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Abstract

Large language models suffer issues when op-
erated on long contexts that are larger than their
training context length due to the standard po-
sition encoding for tokens in the attention layer.
Tokens a long distance apart will rarely have
an effect on each other and long prompts yield
unexpected results. To solve this problem, we
propose SELF (Self-Extend the Context Length
With Logistic Growth Function): a solution of
grouping consecutive tokens at varying group
sizes using a logistic capacity equation com-
bined with a constant group size at smaller rel-
ative distances. Our model had an increase
in performance of up to 12% compared to the
LongLM extension method in LEval (specif-
ically on the Qwen model). On summariza-
tion related tasks in LongBench, our model per-
formed up to 6.4% better than LongLM (specif-
ically on the Llama-2-7b model). On reading
comprehension tasks from LEval, our model
performed up to 5.4% better than the LongLM.
Our code is available at https://anonymous.
4open.science/r/SELF-LLM-7705.

1 Introduction

Large language models (LLMs) are typically pre-
trained on sequences with fixed maximum context
lengths (e.g., 2k—4k tokens), limiting their abil-
ity to reason over or generate responses based on
longer inputs. When the context length exceeds the
pretraining context length, the output is severely
degraded and can become unreadable and undeci-
pherable (Xiao et al., 2024b; Peng et al., 2023a;
Han et al., 2024a; Chen et al., 2023b; Xiong et al.,
2023). The main reason why the output is unpre-
dictable when dealing with long context is Out-
of-distribution (O.0.D) issues of the relative posi-
tional for LLLMs using RoPE (Liu et al., 2023; Bai
et al., 2021; Zhang et al., 2022a). When encoun-
tering relative distances on which models were not
trained, model seems to generate unpredictable out-
put vectors that cannot be decoded by the tokenizer.
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Figure 1: Illustration of our method in extending context
length. Given a sequence of length n, that is larger than
the training sequence length, the model groups consecu-
tive tokens into groups whose sizes are determined by a
function with the help of the neighbor window. As a re-
sult, the greatest index is now m < n, and the sequence
now can be fully in the model’s scope.

The most intuitive way is to fine-tune the models
to extend the context windows, which needs high-
quality long-context data and comes with a trade-
off in the performance of short-context tasks (Chen
et al., 2023b,b; Zhu et al., 2024). Thus, there ex-
ist some training-free methods. For example,Jin
et al. (2024a) introduced Self-Extend, which lever-
ages the model’s inherent ability to generalize to
out-of-distribution (O.0.D) contexts by remapping
untrained relative distances to those observed dur-
ing training. This is done by grouping consecutive
tokens into fixed-size chunks, combined with a
neighbor window for nearby tokens.

While LongLM’s method shows promising re-
sults on long-context tasks, we propose a more
adaptive strategy grounded in the observation that,
in natural language, the relevance of a token typ-
ically decreases with its distance from the cur-
rent context. This suggests that distant tokens can
be grouped into larger units without significantly
harming comprehension. Based on this intuition,
we introduce a dynamic grouping strategy where
group sizes increase with distance from the query.
Unlike fixed-size chunking, our approach deter-
mines group boundaries through a distance-aware
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Figure 2: Illustration about relation between neighbor
window and perplexity after applying Self-Extend (Jin
et al., 2024a). The results is derived from testing Llama-
2-7B and its Self-Extend variants on the first book in
PG19 (Rae et al., 2019) with sequences of 2048 tokens.
The perplexity of models applying Self-Extend slowly
approaches the perplexity of the original model when
increasing the neighbor window size.

function, allowing for more efficient use of context
length while preserving semantic fidelity.

Thus, we introduce SELF (Self-Extend the Con-
text Length With Logistic Growth Function), a more
adaptive token grouping strategy that dynamically
adjusts group boundaries based on context struc-
ture rather than relying on fixed-size chunks. This
allows for better capture of long-range dependen-
cies and finer preservation of semantic boundaries
with different distances. In essence, our method
addresses the O.0.D. challenge through a shared
principle but differs in the way token groups are
constructed (see Figure 1 ! for illustration).

