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Abstract

Several approaches have been developed to mitigate algorithmic bias stemming
from health data poverty, where minority groups are underrepresented in training
datasets. Augmenting the minority class using resampling (such as SMOTE)
is a widely used approach due to the simplicity of the algorithms. However,
these algorithms decrease data variability and may introduce correlations between
samples, giving rise to the use of generative approaches based on GAN. Generation
of high-dimensional, time-series, authentic data that provides a wide distribution
coverage of the real data, remains a challenging task for both resampling and GAN-
based approaches. In this work we propose CA-GAN architecture that addresses
some of the shortcomings of the current approaches, where we provide a detailed
comparison with both SMOTE and WGAN-GP*, using a high-dimensional, time-
series, real dataset of 3343 hypotensive Caucasian and Black patients. We show
that our approach is better at both generating authentic data of the minority class
and remaining within the original distribution of the real data.

1 Introduction

As machine learning methods increasingly weave themselves into societal decision making, critical
issues related to decision fairness and algorithmic bias are coming to light. These issues are especially
prominent in health and clinical decision making, where underprivileged and minority groups are
underrepresented, resulting in unfair decisions. Algorithmic bias can originate from diverse sources,
including health data poverty [1], where particular groups might be underrepresented in the training
sets, but it may also originate from procedural care practices, wider socioeconomic issues or the data
itself [2]. There are several attempts to address bias and improve fairness stemming from health data
poverty. One approach is data augmentation, where synthetic data are generated from unbalanced
datasets, mitigating minority class representation.

The Machine learning community has developed various approaches to generate synthetic data [3].
One of the widely used methods is data resampling, where the data from the minority class are
typically oversampled to generate additional synthetic data, with Synthetic Minority Over-sampling
TEchnique (SMOTE) [4] being a representative example. Synthetic samples lie between a randomly
selected sample and its randomly selected neighbour (using k-NN), resulting in plausible samples
close in feature space to the existing samples. SMOTE and related approaches are widely used due
to their simplicity and computational efficiency. However, in high-dimensional data SMOTE may
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decrease data variability and introduce correlation between samples [5, 6, 7]. As such, alternative
approaches based on generative adversarial networks (GAN) are gaining ground [8, 9, 10, 11, 12].
However, generation of high-dimensional time-series data remains a challenging task [13, 14, 15]. In
this work we propose a new generative architecture, Conditional Augmentation GAN (CA-GAN),
based on the Wasserstein GAN with Gradient Penalty [16, 17] as presented in Health Gym [18]
(referred in this paper as WGAN-GP*), however with a different objective. Instead of generating
new synthetic datasets, we focus on data augmentation, specifically augmenting the minority class to
mitigate data poverty. We compare the performance of our CA-GAN with WGAN-GP* and SMOTE
in augmenting data of patients of an underrepresented ethnicity (Black patients in our case), using a
critical care dataset of 3343 hypotensive patients, derived from MIMIC-III database [19, 20].

Contributions. (1) We propose a new architecture CA-GAN for data augmentation, to address
some of the shortcomings of the traditional and recent approaches in high-dimensional, time-series
synthetic data generation. (2) We compare qualitatively and quantitatively CA-GAN with state
of the art architecture in the synthesis of multivariate clinical time series. (3) We also compare
CA-GAN with SMOTE, a naive but effective and popular resampling method, demonstrating superior
performance of generative models in generalisation and synthesis of authentic data. (4) We show
that CA-GAN is able to synthesise realistic data that can augment the real data, when used in a
downstream predictive task.

2 Methods

2.1 Problem Formulation

Let A be a vector space of features and let a ∈ A. Let l be a binary mask, extracted from L = {0, 1},
a distribution modifier. Consider the following data set D0 = {an}Nn=1 with l = 0, with individual
samples indexed by n ∈ {1, ..., N} and D1 = {am}N+M

m=N+1 with l = 1, with individual samples
indexed by m ∈ {N + 1, ..., N +M} where N > M . Then, consider the dataset D = D0 ∪D1 as
our training dataset. Notations inspired by [21].
Our goals. We want to learn a density d̂{A} that best approximates d{A}, the true distribution of
D. We define d̂1{A} as d̂{A} with l = 1 applied. From the modified distribution d̂1{A} we draw
random variables X and add these to D1 until N = M .

