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Abstract001

Large language models suffer issues when op-002
erated on long contexts that are larger than their003
training context length due to the standard po-004
sition encoding for tokens in the attention layer.005
Tokens a long distance apart will rarely have006
an effect on each other and long prompts yield007
unexpected results. To solve this problem, we008
propose SELF (Self-Extend the Context Length009
With Logistic Growth Function): a solution of010
grouping consecutive tokens at varying group011
sizes using a logistic capacity equation com-012
bined with a constant group size at smaller rel-013
ative distances. Our model had an increase014
in performance of up to 12% compared to the015
LongLM extension method in LEval (specif-016
ically on the Qwen model). On summariza-017
tion related tasks in LongBench, our model per-018
formed up to 6.4% better than LongLM (specif-019
ically on the Llama-2-7b model). On reading020
comprehension tasks from LEval, our model021
performed up to 5.4% better than the LongLM.022
Our code is available at https://anonymous.023
4open.science/r/SELF-LLM-7705.024

1 Introduction025

Large language models (LLMs) are typically pre-026

trained on sequences with fixed maximum context027

lengths (e.g., 2k–4k tokens), limiting their abil-028

ity to reason over or generate responses based on029

longer inputs. When the context length exceeds the030

pretraining context length, the output is severely031

degraded and can become unreadable and undeci-032

pherable (Xiao et al., 2024b; Peng et al., 2023a;033

Han et al., 2024a; Chen et al., 2023b; Xiong et al.,034

2023). The main reason why the output is unpre-035

dictable when dealing with long context is Out-036

of-distribution (O.O.D) issues of the relative posi-037

tional for LLMs using RoPE (Liu et al., 2023; Bai038

et al., 2021; Zhang et al., 2022a). When encoun-039

tering relative distances on which models were not040

trained, model seems to generate unpredictable out-041

put vectors that cannot be decoded by the tokenizer.042

This is a very long text … a very long long long text

0 1 2 3 4 5 … n-5 n-4 n-3 n-2 n-1 npos_id

This is a very long text … a very long long long text

0 0 0 1 1 2 … m-5 m-4 m-3 m-2 m-1 mgroup_id

Neighbor windowGroup sizes determined by a function

Figure 1: Illustration of our method in extending context
length. Given a sequence of length n, that is larger than
the training sequence length, the model groups consecu-
tive tokens into groups whose sizes are determined by a
function with the help of the neighbor window. As a re-
sult, the greatest index is now m < n, and the sequence
now can be fully in the model’s scope.

The most intuitive way is to fine-tune the models 043

to extend the context windows, which needs high- 044

quality long-context data and comes with a trade- 045

off in the performance of short-context tasks (Chen 046

et al., 2023b,b; Zhu et al., 2024). Thus, there ex- 047

ist some training-free methods. For example,Jin 048

et al. (2024a) introduced Self-Extend, which lever- 049

ages the model’s inherent ability to generalize to 050

out-of-distribution (O.O.D) contexts by remapping 051

untrained relative distances to those observed dur- 052

ing training. This is done by grouping consecutive 053

tokens into fixed-size chunks, combined with a 054

neighbor window for nearby tokens. 055

While LongLM’s method shows promising re- 056

sults on long-context tasks, we propose a more 057

adaptive strategy grounded in the observation that, 058

in natural language, the relevance of a token typ- 059

ically decreases with its distance from the cur- 060

rent context. This suggests that distant tokens can 061

be grouped into larger units without significantly 062

harming comprehension. Based on this intuition, 063

we introduce a dynamic grouping strategy where 064

group sizes increase with distance from the query. 065

Unlike fixed-size chunking, our approach deter- 066

mines group boundaries through a distance-aware 067
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Figure 2: Illustration about relation between neighbor
window and perplexity after applying Self-Extend (Jin
et al., 2024a). The results is derived from testing Llama-
2-7B and its Self-Extend variants on the first book in
PG19 (Rae et al., 2019) with sequences of 2048 tokens.
The perplexity of models applying Self-Extend slowly
approaches the perplexity of the original model when
increasing the neighbor window size.

