
Context-aware Prompt Tuning: Advancing In-Context Learning with
Adversarial Methods

Anonymous ACL submission

Abstract001

Large Language Models (LLMs) can perform002
few-shot learning using In-Context Learning003
(ICL) or optimization-based methods. ICL004
is more effective in low-data regimes, while005
optimization-based methods excel with larger006
datasets. This contrast raises a key question:007
why optimization-based methods face chal-008
lenges in low-data regimes, and how can these009
methods be effectively integrated with ICL010
to enhance few-shot learning? In this work,011
we identify overfitting as the primary limita-012
tion of optimization-based methods in few-shot013
settings and introduce Context-aware Prompt014
Tuning (CPT), a method that combines the015
strengths of ICL, Prompt Tuning (PT), and ad-016
versarial techniques. CPT initializes the con-017
text with training examples, similar to ICL, and018
then applies an optimization process inspired019
by PT and adversarial techniques. Through020
iterative adaptation, CPT effectively balances021
flexibility and stability, allowing it to derive022
deeper insights from limited data while preserv-023
ing the integrity of input samples. Our method024
achieves superior accuracy across multiple clas-025
sification tasks and LLM architectures, consis-026
tently outperforming existing baselines and ef-027
fectively mitigating overfitting challenges in028
few-shot scenarios.029

1 Introduction030

Adapting Large Language Models (LLMs) to031

new tasks in few-shot learning scenarios can be032

achieved through either fine-tuning or In-Context033

Learning (ICL) (Brown et al., 2020). Parameter-034

efficient fine-tuning methods, such as Low-Rank035

Adaptation (LoRA) (Hu et al., 2021), which op-036

timizes a subset of the model’s parameters, and037

Prompt Tuning (PT) (Lester et al., 2021), which op-038

timizes a small set of learnable tokens prepended to039

the input, aim to achieve task-specific performance040

with minimal computational overhead. In contrast,041

ICL eliminates the need for parameter updates by042

2 4 6 8 10 12 14 16 18 20
Number of Training Examples

10 6

10 4

10 2

100

CE
 L

os
s

IP
T'

s g
ap

CP
T'

s g
ap

ICL
PT
IPT
LoRA
CPT (ours)
Test
Train

Figure 1: Overfitting Across Few-Shot Methods Train-
test loss gap across methods and training set sizes using
the GPT-J model on the DBpedia dataset. For each
model, there are two loss graphs: one for train loss
(dotted line) and one for test loss (solid line). CPT
performs better in mitigating overfitting compared to
optimization-based methods. Despite a relatively higher
training loss, CPT achieves the lowest test loss.

incorporating training examples directly into the 043

input context, offering a training-free alternative 044

that leverages the model’s pre-trained knowledge 045

without modifying its underlying parameters. De- 046

spite their effectiveness, determining the optimal 047

approach for varying dataset sizes remains an on- 048

going challenge. 049

In few-shot scenarios with limited data, ICL 050

has shown greater effectiveness; however, as the 051

dataset size increases, optimization-based methods 052

like LoRA and PT become preferable. This trend 053

has been observed in prior studies (Mosbach et al., 054

2023; Min et al., 2022) and is further supported 055

by our experimental results (fig. 3), which demon- 056

strate that while ICL excels in low-data regimes, 057

its advantage diminishes as more data becomes 058

available. Although promising, the limitations of 059

optimization-based methods in low-data scenarios 060

require further exploration. 061

In this work, we identify overfitting as the 062

primary factor limiting the effectiveness of 063

optimization-based methods in few-shot learning 064

scenarios, as demonstrated in fig. 1. To address 065

this challenge, we propose Context-Aware Prompt 066

Tuning (CPT), a novel approach that integrates 067

concepts from ICL, Prompt Tuning (PT), and ad- 068

versarial attacks (Blau et al., 2022, 2023; Carlini 069

and Wagner, 2017; Athalye et al., 2018; Madry 070

1

��� ������������� ���������

����
	� ����
	� �	�����
	����	��

���

�	�����
	����	�� ����
	������
	� ����
	�
�	�����
	�
����
	�

�	�����
	�
����
	�

�����	�����	��

��������	��

����
	�� ����
	��

Figure 2: Comparison of Few-Shot Methods We highlight the key differences between CPT and the baseline
methods, focusing on ICL, PT, and IPT. Each method includes two token types: prefix tokens (blue background)
and loss tokens (orange background). The tokens are categorized into Learnable Tokens (pink) and Sample Tokens
(brown), which remain fixed during training. A red line beneath the tokens indicates those used for loss calculation,
while a green line marks those updated during training. CPT introduces Learnable Sample tokens, shown in a
brown-pink color, initialized with training samples and progressively refined during optimization.

et al., 2017; Gowal et al., 2020). As illustrated071

in fig. 2, CPT utilizes training examples in two072

ways: first, to construct the context as in ICL, and073

second, to optimize the context token embeddings074

using methodologies inspired by PT and adversar-075

ial attacks. To combat overfitting, CPT refines the076

context tokens while preserving their structure, inte-077

grates context labels into the loss function as a form078

of regularization, and applies projected gradient de-079

scent to maintain proximity to their original values.080

Additionally, CPT employs a loss weighting mech-081

anism that leverages recency bias—a phenomenon082

where models prioritize later examples in the con-083

text (Zhao et al., 2021), thereby guiding the model084

to prioritize the most relevant examples during opti-085

mization. These strategies collectively enable CPT086

to strike a balance between optimization flexibility087

and robustness, effectively addressing overfitting088

challenges in few-shot learning scenarios.089

We rigorously evaluate CPT across multiple clas-090

sification tasks and model architectures, conduct-091

ing extensive ablation studies to validate each de-092

sign choice. To ensure robustness, we employ di-093

verse templates and seeds—an essential consider-094

ing ICL’s sensitivity to the selection and format-095

ting of training examples, as highlighted by (Sun096

et al., 2023; Zhao et al., 2021). Our results demon-097

2 4 6 8 10 15 20 25 30 40 50
Number of Training Examples

20

40

60

80

Ac
cu

ra
cy

 (%
)

ICL
Prefix
PT
IPT
LoRA
CPT (ours)

Figure 3: Comparison of Few-Shot Methods. We com-
pare CPT with baseline methods using the GPT-J model
and the DBpedia dataset in few-shot settings, demon-
strating its superior performance, particularly when han-
dling a limited number of examples. Furthermore, our
results highlight that context-based methods encounter
memory constraints (indicated by dots) as the number of
training examples increases beyond a certain threshold.