2.2 CGAN vs GAN

The Generative Adversarial Network (GAN) [22] entails 2 components, a generator and a discrimina-
tor. The generator G is fed a noise vector z taken from a latent distribution pz and outputs a sample
of synthetic data. The discriminator D inputs either fake samples created by the generator or real
samples x taken from the true data distribution pdata. Hence, the GAN can be represented by the
following minimax loss function:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[1− logD(G(z))]

The goal of the discriminator is to maximise the probability to discern fake from real data, whilst
the goal of the generator is to make samples realistic enough to fool the discriminator, i.e. to
minimise Ez∼pz(z)[1− logD(G(z))]. As a result of the reciprocal competition both the generator
and discriminator improve during training.

The limitations of vanilla GAN models become evident when working with highly imbalanced
datasets, where there might not be sufficient samples to train the models in order to generate minority
class samples. A modified version of GAN, the Conditional GAN [23], solves this problem by using
labels y, both in the generator and discriminator. The additional information y divides the generation
and the discrimination in different classes. Hence, the model can now be trained on the whole dataset,
to then generate only minority class samples. Hence, the loss function is modified as follows:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x|y)] + Ez∼pz(z)[1− logD(G(z|y))]

GAN and CGAN, overall, share the same major weaknesses during training, namely mode collapse
and vanishing gradient [24]. In addition, as GAN were initially designed to generate images, thus,
they have been shown unsuitable to generate time-series [21] and discrete data samples [25].
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2.3 CA-GAN vs WGAN-GP*

The WGAN-GP* introduced by Kuo et al. [18] solved many of the limitations posed by vanilla
GANs. The model was a modified version of a WGAN-GP [16, 17], thus it applied the Earth Mover
distance (EM) [26] to the distributions, which had been shown to solve both vanishing gradient and
mode collapse [27]. In addition, the model applied Gradient Penalty during training, which helped
to enforce more efficiently the Lipschitz constraint on the discriminator. More information on the
WGAN-GP* architecture can be found in Appendix A.

We built our CA-GAN on the WGAN-GP* of Kuo et al. by conditioning the generator and the
discriminator on static labels y. Hence, the updated loss functions used by our model are as follows:

LD = Ez∼pz(z)[D(G(z|y))]− Ex∼pdata(x)[D(x|y)] + λGPEz∼pz(z)[(||∇D(G(z|y))||2 − 1)2]

LG = −Ez∼pz(z)[D(G(z|y))] + λcorr

n∑
i=1

i−1∑
j=1

∥r(i,j)syn − r
(i,j)
real∥L1︸ ︷︷ ︸

Alignment loss

Where y can be any type of categorical label. During training the label y were used to differentiate
the minority from the majority class and during generation they were used to create fake samples of
the minority class.

In comparison with WGAN-GP*, we also increased the number of biLSTMs from 1 to 3 both in the
generator and the discriminator, as stacked biLSTMs have been shown to better capture complex
time-series [28]. In addition we decreased learning rate and batch size during training. An overview
of the CA-GAN architecture is shown in Figure 3.

3 Evaluation

Our dataset comprises 3343 hypotensive patients ([29]) admitted to critical care, the patients were
either of Black (395) or Caucasian (2948) ethnicity. Each patient is represented by 48 data points,
corresponding to the first 48 hours after the admission, in addition to 9 numeric, 4 categorical and 7
binary variables (20 in total) as shown in Table 3.