function, allowing for more efficient use of context068

length while preserving semantic fidelity.069

Thus, we introduce SELF (Self-Extend the Con-070

text Length With Logistic Growth Function), a more071

adaptive token grouping strategy that dynamically072

adjusts group boundaries based on context struc-073

ture rather than relying on fixed-size chunks. This074

allows for better capture of long-range dependen-075

cies and finer preservation of semantic boundaries076

with different distances. In essence, our method077

addresses the O.O.D. challenge through a shared078

principle but differs in the way token groups are079

constructed (see Figure 1 1 for illustration).080

Through comprehensive experimental results,081

we witness an increase up to 8% (specifically082

Qwen2-7B model (Yang et al., 2024)) of accuracy083

when applying our grouping method compared to084

Self-Extend (Jin et al., 2024a) when benchmarking085

on LEval. We also witnessed an accuracy increase086

of up to 5% when using SELF over LongLM on087

the Llama-2-7B (Touvron et al., 2023b).088

2 Motivations089

LongLM (Jin et al., 2024a) proposes a solution to090

handle prompts that are longer than the models’091

pretraining sequence lengths by grouping tokens092

at far distances because the exact position is less093

important than the relative order of information in094

long context and keep the exact positions of closer095

token by a neighbor window. However, the out-096

put’s perplexity will increase right after where the097

neighbor window ended. As a result, to make the098

1This is an oversimplification of how the method works.
More details will be explained in Our Proposal section

model less "confused", the neighbor window has 099

to be increased (see Figure 2), which decreases the 100

total number of tokens the models after applying 101

Self-Extend can handle. 102

Although LongLM’s method yielded signifi- 103

cantly improved results in key retrieval, the Long- 104

Bench benchmark (Bai et al., 2024a) and the LEval 105

benchmark (An et al., 2023), we believe that we 106

can increase the total context length by leveraging 107

a property of natural language: the farther a word 108

is from the current token, the less important it tends 109

to be to the current context. 110

In LongLM (Jin et al., 2024a), the group size is 111

the same for every group, which is not the most 112

optimized way. Intuitively, in natural languages, 113

the further a token, the less relevant the token is to 114

the context, allowing us to group them into progres- 115

sively larger groups, meaning that we can improve 116

the total context length by allowing larger groups 117

without significantly trade-off in model’s compre- 118

hension ability. By this intuition, the group sizes 119

have to be dynamic, which means that they have to 120

be determined by a function. 121

Therefore, we need to choose a monotonic in- 122

creasing function for group sizes (the further, the 123

larger the group). However, if the group size is 124

too large, it will affect the performance because 125

every word is treated the same regardless of their 126

positions. Therefore, we must choose a function 127

whose maximum value is limited and controllable. 128

Based on those conditions, we decided to choose 129

the Logistic growth Function, which is a monotonic 130

increasing function with a defined maximum value. 131

Because the group sizes have to be integers, we 132

will take the floor of the Logistic growth Function. 133

f(x) = ⌊ Cerx

C + erx − 1
⌋

, C is the capacity i.e. the maximum group size 134

and r is the growth rate of group sizes. 135

3 Preliminaries 136

3.1 Position Encoding 137

Most models use two types of position encodings, 138

relative and absolute position encoding. Relative 139

position encoding utilizes the distance between 140

one token and another token while absolute po- 141

sition encoding uses the token’s position from 0. 142

(Vaswani et al., 2023) Since the importance of 143

words is usually based on how far they are away 144

from the base word, relative position encoding is 145
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more common. Examples of absolute encoding146