Through comprehensive experimental results,
we witness an increase up to 8% (specifically
Qwen2-7B model (Yang et al., 2024)) of accuracy
when applying our grouping method compared to
Self-Extend (Jin et al., 2024a) when benchmarking
on LEval. We also witnessed an accuracy increase
of up to 5% when using SELF over LongLLM on
the Llama-2-7B (Touvron et al., 2023b).

2 Motivations

LongI.M (Jin et al., 2024a) proposes a solution to
handle prompts that are longer than the models’
pretraining sequence lengths by grouping tokens
at far distances because the exact position is less
important than the relative order of information in
long context and keep the exact positions of closer
token by a neighbor window. However, the out-
put’s perplexity will increase right after where the
neighbor window ended. As a result, to make the

"This is an oversimplification of how the method works.
More details will be explained in Our Proposal section

model less "confused", the neighbor window has
to be increased (see Figure 2), which decreases the
total number of tokens the models after applying
Self-Extend can handle.

Although LongL.M’s method yielded signifi-
cantly improved results in key retrieval, the Long-
Bench benchmark (Bai et al., 2024a) and the LEval
benchmark (An et al., 2023), we believe that we
can increase the total context length by leveraging
a property of natural language: the farther a word
is from the current token, the less important it tends
to be to the current context.

In LonglLM (Jin et al., 2024a), the group size is
the same for every group, which is not the most
optimized way. Intuitively, in natural languages,
the further a token, the less relevant the token is to
the context, allowing us to group them into progres-
sively larger groups, meaning that we can improve
the total context length by allowing larger groups
without significantly trade-off in model’s compre-
hension ability. By this intuition, the group sizes
have to be dynamic, which means that they have to
be determined by a function.

Therefore, we need to choose a monotonic in-
creasing function for group sizes (the further, the
larger the group). However, if the group size is
too large, it will affect the performance because
every word is treated the same regardless of their
positions. Therefore, we must choose a function
whose maximum value is limited and controllable.

Based on those conditions, we decided to choose
the Logistic growth Function, which is a monotonic
increasing function with a defined maximum value.
Because the group sizes have to be integers, we
will take the floor of the Logistic growth Function.

C T
f(z) = LﬁJ

, C' is the capacity i.e. the maximum group size
and r is the growth rate of group sizes.

3 Preliminaries

3.1 Position Encoding

Most models use two types of position encodings,
relative and absolute position encoding. Relative
position encoding utilizes the distance between
one token and another token while absolute po-
sition encoding uses the token’s position from 0.
(Vaswani et al., 2023) Since the importance of
words is usually based on how far they are away
from the base word, relative position encoding is



more common. Examples of absolute encoding
include GPT3, learned positional encoding (Brown
et al., 2020), OPT (Zhang et al., 2022b). Examples
of relative encoding include T5, learnable atten-
tion bias (Xue et al., 2021), Transformer-XL (Dai
et al., 2019), Alibi, fixed linear attention (Press
et al., 2022). This is especially important when it
comes to long context prompts as our LLM might
need to consider tokens further away as still being
important. These position encodings are applied at
the attention layer so that when tokens are intercon-
nected with eachother the positions are considered.
Our goal is to design a mechanism where we can
consider tokens far apart in our decision making
while also holding closer tokens to a high impor-
tance. Considering an example of long context key
retrieval, we need to consider the close-by tokens
(instructions) to a high degree but also ensure the
key (at a far away position) is considered.