strate that CPT consistently achieves superior per- 098

formance compared to existing baselines across 099

diverse scenarios. 100

To summarize, our key contributions are as fol- 101

lows: 102

• We identify overfitting as the primary lim- 103

itation of optimization-based methods in 104

few-shot learning scenarios and empirically 105

demonstrate its impact on performance degra- 106

dation. 107

• We propose Context-Aware Prompt Tuning 108

(CPT), a novel few-shot learning method that 109

enhances ICL with optimization-based tech- 110

niques. CPT employs targeted strategies to 111

effectively mitigate overfitting. 112

• We achieve state-of-the-art results across mul- 113

tiple classification datasets and perform exten- 114

sive ablation studies to validate each compo- 115

nent of our proposed method. 116

2 Related Work 117

Fine-Tuning Fine-tuning is a popular and effec- 118

tive method for adjusting LLMs to specific tasks. 119

Standard fine-tuning (Radford et al., 2019; Brown 120

et al., 2020; Howard and Ruder, 2018; Liu et al., 121

2019; Lan et al., 2019; Raffel et al., 2020; Sun et al., 122

2019) retrains the model with new data. However, a 123

key disadvantage is the large number of parameters 124

that must be stored. 125

Efficient Fine-Tuning To alleviate the com- 126

putational burden of fine-tuning, Adapter-BERT 127

(Houlsby et al., 2019) proposes training only the 128

adapter layers inserted into the model, while Bit- 129

Fit (Zaken et al., 2021) focuses on fine-tuning just 130

the bias terms. Delta Tuning (Ding et al., 2022) 131

explores parameter-efficient methods that adjust 132

only a small portion of a model’s parameters. Low- 133

Rank Adaptation methods (LoRA) (Hu et al., 2021) 134

2

introduces a novel low-rank adaptation technique,135

where additional low-rank matrices are added to136

the weights during training. This allows the model137

to to train only these matrices, reducing the num-138

ber of trainable parameters significantly. VERA139

(Kopiczko et al., 2023) builds on LoRA by in-140

corporating adaptive learning rates. Compacter141

(Karimi Mahabadi et al., 2021) leverages hyper-142

complex layers, and LoRA-Pro (Wang and Liang,143

2024) further refines optimization. Despite these144

advancements, large models like GPT-3, which con-145

tain 175B parameters, require updating millions of146

parameters, such as 17.5M for LoRA.147

Prompt Tuning (PT) Unlike fine-tuning meth-148

ods, PT reduces the number of trainable parameters149

by introducing learnable tokens optimized while150

keeping the model’s weights frozen. (Lester et al.,151

2021) propose appending continuous prompts to152

the input and optimizing them, while P-tuning (Liu153

et al., 2023) and Prefix Tuning (Li and Liang, 2021)154

extend this concept by incorporating learnable to-155

kens at intermediate layers. More recently, (Wang156

et al., 2023) introduced the idea of training a sin-157

gle prompt to be shared across multiple tasks. Al-158

though these methods significantly reduce the num-159

ber of trainable parameters, they face challenges160

in few-shot learning (Gu et al., 2021) and provide161

limited interpretability for the learned continuous162

tokens (Ghosal et al., 2024; Khashabi et al., 2021;163

Deng et al., 2022).164

In-Context Learning (ICL) In contrast to ear-165

lier methods, ICL (Brown et al., 2020) avoids op-166

timization entirely. Instead, it concatenates task-167

specific examples before the input, allowing the168

model to learn a new task purely through observa-169

tion, leveraging its pre-trained knowledge. Despite170

its advantages, ICL has limitations, often underper-171

forming compared to optimization-based methods172

(Liu et al., 2022; Peng et al., 2023; Sun et al., 2023).173

Instruction Prompt Tuning (IPT) IPT (Singhal174

et al., 2022) combines key elements of PT and ICL,175

utilizing learnable tokens that are optimized dur-176

ing training alongside static context tokens, similar177

to ICL. The concept of using both soft and hard178

prompts was previously introduced by PPT (Gu179

et al., 2021) and PTR (Han et al., 2022). Yet, IPT180

has struggled to consistently surpass PT in perfor-181

mance (Sun et al., 2023). While our method shares182

similarities with IPT, we focus on optimizing con-183

text tokens without introducing additional learnable184

tokens, and we are also leveraging context labels185

in the process. Another key difference lies in the186

optimization process, where our loss includes a 187

regularization term, and we employ projected gra- 188

dient descent to ensure the output stays close to the 189

user-supplied reliable input. 190

3 Our Method 191

3.1 Overfitting in Few-Shot Learning 192

In few-shot learning scenarios with limited data, 193

the risk of overfitting in optimization-based meth- 194

ods is closely tied to the number of trainable pa- 195

rameters they introduce. For example, when work- 196

ing with LLaMA 3 8B, methods such as full fine- 197

tuning, LoRA, and PT involve updating approxi- 198

mately 8B, 4.2M, and 32K parameters, respectively. 199

This demonstrates that even the most parameter- 200

efficient optimization-based methods still require 201

training a significant number of parameters, which 202

can pose challenges when data is limited. 203

Our analysis, presented in fig. 1, confirms that 204

all optimization-based methods, including LoRA 205

and PT, exhibit a train-test loss gap, highlighting 206

overfitting in low-data regimes where the number 207

of examples ranges from 2 to 20. Despite variations 208

in the number of trainable parameters, these meth- 209

ods struggle to generalize effectively when data 210

is limited. These findings emphasize the need for 211

approaches like CPT, which is carefully designed 212

to balance flexibility and generalization, effectively 213

mitigating overfitting challenges in few-shot learn- 214

ing scenarios. 215

3.2 Input Preparation 216

Our method takes as input a few-shot classifica- 217

tion dataset containing N examples. Each exam- 218

ple consists of a pairing of x (an instruction) and 219

y (a label). We embed (x, y) using input, out- 220

put, and separation templates, converting them 221

into readable text that LLMs better understand, 222

as done in ICL (Brown et al., 2020). The input 223

and output templates, denoted Ti and To, along 224

with separators Sintra and Sinter, are provided in 225

appendix E. To embed a single example (x, y) 226

using the template, we concatenate the input x 227

embedded in Ti with Sintra, followed by the out- 228

put y embedded in To, and finally Sinter, result- 229

ing in XEmbi = [Ti(xi), Sintra, To(yi), Sinter]. To 230

generate the complete context, we concatenate all 231

XEmbi , forming XContext = [XEmbi]
N
i=1. To con- 232

struct a complete training example, we randomly 233

select an embedded example from the training set 234

XEmbi , and concatenate it after the context, result- 235

3

ing XTraini = [XContext, XEmbi], which is then fed236

into the LLM. This process is also visualized in237

fig. 4, with additional concrete examples provided238

in appendix G.239

Above, we described how we construct a train-240

ing example XTraini , as a text sequence. However,241

before feeding it into the model, we must process242

the text through a tokenizer, which splits the text243

into tokens and returns an embedding vector for244

each token. Each example contains six types of to-245

kens: input, input template, intra-separator, output,246

output template, and inter-separator. For simplicity,247

we ignore the separators and the fact that each part248

usually contains multiple tokens. For each train-249

ing example i and its sub-example k, we focus on250

four token types: t(k)Ii , t
(k)
ITi

, t
(k)
Oi

, t
(k)
OTi

, which repre-251

sent the input, input template, output, and output252

template, respectively. Each training example i253

consists of N + 1 sub-examples, N sub-examples254

in the context and one training sub-example at the255

end.256

3.3 Optimization257

In this section, we discuss the optimization process258

of our method, which draws inspiration from Ad-259

versarial Attacks (AT) (Madry et al., 2017). The AT260

process typically consists of two key components:261

optimization and restriction. First, an attacker mod-262

ifies an image to induce misclassification; second,263

the attack constrains its changes to evade detec-264

tion. Inspired by this approach, our method follows265

a similar structure, consisting of two key phases:266

optimization, which encompasses the loss design267

outlined in section 3.3.1, and regulating token up-268

dates, as detailed in section 3.3.2.269

3.3.1 Loss Design270

The optimization process aims to refine the input271

embeddings to enhance classification performance.272

To achieve this, we introduce a novel loss function273

for each training example XTraini , which incorpo-274

rates all the context sub-example labels XContext.275

More formally, the loss compares the model’s pre-276

dicted values t̂
(k)
Oi

to the ground truth tokens t
(k)
Oi

277

for all k ∈ [1, N]. These target tokens and their278

corresponding predictions, as illustrated in eq. (1),279

form the basis of our optimization objective.280

LContexti =

N∑
k=1

ωk · CrossEntropy(t̂(k)Oi
, t

(k)
Oi

) (1)281

In addition to LContexti , we also apply the stan- 282

dard loss on the training sub-example in eq. (2). 283

LTraini = CrossEntropy(t̂(N+1)
Oi

, t
(N+1)
Oi

) (2) 284

Lastly, we sum both losses to create the final 285

loss Li = LContexti + LTraini , where LContexti can 286

be thought of as a regularization for the standard 287

loss LTraini . 288

As explained in section 3.2, each training ex- 289

ample XTraini contains N + 1 sub-labels, from N 290

sub-examples in the context and one training sub- 291

example. However, not all sub-examples should 292

be weighted equally. For instance, the last sub- 293

example is more important as it is located in the 294

location of the test examples. Additionally, sub- 295

examples closer to the end of the context carry 296

more importance (Zhao et al., 2021). Thus, we ap- 297

ply exponential loss weight decay starting from the 298

end of the context and decaying towards the begin- 299

ning, while keeping LTraini unchanged. Formally, 300

each sub-example k is multiplied by γj , where 301

j = N +1− k. For example, the last sub-example 302

is multiplied by γ1, and the second-to-last by γ2, 303

and so on. The decay is shown in eq. (1) as ωk. 304

3.3.2 Controlled Token Embedding 305

Optimization 306

As mentioned in section 3.3.1, we utilize all the 307

labels within each training example XTraini to opti- 308

mize the context tokens. However, within the con- 309

text XContexti , some tokens serve as labels and are 310

crucial for the optimization process. Therefore, we 311

keep these label tokens fixed, as they carry valuable 312

information that acts as a regularization component 313

in the loss term, as explained in section 3.3.1. The 314

remaining context tokens are updated through the 315

optimization process in a carefully controlled man- 316

ner, as detailed in the following section. 317

The controlled optimization process is an effec- 318

tive strategy for improving generalization and is 319

commonly addressed through techniques such as 320

the Adam optimizer (Kingma, 2014), which lim- 321

its the magnitude of model weight updates. In 322

our method, all updates are applied to the context; 323

thus, constraining these changes prevents the model 324

from overfitting to the provided training examples 325

and instead promotes better generalization. Ad- 326

ditionally, maintaining the context’s proximity to 327

the user-provided examples enhances interpretabil- 328

ity—similar to ICL—allowing the model to lever- 329

4

���������������������

����
�

�����
�

	������
��
����������� ��
��

�����
�

����
��������
�

�����
�

	����
��������
��
��� ��
��

�����
�

����
����

�����

�������
����������

��������
����

����
��

����
�

�����
�

	����
��������
��
��� ��
��

�����
�

����
����

��� ���

­��� ���

�����
�����

�������

������

���������

Figure 4: Constructing a Training Example with CPT . This figure illustrates how CPT builds the second training
example, XTrain2 , in a dataset containing two examples. We begin by concatenating the embedded input-output
templates, [XEmbi]

2
i=1, to create the context, XContext. The embedding of the second example, XEmb2 , is then

appended to XContext, forming the complete input XTrain2 . This input is passed through the frozen LLM, and the loss
is computed using all labels in XTrain2 , which include both the context and training labels. Importantly, while the
context is updated during this process, its labels remain unchanged.

age meaningful examples without introducing ex-330

cessive modifications.331

To achieve this, we employ projected gradient de-332

scent (PGD), a widely used technique in adversar-333

ial attacks, to constrain token embedding updates334

within an ℓ2 norm of size ϵ after each optimization335

step. This ensures controlled adjustments while336

preserving the integrity of the original context. Fur-337

ther details are provided in appendix H. As the338

modification norm ϵ decreases, our method grad-339

ually converges to ICL, which inherently exhibits340

robustness against overfitting. This controlled opti-341

mization strikes a balance between flexibility and342

stability, enabling the model to refine the context343

while mitigating the risk of overfitting.344

4 Experimental Setup345

In this section, we provide details regarding the346

datasets, models, baselines, and evaluation used347

in our experiments. Implementation details are348

provided in appendix F.349

4.1 Datasets350

In this work, we focus on a classification task and351

select a variety of datasets to ensure robust conclu-352

sions across different task types. We include SST-2353

(Socher et al., 2013) for sentiment analysis, AG354

News (Zhang et al., 2015b) for news classification,355

DBpedia (Zhang et al., 2015a) for ontology classifi-356

cation, and TREC (Li and Roth, 2002) for question 357

classification. These datasets represent a diverse 358

range of natural language classification tasks, in- 359

clude different number of classification classes, al- 360

lowing us to evaluate our method comprehensively. 361

More details are provided in appendix D. 362

4.2 Models 363

We use models of varying sizes and quality to 364

ensure robust evaluation and conclusions. For 365

the relatively small model, we use BLOOM1.7B 366

(Scao et al., 2022), while for larger models, we opt 367

for GPT-J6B(Wang and Komatsuzaki, 2021) and 368

Llama3 8B(AI@Meta, 2024). The GPT-J model is 369

noted for its robust performance, while Llama3 is 370

currently among the leading models in the field. 371

4.3 Baselines 372

We compare our method to several groups of few- 373

shot learning techniques. In the first group, we 374

include LoRA (Hu et al., 2021), one of the leading 375

efficient fine-tuning methods. Additionally, we 376

compare against several prompt-tuning approaches, 377

including Prompt Tuning (PT) (Lester et al., 2021), 378

Prefix Tuning (Li and Liang, 2021), and Instruction 379

Prompt Tuning (IPT) (Singhal et al., 2022). Finally, 380

we compare our method to In-Context Learning 381

(ICL) (Brown et al., 2020). 382

For some of the few-shot methods, we introduce 383

an alternative version that incorporates instructions, 384

5

ICL Prefix PT IPT LoRA CPT
(ours)