include GPT3, learned positional encoding (Brown147

et al., 2020), OPT (Zhang et al., 2022b). Examples148

of relative encoding include T5, learnable atten-149

tion bias (Xue et al., 2021), Transformer-XL (Dai150

et al., 2019), Alibi, fixed linear attention (Press151

et al., 2022). This is especially important when it152

comes to long context prompts as our LLM might153

need to consider tokens further away as still being154

important. These position encodings are applied at155

the attention layer so that when tokens are intercon-156

nected with eachother the positions are considered.157

Our goal is to design a mechanism where we can158

consider tokens far apart in our decision making159

while also holding closer tokens to a high impor-160

tance. Considering an example of long context key161

retrieval, we need to consider the close-by tokens162

(instructions) to a high degree but also ensure the163

key (at a far away position) is considered.164

3.2 RoPE165

Considering tokens a1 . . . an and their embeddings166

x1 . . . xn where each embedding is a real matrix.167

RoPE (Su et al., 2023) integrates the position in-168

formation into the query and key vectors. If done169

properly, qTk will already contain the positional170

embeddings preventing an extra step from being171

needed. To embed the position, RoPE uses the func-172

tion qm = fq(xm,m) ∈ R|n|, kn = fx(xn, n) ∈173

R|n| where |L| is the hidden dimension of each174

head. fq(xm,m) = Wqxmeimθ, fk(xn, n) =175

Wkxne
inθ, θd = b−2d/|D|. The positional embed-176

ding system keeps the real section of qTk which177

is Re(q∗k). The dot product of the query and key178

will always yield a result depending on the relative179

distance between the two tokens as follows:180

⟨fq(xm,m), fk(xn, n)⟩R (1)181

= Re(⟨fq(xm,m), fk(xn, n)⟩C)182

= Re(x∗mW ∗
q W

∗
kxne

iθ(m−n))183

= g(xm, xn,m− n),184

where g is an abstract mapping function.185

4 Our Proposal186

4.1 Self-Extend with constant group size187

Self-Extend(Jin et al., 2024a) maps unseen relative188

positions to trained relative positions by using the189

FLOOR operation to group neighboring tokens190

into one single group that shares the same posi-191

tional index.192

Their important finding is the importance of 193

neighbor attention. By just purely grouping to- 194

kens together, the perplexity will be higher than 195

in the original model. Grouping all tokens with a 196

constant group size degrades the effect of closer 197

tokens which usually have more importance. To 198

solve this problem, LongLM uses separate grouped 199

attention, for tokens further away, and neighbor 200

attention, for nearby tokens. Acknowledging this, 201

our method will also apply neighbor attention. 202

4.2 SELF: Self-Extend with dynamic group 203

size 204

Despite successfully tricking the LLM into believ- 205

ing that the tokens are closer than they really are, 206

LongLM’s approach abruptly increases the group 207

size from 1 (within the neighbor window, the group 208

size can be regarded as 1) to a much larger value 209

(the value of group size, e.g., 512). To avoid this 210

sudden jump, we propose that group sizes should 211

increase gradually rather than all at once. More 212

specifically, the group size should grow according 213

to a smooth function such as the Logistic Growth 214

Function, which starts small and increases steadily. 215

Based on this idea, we propose a new method called 216

SELF (Self-Extend the Context Length With Logis- 217

tic Growth Function). 218

In SELF, we use a function f : N→ N to deter- 219

mine the size of each group. Given a group index 220

(like the 0th, 1st group), this function returns the 221

number of tokens assigned to that group. 222

Example 1: Given a function f whose f(0) = 223

1, f(1) = 2, f(2) = 2, f(3) = 3 and f(4) = 3. 224

The grouping will be: 225

F = [0, 1, 1, 2, 2, 3, 3, 3, 4, 4, 4] 226

Let’s define: 227

• GK : N → N as the group position index used 228

in the encoding of the key-value pairs. 229

GK
i = Fi (2) 230

• GQ : N → N as the group position index used 231

in the encoding of the query. 232

• R : N×N→ N is the relative distance between 233

GQ and GK . 234

The relative position right after the neighbor win- 235

dow (Ri,i−W ) has to be W , where W is the width 236

of the neighbor window, because the relative posi- 237

tions inside the neighbor window will range from 0 238
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Figure 3: Illustration of the relation between GK and
GQ knowing that the relative position right after the
neighbor window has to be W .

to W − 1 (see illustration in Figure 3). Therefore,239

GQ
i =

{
W +GK

i−W , if i ≤W

c, otherwise
(3)240

No matter what constant c we choose, it will be241

completely covered by the neighbor window.242

If we used only group attention, the number of to-
kens can be fully extended to

∑L
i=1 f(i). However,

because we have the neighbor window, Rn,n−W =
W instead of Rn,n−W = max(F ) − FW , that is,
it takes W + FW −max(F ) more indices than us-
ing only group attention. Therefore, the number of
tokens can be extended to

L′ =

L+max(F )−W−FW∑
i=1

f(i)

where L is the initial token limit.243

This formula gives the total number of tokens244

that can be processed using our SELF method,245

which blends regular and group-based attention in246

a way that grows group sizes smoothly and avoids247

any sudden jumps that could disrupt the model.248

4.3 Efficient Implementation: grouping249

indices in parallel250

The most native approach to calculate F given f is
to start with an empty F , than sequentially compute
f(i) and add f(i) more elements to the end of F .

