)^{\frac{n}{2}}} \int_{|y|^{i} \ge K|x|} |y|^{i} e^{-|y|^{2}} h(x - \sqrt{2t}y) \, dy}_{I}.$$

Our goal is to show that $I_i \leq \bar{p}(t,x)$ when $K \geq K_0$. Since $g(z) \geq -\alpha_2|z|^2 - \alpha_1$, $|y| \geq K|x|$ and $K > \frac{6\alpha_2}{1-\alpha_2}$,

$$g(x - \sqrt{2t}y) \ge -\frac{\alpha_2}{2} (|x| + \sqrt{2}|y|)^2 - \alpha_1$$

$$> -\alpha_2|y|^2 (\frac{1}{K} + 1)^2 - \alpha_1$$

$$> \alpha_2|y|^2 (\frac{3}{K} + 1) - \alpha_1$$

$$\ge -\frac{(1+\alpha_2)}{2}|y|^2 - \alpha_1$$

Then

$$I_i \leq \frac{e^{\alpha_1}}{(\sqrt{\pi})^n} \int_{|y| > K|x|} |y|^i e^{-\frac{(1-\alpha_2)|y|^2}{2}} \, dy.$$

For convenience, denote $K_1 = \frac{K\sqrt{1-\alpha_2}}{2}$. Then

$$\frac{e^{\alpha_1}}{(\sqrt{\pi})^n} \int_{|y| \ge K|x|} |y|^i e^{-\frac{(1-\alpha_2)|y|^2}{2}} dy = \frac{e^{\alpha_1}}{(\sqrt{\pi})^n} \left(\frac{2}{\sqrt{1-\alpha_2}}\right)^{n+i} \int_{|z| \ge K_1|x|} |z|^i e^{-2|z|^2} dz$$

$$\le \frac{e^{\alpha_1}}{(\sqrt{\pi})^n} \left(\frac{2}{\sqrt{1-\alpha_2}}\right)^{n+3} \int_{|z| \ge K_1|x|} e^{-|z|^2} dz.$$

The last inequality is due to $e^{r^2} \ge r^m$ if $r \ge J_m$ and $K_1|x| \ge J_m$.

Note

$$\left(\int_{-r}^{r} e^{-t^2} dt\right)^2 \ge \int_{\{w \in \mathbb{R}^2 | |y| \le r\}} e^{-|w|^2} dw = \pi \left(1 - e^{-r^2}\right).$$

Combining with $(1-t)^n \ge 1 - nt$ for $t \in [0, 1]$, we deduce

$$\int_{Q_r} e^{-|y|^2} dy = \left(\int_{-r}^r e^{-t^2} dt \right)^n \ge (\sqrt{\pi})^n \left(1 - e^{-r^2} \right)^{\frac{n}{2}} \ge (\sqrt{\pi})^n \left(1 - \frac{ne^{-r^2}}{2} \right)^{\frac{n}{2}}$$

Here $Q_r=\{y=(y_1,y_2,...,y_n)|\ |y_i|\leq r \ \text{for} \ i=1,2,...,n\}.$ Accordingly, for $r\geq 1$,

$$\frac{1}{(\sqrt{\pi})^n} \int_{|y| \ge r} e^{-|y|^2} dy \le \frac{1}{(\sqrt{\pi})^n} \int_{\mathbb{R}^n \setminus Q_r} e^{-|y|^2} dy + \frac{1}{(\sqrt{\pi})^n} \int_{Q_r \setminus \{|y| \le r\}} e^{-|y|^2} dy$$

$$\le \frac{ne^{-r^2}}{2} + \frac{1}{(\sqrt{\pi})^n} e^{-r^2} (2r)^n < 2^n e^{-r^2} r^n$$

This implies that

$$\frac{1}{(\sqrt{\pi})^n} \int_{|z| < K_1|x|} e^{-|z|^2} \le 2^n e^{-K_1^2|x|^2} \left(K_1|x| \right)^n.$$

Since $K_1 \ge \max\{3\sqrt{\beta_1}, \frac{2\sqrt{n\log n}}{|x|}\}$

$$e^{-2\beta_1|x|^2}K_1^n|x|^ne^{-K_1^2|x|^2} \leq e^{-2\beta_1|x|^2}e^{-\frac{K_1^2|x|^2}{2}} \leq e^{-\frac{K_1^2|x|^2}{4}}$$

Combining with

$$\frac{K_1^2|x|^2}{4} \ge \frac{\tilde{K}^2|x|^2}{4} \ge (n+3)\log\left(\frac{1+4\beta_1}{\sqrt{1-\alpha_2}}\right) + 16n\log n + \alpha_1 + 1 + \frac{{\beta_2}^2}{\beta_1},$$

we obtain

$$e^{-2\beta_1|x|^2}I_i \leq 2^n e^{\alpha_1} \left(\frac{2}{\sqrt{1-\alpha_2}}\right)^{n+3} e^{-\frac{K_1^2|x|^2}{4}} \leq e^{-\frac{\beta_2^{\,2}}{\beta_1}} (1+4\beta_1)^{-\frac{n}{2}}.$$

By (34),

$$I_i \leq \bar{p}(t,x).$$

Hence (35) holds. As an immediate conclusion, we have that

$$|\nabla \bar{q}| = \frac{|\nabla \bar{p}|}{\bar{p}} \le \beta_1 |x| + \beta_2 + 2\beta_1 \sqrt{2}K|x| < 3\beta_1 K|x| + \beta_2.$$