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

SST2 Test Set

ICL Prefix PT IPT LoRA CPT
(ours)

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

AGNews Test Set

ICL Prefix PT IPT LoRA CPT
(ours)

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

DBpedia Test Set

ICL Prefix PT IPT LoRA CPT
(ours)

25

30

35

40

45

50

Ac
cu

ra
cy

 (%
)

TREC Test Set

Figure 5: Accuracy and Standard Deviation Comparison of accuracy and standard deviation between CPT and
baselines, evaluated with 4-shot on GPT-J model. The black bars represent the mean std across different templates,
while the blue bars represent the mean std across different seeds.

as indicated in table 1 with a †. Instead of initial-385

izing the learnable tokens randomly, we initialize386

them with instructions specified in appendix C. We387

apply instructions to PT, IPT, and our method, re-388

porting results for both random and instruction-389

based prompt initialization. An example illustrat-390

ing how inputs are constructed with and without391

†is provided in appendix G.392

4.4 Evaluation393

We evaluate each model and dataset using three394

different numbers of training samples: 2, 4, and395

6. For each configuration, the reported results are396

averaged accuracy over 30 experiments, consisting397

of 10 randomly sampled templates and 3 differ-398

ent random seeds, with the templates described in399

appendix E. By utilizing randomized seeds, we en-400

sure variation in the selection of training examples.401

This extensive setup is crucial for achieving a com-402

prehensive and robust evaluation, especially given403

that these methods are known to be highly sensitive404

to the selection of training examples and templates405

(Voronov et al., 2024; Zhao et al., 2021). Further406

evaluation details can be found in appendix B.407

5 Results408

5.1 Main Results409

In table 1, we demonstrate that CPT convincingly410

performs better than the baselines in most cases,411

with particularly pronounced gains in harder tasks.412

Furthermore, CPT ’s performance becomes more413

efficient and effective as the models grow stronger,414

such as with Llama3.415

Performance on Challenging Tasks CPT416

demonstrates improvements across various417

datasets, with more pronounced gains in tasks we418

define as harder based on two factors: the number419

of shots and the number of classes. As illustrated420

in table 1, task difficulty increases with fewer shots 421

and more classes. For example, on the DBpedia 422

dataset, which has 14 classes, decreasing the shots 423

from 6 to 4 widens the performance gap between 424

CPT and the baselines from (3, 6, 1) to (11, 10, 3) 425

across the models: BLOOM, GPT-J, and Llama3. 426

Decisive Advantage with Powerful Models 427

The strength of the model plays a significant role in 428

performance. As the model becomes better, CPT’s 429

advantage becomes more pronounced across all 430

datasets and shot settings. For instance, Llama3 431

consistently outperforms other baselines across all 432

datasets, except in one case where results are com- 433

parable. With GPT-J, a slightly older model, the 434

results are lower in two instances, with one com- 435

parable outcome, both on SST-2 , the easier task 436

as previously discussed. When comparing with 437

BLOOM , the weakest model in our comparison, 438

we observe lower performance on two occasions, 439

specifically on the two easier datasets. 440

5.2 Standard Deviation 441

Standard deviation (std) plays a crucial role in few- 442

shot learning due to the sensitivity of these methods 443

to both the training examples and the chosen tem- 444

plate (Zhao et al., 2021; Voronov et al., 2024). In 445

fig. 5, we present accuracy along with two types of 446

std bars: black bars represent the mean std across 447

different templates, while blue bars represent the 448

mean std across different seeds. We demonstrate 449

that CPT significantly improves accuracy across 450

various models and datasets in a statistically sig- 451

nificant manner. More information is presented in 452

appendix A. 453

Our method’s standard deviation performs equiv- 454

alently to other methods in most cases, while in 455

certain cases, such as with DBpedia, CPT exhibits 456

both higher accuracy and lower std, reinforcing its 457

6

BLOOM 1.7B GPT-J 6B Llama3 8B
Dataset Method

2 4 6 2 4 6 2 4 6

SST-2

Prefix 47.80 47.33 49.00 52.23 52.50 52.87 − − −
ICL 50.53 60.83 61.87 50.57 67.47 77.47 76.43 80.63 83.10
PT† 64.97 65.07 65.07 57.10 52.93 55.70 72.97 73.47 84.57
PT 56.03 56.90 58.33 64.07 64.37 64.60 64.27 65.70 67.03
IPT† 58.50 61.83 62.80 51.50 83.20 84.80 86.90 88.03 94.40
IPT 48.50 58.80 61.87 48.13 82.27 87.17 57.20 87.40 90.43
LoRA 66.40 66.93 66.90 69.80 71.53 73.17 68.73 71.27 83.97
CPT† 59.53 72.40 74.83 52.53 82.03 88.07 92.73 95.07 96.40
CPT 50.77 70.70 74.10 50.53 82.90 88.03 83.83 96.30 96.50

AG News

Prefix 24.87 25.35 26.02 32.32 33.33 46.08 − − −
ICL 35.12 34.28 42.48 66.73 62.38 69.57 79.38 82.32 85.27
PT† 28.67 30.73 41.17 37.85 44.85 62.92 59.60 57.02 68.02
PT 33.57 36.98 56.08 56.85 56.13 75.10 69.32 67.92 69.33
IPT† 36.95 31.90 42.93 67.02 63.00 74.85 82.93 84.45 85.08
IPT 38.77 38.20 47.78 66.02 63.92 74.00 80.52 76.30 80.98
LoRA 29.50 30.80 33.98 56.12 56.03 72.55 70.62 74.97 73.70
CPT† 33.68 33.13 41.10 71.35 68.73 75.68 83.17 84.28 84.67
CPT 40.85 44.48 50.40 74.80 68.62 76.22 83.78 81.92 85.43

DBpedia

Prefix 19.76 19.74 23.65 13.25 16.43 24.94 − − −
ICL 48.20 51.40 55.17 50.87 62.46 70.76 71.66 72.44 79.93
PT† 24.90 26.32 34.75 21.01 22.12 37.44 55.30 57.21 66.26
PT 46.71 41.94 45.93 23.39 29.69 40.53 55.81 52.72 55.02
IPT† 33.28 40.36 45.85 47.10 67.60 75.09 81.10 87.69 92.06
IPT 48.09 54.60 70.57 52.86 67.27 70.73 72.92 76.11 78.44
LoRA 43.30 41.13 41.18 30.15 28.02 41.50 54.24 59.50 63.21
CPT† 33.80 48.13 51.18 53.20 77.30 81.00 84.23 90.33 93.08
CPT 58.85 65.78 73.55 68.29 75.07 77.65 77.38 78.49 82.42

TREC

Prefix 19.10 24.49 29.92 30.76 30.04 27.87 − − −
ICL 33.54 33.33 28.53 28.94 35.14 32.49 35.32 42.48 40.34
PT† 30.91 33.70 39.31 29.02 34.66 43.89 43.42 48.81 51.73
PT 32.18 32.26 35.69 31.16 32.79 37.86 32.77 33.98 33.83
IPT† 27.83 36.64 42.92 31.04 43.12 43.09 51.72 62.14 65.13
IPT 32.37 36.59 42.60 29.59 38.90 40.38 36.94 45.62 52.08
LoRA 34.07 33.22 33.50 34.17 33.73 37.63 31.21 33.21 36.36
CPT† 29.72 35.64 45.38 33.39 44.20 45.83 57.26 67.00 69.29
CPT 35.68 41.79 45.16 35.37 44.66 42.71 45.12 57.54 60.18

Table 1: Baseline Comparisons Mean accuracy of various methods and our CPT, across several models and datasets.
Evaluations are conducted using 2, 4, and 6 shots.

robustness in complex tasks. However, the sensi-458

tivity of our method does not follow a clear pattern459

across random seeds or templates. For instance,460

while randomness in templates and training exam-461

ples has an equal influence on std in DBpedia and462

TREC, SST-2 shows a higher std for template ran-463

domness, and AG News is more sensitive to varia-464

tions in training examples.465

5.3 Ablations466

Our ablation studies aim to dissect the contribu-467

tions of individual components in CPT, highlight-468

ing the elements that drive its performance improve-469

ments across few-shot learning tasks, as shown in470

table 2. As shown, the loss design and the pro-471

jections are the most important component of out472

method. Further ablation experiments can be found473

in appendix I.474

Loss Design Different options for the loss design475

are specified under “Loss Tokens”, with three con- 476

figurations: using only the training label, using the 477

training label plus one random context label, and 478

using the training label plus all context labels. The 479

latter outperforms the training-only configuration 480

by 11%, 12%, 10% for 2, 4 and 6 shots. 481

Effect of Projection Magnitude The ablation 482

study on projection magnitude is specified under 483

“Input ϵ” and “Format ϵ”, which define the allow- 484

able deviation from the original values for input 485

tokens and format tokens, respectively. The results 486

demonstrate that both excessively small changes 487

(leading to convergence toward ICL) and overly 488

large norms (failing to limit overfitting) are subop- 489

timal, emphasizing the importance of selecting an 490

appropriate projection magnitude. 491

Loss Weighting We evaluated the impact of dif- 492

ferent loss weighting strategies and propose three 493

options: (1) Mean, which applies uniform weight- 494

7

Number of Training Examples
Loss Tokens Loss Weighting Projection Type Input ϵ Format ϵ Updated Tokens Mask Training Example