F ← F ∥ replicate(i, f(i))

However, since we have thousands of tokens, com-251

puting the new positional embeddings sequentially252

would take O(n) of run time.253

Algorithm 1 Construct group indices(n,W,C, r)
p← −1

for k ← 1 to C − 1 do
Compute parallelly F [p + 1..p + g(k)] using Equa-

tion (6)
p← p+ g(k)

end for

Compute GK parallelly using Equation (2)
Compute GQ parallelly using Equation (3)

return group_key_id and group_query_id

In order to solve this high computing time issue, 254

we use inverse function of the grouping function 255

which will divide each sequence into sections in 256

which the group sizes are the same so we can easily 257

calculate and assign group sizes in parallel. We 258

define the inverse function f−1 : N → N, when 259

given the group size, the inverse function returns 260

the smallest index that has the given group size. 261

Using Example 1, the inverse function will be 262

f−1(1) = 0, f−1(2) = 1 and f−1(3) = 3. Let’s 263

define the function g : N → N, when given the 264

group size, the function returns the total number of 265

elements that are in the group of the given size. 266

g(x) = x · [f−1(x+ 1)− f−1(x) + 1] (4) 267

In order to find the Fi given i, define k the largest 268

number such that: 269

S =

k∑
j=1

g(j) < i (5) 270

This means that Fi has to be in the group whose 271

size is k + 1 and it is ⌈ i−S
k+1⌉ indices away from the 272

last index of the group whose size is k, which is 273

f−1(k + 1)− 1. Therefore, 274

Fi = [f−1(k + 1)− 1] + ⌈ i− S

k + 1
⌉ (6) 275

Now, considering the logistic growth function,
we have:

f(x) = ⌊ Cerx

C + erx − 1
⌋

f−1(y) = ⌊ ln(Cy − y)− ln(C − y)

r
⌋

In the logistic growth function, the maximum 276

group size k in Equation (5) is C, which is a very 277

small number compared to the sequence length. We 278

can utilize GPU parallelism using the pseudo-code. 279
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Figure 4: Illustration of the algorithm grouping the indices using the function f : N→ N, where f(0) = 1, f(1) =
2, f(2) = 2, f(3) = 3 and f(4) = 3. The sequence with length of n = 11 was run the model with the pretraining
sequence length of L = 6. The numbers denote the relative position between the corresponding key and query token.
It has two kinds of self-attention, similar to Self-Extend (Jin et al., 2024a): neighbor tokens inside the neighbor
window (W = 3) (blue cells in the figure) use regular self-attention; group tokens outside the neighbor window
(orange cells in the figure) use group self-attention (group indices are denoted as the G row and column in the
figure). Green GQ means it can be anything as it is covered completed by the neighbor window.

By applying Equation (4), g(k) can be computed280

in O(1). We can easily tell that the total work for281

computing F is O(n+ C), and the total work for282

computing GK and GQ knowing F is O(n), since283

it takes O(1) at each index.284

Putting this together, the total work for the algo-
rithm is O(n + C) and the parallel span is O(C).
Assuming that there are P threads available, the
runtime is bounded by:

T (P ) = O(max{n+ C

P
,C})