Secondly, to prove (14) and (15), we first assume that g(0) = 0 and $\nabla g(0) = 0$, which will be removed at the end. Then

$$|\nabla g(x)| \le L|x|.$$

Next we first verify (14). Note that

$$D^2 \bar{q} = A - B + \nabla \bar{q} \otimes \nabla \bar{q} \tag{36}$$

Here

$$A = \frac{1}{\bar{p}} \frac{1}{(\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} e^{-|y|^2} h D^2 g(x - \sqrt{2t}y) \, dy$$

and

$$B = \frac{1}{\bar{p}} \frac{1}{(\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} e^{-|y|^2} h \nabla g \otimes \nabla g(x - \sqrt{2t}y) \, dy.$$

Here $(u \otimes u)_{ij} = u_i u_j$ is the outer product. By Cauchy inequality, $B \geq \nabla \bar{q} \otimes \nabla \bar{q}$. Hence

$$D^2 \bar{q} < A < LI_n$$
.

For the other direction,

$$D^2 \bar{q} \ge A - B \ge -LI_n - B.$$

So we just need to estimate the term B. Note that

$$\left\| \frac{1}{(\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} e^{-|y|^2} h \nabla g \otimes \nabla g(x - \sqrt{2t}y) \, dy \right\|_{2} \le \frac{L^2}{(\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} (|x| + \sqrt{2}|y|)^2 e^{-|y|^2} h \, dy$$

$$\le \frac{2L^2}{(\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} (|x|^2 + 2|y|^2) e^{-|y|^2} h \, dy$$

$$\le 2L^2 \left(|x|^2 \bar{p}(t, x) + \frac{2}{\pi^{\frac{n}{2}}} \int_{\mathbb{R}^n} |y|^2 e^{-|y|^2} h \, dy \right).$$

Thanks to (35) for $\beta_1 = L$, $\beta_2 = 0$ and $K = K_0$, we have that

$$||\mathbf{B}||_2 \le 2L^2(|x|^2 + 4K_0^2|x|^2) < 10L^2K_0^2|x|^2.$$

1025 Hence

$$||D^2\bar{q}||_2 \le L + ||B||_2 < L + 10L^2K_0^2|x|^2$$

Then let us verify (15). Note that

1029 with

$$|C| = \left| \frac{1}{\sqrt{2t}} \frac{1}{\bar{p}} \frac{1}{(\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} e^{-|y|^2} h D^2 g(x - \sqrt{2t}y) \cdot y \, dy \right| \le \frac{L}{\sqrt{2t}} \frac{1}{\bar{p}} \frac{1}{(\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} |y| e^{-|y|^2} h \, dy$$

$$\le \frac{2L}{\sqrt{2t}} K|x| < \frac{2L}{L} K|x|.$$

 $\partial_t \nabla \bar{q}(t,x) = C + D - \partial_t \bar{q} \nabla \bar{q}$

Also,

$$|D| = \left| \frac{1}{\sqrt{2t}} \frac{1}{\bar{p}} \frac{1}{(\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} e^{-|y|^2} h \nabla g \otimes \nabla g(x - \sqrt{2t}y) \cdot y \, dy \right|$$

$$\leq \frac{1}{\sqrt{2t}} \frac{2L^2}{(\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} (|x|^2 |y| + 2|y|^3) e^{-|y|^2} h \, dy$$

$$< \frac{1}{\sqrt{t}} \frac{2L^2 |x|^2}{(\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} |y| e^{-|y|^2} h \, dy + \frac{1}{\sqrt{t}} \frac{4L^2}{(\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} |y|^3 e^{-|y|^2} h \, dy$$

$$\leq \frac{2L^2}{\sqrt{t}} (2K|x|^3 + 4K^3|x|^3)$$

$$< \frac{12L^2}{\sqrt{t}} K^3 |x|^3.$$

Finally,

$$\begin{aligned} |\partial_t \bar{q}| &= \left| \frac{1}{\sqrt{2t}} \frac{1}{\bar{p}} \frac{1}{(\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} e^{-|y|^2} h \nabla g(x - \sqrt{2t}y) \cdot y \, dy \right| \\ &\leq \frac{L}{\sqrt{2t}} \frac{1}{\bar{p}} \frac{1}{(\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} (|x||y| + \sqrt{2}|y|^2) e^{-|y|^2} h \, dy \\ &\leq \frac{L}{\sqrt{2t}} (2K|x|^2 + 2\sqrt{2}K^2|x|^2) \leq \frac{6L}{\sqrt{t}} K^2 |x|^2. \\ &|\nabla \bar{q}| \leq 2L(1 + \sqrt{2})K|x| \leq 6LK|x|. \end{aligned}$$

Also,

Hence

$$|\partial_t \bar{q} \nabla q| \le \frac{36L^2}{\sqrt{t}} K^3 |x|^3.$$

So

$$\begin{split} |\partial_t \nabla \bar{q}(t,x)| & \leq \frac{2L}{\sqrt{t}} K|x| + \frac{1}{\sqrt{t}} 12 L^2 K^3 |x|^3 + \frac{36L^2}{\sqrt{t}} K^3 |x|^3 \\ & \leq \frac{50L^2}{\sqrt{t}} K^3 |x|^3. \end{split}$$

At last, for a general g, we consider

$$g_0(x) = g(x) - g(0) - \nabla g(0) \cdot x.$$

and $\bar{q}_0(t,x)$ be the corresponding score function. Then we have

$$g_0(0) = 0$$
, $\nabla g_0(0) = 0$ and $\bar{q}_0(t, x) = \bar{q}(t, x + \nabla g(0))$.