3.1 Evaluation Metrics

Evaluating the quality of the data produced by a generative model is anything but trivial. Several eval-
uation metrics have been proposed, but there is still no standardised evaluation method. In this work,
given the complexity of the multivariate time series that we wanted to synthesise, we have chosen
to adopt both a qualitative and quantitative evaluation of generated data. First, we used Maximum
Mean Discrepancy (MMD) and Kullback–Leibler divergence to measure the difference between real
and synthetic data for the underlying distribution of each variable. Second, we use Kendall rank
correlation coefficient to evaluate the ability of the generative model to capture correlations between
variables. Then, we verified that our model was generating authentic data (and not simply copying
real data) by measuring the Euclidean Distance between real data and synthetic data. In this respect
we also visualised real and synthetic data in a two dimensional latent space. Finally, we verified that
our CA-GAN was able to generate useful new time series and able to capture the temporal correlation
of the observations, by evaluating the predictive ability of an LSTM trained with synthetic data and
evaluated on test data. Furthermore, several of our evaluation metrics were qualitatively analysed
using plots of distributions, correlations, and two-dimensional representations of the datasets.

4 Results

In this section we present the comparison between the synthetic data generated by our CA-GAN
and the data generated by WGAN-GP* and SMOTE (with 5-NN). We used each method to generate
sufficient data to augment the minority class (Black patients) and balance the original dataset.
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Figure 1: At the top, t-SNE two-dimensional representation of real and synthetic data for the three
methods: SMOTE, WGAN-GP* and CA-GAN. It can be seen that CA-GAN provides a better
coverage of the distribution of real data. At the bottom, PCA two-dimensional representation. CA-
GAN provides the best coverage of the distribution of real data, followed by WGAN-GP* and
SMOTE.

4.1 Qualitative evaluation

Before quantitatively analyzing the results of the three methods we are comparing, it is appropriate to
show the data that has been generated using a visual approach, to provide an initial insight into the
results obtained. t-SNE [30] allows us to plot real and synthetic datasets in a two dimensional latent
space preserving the neighbourhood of data points, thus the real data appears differently in each plot,
whereas this is not the case for UMAP in Figure 8.

Figure 1 shows the results of this representation. The data generated by WGAN-GP* remains almost
entirely separate from the real data, indicating that this method is not able to capture the underlying
structure of the real data. On the other hand, CA-GAN and SMOTE generate synthetic data that
overlaps with real data. However, since SMOTE data points are an interpolation of real data, they
create a pattern in which they fill the spaces between the closest points, without expanding into the
embedded space. Instead, CA-GAN data points are spread homogeneously in space, while remaining
within the confines of the real distribution. This is an indication of the ability of our model to better
generalise in the data space, resulting in authentic data.

Subsequently, the use of PCA that attempts to preserve the global structure (in contrast to t-SNE),
shows that CA-GAN is able to generate data points that cover the entire variance of the real data,
while SMOTE and WGAN-GP* tend to converge on the mean, flattening their variance as shown in
Figure 1. Finally, in the appendix we also present UMAP latent representation of the data (Figure
8) and we show in more detail the distributions of each variable generated with the three methods
superimposed on the real data (Figures 4, 5, 6).

4.2 Quantitative evaluation

For each variable v of the dataset, the Kullback-Leibler (KL) divergence[31] measures the similarity
between the discrete density function of the real data and that of the synthetic data: DKL(Pv∥Qv) =∑

i Pv(i) log
Pv(i)
Qv(i)

. The smaller the divergence, the more similar the distributions, with zero for
identical distributions. Table 1 shows the results of the KL divergence for each variable for a single
run. Our model has the lowest median across all variables. CA-GAN has better results than WGAN-
GP* and SMOTE overall. It should be noted that the latter is an algorithm designed specifically to
maintain the distribution of the original variables.
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Table 1: KL-Divergence and Maximun Mean Discrepancy between the distribution of real and
synthetic data for each variable.