3.2 RoPE

Considering tokens a . . . a,, and their embeddings
x1...xn wWhere each embedding is a real matrix.
ROoPE (Su et al., 2023) integrates the position in-
formation into the query and key vectors. If done
properly, ¢”'k will already contain the positional
embeddings preventing an extra step from being
needed. To embed the position, RoPE uses the func-
tion qdm = fq(xmam) € R‘n‘ykn = fx(xmn) €
R!"l where |L| is the hidden dimension of each
head. f (m,m) = Wyzme™ fi(z,,n) =
Wizne™ 04 = b=2d/ID| The positional embed-
ding system keeps the real section of ¢’k which
is Re(¢*k). The dot product of the query and key
will always yield a result depending on the relative
distance between the two tokens as follows:

(fo(zm,m), fx(Tn,n))r (1)
= Re(<f<1(xm7 m)7 fk(wm n)>(C)

= Re(x:nW;W,:xnew(mfn))

= g(xmvxmm - n)7

where ¢ is an abstract mapping function.

4 Our Proposal

4.1 Self-Extend with constant group size

Self-Extend(Jin et al., 2024a) maps unseen relative
positions to trained relative positions by using the
FLOOR operation to group neighboring tokens
into one single group that shares the same posi-
tional index.

Their important finding is the importance of
neighbor attention. By just purely grouping to-
kens together, the perplexity will be higher than
in the original model. Grouping all tokens with a
constant group size degrades the effect of closer
tokens which usually have more importance. To
solve this problem, Longl.M uses separate grouped
attention, for tokens further away, and neighbor
attention, for nearby tokens. Acknowledging this,
our method will also apply neighbor attention.

4.2 SELF: Self-Extend with dynamic group
size

Despite successfully tricking the LLM into believ-
ing that the tokens are closer than they really are,
LongLM’s approach abruptly increases the group
size from 1 (within the neighbor window, the group
size can be regarded as 1) to a much larger value
(the value of group size, e.g., 512). To avoid this
sudden jump, we propose that group sizes should
increase gradually rather than all at once. More
specifically, the group size should grow according
to a smooth function such as the Logistic Growth
Function, which starts small and increases steadily.
Based on this idea, we propose a new method called
SELF (Self-Extend the Context Length With Logis-
tic Growth Function).

In SELF, we use a function f : N — N to deter-
mine the size of each group. Given a group index
(like the Oth, 1st group), this function returns the
number of tokens assigned to that group.

Example 1: Given a function f whose f(0)
1LF(1) = 2,f(2) = 2, £(3) = 3 and f(4) =
The grouping will be:

3.

F=100,1,1,2,2,3,3,3,4,4,4]

Let’s define:
+ GX : N — N as the group position index used

in the encoding of the key-value pairs.

GK = F 2)

]

* G9 : N — N as the group position index used
in the encoding of the query.

* R:N x N — Nis the relative distance between

G? and G¥.

The relative position right after the neighbor win-
dow (R; ;—w) has to be W, where W is the width
of the neighbor window, because the relative posi-
tions inside the neighbor window will range from O
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Figure 3: Illustration of the relation between G¥ and
G% knowing that the relative position right after the
neighbor window has to be W.

to W — 1 (see illustration in Figure 3). Therefore,
(3)

o9 _ W+GEy, ifi<W
! c, otherwise

No matter what constant ¢ we choose, it will be
completely covered by the neighbor window.

If we used only group attention, the number of to-
kens can be fully extended to "~ | f(i). However,
because we have the neighbor window, R, ,,_w =
W instead of Ry, ,—w = max(F') — Fyy, that is,
it takes W + Fyy — max(F') more indices than us-
ing only group attention. Therefore, the number of
tokens can be extended to

L+max(F)—W—Fy

v- Y

=1

(@)

where L is the initial token limit.

This formula gives the total number of tokens
that can be processed using our SELF method,
which blends regular and group-based attention in
a way that grows group sizes smoothly and avoids
any sudden jumps that could disrupt the model.

4.3 Efficient Implementation: grouping
indices in parallel

The most native approach to calculate F' given f is
to start with an empty F', than sequentially compute
f(i) and add f (i) more elements to the end of F'.

F <« F | replicate(i, f(i))

However, since we have thousands of tokens, com-
puting the new positional embeddings sequentially
would take O(n) of run time.