Hence (14) and (15) hold for general cases.

Remark C.2. In the proof of (15), we may also bound $\partial_t \bar{q}$ use the equation

$$\partial_t \bar{q} = \frac{1}{2} (\Delta \bar{q} - |\nabla \bar{q}|^2)$$

together with bounds for $\Delta \bar{q}$ and $|\nabla \bar{q}|^2$. Note $\nabla g(x - \sqrt{t}y) = \nabla g(x) + r_t$ for $|r_t| \leq L\sqrt{t}|y|$. Then term D in the proof

$$D = \frac{1}{\sqrt{2t}} \frac{1}{\bar{p}} \frac{1}{(\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} e^{-|y|^2} h \nabla g \otimes \nabla g(x - \sqrt{2t}y) \cdot y \, dy$$
$$= \frac{\partial_t \bar{q} \nabla g(x) + O(L^2 K^3 |x|^3)}{2}.$$

This will lead to a bound of $\partial_t \nabla \bar{q}$ by replacing $\frac{L^2}{\sqrt{t}}$ in (15) by $O(nL^3)$. The details are left to interested readers as an exercise.

Below are other simple situations that we can obtain global uniform bound of the Hessian, which follows immediately from (33) and (36).

Theorem C.3. Let L_1 and L_2 be two positive constants such that

$$|\nabla g| \le L_1$$
 and $||D^2 g||_2 \le L_2$.

Then

$$|\nabla \bar{q}(t,x)| \le L_1$$
 and $-(L_2 + L_1^2)I_n \le D^2 q(t,x) \le L_2 I_n$

C.4 PROOF OF (16)

We first prove the blow up bound of the gradient (1) in (16). Note that $D\bar{q}=-\frac{D\bar{p}}{\bar{p}}$ and

$$\bar{p}(t,x) = \frac{1}{(2\pi t)^{\frac{n}{2}}} \int_{\mathbb{R}^n} e^{-\frac{|x-y|^2}{2t}} d\pi_0(y)$$
$$= \frac{1}{(2\pi t)^{\frac{n}{2}}} \int_{D_0} e^{-\frac{|x-y|^2}{2t}} d\pi_0(y).$$

Then

$$\nabla \bar{p}(t,x) = -\frac{1}{(2\pi t)^{\frac{n}{2}}} \int_{D_0} \frac{(x-y)}{t} e^{-\frac{|x-y|^2}{2t}} d\pi_0(y).$$

Since $D_0 \subset \overline{B}_M(0)$

$$|\nabla \bar{p}(t,x)| \le \frac{|x|+M}{t}\bar{p}(t,x).$$

Next we prove the blow up bound of Hessian (2) in (16). Note that

$$-D^2\bar{q}(t,x) = \frac{D^2\bar{p}}{\bar{p}} - \frac{\nabla\bar{p}\otimes\nabla\bar{p}}{\bar{p}^2} = -\frac{\delta_{ij}}{t} + \frac{1}{t^2}\frac{A-B}{\hat{p}^2(t,x)}.$$

Here $\hat{p}(t,x) = \int_{D_0} e^{-\frac{|x-y|^2}{2t}} d\pi_0(y),$

$$A_{ij} = \hat{p}(t,x) \int_{D_0} (x_i - y_i)(x_j - y_j) e^{\frac{-|x-y|^2}{2t}} d\pi_0(y)$$

and

$$\begin{array}{ll} B_{ij} &= \int_{D_0} (x_i - y_i) e^{\frac{-|x-y|^2}{2t}} d\pi_0(y) \cdot \int_{D_0} (x_j - y_j) e^{\frac{-|x-y|^2}{2t}} d\pi_0(y) \\ &= \hat{p}^2(t,x) x_i x_j - \hat{p}(t,x) \int_{D_0} (x_i y_j + x_j y_i) e^{\frac{-|x-y|^2}{2t}} d\pi_0(y) + \\ &+ \int_{D_0} y_i e^{\frac{-|x-y|^2}{2t}} d\pi_0(y) \cdot \int_{D_0} y_j e^{\frac{-|x-y|^2}{2t}} d\pi_0(y) \end{array}$$

Hence $(A - B)_{ij}$

$$\hat{p}(t,x) \int_{D_0} y_i y_j e^{\frac{-|x-y|^2}{2t}} d\pi_0(y) - \int_{D_0} y_i e^{\frac{-|x-y|^2}{2t}} d\pi_0(y) \cdot \int_{D_0} y_j e^{\frac{-|x-y|^2}{2t}} d\pi_0(y)$$
 (37)

So it is easy to see that

$$||A - B||_2 < M^2 \hat{p}^2(t, x).$$

Thus (16) holds.