This means that if having sufficient resources (P285

is large enough), we can speed up to near-linear286

since the lower bound is C, which is usually a very287

small number.288

5 Experiments289

In this section, we first analyze the impact of Group290

Size on the SELF method based on perplexity re-291

sults from the PG19 dataset, in order to identify292

an appropriate group size configuration. We then293

compare SELF with the standard SE method on294

real-world long-context benchmarks such as LONG-295

BENCH and LEVAL, demonstrating the effective-296

ness of SELF on practical long-conetxt tasks.297

We ran experiments on Llama-2-7B, Llama-298

2-13B (Touvron et al., 2023a), Qwen-7b (Yang299

et al., 2024), and a distilled reasoning model from300

Deepseek-R1 (DeepSeek-AI et al., 2025). We con-301

ducted our tests on Longbench v1 (Bai et al., 2024a)302

and LEval (An et al., 2023)2.303

2We skipped the GSM benchmark as we were unable to

5.1 Understanding the impact of group size on 304

SELF via Perplexity 305

We begin by measuring the perplexity of LLaMA- 306

2-7B-Chat with both SE and SELF under varying 307

group sizes and context window lengths on the 308

PG19 dataset. From Table 1, we can observe: 309

• SELF achieves lower perplexity scores when 310

working with the same group size. 311

• When group size is small, there isn’t much differ- 312

ence in perplexity score between SE and SELF. 313

• The larger the group size, the longer the se- 314

quence lengths over which noticeable differ- 315

ences can be observed. For example, the dif- 316

ference is still noticeable when C = 32, and 317

the sequence length is 6144 and when C = 64 318

and the sequence length is 12288. With larger 319

group size, it takes longer sequence to reach its 320

maximum group size, meaning that most of the 321

groups has their sizes less than the maximum 322

group size, decreasing the final perplexity score. 323

• When dealing with sequences that are signifi- 324

cantly longer than the original context length, 325

the scores are basically the same for SE and 326

SELF. When the sequence is significantly long, 327

the amount of intermediate group is negligible 328

compared to the number of groups that have 329

reached the maximum group size. As a result, 330

the model behavior closely resembles that of SE, 331

where all groups have the maximum group size. 332

From the above observations, there is a trade off 333

replicate the results the paper provided on our own
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Table 1: Perplexity on dataset PG19 (Rae et al., 2019) first book with Llama-2-7b-chat and compare SE and SELF
(the growth rate r = 0.02) with the same group size (C = 16, C = 32 and C = 64) and neighbor window.

Model Perplexity with Context Window Size (log scale)
Name 4096 6144 8192 10240 12288 14336 16384

Llama-2-7b-chat 7.231 > 103 > 103 > 103 > 103 > 103 > 103

C
=

1
6 SE-Llama-2-7b-chat 7.103 7.086 7.126 7.174 7.229 7.248 7.270

SELF-Llama-2-7b-chat 7.085 7.085 7.122 7.168 7.203 7.234 7.270

C
=

3
2 SE-Llama-2-7b-chat 7.141 7.184 7.199 7.314 7.346 7.410 7.496

SELF-Llama-2-7b-chat 7.119 7.133 7.196 7.275 7.345 7.408 7.484

C
=

6
4 SE-Llama-2-7b-chat 7.186 7.316 7.303 7.458 7.530 7.625 8.041

SELF-Llama-2-7b-chat 7.135 7.180 7.267 7.364 7.467 7.619 8.068

in perplexity when increasing the group size (Jin334

et al., 2024a). When using larger group size, mod-335

els are more uncertain in their predictions. How-336

ever, when dealing with the same group size3, ide-337

ally, models with SELF have lower perplexity than338

ones with SE because instead of increasing rapidly339

from one to the maximum group size, models with340

SELF have to go through smaller group sizes (in-341

termediate groups) before reaching the maximum342

group size. Therefore, although the context length343

after extension of both methods are approximately344

the same with the same group size, SELF performs345

better when the sequence length is not excessively346

larger than the orginial context window.347

Base on this analysis, we decided to choose348

larger group size for most of our experiments com-349

pared to ones in LongLM (Jin et al., 2024a) without350

experiencing a significant trade off in performance.351

5.2 Comparisons of SELF and SE in352

Real-World Long Context Tasks353

5.2.1 LongBench354

We conducted experiment on LongBench (Bai et al.,355

2024a) using Llama-2-7B and then compared our356

results with the original model and the model where357

Self-Extend is applied. Here we decided instead of358

using small group size of 6 and 8 like in LongLM359

(Jin et al., 2024a), we used a much bigger group360

size (C = 32) and still observed a better results in361

most tasks. The results are in Table 2 We see an im-362

provement of summarizing tasks because having to363

go through smaller group sizes makes the models364

have a better understanding of the text. Moreover,365

our suspicion that SELF tends to perform better366

when the length is closer to the original context367

3Group size in context of SELF refer to the maximum
group size i.e. the capacity in the Logistic growth function

8 16 32 48 64 80 96 128
Group size
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Comparison of SELF vs SE Values on 2WikiMultihopQA
Source

SELF
SE

Figure 5: Compare the trade off with different group
sizes of SE and SELF on 2WikiMultihopQA. The two
grouping methods has the same neighbor window size
W = 1024.