Algorithm 1 Construct group indices(n, W, C, )

p+ —1

fork <+ 1toC — 1do

Compute parallelly F[p + 1..p + g(k)] using Equa-
tion (6)

p < p+g(k)
end for

Compute G parallelly using Equation (2)
Compute G© parallelly using Equation (3)

return group_key_id and group_query_id

In order to solve this high computing time issue,
we use inverse function of the grouping function
which will divide each sequence into sections in
which the group sizes are the same so we can easily
calculate and assign group sizes in parallel. We
define the inverse function f~! : N — N, when
given the group size, the inverse function returns
the smallest index that has the given group size.

Using Example 1, the inverse function will be
Y1) =0,f71(2) = 1and f~1(3) = 3. Let’s
define the function g : N — N, when given the
group size, the function returns the total number of
elements that are in the group of the given size.

g@)=z-[f@+1) - fa)+1] @

In order to find the F; given ¢, define k the largest
number such that:

S=Y g(j)<i 5)

This means that F; has to be in the group whose
size is k + 1 and it is Hﬁjﬁ indices away from the
last index of the group whose size is k, which is

f~1(k + 1) — 1. Therefore,

1 =5

Fi=[f7k+1) -1+ [—

I ®

Now, considering the logistic growth function,
we have:

F@) = L]
f_l(y) — Lln(cy — y)r_ IH(C — y)J

In the logistic growth function, the maximum
group size k in Equation (5) is C, which is a very
small number compared to the sequence length. We
can utilize GPU parallelism using the pseudo-code.
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Figure 4: Illustration of the algorithm grouping the indices using the function f : N — N, where f(0) = 1, f(1) =
2, f(2) =2, f(3) = 3 and f(4) = 3. The sequence with length of n = 11 was run the model with the pretraining
sequence length of L = 6. The numbers denote the relative position between the corresponding key and query token.
It has two kinds of self-attention, similar to Self-Extend (Jin et al., 2024a): neighbor tokens inside the neighbor
window (W = 3) (blue cells in the figure) use regular self-attention; group tokens outside the neighbor window
(orange cells in the figure) use group self-attention (group indices are denoted as the G row and column in the
figure). Green G< means it can be anything as it is covered completed by the neighbor window.

By applying Equation (4), g(k) can be computed
in O(1). We can easily tell that the total work for
computing F'is O(n + C'), and the total work for
computing G¥ and G knowing F is O(n), since
it takes O(1) at each index.

Putting this together, the total work for the algo-
rithm is O(n + C') and the parallel span is O(C).
Assuming that there are P threads available, the
runtime is bounded by:

n+C
£C oy

This means that if having sufficient resources (P
is large enough), we can speed up to near-linear
since the lower bound is C, which is usually a very
small number.

T(P) = O(max{

5 Experiments

In this section, we first analyze the impact of Group
Size on the SELF method based on perplexity re-
sults from the PG19 dataset, in order to identify
an appropriate group size configuration. We then
compare SELF with the standard SE method on
real-world long-context benchmarks such as LONG-
BENCH and LEVAL, demonstrating the effective-
ness of SELF on practical long-conetxt tasks.

We ran experiments on Llama-2-7B, Llama-
2-13B (Touvron et al., 2023a), Qwen-7b (Yang
et al., 2024), and a distilled reasoning model from
Deepseek-R1 (DeepSeek-Al et al., 2025). We con-
ducted our tests on Longbench v1 (Bai et al., 2024a)
and LEval (An et al., 2023)>.

*We skipped the GSM benchmark as we were unable to

5.1 Understanding the impact of group size on
SELF via Perplexity

We begin by measuring the perplexity of LLaMA-
2-7B-Chat with both SE and SELF under varying
group sizes and context window lengths on the
PG19 dataset. From Table 1, we can observe:

* SELF achieves lower perplexity scores when
working with the same group size.

* When group size is small, there isn’t much differ-
ence in perplexity score between SE and SELF.

* The larger the group size, the longer the se-
quence lengths over which noticeable differ-
ences can be observed. For example, the dif-
ference is still noticeable when C = 32, and
the sequence length is 6144 and when C' = 64
and the sequence length is 12288. With larger
group size, it takes longer sequence to reach its
maximum group size, meaning that most of the
groups has their sizes less than the maximum
group size, decreasing the final perplexity score.