C.5 PROOF OF THEOREM 3.9

Since π_0 is comparable to the uniform distribution, there exists a constant C such that for any measurable subset $U \subset D_0$

$$\frac{1}{C}\mathcal{H}_d(U) \le \pi_0(S) \le C\mathcal{H}_d(U)$$

Here $\mathcal{H}_d(\cdot)$ is the d-dimensional Hausdorff measure. Hereafter, we write

- (i) ∂D_0 : the d-1 dimensional boundary of D_0 . Moreover, for $y \in D_0$;
- (ii) $T_u(D_0) \subset \mathbb{R}^n$: the d-dimensional tangent space of D_0 at y;

- (iii) $N_u(D_0) \subset \mathbb{R}^n$: the n-d dimensional orthogonal complement of $T_u(D_0)$;
 - (iv) $T'_y(D_0) \subset \mathbb{R}^n$: the d-1-dimensional tangent space of ∂D_0 at $y \in \partial D_0$. Note that $T'_y(D_0)$ is a subspace of $T_y(D_0)$;
 - (v) $N_y'(D_0) \subset \mathbb{R}^n$: the n+1-d dimensional orthogonal complement of $T_y'(D_0)$. $N_y(D_0)$ is a subspace of $N_y'(D_0)$

Let

$$S = \{x \in \mathbb{R}^n | \text{ there exists a unique } y_x \in D_0 \text{ such that } |x - y_x| = d(x, D_0) \}.$$

Then $\mathbb{R}^n \setminus S$ has zero measure since $d(x, D_0)$ is differentiable almost everywhere.

Write

$$S_1 = \{x \in S | y_x \in D_0 \backslash \partial D_0\} \text{ and } S_2 = \{x \in S | y_x \in \partial D_0\},$$

$$W_1 = \left\{x \in S_1 | \liminf_{y \in D_0 \to y_x} \frac{|x - y|^2 - |x - y_x|^2}{|y - y_x|^2} > 0\right\},$$

$$W_2 = \left\{x \in S_2 | x - y_x \in N_{y_x}(D_0) \text{ and } \lim_{y \in D_0 \to y_x} \frac{|x - y|^2 - |x - y_x|^2}{|y - y_x|^2} > 0\right\},$$

and

$$W_3 = \left\{ x \in S_2 | \ x - y_x \notin N_{y_x}(D_0) \quad \text{and} \quad \liminf_{y \in \partial D_0 \to y_x} \frac{|x - y|^2 - |x - y_x|^2}{|y - y_x|^2} > 0 \right\}.$$

Note that

$$\begin{array}{ll} \text{if } y \in D_0 \backslash \partial D_0, & \text{then } x - y_x \in N_{y_x}(D), \\ \text{if } y \in \partial D_0, & \text{then } x - y_x \in N_{y_x}'(D). \end{array}$$

Step 1: We show that $S\setminus \left(\cup_{i=1}^3 W_i\right)=(S_1\setminus W_1)\cup (S_2\setminus W_2)\cup (S_2\setminus W_3)$ has zero measure. We will prove this for $S_1\setminus W_1$, The proofs for the other two are similar. Apparently, if $x\in S$, then for all $t\in (0,1), y_{\tilde{X}_t}=y_x$ and $\tilde{X}_t\in W$ for $\tilde{X}_t=y_x+t(x-y_x)$. Also,

For $y \in D_0 \backslash \partial D_0$, write

$$\Gamma_y = \{ x \in S_1 \backslash W_1 | y_x = y \}.$$

By compactness argument, it is easy to show that for given $x \in S$ and r > 0, there exists a $r_x > 0$, such that $y_{\tilde{x}} \in B_r(y_x)$ for any $\tilde{x} \in B_{r_x}(x) \cap S$. Hence to prove that $S_1 \backslash W$ has zero measure, it suffices to show that for any $y_0 \in D_0$, if Γ_{y_0} is not empty, then there exists $r_0 > 0$ such that

$$\bigcup_{y \in B_{r_0}(y_0) \cap D_0} \Gamma_y \subset \{ y + t(y, v) | y \in B_{r_0}(y_0), \ v \in N_y(D_0) \text{ and } |v| = 1 \}$$
 (38)

for a locally Lipschitz continuous function

$$t(y,v): B_{r_0}(y_0) \times N_y(D_0) \to (0,\infty).$$

By suitable translation and rotation, we may assume $y_0 = 0$ and in a neighbourhood V of 0,

$$D_0 \cap V = V \cap \{ (y', F(y')) | y' \in \mathbb{R}^d \}, \tag{39}$$

where $F=(F^{(d+1)},F^{(d+2)},...,F^{(n)}):\mathbb{R}^d\to\mathbb{R}^{n-d}$ is smooth map satisfying $\nabla F(0)=0$ and F(0)=0. Choose $x\in\Gamma_{y_0}$. Let $v=\frac{x}{|x|}\in N_y(D_0)$ and t>0, let

$$H_{tv}(y') = |tv - (y', F(y'))|^2.$$

Since $x \in W_1$, $D^2H_{tv}(0)$ can not be a positive definite matrix for t=|x|. Meanwhile, for 0 < t < |x|, $y_{tx} = y_0$ and $tx \in W_1$, which implies that $D^2H_{tv}(0)$ is positive definite for $t \in [0, |x|)$. Hence t=|x| is the first moment such that $D^2_{tv}H(0)$ has a zero eigenvalue. Which is equivalent to

the largest eigenvalue of the
$$d\times d$$
 matrix $\sum_{k=d+1}^n tv_k F_{y_i'y_j'}^{(k)}(0)$ is 1.