window is also confirmed since SELF performs bet- 368

ter in tasks where the average context length is not 369

significantly long such as MultiFieldQA, 2Wiki- 370

MultihopQA, HotpotQA and TREC. 371

We can also observe the trend in trade off of 372

accuracy in 2WikiMultihopQA task (see Figure 5). 373

Unlike SE, whose changes are more abrupt and 374

unpredictable despite of the general trend is still 375

decreasing (this can also be observed when SE 376

doing other tasks with vary group sizes (Jin et al., 377

2024a)), SELF’s accuracy seems to slowly decrease 378

after reaching its peak. In SE, group indices can 379

be every different with different group sizes. In 380

contrast, SELF’s group sizes increase gradually, 381

resulting in overlapping early groups. As the result, 382

the differences between varying group sizes are 383

relatively subtle compare to SE. 384

5.2.2 LEval 385

We tested one 4 different models using the same 386

hyperparameter as in the LongBench v1 test (see 387

the result Table 3). 388

• Llama-2-7B: An improvement can be seen in 389

every tasks except for CodeU. However, the dif- 390
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Table 2: Performance of different models on LongBench (Bai et al., 2024a). * means that the results are reported by
Self-Extend (Jin et al., 2024a), * means that the results are run by us (single run). The suffix number (e.g. ‘25k’)
indicates the maximum context window of the model. The ‘SE’ prefix indicates Self-Extend is applied to this model
and the prefix ‘SEF’ indicates that our Self-Extend with Logistic Growth Function is applied. The best performance
in each section will be in bold

LLMsa

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

NarrativeQA

Qasper

MultiF
ield-en

HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum

Passa
geCount

Passa
geRe

Lcc

RepoBench-P

SE
vs

SE
L

F Llama-2-7B-chat-4k* 18.7 19.2 36.8 25.4 32.8 9.4 27.3 20.8 25.8 61.5 77.8 40.7 2.1 9.8 52.4 43.8
SE-Llama-2-7B-chat-16k* 21.69 25.02 35.21 34.34 30.24 14.13 27.32 21.35 25.78 69.50 81.99 40.96 5.66 5.83 60.60 54.33
SE-Llama-2-7B-chat-25k* 21.37 26.68 34.63 35.47 30.46 15.51 27.51 21.30 25.87 68.50 78.79 41.29 3.90 3.50 59.69 53.83
SELF-Llama-2-7B-chat-100k* 17.4 25.74 37.61 36.30 31.37 13.11 27.9 21.81 27.54 69.50 76.97 40.85 6.16 6.0 60.49 51.55

O
th

er
M

et
ho

ds

LongChat1.5-7B-32k* 16.9 27.7 41.4 31.5 20.6 9.7 30.8 22.7 26.4 63.5 82.3 34.2 1.0 30.5 53.0 55.3
together/llama-2-7b-32k* 15.65 10.49 33.43 12.36 12.53 6.19 29.28 17.18 22.12 71.0 87.79 43.78 1.0 23.0 63.79 61.77
CLEX-7B-16k* 18.05 23.68 44.62 28.44 19.53 9.15 32.52 22.9 25.55 68 84.92 42.82 0 11.5 59.01 56.87
CodeLLaMA-7B-16k* 22.93 30.69 43.37 33.05 27.93 14.2 28.43 24.18 26.84 70 84.97 43.43 2 13.5 64.35 55.87
SE-Llama-2-7B-chat-16k* 21.69 25.02 35.21 34.34 30.24 14.13 27.32 21.35 25.78 69.50 81.99 40.96 5.66 5.83 60.60 54.33
SE-Llama-2-7B-chat-25k* 21.37 26.68 34.63 35.47 30.46 15.51 27.51 21.30 25.87 68.50 78.79 41.29 3.90 3.50 59.69 53.83
SELF-Llama-2-7B-chat-100k* 17.4 25.74 37.61 36.30 31.37 13.11 27.9 21.81 27.54 69.50 76.97 40.85 6.16 6.0 60.49 51.55