* When dealing with sequences that are signifi-
cantly longer than the original context length,
the scores are basically the same for SE and
SELF. When the sequence is significantly long,
the amount of intermediate group is negligible
compared to the number of groups that have
reached the maximum group size. As a result,
the model behavior closely resembles that of SE,
where all groups have the maximum group size.

From the above observations, there is a trade off

replicate the results the paper provided on our own



Table 1: Perplexity on dataset PG19 (Rae et al., 2019) first book with Llama-2-7b-chat and compare SE and SELF
(the growth rate » = 0.02) with the same group size (C = 16, C' = 32 and C' = 64) and neighbor window.

Model Perplexity with Context Window Size (log scale)

Name 4096 6144 8192 10240 12288 14336 16384

Llama-2-7b-chat 7231 >10° >10* >10° >10° >10® > 10
“ﬁ SE-Llama-2-7b-chat 7.103  7.086 7.126  7.174  7.229 7248  7.270
o  SELF-Llama-2-7b-chat 7.085 7.085  7.122  7.168  7.203  7.234  17.270
% SE-Llama-2-7b-chat 7.141  7.184  7.199 7314 7346 7410  7.496
v SELF-Llama-2-7b-chat  7.119  7.133  7.196  7.275 7345 7408 7.484
?ﬁ SE-Llama-2-7b-chat 7.186 7316  7.303  7.458  7.530 7.625  8.041
o SELF-Llama-2-7b-chat  7.135  7.180  7.267 7.364 7.467 7.619  8.068

in perplexity when increasing the group size (Jin
et al., 2024a). When using larger group size, mod-
els are more uncertain in their predictions. How-
ever, when dealing with the same group size>, ide-
ally, models with SELF have lower perplexity than
ones with SE because instead of increasing rapidly
from one to the maximum group size, models with
SELF have to go through smaller group sizes (in-
termediate groups) before reaching the maximum
group size. Therefore, although the context length
after extension of both methods are approximately
the same with the same group size, SELF performs
better when the sequence length is not excessively
larger than the orginial context window.

Base on this analysis, we decided to choose
larger group size for most of our experiments com-
pared to ones in Longl.M (Jin et al., 2024a) without
experiencing a significant trade off in performance.

5.2 Comparisons of SELF and SE in
Real-World Long Context Tasks

5.2.1 LongBench

We conducted experiment on LongBench (Bai et al.,
2024a) using Llama-2-7B and then compared our
results with the original model and the model where
Self-Extend is applied. Here we decided instead of
using small group size of 6 and § like in Longl.M
(Jin et al., 2024a), we used a much bigger group
size (C' = 32) and still observed a better results in
most tasks. The results are in Table 2 We see an im-
provement of summarizing tasks because having to
go through smaller group sizes makes the models
have a better understanding of the text. Moreover,
our suspicion that SELF tends to perform better
when the length is closer to the original context

3Group size in context of SELF refer to the maximum
group size i.e. the capacity in the Logistic growth function

Comparison of SELF vs SE Values on 2WikiMultihopQA
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Figure 5: Compare the trade off with different group
sizes of SE and SELF on 2WikiMultihopQA. The two
grouping methods has the same neighbor window size
W =1024.

window is also confirmed since SELF performs bet-
ter in tasks where the average context length is not
significantly long such as MultiFieldQA, 2Wiki-
MultihopQA, HotpotQA and TREC.

We can also observe the trend in trade off of
accuracy in 2WikiMultihopQA task (see Figure 5).
Unlike SE, whose changes are more abrupt and
unpredictable despite of the general trend is still
decreasing (this can also be observed when SE
doing other tasks with vary group sizes (Jin et al.,
2024a)), SELF’s accuracy seems to slowly decrease
after reaching its peak. In SE, group indices can
be every different with different group sizes. In
contrast, SELF’s group sizes increase gradually,
resulting in overlapping early groups. As the result,
the differences between varying group sizes are
relatively subtle compare to SE.