Therefore, for $y \in B_r(y_0)$ and $v \in T_y(D_0)$ with |v| = 1, if the largest eigenvalue $\lambda(y,v)$ of the matrix $\sum_{k=d+1}^n v_k F_{y_i'y_j'}^{(k)}(y)$ is positive, we set

$$t(y,v) = \frac{1}{\lambda(y,v)}.$$

1188 Then (38) holds.

Step 2: We will verify that if $x \in \bigcup_{i=1}^3 W_i$, then

$$|D^2\bar{q}(t,x)| \leq \frac{C_x}{t} \quad \text{for all } t \in (0,1].$$

Case 1: Assume that $x \in W_1$. Without loss of generality, we may assume $y_x = 0$ and use the representation as (39). Choose r > 0 such that

(i)
$$V_r = \{(y', F(y')) | |y'| < r\} \subset D_0;$$

(ii) Then there exits $\alpha_x, \beta_x > 0$ such that for $y \in V_r$,

$$\alpha_x |y - y_x|^2 \ge |x - y|^2 - |x - y_x|^2 \ge \beta_x |y - y_x|^2$$
 for $y \in D_0$. (40)

For $k \ge 1$ and $k\sqrt{t} \le r$, write

$$V_{t,k} = \{ (y', F(y')) | |y'| < k\sqrt{t} \}$$

Thanks to the left upper bound in (40),

$$\int_{D_0} e^{\frac{-|x-y|^2}{2t}} \, d\pi_0 \geq \int_{V_{t,1}} e^{\frac{-|x-y|^2}{2t}} \, d\pi_0 \geq O\left(t^{\frac{d}{2}} e^{-\frac{|x-y_x|^2}{2t}}\right).$$

Recall that $y_x = 0$. To see the dependence on y_x , we keep y_x in the computations below instead of replacing it by 0. Note

$$\int_{D_0} |y - y_x|^2 e^{\frac{-|x - y|^2}{2t}} d\pi_0 \le \int_{V_n} |y - y_x|^2 e^{\frac{-|x - y|^2}{2t}} d\pi_0 + C e^{-\frac{|x - y_x|^2 + \delta_r}{2t}}$$

for some $\delta_r > 0$.

1215 Also,

$$\int_{V_r} |y - y_x|^2 e^{\frac{-|x - y|^2}{2t}} d\pi_0 = \sum_{k=0}^{\infty} \int_{\{y \in V_{t,k+1} \setminus V_{t,k}\}} |y - y_x|^2 e^{\frac{-|x - y|^2}{2t}} d\pi_0
\leq Ct \cdot t^{\frac{d}{2}} e^{-\frac{|x - y_x|^2}{2t}} \sum_{k=1}^{\infty} (k+1)^2 e^{-k} = O\left(t^{\frac{d}{2}} e^{-\frac{|x - y_x|^2}{2t}}\right) t.$$

Hence

$$\frac{\int_{D_0} |y - y_x|^2 e^{\frac{-|x - y|^2}{2t}} d\pi_0(y)}{\hat{p}} \le Ct \tag{41}$$

Recall that

$$\hat{p}(t,x) = \int_{D_0} e^{\frac{-|x-y|^2}{2t}} d\pi_0(y) = (\sqrt{2\pi t})^n \bar{p}(t,x).$$

Then for $1 \le i, j \le n$ and $y_x = (a_1, a_2, ..., a_n)$,

$$\left| \frac{\int_{D_0} y_i y_j e^{\frac{-|x-y|^2}{2t}} d\pi_0(y)}{\hat{p}(t,x)} - \frac{\int_{D_0} y_i e^{\frac{-|x-y|^2}{2t}} d\pi_0(y)}{\hat{p}(t,x)} \cdot \frac{\int_{D_0} y_j e^{\frac{-|x-y|^2}{2t}} d\pi_0(y)}{\hat{p}(t,x)} \right| =$$

$$\left| \frac{\int_{D_0} (y_i - a_i)(y_j - a_j) e^{\frac{-|x-y|^2}{2t}} d\pi_0(y)}{\hat{p}(t,x)} - \frac{\int_{D_0} (y_i - a_i) e^{\frac{-|x-y|^2}{2t}} d\pi_0(y)}{\hat{p}(t,x)} \cdot \frac{\int_{D_0} (y_j - a_j) e^{\frac{-|x-y|^2}{2t}} d\pi_0(y)}{\hat{p}(t,x)} \right|$$

$$\leq Ct$$

 $1233 \leq C$

The last equality follows from (41) and the Cauchy inequality. Therefore, (37) leads to

$$|D^2\bar{q}(t,x)| \le \frac{C_x}{t}.$$

Case 2: $x \in W_2$. The proof is similar to Case 1.