KL-divergence MMD

SMOTE WGAN-GP* CA-GAN SMOTE WGAN-GP* CA-GAN

MAP 0.11182 0.24941 0.17164 0.00137 0.00824 0.00110
Diastolic BP 0.28191 0.91622 0.24342 0.00155 0.00209 0.00086
Systolic BP 0.06405 0.10588 0.13194 0.00138 0.00120 0.00092
Fluid Boluses 0.01121 0.00358 0.00052 0.00047 0.00022 0.00003
Urine 0.00892 0.15183 0.00901 0.01321 0.08567 0.08443
Vasopressors 0.03622 0.05955 0.00175 0.00463 0.00883 0.00031
ALT 0.00068 0.37020 0.00800 0.01356 0.20156 0.18616
AST 0.00083 0.18162 0.00455 0.01323 0.20920 0.19538
FiO2 0.00858 0.01950 1.36841 0.00091 0.00043 0.00012
GCS 0.02432 0.02571 0.01934 0.05206 0.00688 0.00791
PO2 0.00315 0.13503 0.31726 0.00992 0.25091 0.24806
Lactic Acid 0.03192 0.42781 0.45402 0.01084 0.16273 0.19777
Serum Creatinine 0.02079 0.02851 0.08827 0.01892 0.22812 0.03313
Urine (M) 0.19717 0.00279 0.00070 0.09954 0.00170 0.00043
ALT/AST (M) 0.01872 0.00027 0.00031 0.00050 0.00001 0.00002
FiO2 (M) 0.07361 0.00965 0.00459 0.00892 0.00224 0.00103
GCS_total (M) 0.12043 0.00072 0.00013 0.03776 0.00030 0.00006
PO2 (M) 0.03846 0.00751 0.00033 0.00238 0.00067 0.00003
Lactic Acid (M) 0.03962 0.00010 0.00136 0.00274 0.00001 0.00015
Serum Creatinine (M) 0.05844 0.00777 0.00005 0.00613 0.00117 0.00001

Median 0.03407 0.02711 0.00629 0.00752 0.00217 0.00089

Using Maximum Mean Discrepancy (MMD)[32], we calculated the distance between the distributions
based on kernel embeddings of distributions, that is, the distance of the distributions represented as
elements of a reproducing kernel Hilbert space (RKHS). We used a Radial Basis Function (RBF)
Kernel: K(xreal, xsyn) = exp

(
−∥xreal−xsyn∥2

2σ2

)
, with σ = 1. The right half of Table 1 shows the

MMD results for SMOTE, WGAN-GP* and our CA-GAN, where the latter shows the best median
performance across all the variables.

4.3 Correlations

We used the Kendall rank correlation coefficient τ [33] to investigate whether synthetic data main-
tained original correlations between variables found in the real data. This choice is motivated by the
fact that τ coefficient does not assume a normal distribution, that some of our variables do not have,
as shown in Figures 4, 5, 6. Figure 7 shows the results of Kendall’s rank correlation coefficients.
Comparing them with real data, CA-GAN (Figure 2) captures the original correlations, as does
SMOTE, with the former having closest results on categorical variables, and the latter on numerical
ones. Once again WGAN-GP* shows the lowest performance, accentuating correlations that do not
exist in real data.

Figure 2: Kendall’s rank correlation coefficients for the real data and the data generated with CA-
GAN.
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4.4 Authenticity

When generating synthetic data, it is important that the output is a realistic representation of the
original data, but also need to verify that the model has not learned to copy the real data. While
unlikely, GANs can overfit by memorizing real data [34]. In order to evaluate the originality of
the output of our model we use Euclidean Distance (L2 Norm). The shortest distance between
a synthetic sample and a real one is 3.14. This result, coupled with the visual representation of
CA-GAN (shown in Figure 1), shows the ability of our model to produce authentic data. SMOTE,
on the other hand, which by design interpolates the original data points, is unable to explore the
underlying multidimensional space, as the minimum Euclidean distance of its generated data samples
is 0.00234. Since the goal of our work is the augmentation of an existing dataset, we did not consider
aspects related to privacy preservation and adversarial attacks.