2 4 6

Train Example
Decay 0.95 Token-Wise 0.1 0.1 Input & Format ✗

58.09 61.54 66.69
Train Example & 1 Random 69.48 72.08 76.80
Train Example & All Context 69.54 73.03 76.58

Train Example & All Context

Mean

Token-Wise 0.1 0.1 Input & Format ✗

69.62 72.91 76.49
Equal 1 69.07 72.82 76.23
Equal 10 69.35 71.01 75.11
Decay 0.99 69.59 72.97 76.43
Decay 0.95 69.54 73.03 76.58
Decay 0.5 69.60 72.39 76.44

Train Example & All Context Decay 0.95 All-Tokens

0.001 -

Input & Format ✗

51.52 63.41 71.50
0.01 - 56.37 68.12 73.66
0.1 - 69.51 72.64 76.06
1.0 - 63.11 64.78 71.94

Train Example & All Context Decay 0.95 Token-Wise

0.01 0.1

Input & Format
✗

65.61 70.12 75.63
0.1 0.1 69.54 73.03 76.58
1.0 0.1 65.29 66.30 73.63
0.1 0.01 69.53 73.55 76.55
0.1 1.0 68.27 71.91 68.27

Train Example & All Context Decay 0.95 Token-Wise 0.1 0.1
Input

✗

69.47 74.13 76.63
Masks 63.74 69.21 74.91
Input & Format 69.54 73.03 76.58

Train Example & All Context Decay 0.95 Token-Wise 0.1 0.1 Input & Format ✓ 67.55 64.26 68.58

Table 2: Ablation Study We present the mean accuracy for various ablations using the GPT-J model and the
DBpedia dataset, including loss tokens (train example, random, or all context), loss weighting (decay and mean),
projection type (token-wise or all-tokens), epsilon values for input and format, updated tokens (input, format,
masks), and masking of the training example.

ing across all labels; (2) Equal, which assigns equal495

weight to the training label loss and the context la-496

bel losses, with an optional scaling factor applied497

to the training loss (e.g., 1, 10); and (3) Decay,498

which exponentially reduces the weight of context499

labels further from the training example, with the500

decay factor specified (e.g., 0.99, 0.95, 0.5).501

Projection Type: Token-wise vs. All-Tokens502

We evaluated the “All-Tokens” projection approach,503

which applies the projection to the entire con-504

text collectively rather than processing it token-505

by-token. Our results indicate that the token-wise506

approach is preferable, as it provides stronger regu-507

larization by limiting each token individually rather508

than the context as a whole, resulting in better per-509

formance.510

Updated Tokens Under “Updated Tokens”, we511

explored modifying only specific parts of the con-512

text to determine if certain components are more513

critical for updates than others. Our results indi-514

cate that allowing changes to both the input and515

format tokens yields better performance, provided516

these changes are constrained using the projection517

limitation.518

Mask Training We also experimented with519

“Mask Training,” where the training example was520

masked from the context to prevent the model from521

simply copying the answer. In our setup, the train-522

ing example appears both in the context (along with523

the correct answer) and as an additional concate-524

nated example at the end. Masking the training525

example from the context and removing this dupli-526

cation seemed like a plausible strategy to improve527

generalization. However, this approach did not lead 528

to any performance improvements. 529

6 Discussions 530

In this work, we identify overfitting as the primary 531

reason for the underperformance of optimization- 532

based methods in few-shot learning scenarios, sub- 533

stantiated by empirical evidence. To address this 534

challenge, we propose CPT , an optimization-based 535

method that effectively mitigates overfitting. Our 536

results demonstrate that CPT consistently outper- 537

forms existing baselines across diverse datasets, 538

models, and experimental setups. 539

Beyond its direct contributions to few-shot learn- 540

ing, CPT highlights the critical importance of bal- 541

ancing optimization flexibility and regularization in 542

data-scarce scenarios. The insights from this work 543

can inspire the development of parameter-efficient, 544

robust, and interpretable approaches for a range 545

of machine learning challenges, including trans- 546

fer learning, domain adaptation, and fine-tuning in 547

resource-constrained environments. 548

Limitation & Future Work The computational 549

cost associated with the iterative optimization of 550

context embeddings is significant compared to ICL. 551

Additionally, similar to ICL and IPT, CPT is lim- 552

ited in the number of examples it can handle, as 553

memory consumption scales with context length. 554

In contrast, traditional methods are better suited for 555

larger datasets. Future work could explore more 556

efficient optimization strategies to reduce computa- 557

tional overhead and improve scalability. 558

8

References559

AI@Meta. 2024. Llama 3 model card.560

Anish Athalye, Logan Engstrom, Andrew Ilyas, and561
Kevin Kwok. 2018. Synthesizing robust adversarial562
examples. In International conference on machine563
learning, pages 284–293. PMLR.564

Tsachi Blau, Roy Ganz, Chaim Baskin, Michael Elad,565
and Alex Bronstein. 2023. Classifier robustness566
enhancement via test-time transformation. arXiv567
preprint arXiv:2303.15409.568

Tsachi Blau, Roy Ganz, Bahjat Kawar, Alex Bronstein,569
and Michael Elad. 2022. Threat model-agnostic570
adversarial defense using diffusion models. arXiv571
preprint arXiv:2207.08089.572

Tom Brown, Benjamin Mann, Nick Ryder, Melanie573
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind574
Neelakantan, Pranav Shyam, Girish Sastry, Amanda575
Askell, et al. 2020. Language models are few-shot576
learners. Advances in neural information processing577
systems, 33:1877–1901.578

Nicholas Carlini and David Wagner. 2017. Adver-579
sarial examples are not easily detected: Bypassing580
ten detection methods. In Proceedings of the 10th581
ACM workshop on artificial intelligence and security,582
pages 3–14.583

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan584
Wang, Han Guo, Tianmin Shu, Meng Song, Eric P585
Xing, and Zhiting Hu. 2022. Rlprompt: Optimizing586
discrete text prompts with reinforcement learning.587
arXiv preprint arXiv:2205.12548.588

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zong-589
han Yang, Yusheng Su, Shengding Hu, Yulin Chen,590
Chi-Min Chan, Weize Chen, et al. 2022. Delta tuning:591
A comprehensive study of parameter efficient meth-592
ods for pre-trained language models. arXiv preprint593
arXiv:2203.06904.594

Soumya Suvra Ghosal, Samyadeep Basu, Soheil Feizi,595
and Dinesh Manocha. 2024. Intcoop: Interpretability-596
aware vision-language prompt tuning. arXiv preprint597
arXiv:2406.13683.598

Sven Gowal, Chongli Qin, Jonathan Uesato, Timo-599
thy Mann, and Pushmeet Kohli. 2020. Uncover-600
ing the limits of adversarial training against norm-601
bounded adversarial examples. arXiv preprint602
arXiv:2010.03593.603

Yuxian Gu, Xu Han, Zhiyuan Liu, and Minlie Huang.604
2021. Ppt: Pre-trained prompt tuning for few-shot605
learning. arXiv preprint arXiv:2109.04332.606

Xu Han, Weilin Zhao, Ning Ding, Zhiyuan Liu, and607
Maosong Sun. 2022. Ptr: Prompt tuning with rules608
for text classification. AI Open, 3:182–192.609

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,610
Bruna Morrone, Quentin De Laroussilhe, Andrea611
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.612

Parameter-efficient transfer learning for nlp. In In- 613
ternational conference on machine learning, pages 614
2790–2799. PMLR. 615

Jeremy Howard and Sebastian Ruder. 2018. Universal 616
language model fine-tuning for text classification. 617
arXiv preprint arXiv:1801.06146. 618

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan 619
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and 620
Weizhu Chen. 2021. Lora: Low-rank adaptation of 621
large language models. Preprint, arXiv:2106.09685. 622

Rabeeh Karimi Mahabadi, James Henderson, and Se- 623
bastian Ruder. 2021. Compacter: Efficient low-rank 624
hypercomplex adapter layers. Advances in Neural 625
Information Processing Systems, 34:1022–1035. 626

Daniel Khashabi, Shane Lyu, Sewon Min, Lianhui 627
Qin, Kyle Richardson, Sean Welleck, Hannaneh Ha- 628
jishirzi, Tushar Khot, Ashish Sabharwal, Sameer 629
Singh, et al. 2021. Prompt waywardness: The curi- 630
ous case of discretized interpretation of continuous 631
prompts. arXiv preprint arXiv:2112.08348. 632

Diederik P Kingma. 2014. Adam: A method for stochas- 633
tic optimization. arXiv preprint arXiv:1412.6980. 634

Dawid J. Kopiczko, Tijmen Blankevoort, and Yuki M. 635
Asano. 2023. Vera: Vector-based random matrix 636
adaptation. Preprint, arXiv:2310.11454. 637

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, 638
Kevin Gimpel, Piyush Sharma, and Radu Soricut. 639
2019. Albert: A lite bert for self-supervised learn- 640
ing of language representations. arXiv preprint 641
arXiv:1909.11942. 642

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. 643
The power of scale for parameter-efficient prompt 644
tuning. Preprint, arXiv:2104.08691. 645

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: 646
Optimizing continuous prompts for generation. arXiv 647
preprint arXiv:2101.00190. 648

Xin Li and Dan Roth. 2002. Learning question clas- 649
sifiers. In COLING 2002: The 19th International 650
Conference on Computational Linguistics. 651

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mo- 652
hta, Tenghao Huang, Mohit Bansal, and Colin A Raf- 653
fel. 2022. Few-shot parameter-efficient fine-tuning 654
is better and cheaper than in-context learning. Ad- 655
vances in Neural Information Processing Systems, 656
35:1950–1965. 657

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, 658
Yujie Qian, Zhilin Yang, and Jie Tang. 2023. Gpt 659
understands, too. AI Open. 660

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 661
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 662
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 663
Roberta: A robustly optimized bert pretraining ap- 664
proach. arXiv preprint arXiv:1907.11692. 665