Case 3: $x \in W_3$. By suitable translation and rotation, we may assume $y_x = 0$ and in a neighborhood of $0 \in \mathbb{R}^d$,

$$D_0 \cap V = \tilde{V}_r = \{(y', F(y')) | y' = (y'_1, ..., y'_d) \in \Omega_{f,r}\},\$$

where $F: \mathbb{R}^d \to \mathbb{R}^{n-d}$ is smooth map satisfying that $\nabla F(0) = 0$. Also,

1244
$$\Omega_{f,r} = \{ z = (z', z_d) | z' = (z_1, z_2, ..., z_{d-1}) \in \mathbb{R}^{d-1}, |z'| < r; z_d \ge f(z_1, z_2, ..., z_{d-1}) \}.$$

1245 for a smooth function $f:\mathbb{R}^{d-1}\to\mathbb{R}$ subject to $\nabla f(0)=0$. Then

$$T_0(D_0) = \{(v, 0, ..., 0) \in \mathbb{R}^n \mid v \in \mathbb{R}^d\}$$

and the d-1 dimensional tangent plane to ∂D_0 at $y_x=0$ is

$$\partial T_0(D_0) = \{ (v', 0, 0, ..., 0) \in \mathbb{R}^n \mid v' \in \mathbb{R}^{d-1} \}.$$

Thus

$$x = x - y_x = (\underbrace{0, ...0}_{d-1}, \theta_x, z_x)$$

for some $\theta_x > 0$ and $z_x \in \mathbb{R}^{n-d}$. To see the dependence on y_x , as in Case 1, we keep y_x in the computations below instead of replacing it by 0.

Then for $y'' \in \mathbb{R}^{d-1}$ and $y = (y'', y_d, F(y'', y_d)) \in D_0$,

$$|x - y|^2 - |x - y_x|^2 = 2\theta_x(y_d - f(y')) + O(|y - y_x|^2).$$
(42)

Write

$$H(y) = |x - y|^2 - |x - y_x|^2 = H(y'', y_d, F(y'', y_d)).$$

Since $x \in W_3$,

$$H(y'', f(y''), F(y'', f(y''))) \ge \delta_x |y''|^2$$
.

Therefore, there exists r > 0 and M > 0 such that

$$|x-y|^2 - |x-y_x|^2 \ge \frac{\theta_x}{M}(y_d - f(y')) + \delta_x |y-y_x|^2$$
 for all $y \in \tilde{V}_r$.

1271 Write

$$R_{t,k} = \{ (y', y_d, F(y', y_d)) \in \Omega | |y'| \le k\sqrt{t} \text{ and } 0 \le y_d - f(y') \le kt \}.$$

Thanks to (42),

$$\hat{p}(t,x) = \int_{D_0} e^{\frac{-|x-y|^2}{2t}} d\pi_0 \ge \int_{D_0 \cap R_{t,1}} e^{\frac{-|x-y|^2}{2t}} d\pi_0 \ge O\left(t^{d+\frac{1}{2}} e^{-\frac{|x-y_x|^2}{2t}}\right).$$

Note that

$$\int_{D_0} |y-y_x|^2 e^{\frac{-|x-y|^2}{2t}} \, d\pi_0 \leq \int_{\tilde{V}_r} |y-y_x|^2 e^{\frac{-|x-y|^2}{2t}} \, d\pi_0 + C e^{-\frac{|x-y_x|^2+\delta_r}{2t}}.$$

1282 Also,

$$\begin{split} &\int_{\tilde{V}_r} |y-y_x|^2 e^{\frac{-|x-y|^2}{2t}} \, d\pi_0 = \sum_{k=0}^{\infty} \int_{D_0 \cap (R_{t,k+1} \setminus R_{t,k})} |y-y_x|^2 e^{\frac{-|x-y|^2}{2t}} \, d\pi_0 \\ &\leq Ct \cdot t^{d+\frac{1}{2}} e^{-\frac{|x-y_x|^2}{2t}} \sum_{k=1}^{\infty} (k+1)^2 e^{-k} = tO\left(t^{d+\frac{1}{2}} e^{-\frac{|x-y_x|^2}{2t}}\right). \end{split}$$

1287 Hence

$$\frac{\int_{D_0} |y - \bar{y}_x|^2 e^{\frac{-|x - y|^2}{2t}} d\pi_0(y)}{\hat{p}} \le Ct$$

Then by the same argument in the end of Case 1, we deduce that

$$||D^2\bar{q}(t,x)||_2 \le \frac{C_x}{t}.$$

Finally, if D_0 is convex, then it is clear that $S = \mathbb{R}^n$ and $W_1 = S_1$ and $W_2 \cup W_3 = S_2$. Hence the $O(\frac{1}{t})$ bound holds for all $x \in \mathbb{R}^n$.

C.6 PROOF OF EXAMPLE 3.10

 Proof: For given $x \in \mathbb{R}^2$, denote by \bar{y}_t the weighted center of mass:

$$\bar{y}_t = \frac{\int_{D_0} y e^{\frac{-|x-y|^2}{2t}} d\pi_0(y)}{\hat{p}}$$

Note that as $t \to 0$, the measure $\frac{e^{\frac{-|x-y|^2}{2t}}d\pi_0(y)}{\hat{p}}$ will concentrate on $\{y \in D_0 | |y-x| = d(x,D_0)\}$. Thus,

$$\lim_{t \to 0} d(\bar{y}_t, \Gamma_x) = 0,$$

where Γ_x is the convex hull of $\{y \in D_0 | |y - x| = d(x, D_0)\}$. According to the computation in the proof of (16), we have that