Fi
xe

d
M

od
el

s

GPT-3.5-Turbo-16k* 23.6 43.3 52.3 51.6 37.7 26.9 29.5 23.4 26.7 68.0 91.4 41.7 4.5 71.0 54.7 53.6
XGen-7B-8k* 18 18.1 37.7 29.7 21.1 10.3 27.3 20.5 26.2 65.5 77.8 25.3 2.1 8.5 38.6 38.6
InternLM-7B-8k* 12.1 16.7 23.4 28.7 22.8 9.0 9.7 15.9 22.8 52.0 77.8 21.2 3.0 6.0 44.1 28.8
ChatGLM2-6B-32k* 21.1 31.5 46.2 45.1 34.0 21.9 32.4 24.0 26.5 62.5 78.7 36.3 1.5 77.0 55.6 49.9
ChatGLM3-6B-32k* 26.0 43.3 51.7 54.4 44.9 40.4 36.8 23.9 27.9 79.0 87.1 38.2 2.0 99.0 57.66 54.76
Baichuan-13B-4k* 0.07 17.55 17.28 3.29 15 0.1 6.8 1.71 23.1 20.05 20.06 5.77 0.06 0.5 47.98 16.58
ALiBi-7B-4k* 0.04 8.13 17.87 2.73 8 1.33 5.31 1.64 25.55 9.25 8.83 4.67 0 1.27 46.69 18.54

ference in CodeU is not significant as the most391

correct models could answer only 1 correctly392

compare to 0 for model that apply SELF.393

• Llama-2-13B: the SELF version seems to per-394

form worse than the SE version in all tasks. We395

could not come up with the reason why there is396

such a difference despite Llama-2-7B and Llama-397

2-13B having the same architecture.398

• Qwen-7B: There is a significant improvement399

compared to SE. There is an improvement com-400

pared to the raw model, but not significant.401

• Deepseek-R1-Distill-Qwen-7B4: For this rea-402

soning model, we forced the model to reason403

before giving answer by adding the open tag404

<think>. An significant decrease in the accu-405

racy of models after applying Self-Extend (both406

SE and SELF) can be observed. We suspect407

the Reinforcement Learning process to improve408

reasoning ability does have influence on this ef-409

fect as reinforcement learning was applied on410

exact position and the model’s reasoning ability411

wasn’t optimized for group attention. We also412

witnessed models applying SE and SELF often413

stuck in reasoning loop which did not happen for414

the original model. However, this needs to be415

researched on more before making conclusion.416

4We modified the evaluation function for MCQ. After the
reasoning process, models often start their conclusion with
"Answer:", in which the original code (An et al., 2023) will as-
sume the answer to be "A" because "A" is the first capitalized
letter

6 Related Works 417

Long context models. Many recent large lan- 418

guage models support extended context lengths, 419

such as GPT-4 (Achiam et al., 2023), Claude, 420

Qwen (Yang et al., 2025a), LLaMA (Grattafiori 421

et al., 2024), and Phi (Abdin et al., 2024). Notably, 422

models like Qwen2.5-7B-Instruct-1M (Team, 423

2025; Yang et al., 2025b) and Llama-3.1- 424

Nemotron-8B-UltraLong-1M-Instruct (Xu et al., 425

2025) are capable of handling context windows up 426

to 1 million tokens, enabling long-range reason- 427

ing across extremely lengthy inputs. Multiple long 428

context models exist optimized for long queries. 429

LongChat (Li et al., 2023a; Bai et al., 2024b) is a 430

long context LLM designed for long context con- 431

versations. To train their model, LongChat is tested 432

against their own long context testing suite and is 433

trained with a context size of 32K. CLEX (Chen 434

et al., 2023a) is a long context LLM that works by 435

using differential equations to scale positional em- 436

beddings to better support longer prompts. Code- 437

Llama (Rozière et al., 2024) is a LLM model based 438

on Llama 2 optimized for long context prompt per- 439

formance. CodeLlama works by training the model 440

on a longer context length of 16K. 441

Long context extension methods. Most mod- 442

els increase the context length through fine-tuning, 443

which still does not solve the problem of attention 444

having a minimal affect at large relative distances. 445

To solve this problem, other extension methods 446

use a similar system where the position encod- 447

ings modify the relative positions. Models with 448
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Table 3: Performance comparison of Llama2-7B, Llama2-13B, Qwen-7B and DeepSeek-R1-Distill-Qwen-7B
before and after applying SE and SELF on LEval (An et al., 2023). The figure also includes performance of other
fixed models on LEval. * means that the results are reported by LongLM (Jin et al., 2024a), * means that the results
are run by us (single run). The best performance between the original, SE and SELF will be in bold.

Model Coursera TOEFL QuALITY CodeU SFiction Avg.