5.2.2 LEval

We tested one 4 different models using the same
hyperparameter as in the LongBench v1 test (see
the result Table 3).

* Llama-2-7B: An improvement can be seen in
every tasks except for CodeU. However, the dif-



Table 2: Performance of different models on LongBench (Bai et al., 2024a). * means that the results are reported by
Self-Extend (Jin et al., 2024a), * means that the results are run by us (single run). The suffix number (e.g. ‘25k’)
indicates the maximum context window of the model. The ‘SE’ prefix indicates Self-Extend is applied to this model
and the prefix ‘SEF’ indicates that our Self-Extend with Logistic Growth Function is applied. The best performance

in each section will be in bold

‘ Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code
LLMs* @ & > Q® o o > o o £ o

%«ﬁ\\“‘ & - \)\\»g@\ VWWD\Q . SX&\N\ \4\\\5&" 00&6\’ Q‘,\sv“‘ ‘M\(\\“ ,‘q&c‘ '«\g@Q swjﬁ“ Q.ﬁ@%& ?‘ﬁ%‘f N Y&Q&m
- Llama-2-7B-chat-4k* 18.7 19.2 36.8 254 328 9.4 27.3 20.8 258 615 778 40.7 2.1 9.8 52.4 438
2 SE-Llama-2-7B-chat-16k* 21.69 25.02 35.21 34.34 30.24 14.13 2732 21.35 2578 69.50 81.99  40.96 5.66 5.83  60.60 54.33
£ SE-Llama-2-7B-chat-25k* 21.37 26.68 34.63 35.47 30.46 15.51 2751 21.30 2587 68.50 78.79 41.29 3.90 350 59.69 53.83
2 SELF-Llama-2-7B-chat-100k 17.4 25.74 37.61 36.30 31.37 13.11 279 21.81 27.54  69.50 76.97 40.85 6.16 6.0 60.49 51.55
LongChat1.5-7B-32k* 16.9 27.7 414 315 20.6 9.7 30.8 22.7 26.4 635 823 342 1.0 305 53.0 553
% together/llama-2-7b-32k* 15.65 10.49 3343 12.36 12.53 6.19 29.28 17.18 2212 71.0 8779 43.78 1.0 230 6379 6177
2 CLEX-7B-16k* 18.05 23.68 44.62 28.44 19.53 9.15 32.52 229 25.55 68 84.92 42.82 0 115 59.01 56.87
§ CodeLLaMA-7B-16k* 22.93 30.69 43.37 33.05 27.93 14.2 28.43 24.18 26.84 70 84.97 43.43 2 135 6435 55.87
i’) SE-Llama-2-7B-chat-16k* 21.69 25.02 35.21 34.34 30.24 14.13 27.32 21.35 2578 69.50 81.99 40.96 5.66 5.83  60.60 54.33
& SE-Llama-2-7B-chat-25k* 21.37 26.68 34.63 3547 30.46 15.51 27.51 21.30 2587 68.50 78.79 41.29 3.90 350  59.69 53.83
SELF-Llama-2-7B-chat-100k* 17.4 25.74 37.61 36.30 31.37 13.11 279 21.81 27.54 69.50 76.97 40.85 6.16 6.0 60.49 51.55
GPT-3.5-Turbo-16k* 23.6 433 523 516 37.7 269 29.5 234 26.7 680 914 41.7 4.5 71.0 54.7 53.6
» XGen-7B-8k* 18 18.1 377 29.7 21.1 10.3 273 20.5 26.2 655 718 253 2.1 85 38.6 38.6
'q-; InternLM-7B-8k* 12.1 16.7 23.4 28.7 22.8 9.0 9.7 159 22.8 520 778 212 3.0 6.0 44.1 288
= ChatGLM2-6B-32k* 21.1 315 46.2 45.1 34.0 219 324 24.0 26.5 625 787 36.3 15 71.0 55.6 499
E ChatGLM3-6B-32k* 26.0 433 51.7 54.4 4.9 40.4 36.8 239 279 79.0 871 382 2.0 99.0  57.66 54.76
& Baichuan-13B-4k* 0.07 17.55 17.28 329 15 0.1 6.8 1.71 23.1 20.05 20.06 5.77 0.06 0.5 47.98 16.58
ALIiBi-7B-4k* 0.04 8.13 17.87 2.73 8 1.33 5.31 1.64 2555 925 883 4.67 0 127 46.69 18.54

ference in CodeU is not significant as the most
correct models could answer only 1 correctly
compare to 0 for model that apply SELF.