$$\begin{split} -\Delta \bar{q} &= -\frac{n}{t} + \frac{\hat{p} \int_{D_0} |y|^2 e^{\frac{-|x-y|^2}{2t}} d\pi_0(y) - \left| \int_{D_0} y e^{\frac{-|x-y|^2}{2t}} d\pi_0(y) \right|^2}{t^2 \hat{p}^2} \\ &= -\Delta \bar{q} = -\frac{n}{t} + \frac{\int_{D_0} |y - \bar{y}_t|^2 e^{\frac{-|x-y|^2}{2t}} d\pi_0(y)}{t^2 \hat{p}}, \end{split}$$

where the second term is like a variance. If $x = (\theta, 0)$ for some $\theta > 0$, there are two points y_1 and y_2 such that

$$|x - y_1| = |x - y_2| = d(x, D_0).$$

Due to the symmetry, we must have that

$$\frac{e^{\frac{-|x-y|^2}{2t}}d\pi_0(y)}{\hat{p}} \to \frac{1}{2}\delta_{y_1} + \frac{1}{2}\delta_{y_2} \quad \text{and} \quad \lim_{t \to +\infty} y_t = \frac{y_1 + y_2}{2}.$$

Accordingly,

$$\lim_{t \to 0} \frac{\int_{D_0} |y - \bar{y}_t|^2 e^{\frac{-|x - y|^2}{2t}} d\pi_0(y)}{\hat{p}} = \frac{|y_1 - y_2|^2}{4},$$

leading to

$$-\Delta \bar{q}(t,x) \ge \frac{C_x}{t^2} \quad \text{for } t \in (0,1].$$

C.7 Proof of Theorem 4.1

Lemma C.4. Given T > 0, suppose that $F = F(t,x) \in C([0,T] \times \mathbb{R}^n, \mathbb{R}^n)$ satisfies that F is locally Lipschitz continuous in x variable, i.e., for any M > 0, there exists a constant L_M such that

$$|F(t,x) - F(t,y)| \le L_M |x-y|$$
 for $x, y \in B_M(0)$ and $t \in [0,T]$

and

$$|F(t,x)| \le C(|x|+1)$$
. for $(t,x) \in [0,T] \times \mathbb{R}^n$.

for a positive constant C. Then for any $x_0 \in \mathbb{R}^n$, the following equation has a unique solution

$$\begin{cases} \dot{X}(t) = F(t, X(t)) & t \in [0, T] \\ X(0) = x_0. \end{cases}$$

Proof: The uniqueness follows from standard ODE theory. We just need to establish the global existence. Let $w(t) = |X(t)|^2$. Then

$$\dot{w}(t) \le C_1 w(t) + C_2$$

for two positive constants C_1 and C_2 depending only on C. Hence for all $t \geq 0$,

$$e^{-C_1 t} w(t) \le |x_0|^2 + \frac{C_2}{C_1} (1 - e^{-C_1 t}).$$

Hence the solution can be extended to T.

Proof of Theorem 4.1 It suffices to notice that for each fixed sample ω , $Y(t) = Y(t, \omega) = X_t(\omega) - W_t(\omega)$ just satisfies the regular ODE for any fixed sample

 $\begin{cases} dY(t) = F(t, Y + W(t))dt & t \in [0, \infty) \\ Y(0) = x_0. \end{cases}$

Hence the Corollary follows from Theorem C.4 and the well known fact that $W_t(\omega) \in C([0,T],\mathbb{R}^n)$ for a.e. ω .

C.8 Proof of Theorem 4.5

The key ingredient is the following estimates on truncation error.

Theorem C.5. Assume $||D^2g(x)||_2 \le L$. Suppose that Assumption 2.4 holds and there exists $C_0 > 0$ such that, $\alpha_1 \le C_0 n$ and $|\nabla g(x_0)| \le C \sqrt{n}$, we have that for fixed $T \le 1$ and $t_k = \frac{kT}{N}$,

$$\sum_{k=1}^{N} \int_{t_{k-1}}^{t_k} \mathbb{E}||\nabla \bar{q}(t_k, x(t_k)) - \nabla \bar{q}(t, x(t))||^2 dt \le \frac{CL^6 T n (n \log n)^2}{N}$$
(43)

Here C is a constant independent of n and L.

Proof:It suffices to show that for $s > t \in [0, T]$,

$$\mathbb{E}||\nabla \bar{q}(s, x(s)) - \nabla \bar{q}(t, x(t))||^2 \le CL^6(s - t)n^3 \log n$$

According to Lemma C.6 in Chen et al. (2023), it suffices to show that

$$\mathbb{E}||\nabla \bar{q}(t, x(t) + z) - \nabla \bar{q}(t, x(t))||^2 \le Cn^2(s - t). \tag{44}$$

Here $z \sim \mathcal{N}(0, C(s-t))$.

Owing to (14) of Theorem 3.5 in our paper and $\max\{a, b\} \le a + b$,

$$||D^2\bar{q}(t,x)|| \le C(|x|^2 + n\log n),$$

where C depends on (L, C_0, α_2) . See (11) for the definition of the spectral norm $||\cdot||_2$ of $n \times n$ matrix. Then

$$||\nabla \bar{q}(t,x(t)+z) - \nabla \bar{q}(t,x(t))||^2 \leq C(1+|x(t)|^4+|z|^4+(n\log n)^2)|z|^2.$$

Note that $\mathbb{E}(z^2) < Cn(s-t)$ and $\mathbb{E}(z^4) < Cn^2(s-t)^2$. Moreover, by Cauchy inequality

$$\mathbb{E}(|x(t)|^4 z^2) \le \sqrt{(\mathbb{E}(x^8(t))\mathbb{E}(z^4)} \le Cn(n\log n)^2 (s-t).$$

The last inequality is due to $\mathbb{E}_{p(t,x)}(x(t)^8) \leq C(n \log n)^4$ from Remark. Hence (44)holds.