4.5 Downstream regression task

Finally, we wanted to evaluate the ability of CA-GAN to maintain the temporal properties of time
series data. Furthermore, since we have set ourselves the objective of augmenting the minority class
to mitigate data poverty, we want to verify that the new augmented dataset, generated with our model,
is able to maintain or improve the predictive performance on a downstream task. Hence, we trained a
Bidirectional LSTM, first only with real data as the baseline, and later with the synthetic dataset and
also the augmented dataset. The LSTM takes 20 hours of data as an input and provides a prediction
on the subsequent 1 hour, in a sliding window fashion. To ensure the fairness of our result, the time
series data points of 60 black patients (representing 15% of the overall data) were put apart as a test
set and were used to evaluate the performance in a regression task.

Table 2: Mean prediction errors of a biLSTM
trained on real, synthetic and augmented data.

Real Synthetic Augmented

MAP 13.35 11.57 11.19
Diastolic BP 18.21 13.27 14.99
Systolic BP 9.21 15.19 9.56
Fluid Boluses 61.93 70.41 75.99
Urine 28.41 26.92 28.22
Vasopressors 37.87 40.91 36.43
ALT 4.22 10.46 7.71
AST 15.07 11.27 7.38
FiO2 2.59 2.64 6.91
GCS 3.07 2.60 4.08
PO2 3.53 4.09 5.02
Lactic Acid 10.72 13.02 6.58
Serum Creatinine 11.92 10.00 3.65

Median 11.92 11.57 7.71

Table 2 shows the mean relative errors between
the LSTM prediction and the actual observa-
tions, for the model trained only with real data,
the one trained with only synthetic data (CA-
GAN) and a model trained with augmented
data (both real and synthetic), which would be
used in a downstream regression or classifica-
tion task.

It should be noted that relative errors in fluid
bolus, urine and vassopressors are particularly
high in comparison to the other variables due to
the challenge in prediction of these variables in
general (stemming in part from the manner in
which they are collected and recorded), rather
than any issue inherent to the synthetic data. The
prediction errors for these two variables are also
consistent with SMOTE and WGAN-GP*.

5 Conclusions and future work

In this work we have presented and evaluated Conditional Augmentation GAN (CA-GAN), an
architecture that can overcome some of the shortcomings of the current approaches (WGAN-GP*
and SMOTE) in augmenting the minority class of an imbalanced dataset. Through qualitative and
quantitative evaluation we have shown that CA-GAN can generate authentic samples with greater
distribution coverage than other approaches we evaluated, while ensuring that synthetic data are not
merely copies of the real data with substantial distances between them. Furthermore, we have shown
that augmenting the dataset with the synthetic data generated by CA-GAN can lead to lower relative
errors in the prediction task, indicating that our model is able to generalise well from the original
data. Furthermore, our approach can make use of the overall dataset, and not only the minority class
as is the case with WGAN-GP* and SMOTE, thus being applicable also in presence of extremely
imbalanced datasets, such as rare diseases. In the future we plan to evaluate the performance of
our architecture with other datasets and also in the presence of other ethnicities with even lower
data representation, as well as in cases where classes are represented by categorical variables, or
continuous variables, becoming a regression problem for the latter.
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Appendix A Analysis of WGAN-GP* architecture

In contrast with vanilla WGAN-GP, WGAN-GP* employed soft embeddings [35, 36], which allowed
the model to use inputs as numeric vectors for both binary and categorical variables, and a Bidi-
rectional LSTM layer [37, 38], which allowed for the generation of samples in time-series. With
regard to the loss functions, while LD was kept the same, LG was modified by Kuo et al. [18] by
introducing alignment loss, which helped the model to better capture correlation among variables
over time. Hence, the loss functions of WGAN-GP* are the following:

LD = Ez∼pz(z)[D(G(z))]− Ex∼pdata(x)[D(x)] + λGPEz∼pz(z)[(||∇D(G(z))||2 − 1)2]

LG = −Ez∼pz(z)[D(G(z))] + λcorr

n∑
i=1

i−1∑
j=1

∥r(i,j)syn − r
(i,j)
real∥L1︸ ︷︷ ︸

Alignment loss

To calculate alignment loss it was first computed Pearson’s r correlation [39] for every unique pair of
variables X(i) and X(j). The L1 loss was then applied to the differences in the correlations between
rsyn and rreal, with λcorr representing a constant acting as a strength regulator of the loss.