* Llama-2-13B: the SELF version seems to per-
form worse than the SE version in all tasks. We
could not come up with the reason why there is
such a difference despite Llama-2-7B and Llama-
2-13B having the same architecture.

* Qwen-7B: There is a significant improvement
compared to SE. There is an improvement com-
pared to the raw model, but not significant.

« Deepseek-R1-Distill-Qwen-7B*: For this rea-
soning model, we forced the model to reason
before giving answer by adding the open tag
<think>. An significant decrease in the accu-
racy of models after applying Self-Extend (both
SE and SELF) can be observed. We suspect
the Reinforcement Learning process to improve
reasoning ability does have influence on this ef-
fect as reinforcement learning was applied on
exact position and the model’s reasoning ability
wasn’t optimized for group attention. We also
witnessed models applying SE and SELF often
stuck in reasoning loop which did not happen for
the original model. However, this needs to be
researched on more before making conclusion.

*We modified the evaluation function for MCQ. After the
reasoning process, models often start their conclusion with
"Answer:", in which the original code (An et al., 2023) will as-
sume the answer to be "A" because "A" is the first capitalized
letter

6 Related Works

Long context models. Many recent large lan-
guage models support extended context lengths,
such as GPT-4 (Achiam et al., 2023), Claude,
Qwen (Yang et al., 2025a), LLaMA (Grattafiori
et al., 2024), and Phi (Abdin et al., 2024). Notably,
models like Qwen2.5-7B-Instruct-1M (Team,
2025; Yang et al.,, 2025b) and Llama-3.1-
Nemotron-8B-UltralL.ong-1M-Instruct (Xu et al.,
2025) are capable of handling context windows up
to 1 million tokens, enabling long-range reason-
ing across extremely lengthy inputs. Multiple long
context models exist optimized for long queries.
LongChat (Li et al., 2023a; Bai et al., 2024b) is a
long context LLM designed for long context con-
versations. To train their model, LongChat is tested
against their own long context testing suite and is
trained with a context size of 32K. CLEX (Chen
et al., 2023a) is a long context LLM that works by
using differential equations to scale positional em-
beddings to better support longer prompts. Code-
Llama (Roziere et al., 2024) is a LLM model based
on Llama 2 optimized for long context prompt per-
formance. CodeLlama works by training the model
on a longer context length of 16K.

Long context extension methods. Most mod-
els increase the context length through fine-tuning,
which still does not solve the problem of attention
having a minimal affect at large relative distances.
To solve this problem, other extension methods
use a similar system where the position encod-
ings modify the relative positions. Models with



Table 3: Performance comparison of Llama2-7B, Llama2-13B, Qwen-7B and DeepSeek-R1-Distill-Qwen-7B
before and after applying SE and SELF on LEval (An et al., 2023). The figure also includes performance of other
fixed models on LEval. * means that the results are reported by LongL.M (Jin et al., 2024a), * means that the results
are run by us (single run). The best performance between the original, SE and SELF will be in bold.