Remark C.6. In the proof of Theorem C.5, instead of using Lemma C.6 in Chen et al. (2023), we may also use (15) from Theorem 3.5 to bound the difference between time,

$$\mathbb{E}||\nabla \bar{q}(s, x(t)) - \nabla \bar{q}(t, x(t))||^2 \le C(s - t)^2 n^4 (\log n)^3.$$

This will lead to an extra term $\frac{Cn^4(\log n)^3}{N^2}$ on the right hand side of (43). The proof is similar. Note that when $N = \mathcal{O}(n^2)$, $\frac{n^4(\log n)^3}{N^2} \leq \frac{n^3(\log n)^2}{N}$.

Remark C.7. We are aware of the difference of $\nabla \log p$ and $\nabla \bar{q}$ due to the translation (7), while our Lipschitz estimate is uniform in time, hence similar results of Theorem C.5 holds for $\nabla \log p$.

C.9 Convergence bounds under compact support manifold assumption

Theorem C.8. We assume $\operatorname{supp}(p_0) = D_0 \subset \overline{B_M(0)}$ and the density is smoothly defined on D_0 . With early stopping $\delta > 0$, Let $\hat{Q}_{T-\delta}$ be distribution generated by uniform discretization of the exponential integrator scheme (4), with an approximated score satisfies Assumption 2.1.

If $L_1 > 0$

$$\mathrm{KL}(P_{\delta}\|\hat{Q}_{T-\delta}) \lesssim (M_2 + d)e^{-T} + T\epsilon_0^2 + \frac{dT^2L_{\delta}^2}{N},$$

where $L_{\delta} = 1 + \frac{1}{\delta} + \frac{M^2}{\delta^2}$.

Proof: L_{δ} is computed from (16). Then Proposition A.3 is applied.

C.10 Sketch of proof of Wasserstein distance bound

Here we provide a sketch proof to a Wasserstein distance bound with full details left in a future publication. A key ingredient is to estimate the backward process \tilde{X}_t in (2) and its discretized approximation \hat{x}_t in (4). The two processes are coupled by the same Brownian path and initial value, hence,

$$\frac{d\|\tilde{X}_{t} - \hat{x}_{t}\|}{dt} = \frac{1}{2} \|\tilde{X}_{t} - \hat{x}_{t}\| + \frac{1}{\|\tilde{X}_{t} - \hat{x}_{t}\|} \langle \tilde{X}_{t} - \hat{x}_{t}, \nabla \log p(T - t, \tilde{X}_{t}) - s_{\theta}(T - t'_{k}, \hat{x}_{t'_{k}}) \rangle$$

$$\leq \frac{1}{2} \|\tilde{X}_{t} - \hat{x}_{t}\| + \|\nabla \log p(T - t, \tilde{X}_{t}) - s_{\theta}(T - t'_{k}, \hat{x}_{t'_{k}})\|, \tag{45}$$

where $t \in [t'_k, t'_{k+1}]$. Then we turn to the inequality,

$$\begin{aligned} &\|\nabla \log p(T-t, \tilde{X}_t) - s_{\theta}(T-t_k', \hat{x}_{t_k'})\| \\ & \leq &\|\nabla \log p(T-t, \tilde{X}_t) - \nabla \log p(T-t_k', \tilde{X}_{t_k'})\| + \|\nabla \log p(T-t_k', \tilde{X}_{t_k'}) - \nabla \log p(T-t_k', \hat{x}_{t_k'})\| \end{aligned}$$

$$+ \|\nabla \log p(T - t_k', \hat{x}_{t_k'}) - s_{\theta}(T - t_k', \hat{x}_{t_k'})\|, \tag{46}$$

where the last term on the right hand side of (46) relates to the approximation error of the score. With the Lipschitz bound (Theorem 3.5) in hand, we estimate the first two terms, while noticing that the Lipschitz constant grows linearly while the diffusion process \tilde{X}_t has exponential tail.

The bound for $E\|\tilde{X}_T - \hat{x}_T\|$ follows by taking expectation of (45) and using a Gronwall type inequality, thus implying a bound on the Wasserstein distance $W^2(\text{Law}(x_T), \text{Law}(\hat{x}_T))$. The bound on $W^2(\text{Law}(\tilde{X}_T), P_0)$ then follows from a stability analysis of \tilde{X} with respect to the initial distribution, per standard arguments as in Bortoli (2022); Chen et al. (2023).

D BROADER IMPACT

Diffusion model is one of the most influential generative models in the AI era. Our theory gives theoretical guarantee of the lifespan of diffusion model with minimal assumption of data distribution. We discovered a theoretical characterization in the point-wise sense (stronger than prior works) on the singular behavior near generation time related to the manifold hypothesis. This provides insight for model parameterization and convergence rate improvement in practical implementations.