Appendix B Proposed architecture of our CA-GAN

Figure 3: Proposed architecture of our CA-GAN.
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Appendix C Comparison of distributions and correlations

Figure 4: Overlaid distribution plots of real data and CA-GAN synthetic data.
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Figure 5: Overlaid distribution plots of real data and WGAN-GP* synthetic data.
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Figure 6: Overlaid distribution plots of real data and SMOTE synthetic data.
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Figure 7: Kendall’s rank correlation coefficients for real data and synthetic data generated with
CA-GAN, WGAN-GP* and SMOTE.
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Figure 8: UMAP two-dimensional representation of real and synthetic data, comparing the three
methods: SMOTE, WGAN-GP* and CA-GAN.
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Appendix D Dataset

Table 3: Variables of the hypotension dataset [18], used in our evaluation.

Variable Name Data Type Unit Descriptive Statistics

Mean Arterial Pressure (MAP) numeric mmHg Median: 65.34 (Q1: 59.30, Q3: 71.19)
Diastolic Blood Pressure (BP) numeric mmHg Median: 54.33 (Q1: 48.37, Q3: 60.26)
Systolic BP numeric mmHg Median: 113.21 (Q1: 104.23, Q3: 121.60)
Urine numeric mL Median: 106.21 (Q1: 68.92, Q3: 164.23)
Alanine Aminotransferase (ALT) numeric IU/L Median: 32.55 (Q1: 24.59, Q3: 46.09)
Aspartate Aminotransferase (AST) numeric IU/L Median: 46.82 (Q1: 35.81, Q3: 67.75)
Partial Pressure of Oxygen (PaO2) numeric mmHg Median: 103.02 (Q1: 91.34, Q3: 114.66)
Lactate numeric mmol/L Median: 1.50 (Q1: 1.29, Q3: 1.80)
Serum Creatinine numeric mg/dL Median: 1.11 (Q1: 0.83, Q3: 1.62)
Fluid Boluses categorical mL 4 Classes

[0,250) : 97.32%; [250,500) : 0.28%
[500,1000) : 1.46%; ≥ 1000 : 0.94%

Vasopressors categorical mcg/kg/min 4 Classes
0 : 84.14%; (0,8.4) : 8.34%
[8.4,20.28) : 3.68%; ≥ 20.28 : 3.83%

Fraction of Inspired Oxygen (FiO2) categorical fraction 10 Classes
≤ 0.2 : 0.00%; 0.2 : 0.54%
0.3 : 2.84%; 0.4 : 10.85%
0.5 : 63.30%; 0.6 : 8.58%
0.7 : 1.32%; 0.8 : 0.20%
0.9 : 2.63%; 1.0 : 9.75%

Glasgow Coma Scale Score (GCS) categorical point 13 Classes
3 : 6.61% 4 : 2.16%
5 : 0.00% 6 : 3.00%
7 : 4.77% 8 : 0.00%
9 : 2.22% 10 : 4.32%
11 : 2.46% 12 : 3.56%
13 : 1.00% 14 : 9.80%
15 : 60.09%

Urine Data Measured (Urine (M)) binary - False: 63.07% True: 36.93%
ALT or AST Data Measured (ALT/AST (M)) binary - False: 98.50% True: 1.50%
FiO2 (M) binary - False: 92.49% True: 7.51%
GCS (M) binary - False: 81.49% True: 18.51%
PaO2 (M) binary - False: 97.56% True: 2.44%
Lactic Acid (M) binary - False: 96.98% True: 3.02%
Serum Creatinine (M) binary - False: 95.26% True: 4.74%
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