9

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2310.11454
https://arxiv.org/abs/2310.11454
https://arxiv.org/abs/2310.11454
https://arxiv.org/abs/2104.08691
https://arxiv.org/abs/2104.08691
https://arxiv.org/abs/2104.08691
https://www.aclweb.org/anthology/C02-1150
https://www.aclweb.org/anthology/C02-1150
https://www.aclweb.org/anthology/C02-1150

Aleksander Madry, Aleksandar Makelov, Ludwig666
Schmidt, Dimitris Tsipras, and Adrian Vladu. 2017.667
Towards deep learning models resistant to adversarial668
attacks. arXiv preprint arXiv:1706.06083.669

Sourab Mangrulkar, Sylvain Gugger, Lysandre De-670
but, Younes Belkada, Sayak Paul, and Benjamin671
Bossan. 2022. Peft: State-of-the-art parameter-672
efficient fine-tuning methods. https://github.673
com/huggingface/peft.674

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,675
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-676
moyer. 2022. Rethinking the role of demonstra-677
tions: What makes in-context learning work? arXiv678
preprint arXiv:2202.12837.679

Marius Mosbach, Tiago Pimentel, Shauli Ravfogel, Di-680
etrich Klakow, and Yanai Elazar. 2023. Few-shot681
fine-tuning vs. in-context learning: A fair comparison682
and evaluation. arXiv preprint arXiv:2305.16938.683

Hao Peng, Xiaozhi Wang, Jianhui Chen, Weikai Li,684
Yunjia Qi, Zimu Wang, Zhili Wu, Kaisheng Zeng,685
Bin Xu, Lei Hou, et al. 2023. When does in-context686
learning fall short and why? a study on specification-687
heavy tasks. arXiv preprint arXiv:2311.08993.688

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,689
Dario Amodei, Ilya Sutskever, et al. 2019. Language690
models are unsupervised multitask learners. OpenAI691
blog, 1(8):9.692

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine693
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,694
Wei Li, and Peter J Liu. 2020. Exploring the lim-695
its of transfer learning with a unified text-to-text696
transformer. Journal of machine learning research,697
21(140):1–67.698

Nir Ratner, Yoav Levine, Yonatan Belinkov, Ori Ram,699
Inbal Magar, Omri Abend, Ehud Karpas, Amnon700
Shashua, Kevin Leyton-Brown, and Yoav Shoham.701
2022. Parallel context windows for large language702
models. arXiv preprint arXiv:2212.10947.703

Teven Le Scao, Angela Fan, Christopher Akiki, and704
et al. 2022. Bloom: A 176b-parameter open-705
access multilingual language model. arXiv preprint706
arXiv:2211.05100.707

Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mah-708
davi, Jason Wei, Hyung Won Chung, Nathan Scales,709
Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl,710
et al. 2022. Large language models encode clinical711
knowledge. arXiv preprint arXiv:2212.13138.712

Richard Socher, Alex Perelygin, Jean Wu, Jason713
Chuang, Christopher D. Manning, Andrew Ng, and714
Christopher Potts. 2013. Recursive deep models for715
semantic compositionality over a sentiment treebank.716
In Proceedings of the 2013 Conference on Empiri-717
cal Methods in Natural Language Processing, pages718
1631–1642, Seattle, Washington, USA. Association719
for Computational Linguistics.720

Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang. 721
2019. How to fine-tune bert for text classification? 722
In Chinese computational linguistics: 18th China 723
national conference, CCL 2019, Kunming, China, 724
October 18–20, 2019, proceedings 18, pages 194– 725
206. Springer. 726

Simeng Sun, Yang Liu, Dan Iter, Chenguang Zhu, 727
and Mohit Iyyer. 2023. How does in-context 728
learning help prompt tuning? arXiv preprint 729
arXiv:2302.11521. 730

Anton Voronov, Lena Wolf, and Max Ryabinin. 2024. 731
Mind your format: Towards consistent evaluation of 732
in-context learning improvements. arXiv preprint 733
arXiv:2401.06766. 734

Ben Wang and Aran Komatsuzaki. 2021. Gpt- 735
j-6b: A 6 billion parameter autoregressive lan- 736
guage model. https://github.com/kingoflolz/ 737
mesh-transformer-jax. Accessed: 2024-05-26. 738

Zhen Wang, Rameswar Panda, Leonid Karlinsky, Roge- 739
rio Feris, Huan Sun, and Yoon Kim. 2023. Multitask 740
prompt tuning enables parameter-efficient transfer 741
learning. arXiv preprint arXiv:2303.02861. 742

Zhengbo Wang and Jian Liang. 2024. Lora-pro: Are 743
low-rank adapters properly optimized? arXiv 744
preprint arXiv:2407.18242. 745

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 746
Chaumond, Clement Delangue, Anthony Moi, Pier- 747
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, 748
Joe Davison, Sam Shleifer, Patrick von Platen, Clara 749
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le 750
Scao, Sylvain Gugger, Mariama Drame, Quentin 751
Lhoest, and Alexander M. Rush. 2020. Transformers: 752
State-of-the-art natural language processing. 753

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold- 754
berg. 2021. Bitfit: Simple parameter-efficient 755
fine-tuning for transformer-based masked language- 756
models. arXiv preprint arXiv:2106.10199. 757

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015a. 758
Character-level convolutional networks for text clas- 759
sification. In Advances in Neural Information Pro- 760
cessing Systems, volume 28. Curran Associates, Inc. 761

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015b. 762
Character-level convolutional networks for text clas- 763
sification. In NIPS. 764

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and 765
Sameer Singh. 2021. Calibrate before use: Improv- 766
ing few-shot performance of language models. In 767
International conference on machine learning, pages 768
12697–12706. PMLR. 769

A Standard Deviation 770

In table 3 we present the standard deviations (STD) 771

corresponding to the main results shown in Table 1. 772

For each experiment, we display three STD values, 773

10

https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf

Model
BLOOM 1.7B GPT-J 6B Llama3 8BDataset Method

2 4 6 2 4 6 2 4 6

SST-2

Prefix Tuning 00.5/00.4/00.1 03.1/02.7/01.9 03.1/02.6/02.1 00.8/00.6/00.2 02.3/01.5/00.7 05.8/04.3/03.9 − − −
ICL 04.3/04.0/01.5 12.6/08.6/09.4 14.9/10.6/09.7 05.5/04.0/03.0 14.1/12.6/08.2 13.1/09.9/09.9 13.2/12.7/06.1 15.7/11.9/10.2 13.7/12.2/06.5
PT† 07.6/07.6/00.4 08.2/08.2/00.7 08.1/08.1/00.6 06.8/06.5/02.3 07.8/06.9/04.3 09.5/09.0/04.9 16.6/16.5/01.0 17.1/17.1/01.6 12.7/10.9/05.7
PT 08.6/08.5/01.7 08.9/08.6/02.4 08.7/08.4/02.5 07.7/07.6/01.3 07.0/07.0/00.9 07.4/07.4/01.0 06.4/06.1/03.1 06.8/06.6/02.8 07.0/06.5/03.7
IPT† 12.3/12.3/03.4 14.1/11.4/09.8 15.3/10.1/12.6 05.8/05.1/02.5 11.1/08.0/08.3 12.3/12.3/02.0 08.7/06.8/05.6 12.5/11.2/07.3 02.7/02.6/01.6
IPT 02.0/01.5/00.4 11.6/08.7/08.2 14.8/09.0/11.8 00.7/00.4/00.2 13.0/08.1/10.0 07.2/05.7/04.7 13.7/13.7/03.9 10.6/09.6/05.5 12.0/10.3/05.3
LoRA 06.9/06.9/00.2 06.5/06.5/00.5 06.4/06.3/00.5 09.5/09.5/00.8 10.2/10.2/01.2 10.0/09.9/01.4 11.4/11.4/01.4 15.0/14.6/07.6 12.1/11.9/07.2
CPT† 12.3/12.3/03.6 13.8/09.8/10.5 15.4/14.2/09.6 07.6/06.7/03.2 11.1/09.1/07.0 07.0/06.2/04.1 05.0/04.3/02.5 04.1/03.0/02.3 02.0/01.7/01.2
CPT 07.7/05.3/02.9 12.0/11.1/06.9 12.9/10.5/09.7 05.5/03.9/02.9 12.7/12.0/05.9 10.7/08.9/05.1 13.2/10.9/08.5 01.6/01.5/01.0 01.3/01.2/01.0

AG News

Prefix Tuning 01.7/01.7/00.6 05.8/02.9/05.2 05.3/03.9/03.9 05.9/05.9/00.5 06.2/06.1/01.4 12.7/09.4/08.2 − − −
ICL 10.5/06.8/08.7 11.7/10.1/06.4 12.2/11.1/06.0 10.0/08.9/05.2 13.3/10.6/09.2 10.4/09.4/05.0 08.8/03.2/08.1 03.2/03.0/02.3 03.1/02.7/02.4
PT† 05.2/04.1/04.1 06.0/04.3/04.4 10.9/10.5/07.3 16.2/16.1/00.9 13.7/11.5/09.5 13.6/11.9/07.8 11.9/11.8/06.1 10.9/10.3/05.8 10.5/09.0/06.5
PT 07.9/04.6/06.9 08.4/06.8/05.7 09.9/09.3/05.2 12.3/11.5/05.3 10.8/06.7/08.6 07.0/02.5/06.8 15.0/15.0/01.5 15.4/15.2/02.7 12.4/12.3/02.2
IPT† 11.7/09.2/08.4 07.5/05.5/05.0 15.0/09.4/12.4 11.0/08.3/07.9 07.1/03.1/06.5 07.6/03.5/06.8 02.7/02.5/01.6 03.5/02.8/02.2 03.4/02.9/02.5
IPT 12.0/08.6/08.9 10.6/09.1/07.2 12.0/09.4/07.9 11.1/10.0/06.3 08.8/04.6/07.6 07.4/04.6/05.7 03.6/03.1/01.8 08.1/03.2/07.6 05.2/02.2/04.7
LoRA 03.2/03.2/00.5 06.8/03.3/06.1 04.6/04.4/02.7 09.0/09.0/01.3 09.4/09.3/01.8 08.8/05.3/07.3 15.0/15.0/01.5 15.4/15.2/02.7 12.4/12.3/02.2
CPT† 07.2/05.7/05.4 06.0/03.4/04.8 11.9/08.5/09.2 09.6/07.2/07.1 09.0/03.6/08.5 09.2/04.4/08.1 03.1/02.5/02.2 02.9/02.6/02.4 03.4/01.8/03.2
CPT 12.8/08.7/10.3 12.2/07.8/10.3 11.3/08.9/07.1 08.6/05.4/07.4 09.1/03.8/08.5 07.2/03.7/06.2 03.3/02.6/02.3 04.3/03.6/02.8 02.9/02.3/02.3