Llama-2-7b-chat* 29.21 51.67 37.62 1.11 60.15 35.95
SE-Llama-2-7b-chat* 35.76 55.39 41.09 1.11 57.81 38.23
SELF-Llama-2-7b-chat* 36.19 56.88 41.09 0.00 60.94 39.02

Llama-2-13b-chat* 35.75 60.96 42.57 1.11 60.15 40.11
SE-Llama-2-13b-chat* 38.95 66.17 41.09 1.11 60.15 41.49
SELF-Llama-2-13b-chat* 37.93 64.31 39.11 0.00 57.03 39.68
Qwen-7B* 52.18 79.18 65.35 0.00 63.28 52.00
SE-Qwen-7B* 53.20 78.07 59.41 0.00 57.03 49.54
SELF-Qwen-7B* 53.34 80.67 66.83 4.44 62.5 53.56

Reasoning Model

DeepSeek-R1-Distill-Qwen-7B* 58.43 66.54 48.01 2.22 60.16 47.07
SE-DeepSeek-R1-Distill-Qwen-7B* 54.21 66.17 40.59 6.66 62.4 45.81
SELF-DeepSeek-R1-Distill-Qwen-7B* 40.27 58.74 37.5 1.11 50.78 37.68

Fixed Models

Claude1.3-100k* 60.03 83.64 73.76 17.77 72.65 65.97
GPT-4-32k 75.58 84.38 82.17 25.55 74.99 73.11
Turbo-16k-0613* 63.51 78.43 61.38 12.22 64.84 60.73

Chatglm2-6b-8k* 43.75 53.90 40.59 2.22 54.68 34.69
XGen-7b-8k (2k-4k-8k)* 26.59 44.23 35.15 1.11 48.43 26.41
Chatglm2-6b-8k* 42.15 54.64 44.05 2.22 54.68 35.95
Chatglm2-6b-32k* 47.81 55.01 45.04 2.22 57.02 39.01
XGen-7b-8k* 29.06 42.37 33.66 3.33 41.40 27.63
MPT-7b-65k* 25.23 17.84 25.24 0.00 39.06 19.22

different context extension methods and their per-449

formance is mentioned in the above section above450

specific model performance. These include RoPE-451

based techniques such as Position Interpolation452

(PI) (Chen et al., 2023c), NTK (Peng and Ques-453

nelle, 2023), YaRN (Peng et al., 2023b), and Self-454

Extend (Jin et al., 2024b); attention-architecture-455

based methods such as StreamingLLM (Xiao456

et al., 2023), LM-Infinite (Han et al., 2024b), Lon-457

gLoRA (Chen et al., 2023d), Inf-LLM (Xiao et al.,458

2024a), and Landmark (Mohtashami and Jaggi,459

2023); as well as retrieval- and compression-based460

approaches such as Retrievers (Xu et al., 2023),461

LongLLMLingua (Jiang et al., 2023), and context462

compression (Li et al., 2023b).463

7 Conclusion464

We are successfully able to implement group at-465

tention with a custom function and apply it with466

a logistic growth function. From our analysis, we 467

can conclude that SELF works better than SE when 468

dealing with the same capacity, and SELF’s behav- 469

ior when increasing group size is more predictable. 470

Our logistic capacity model for grouping to- 471

kens yielded minor to major increases in most 472

tests across LEval5. The method performed best 473

on Llama-7b and Qwen-7B. On LongBench, our 474

method performed better across most tests or saw 475

only minor decreases in performance. By group- 476

ing tokens using a combined constant and logistic 477

growth positional embedding layer, we allow the 478

LLM to consider tokens at a far distance while 479

keeping nearby tokens more relevant. SELF in- 480

creases LLM prompt performance without sac- 481

rificing runtime performance nor modifying the 482

prompt. 483

5With the exception of CodeU, a test where all methods
performed poorly
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Limitations484

• Although theoretically, SE and SELF has the485

basically same runtime complexity, SELF re-486

quires more complicated computations like ln487

instead of just FLOOR. As a result, running488

SELF takes a longer time than running SE.489

• The grouping method was not tested in the490

variety of LLMs (only tested on LLama2-491

7B, Llama2-13B, Qwen-7B and Deepseek-492

R1-Distill-Qwen-7B) nor the variety of bench-493

marks.494

• On reasoning models, running SELF the495

model would sometimes get stuck in a loop496

while thinking causing an unpredictable an-497

swer. This led to degraded performance com-498

pared to the raw model and SE.499

• SELF still struggled on the CodeU benchmark500

compared to other models and would some-501

times produce nonsensical outputs.502
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