Model Coursera TOEFL QuALITY CodeU SFiction Avg.
Llama-2-7b-chat* 29.21 51.67 37.62 1.11 60.15 35.95
SE-Llama-2-7b-chat* 35.76 55.39 41.09 1.11 57.81 38.23
SELF-Llama-2-7b-chat* 36.19 56.88 41.09 0.00 60.94  39.02
Llama-2-13b-chat* 35.75 60.96 42.57 1.11 60.15 40.11
SE-Llama-2-13b-chat* 38.95 66.17 41.09 1.11 60.15 41.49
SELF-Llama-2-13b-chat* 37.93 64.31 39.11 0.00 57.03  39.68
Qwen-7B* 52.18 79.18 65.35 0.00 63.28 52.00
SE-Qwen-7B* 53.20 78.07 59.41 0.00 57.03 49.54
SELF-Qwen-7B* 53.34 80.67 66.83 4.44 62.5 53.56
Reasoning Model

DeepSeek-R1-Distill-Qwen-7B* 58.43 66.54 48.01 2.22 60.16 47.07
SE-DeepSeek-R1-Distill-Qwen-7B* 54.21 66.17 40.59 6.66 62.4  45.81
SELF-DeepSeek-R1-Distill-Qwen-7B*  40.27 58.74 37.5 1.11 50.78 37.68
Fixed Models

Claudel.3-100k* 60.03 83.64 73.76 17.77  72.65 6597
GPT-4-32k 75.58 84.38 82.17 2555 7499 73.11
Turbo-16k-0613* 63.51 78.43 61.38 1222 64.84 60.73
Chatglm2-6b-8k* 43.75 53.90 40.59 2.22 54.68 34.69
XGen-7b-8k (2k-4k-8k)* 26.59 44.23 35.15 1.11 48.43  26.41
Chatglm2-6b-8k* 42.15 54.64 44.05 2.22 54.68 3595
Chatglm2-6b-32k* 47.81 55.01 45.04 2.22 57.02  39.01
XGen-7b-8k* 29.06 42.37 33.66 3.33 41.40 27.63
MPT-7b-65k* 25.23 17.84 25.24 0.00 39.06 19.22

different context extension methods and their per-
formance is mentioned in the above section above
specific model performance. These include RoPE-
based techniques such as Position Interpolation
(PD) (Chen et al., 2023c), NTK (Peng and Ques-
nelle, 2023), YaRN (Peng et al., 2023b), and Self-
Extend (Jin et al., 2024b); attention-architecture-
based methods such as StreamingL.LM (Xiao
et al., 2023), LM-Infinite (Han et al., 2024b), Lon-
gLoRA (Chen et al., 2023d), Inf-LLM (Xiao et al.,
2024a), and Landmark (Mohtashami and Jaggi,
2023); as well as retrieval- and compression-based
approaches such as Retrievers (Xu et al., 2023),
Longl.LMLingua (Jiang et al., 2023), and context
compression (Li et al., 2023b).

7 Conclusion

We are successfully able to implement group at-
tention with a custom function and apply it with

a logistic growth function. From our analysis, we
can conclude that SELF works better than SE when
dealing with the same capacity, and SELF’s behav-
ior when increasing group size is more predictable.

Our logistic capacity model for grouping to-
kens yielded minor to major increases in most
tests across LEval®. The method performed best
on Llama-7b and Qwen-7B. On LongBench, our
method performed better across most tests or saw
only minor decreases in performance. By group-
ing tokens using a combined constant and logistic
growth positional embedding layer, we allow the
LLM to consider tokens at a far distance while
keeping nearby tokens more relevant. SELF in-
creases LLM prompt performance without sac-
rificing runtime performance nor modifying the
prompt.

SWith the exception of CodeU, a test where all methods
performed poorly



Limitations

 Although theoretically, SE and SELF has the
basically same runtime complexity, SELF re-
quires more complicated computations like In
instead of just FLOOR. As a result, running
SELF takes a longer time than running SE.

* The grouping method was not tested in the
variety of LLMs (only tested on LLama2-
7B, Llama2-13B, Qwen-7B and Deepseek-
R1-Distill-Qwen-7B) nor the variety of bench-
marks.

* On reasoning models, running SELF the
model would sometimes get stuck in a loop
while thinking causing an unpredictable an-
swer. This led to degraded performance com-
pared to the raw model and SE.

» SELF still struggled on the CodeU benchmark
compared to other models and would some-
times produce nonsensical outputs.
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