DBpedia

Prefix Tuning 03.5/03.4/01.9 06.4/03.1/05.7 08.7/03.6/08.1 02.3/02.3/01.7 04.5/02.7/03.6 07.9/04.9/06.2 − − −
ICL 24.1/23.3/06.9 25.8/23.5/08.9 23.9/23.6/06.0 16.6/16.3/05.9 15.7/13.1/08.1 06.7/05.8/04.0 07.7/06.4/06.2 06.8/02.6/06.5 04.2/02.3/04.0
PT† 15.6/08.5/13.2 09.7/09.6/01.7 07.1/04.6/05.8 10.3/10.3/00.9 06.3/05.8/04.2 06.3/05.8/04.2 19.5/17.3/11.0 15.7/12.7/09.0 15.4/13.7/08.2
PT 11.2/11.1/04.2 10.8/10.8/01.3 13.0/12.4/05.9 09.9/08.2/06.4 11.3/07.1/09.1 08.9/05.0/07.5 11.9/11.7/04.2 15.7/15.3/02.9 13.5/13.4/01.5
IPT† 25.6/21.2/14.7 24.3/22.6/08.9 27.3/26.2/08.5 16.4/15.5/05.7 11.0/09.7/06.2 06.8/05.3/05.2 05.3/04.3/03.0 04.5/03.8/02.7 04.5/04.1/01.9
IPT 26.2/25.1/07.5 25.0/20.3/11.9 07.6/07.0/02.9 12.2/11.2/06.0 09.6/06.0/07.2 05.4/03.7/04.1 09.7/08.4/04.6 06.0/03.6/05.1 05.6/03.1/05.3
LoRA 11.4/11.0/03.1 11.6/11.6/00.3 11.7/11.7/00.4 11.6/10.9/04.9 13.0/06.0/11.6 09.8/06.0/07.9 13.1/13.0/01.7 14.3/14.2/02.2 13.7/13.7/01.5
CPT† 23.2/14.5/18.0 12.0/10.1/07.1 22.1/20.1/10.5 15.6/08.6/14.3 06.5/05.0/04.5 06.0/03.2/05.2 06.2/05.6/02.7 03.8/03.4/02.4 02.3/02.2/01.7
CPT 15.5/13.4/06.5 11.8/08.8/07.1 04.7/04.0/02.5 10.9/08.2/05.5 05.0/03.8/03.5 03.9/03.0/03.0 06.1/05.0/04.8 04.3/03.5/03.0 04.3/02.6/03.5

TREC

Prefix Tuning 06.7/00.8/06.6 06.4/02.9/06.0 07.0/04.6/06.0 03.1/02.0/02.5 05.9/02.6/05.1 03.7/03.6/00.8 − − −
ICL 11.0/07.2/08.2 10.5/08.2/06.8 13.8/09.0/09.1 08.9/05.9/06.8 11.0/08.2/07.8 12.6/08.3/09.4 08.6/05.6/06.3 14.2/07.9/12.0 13.2/08.3/10.7
PT† 05.9/04.4/03.7 07.5/06.7/04.5 11.2/08.7/07.8 05.5/04.3/03.4 06.2/06.0/04.3 13.5/08.2/11.7 09.5/05.7/08.3 11.3/06.1/09.4 10.3/08.4/08.1
PT 03.8/03.4/01.5 08.2/07.3/06.7 11.2/08.6/09.1 04.0/04.0/00.9 08.1/07.5/05.7 09.7/08.2/07.8 05.0/05.0/01.5 04.5/04.5/02.5 03.8/03.8/02.0
IPT† 05.5/03.6/04.0 10.1/09.1/07.1 16.8/08.1/15.5 06.8/05.3/04.2 07.7/05.1/05.9 14.0/07.8/11.9 13.6/06.3/12.3 09.7/05.9/08.6 07.2/05.4/05.5
IPT 10.5/07.1/07.8 06.1/05.9/05.0 14.1/07.4/12.8 09.7/05.4/08.0 09.3/05.7/07.5 13.0/03.8/12.5 12.1/08.5/07.8 11.5/09.1/08.0 14.0/05.4/13.3
LoRA 03.9/03.9/01.0 04.0/04.0/00.3 04.1/04.1/00.4 02.5/02.5/00.4 03.6/03.5/02.2 11.9/07.2/10.4 03.3/03.3/01.0 03.5/02.7/02.5 16.5/08.1/15.4
CPT† 08.0/05.8/05.4 07.7/06.9/06.3 09.9/07.0/07.9 08.5/05.7/06.4 12.9/08.3/10.6 11.2/08.2/09.0 13.1/06.9/11.6 09.8/03.7/09.2 05.0/04.1/03.4
CPT 09.1/05.2/07.3 07.9/07.2/05.6 12.9/07.0/10.8 07.4/04.1/06.1 08.7/06.2/06.9 08.6/05.5/07.3 16.8/08.4/14.5 07.4/06.5/05.8 07.9/05.6/06.5

Table 3: Standard Deviation Analysis Standard deviations (STD) corresponding to Table 1. Each experiment
shows three STD values separated by a backslash: (1) STD over 30 experiments with 10 random templates and 3
seeds, (2) mean STD over templates, and (3) mean STD over seeds.

separated by a backslash. These values represent774

the variability in the results across different config-775

urations:776

1. The first value shows the standard deviation777

over 30 experiments, which includes 10 random778

templates and 3 seeds that determine the training779

examples. 2. The second value provides the mean780

of the standard deviation over the templates, the781

standard deviation across 10 templates, and the782

mean of the standard deviation across 3 seeds. 3.783

The third value presents the mean standard devia-784

tion over the seeds, the standard deviation over 3785

seeds, and the mean over 10 templates.786

This detailed breakdown of standard deviations787

allows for a more thorough understanding of the788

variability in model performance across different789

templates and seeds.790

B Evaluation Details791

All the graphs and ablation studies were conducted792

and evaluated using the DBPedia dataset with the793

GPT-J model. This setup was chosen due to the794

diversity of the DBPedia dataset, which includes795

a broad range of categories and entities, making it796

an ideal candidate for comprehensive evaluation.797

The use of GPT-J, a powerful generative model,798

ensures that the results are reflective of state-of-the- 799

art performance in language modeling tasks. The 800

combination of DBPedia and GPT-J allows us to 801

thoroughly investigate the behavior of the model 802

across various ablation settings, ensuring robust 803

insights into the performance of different methods 804

and configurations. 805

B.1 Pruning for Classification 806

In our evaluation setup, we use pruning for classi- 807

fication by focusing only on the first token of the 808

label, which is unique across all datasets. A com- 809

mon approach in the in-context learning setup is to 810

iterate over all possible labels for each test sample 811

and select the label with the highest probability ac- 812

cording to the language model (LM). However, this 813

approach can become computationally expensive, 814

especially in cases where there are a large number 815

of classes. 816

Similarly to (Ratner et al., 2022), and given that 817

the first token in each dataset is unique, we predict 818

only the first token of the label and perform classi- 819

fication based on this value. While this approach 820

deviates slightly from the common practice of it- 821

erating over all possible labels, the effect on the 822

results should be minor. 823

11

B.2 Test Set Size824

For our experiments, we used a varying number825

of test examples depending on the dataset. Specif-826

ically, we used 100 test examples for the SST-2827

dataset, and for datasets with a larger number of828

classes, the number of test examples was scaled829

linearly with the number of classes. For example,830

in the DBpedia dataset, which has 7 times more831

classes than SST-2, we used 700 test examples to832

ensure that the evaluation is proportional to the833

number of classes. This scaling helps to maintain a834

balanced evaluation across datasets with differing835

complexities, ensuring robust performance metrics836

for each method.837

C Instruction Details838

In some of the experiments, we use specific in-839

structions to guide the model in performing the840

classification tasks. Below in table 4 that shows the841

instructions used for each dataset across all relevant842

methods:843

D Dataset Details844

In our experiments, we used four different datasets,845

each representing a unique classification task. Ta-846

ble 5 provides an overview of the datasets and their847

respective tasks. Each dataset has a varying num-848

ber of classes, denoted by |C|, which are detailed849

below:850

• SST-2: This dataset is used for sentiment anal-851

ysis, where the task is to classify movie re-852

views as either positive or negative. It contains853

2 distinct classes.854

• AG News: The AG News dataset is used855

for news classification. The task is to clas-856

sify news articles into one of four categories:857

World, Sports, Business, and Technology.858

This dataset contains 4 classes.859

• DBpedia: The DBpedia dataset is focused860

on ontology classification. The task involves861

classifying textual content into one of 14 dis-862

tinct categories, which include entities such863

as Company, Artist, Village, and more.864

• TREC: This dataset is used for question clas-865

sification, where the goal is to classify ques-866

tions into one of 6 answer types, including867

Description, Entity, Human, and Location.868

Each dataset contains a specific number of exam- 869

ples based on its classification task, allowing us to 870

evaluate the model’s performance across a diverse 871

range of challenges. 872

E Template Details 873

In our experiments, we use randomly selected tem- 874

plates from the options provided in table 6, sug- 875

gested in (Voronov et al., 2024). Each dataset is 876

associated with both input and output templates, 877

which are used to format the input data and the 878

expected output during few-shot learning tasks. 879

• Input Template: As shown, this column lists 880

the different templates for formatting the input 881

data. For example, the SST-2 dataset uses 882

"input: " and "text: " as input templates to 883

introduce the input text. 884

• Intra-Separator: This separator is used be- 885

tween components (input and output) within a 886

single example. For instance, AG News uses 887

"\n" as an intra-separator between the input 888

sentence and the output label. 889

• Output Template: The output template de- 890

fines how the expected output is structured. 891

For example, SST-2 employs formats like 892

"output: , target: , label: " to guide the model 893

in generating structured output. 894

• Inter-Separator: This column represents the 895

separator used between multiple examples dur- 896

ing training. In datasets like AG News and 897

DBpedia, "\n\n" is used to separate examples. 898

We randomly select templates from the ones 899

listed in table 6 for each experiment. This random- 900

ness in selecting templates introduces variability 901

in the prompts, making the evaluation more robust 902

and testing the model’s ability to generalize across 903

different input-output structures. 904

F Implementation Details 905

F.1 Hyperparameter Details 906

In table 7 we present the hyperparameters used 907

in our experiments across different models and 908

datasets. The table provides the specific learn- 909

ing rates (‘lr‘), epsilon values (‘ϵ’), and format 910

settings for the various methods applied to each 911

dataset. The experiments were conducted using 912

multiple model architectures, including BLOOM 913

1.7B, GPT-J 6B, and Llama3 8B, and we selected 914

12

Dataset Instruction
SST2 Classify the sentiment of the following text as positive or negative:

AG News Classify the following text into one of the following categories: World, Sports,
Business, Technology

DBpedia Classify the following text into one of the following categories: Company,
Educational Institution, Artist, Athlete, Office Holder, Mean Of Transportation,
Building, Natural Place, Village, Animal, Plant, Album, Film, Written Work

TREC Classify the following text into one of the following categories: Description,
Entity, Expression, Human, Location, Number

Table 4: Instructions used for relevant datasets in the experiments.

the best hyperparameters for each experiment: 2,915

4, and 6 shots. Below is an overview of the key916

hyperparameters:917

• Learning Rate (‘lr’): The table provides918

the learning rates used for each method and919

dataset combination. For methods like Prefix920

Tuning (PT), Prompt Tuning (PT), IPT, and921

LoRA, learning rates vary from 1e-5 to 1e-3,922

depending on the specific model and dataset.923

• CPT Hyperparameters: For CPT, we also924

report epsilon values (‘ϵ’) for both the input925

and the format components. These epsilon926

values control the magnitude of the perturba-927

tions applied during optimization. The values928

of epsilon vary across different models and929

datasets, generally ranging from 1e-2 to 1e-0930

for both input and format components.931

• Model Variability: The table reflects variabil-932

ity in hyperparameter choices depending on933

the model size and architecture. For instance,934

GPT-3 6B typically requires higher learning935

rates compared to BLOOM 1.7B, as seen with936

CPT and other methods. The hyperparameters937

are carefully tuned to optimize performance938

on tasks such as SST-2, AG News, DBpedia,939

and TREC.940

Dataset Task |C|
SST-2 Sentiment analysis (movie) 2

AG News News classification (topic) 4
DBpedia Ontology classification 14
TREC Question classification (answer type) 6

Table 5: Dataset Overview These are the datasets used,
representing a range of different types of classification
tasks, including SST-2, AG News, DBpedia, and TREC.
Each dataset has a varying number of classes (denoted
by |C|).

These hyperparameters are critical for achieving 941

optimal performance in few-shot learning settings. 942

They control the learning process, model updates, 943

and how much the model is allowed to adapt to new 944

data. The values in table 7 are based on extensive 945

experimentation and fine-tuning to ensure the best 946

results for each method and dataset. 947

F.2 Methods Implementation Details 948

In our experiments, we utilized existing implemen- 949

tations for several methods and implemented IPT 950

ourselves. Specifically, we used the implemen- 951

tations provided by the Parameter-Efficient Fine- 952

Tuning (Mangrulkar et al., 2022) (PEFT) library 953
1 for methods such as LoRA, Prefix Tuning, and 954

Prompt Tuning (PT). For IPT, we built our imple- 955

mentation based on the PEFT framework. 956

For all experiments, we used the recommended 957

parameters: 958

• For LoRA, we set α = 16 and the rank r = 8. 959

• For Prompt Tuning, Prefix Tuning, and IPT 960

we used 8 learnable tokens. 961

By using the PEFT framework, we ensure that 962

our fine-tuning processes for LoRA, Prefix Tuning, 963

and PT are aligned with current standards, while 964

our custom IPT implementation extends the frame- 965

work to allow for additional flexibility in parameter- 966

efficient training. 967

F.3 Training Details 968

We utilized the ‘Fine-tune a pretrained model’ pack- 969

age from (Wolf et al., 2020), which provides a com- 970

prehensive framework for training and evaluating 971

models2. For all baselines, we employed the de- 972

fault parameters provided by the trainer, ensuring 973

1https://huggingface.co/docs/peft/en/index
2https://huggingface.co/docs/transformers/en/

training

13

https://huggingface.co/docs/peft/en/index
https://huggingface.co/docs/transformers/en/training
https://huggingface.co/docs/transformers/en/training

Dataset Input Template Intra-Separator Output Template Inter-Separator

SST-2 "input: {}",
"text: ",

"sentence: {}",
"{}"

" ",
"\n"

"output: {}", "target: {}", "label: {}",
"emotion: {}", "semtiment: {}", "A {} one.",

"It was {}.", "All in all {}.", "A {} piece."
" ",

"\n",
"\n\n"AG News "output: {}", "target: {}", "label: {}",

"Topic: {}.", "Subject: {}.",
"This is about {}.", "It is about {}."

DBpedia
TREC

Table 6: Template Options for Various Datasets We provide various template options for different datasets. Each
dataset include both input and output templates, and also includes intra-separators between inputs and labels, as
well as inter-separators between examples.

consistency across experiments. Each model was974

trained for 25 epochs, allowing sufficient time for975

convergence while maintaining uniform training976

conditions across methods.977

G Input Preparation978

In this section, we provide a detailed explanation of979

how the input is constructed for different methods,980

including Prompt Tuning (PT), Instruction Prompt981

Tuning (IPT), and Context-Aware Prompt Tuning982

(CPT), both with and without the † variant. To983

clarify the differences, we use SST-2 as an example984

with the instruction: "Classify the sentiment of the985

following text as positive or negative."986

Each example is constructed using a template987

that includes input: and output:, where the988

input corresponds to the actual text of the exam-989

ple, and the output corresponds to its label. For990

instance:991

• Example 1: The input is "the greatest992

musicians", and the output is "positive".993

• Example 2: The input is "the action is994

stilted", and the output is "negative".995

Using the template, these examples are repre-996

sented as:997

• Example 1: input: the greatest998

musicians output: positive999

• Example 2: input: the action is1000

stilted output: negative1001

This template-based construction ensures con-1002

sistency across the methods, allowing us to clearly1003

define how the input and output are represented in1004

different approaches, such as PT, IPT, and CPT.1005

table 8 outlines the construction of the prefix1006

for each method and highlights which parts are1007

updated during training.1008

H Projected Gradient Descent (PGD) 1009

Algorithm 1010

In our method, we initialize the context tokens, 1011

denoted as xi, using the training examples, with 1012

each token xi associated with a vector δi, which is 1013

initially set to zero. For simplicity, we use xi and 1014

δi to denote these components only in this part of 1015

the explanation. 1016

During the optimization process, the tokens xi 1017

remain fixed, while the δi vectors are updated iter- 1018

atively. After each optimizer update, we perform 1019

a post-processing step where each δi is projected 1020

to ensure that its L2 norm does not exceed a pre- 1021

defined limit, ϵ. It is important to note that this 1022

projection step is independent of the optimizer and 1023

serves as an additional operation to control the ex- 1024

tent of change for each context token. 1025

1: Initialize each δi ← 0 1026

2: Initialize xi ← training_examples_tokens 1027

3: for j ← 1 to num_of_training_steps do 1028

4: δi ← δi − α∇Loss(f(xi + δi), yi) ▷ 1029

Gradient descent step 1030

5: ni ← ∥δi∥ ▷ Compute the L2 norm of δi 1031

6: δi ← δi × clip(ni, ϵ)/ni ▷ Project δi to 1032

ensure L2 norm ≤ ϵ 1033

7: end for 1034

This ensures that the updates to δi remain con- 1035

strained, preventing excessive modifications to 1036

the context tokens and maintaining a balance be- 1037

tween optimization and regularization. The pro- 1038

cess allows the model to adapt while ensuring that 1039

changes to the context tokens remain meaningful 1040

and controlled. 1041

I Evaluating the Impact of Projected 1042

Gradient Descent (PGD) 1043

Our method use the same optimizer used for all 1044

baselines. However, our method incorporates an 1045

additional step after each parameter update: we 1046

14

BLOOM 1.7B GPT-J 6B Llama3 8B
Dataset Method Paremeter

2 4 6 2 4 6 2 4 6

SST-2

Prefix Tuning lr 1e− 3 1e− 3 1e− 3 1e− 5 1e− 4 1e− 3 − − −
PT† lr 1e− 5 1e− 5 1e− 5 1e− 4 1e− 3 1e− 3 1e− 5 1e− 5 1e− 5
PT lr 1e− 5 1e− 5 1e− 5 1e− 5 1e− 5 1e− 5 1e− 5 1e− 5 1e− 5
IPT† lr 1e− 5 1e− 4 1e− 4 1e− 5 1e− 3 1e− 4 1e− 5 1e− 5 1e− 4
IPT lr 1e− 5 1e− 5 1e− 5 1e− 5 1e− 4 1e− 4 1e− 5 1e− 5 1e− 5
LoRA lr 1e− 5 1e− 5 1e− 5 1e− 5 1e− 5 1e− 5 1e− 5 1e− 4 1e− 4

lr 1e− 5 1e− 3 1e− 4 1e− 5 1e− 4 1e− 3 1e− 5 1e− 5 1e− 5
Input ϵ 1e− 3 1e− 0 1e− 0 1e− 3 1e− 1 1e− 1 1e− 1 1e− 1 1e− 0CPT†
Format ϵ 1e− 3 1e− 3 1e− 3 1e− 3 1e− 2 1e− 3 1e− 2 1e− 1 1e− 0
lr 1e− 3 1e− 3 1e− 4 1e− 5 1e− 4 1e− 4 1e− 3 1e− 4 1e− 4
Input ϵ 1e− 2 1e− 0 1e− 0 1e− 3 1e− 0 1e− 0 1e− 2 1e− 0 1e− 2CPT
Format ϵ 1e− 2 1e− 2 1e− 3 1e− 3 1e− 3 1e− 2 1e− 3 1e− 3 1e− 3

AG News

Prefix Tuning lr 1e− 4 1e− 3 1e− 3 1e− 5 1e− 5 1e− 3 − − −
PT† lr 1e− 3 1e− 3 1e− 3 1e− 5 1e− 3 1e− 3 1e− 4 1e− 4 1e− 4
PT lr 1e− 3 1e− 3 1e− 3 1e− 4 1e− 3 1e− 3 1e− 4 1e− 5 1e− 4
IPT† lr 1e− 3 1e− 3 1e− 3 1e− 5 1e− 4 1e− 4 1e− 4 1e− 5 1e− 5
IPT lr 1e− 4 1e− 3 1e− 4 1e− 5 1e− 5 1e− 4 1e− 5 1e− 5 1e− 5
LoRA lr 1e− 5 1e− 4 1e− 3 1e− 5 1e− 5 1e− 4 1e− 5 1e− 5 1e− 5

lr 1e− 4 1e− 3 1e− 3 1e− 4 1e− 4 1e− 4 1e− 5 1e− 5 1e− 5
Input ϵ 1e− 2 1e− 0 1e− 0 1e− 1 1e− 1 1e− 2 1e− 1 1e− 3 1e− 3CPT†
Format ϵ 1e− 1 1e− 2 1e− 0 1e− 1 1e− 3 1e− 0 1e− 1 1e− 2 1e− 3
lr 1e− 4 1e− 4 1e− 3 1e− 3 1e− 4 1e− 4 1e− 3 1e− 4 1e− 3
Input ϵ 1e− 2 1e− 0 1e− 0 1e− 2 1e− 0 1e− 0 1e− 2 1e− 3 1e− 3CPT
Format ϵ 1e− 2 1e− 0 1e− 0 1e− 3 1e− 3 1e− 0 1e− 3 1e− 3 1e− 3

DBpedia

Prefix Tuning lr 1e− 3 1e− 3 1e− 3 1e− 3 1e− 3 1e− 3 − − −
PT† lr 1e− 3 1e− 5 1e− 3 1e− 5 1e− 3 1e− 3 1e− 4 1e− 4 1e− 4
PT lr 1e− 4 1e− 5 1e− 4 1e− 3 1e− 3 1e− 3 1e− 4 1e− 5 1e− 5
IPT† lr 1e− 4 1e− 5 1e− 5 1e− 5 1e− 4 1e− 5 1e− 5 1e− 5 1e− 5
IPT lr 1e− 5 1e− 5 1e− 5 1e− 5 1e− 5 1e− 5 1e− 5 1e− 5 1e− 5
LoRA lr 1e− 4 1e− 5 1e− 5 1e− 4 1e− 4 1e− 4 1e− 5 1e− 5 1e− 5

lr 1e− 5 1e− 5 1e− 5 1e− 4 1e− 5 1e− 5 1e− 5 1e− 5 1e− 5
Input ϵ 1e− 2 1e− 2 1e− 1 1e− 0 1e− 1 1e− 1 1e− 0 1e− 1 1e− 1CPT†
Format ϵ 1e− 1 1e− 0 1e− 1 1e− 3 1e− 0 1e− 1 1e− 1 1e− 0 1e− 1
lr 1e− 4 1e− 4 1e− 5 1e− 4 1e− 4 1e− 4 1e− 5 1e− 5 1e− 5
Input ϵ 1e− 0 1e− 2 1e− 0 1e− 0 1e− 0 1e− 0 1e− 2 1e− 0 1e− 3CPT
Format ϵ 1e− 0 1e− 0 1e− 0 1e− 0 1e− 3 1e− 3 1e− 2 1e− 3 1e− 2

TREC

Prefix Tuning lr 1e− 3 1e− 3 1e− 3 1e− 3 1e− 3 1e− 5 − − −
PT† lr 1e− 3 1e− 3 1e− 3 1e− 3 1e− 3 1e− 3 1e− 4 1e− 4 1e− 4
PT lr 1e− 5 1e− 3 1e− 3 1e− 5 1e− 3 1e− 3 1e− 5 1e− 5 1e− 5
IPT† lr 1e− 3 1e− 3 1e− 3 1e− 4 1e− 3 1e− 4 1e− 4 1e− 4 1e− 5
IPT lr 1e− 5 1e− 3 1e− 3 1e− 4 1e− 4 1e− 4 1e− 5 1e− 5 1e− 5
LoRA lr 1e− 4 1e− 5 1e− 5 1e− 5 1e− 5 1e− 4 1e− 5 1e− 5 1e− 4

lr 1e− 3 1e− 3 1e− 3 1e− 4 1e− 4 1e− x 1e− 4 1e− 5 1e− 5
Input ϵ 1e− 0 1e− 0 1e− 0 1e− 1 1e− 0 1e− 0 1e− 1 1e− 1 1e− 1CPT†
Format ϵ 1e− 3 1e− 1 1e− 2 1e− 1 1e− 0 1e− 2 1e− 3 1e− 0 1e− 0
lr 1e− 3 1e− 3 1e− 4 1e− 3 1e− 3 1e− 3 1e− 4 1e− 4 1e− 4
Input ϵ 1e− 0 1e− 0 1e− 0 1e− 0 1e− 0 1e− 3 1e− 0 1e− 0 1e− 0CPT
Format ϵ 1e− 0 1e− 0 1e− 3 1e− 2 1e− 2 1e− 0 1e− 2 1e− 3 1e− 0

Table 7: Hyperparameters Hyperparameters used for each experiment across 2, 4, and 6 shots for different models,
including BLOOM 1.7B, GPT-J 6B, and Llama3 8B. The table shows learning rates (lr), epsilon values for input
and format, and other parameters for methods such as Prefix Tuning, Prompt Tuning, IPT, LoRA, and CPT. The
experiments were conducted on datasets like SST-2, AG News, DBpedia, and TREC.

project each token, restricting its allowed change.1047

The allowed change is determined by the hyperpa-1048

rameters Input ϵ and Format ϵ, which define the1049

L2 norm limit for each token’s modification.1050

To ensure that PGD (Madry et al., 2017) is not1051

the sole reason for our method’s improvement, we1052

conducted two types of experiments. First, we 1053

compared our method without PGD to PT and IPT. 1054

Second, we added a PGD step to PT and IPT for 1055

comparison. 1056

For the first experiment, we compared CPT 1057

(without PGD) to PT and IPT on the DBpedia 1058

15

Method Prefix Construction
PT In this part, we use only random embedding initialization.

PT† Classify the sentiment of the following text as positive or
negative.

IPT In this part, we use only random embedding initialization. input:
the greatest musicians output: positive. input: the action is
stilted output: negative.

IPT† Classify the sentiment of the following text as positive or
negative. input: the greatest musicians output: positive. input:
the action is stilted output: negative.

CPT input: the greatest musicians output: positive. input: the
action is stilted output: negative.

CPT† Classify the sentiment of the following text as positive or
negative. input: the greatest musicians output: positive. input:
the action is stilted output: negative.

Table 8: Input Construction for PT, IPT, and CPT (with and without †) using SST-2. The updated text during training
is marked in red.

dataset. The results for 2, 4, and 6 shots are pre-1059

sented in Table 9.1060

Method 2 Shots 4 Shots 6 Shots
PT 23.39 29.69 40.53
IPT 52.86 67.27 70.73
CPT (No PGD) 68.28 74.17 77.52

Table 9: Performance Comparison Without PGD (DB-
pedia), using GPT-J.

For the second experiment, we compared CPT†1061

to PT† and IPT† (with and without PGD) on the1062

DBpedia dataset. To ensure a fair comparison, we1063

performed hyperparameter tuning (HPT) over ϵ and1064

the learning rate for both PT and IPT. The results1065

for 2, 4, and 6 shots are presented in Table 10.1066

Method 2 Shots 4 Shots 6 Shots
PT† 12.96 22.12 37.44
PT† + PGD 12.80 22.02 38.69
IPT† 47.10 66.37 75.09
IPT† + PGD 47.10 66.40 75.09
CPT† + PGD 52.87 77.30 81.00

Table 10: Performance Comparison With and Without
PGD (DBpedia), using GPT-J.

The results clearly demonstrate that, in both ex-1067

periments, our method consistently outperforms PT1068

and IPT. Furthermore, it is evident that other meth-1069

ods do not necessarily benefit from the addition1070

of PGD. While we cannot definitively explain this,1071

we hypothesize that it may be due to the highly ef-1072

fective way in which we employ PGD, leveraging 1073

prior knowledge about the structure of the input, 1074

format, and labels within the context. Our approach 1075

allows us to apply distinct projections to different 1076

components of the context, which we believe sig- 1077

nificantly contributes to the superior performance 1078

of our method. 1079

16

	Introduction
	Related Work
	Our Method
	Overfitting in Few-Shot Learning
	Input Preparation
	Optimization
	Loss Design
	Controlled Token Embedding Optimization

	Experimental Setup
	Datasets
	Models
	Baselines
	Evaluation

	Results
	Main Results
	Standard Deviation
	Ablations

	Discussions
	Standard Deviation
	Evaluation Details
	Pruning for Classification
	Test Set Size

	Instruction Details
	Dataset Details
	Template Details
	Implementation Details
	Hyperparameter Details
	Methods Implementation Details
	Training Details

	Input Preparation
	Projected Gradient Descent (PGD) Algorithm
	Evaluating the Impact of Projected Gradient Descent (PGD)

