Context-aware Prompt Tuning: Advancing In-Context Learning with
Adversarial Methods

Anonymous ACL submission

Abstract

Large Language Models (LLMs) can perform
few-shot learning using In-Context Learning
(ICL) or optimization-based methods. ICL
is more effective in low-data regimes, while
optimization-based methods excel with larger
datasets. This contrast raises a key question:
why optimization-based methods face chal-
lenges in low-data regimes, and how can these
methods be effectively integrated with ICL
to enhance few-shot learning? In this work,
we identify overfitting as the primary limita-
tion of optimization-based methods in few-shot
settings and introduce Context-aware Prompt
Tuning (CPT), a method that combines the
strengths of ICL, Prompt Tuning (PT), and ad-
versarial techniques. CPT initializes the con-
text with training examples, similar to ICL, and
then applies an optimization process inspired
by PT and adversarial techniques. Through
iterative adaptation, CPT effectively balances
flexibility and stability, allowing it to derive
deeper insights from limited data while preserv-
ing the integrity of input samples. Our method
achieves superior accuracy across multiple clas-
sification tasks and LLM architectures, consis-
tently outperforming existing baselines and ef-
fectively mitigating overfitting challenges in
few-shot scenarios.

1 Introduction

Adapting Large Language Models (LLMs) to
new tasks in few-shot learning scenarios can be
achieved through either fine-tuning or In-Context
Learning (ICL) (Brown et al., 2020). Parameter-
efficient fine-tuning methods, such as Low-Rank
Adaptation (LoRA) (Hu et al., 2021), which op-
timizes a subset of the model’s parameters, and
Prompt Tuning (PT) (Lester et al., 2021), which op-
timizes a small set of learnable tokens prepended to
the input, aim to achieve task-specific performance
with minimal computational overhead. In contrast,
ICL eliminates the need for parameter updates by

IcL

10° —_—pT
" a 2 — IPT
D02 © =) LoRA
S 10 ? L = CPT (ours)
S = 'E — Test
610_4 Seee o O - = Train

e LTl ey,
10 ~_______________________===::
2 4 16 18 20

6 1 12 1
Number of Training Examples

Figure 1: Overfitting Across Few-Shot Methods Train-
test loss gap across methods and training set sizes using
the GPT-J model on the DBpedia dataset. For each
model, there are two loss graphs: one for train loss
(dotted line) and one for test loss (solid line). CPT
performs better in mitigating overfitting compared to
optimization-based methods. Despite a relatively higher
training loss, CPT achieves the lowest test loss.

incorporating training examples directly into the
input context, offering a training-free alternative
that leverages the model’s pre-trained knowledge
without modifying its underlying parameters. De-
spite their effectiveness, determining the optimal
approach for varying dataset sizes remains an on-
going challenge.

In few-shot scenarios with limited data, ICL
has shown greater effectiveness; however, as the
dataset size increases, optimization-based methods
like LoRA and PT become preferable. This trend
has been observed in prior studies (Mosbach et al.,
2023; Min et al., 2022) and is further supported
by our experimental results (fig. 3), which demon-
strate that while ICL excels in low-data regimes,
its advantage diminishes as more data becomes
available. Although promising, the limitations of
optimization-based methods in low-data scenarios
require further exploration.

In this work, we identify overfitting as the
primary factor limiting the effectiveness of
optimization-based methods in few-shot learning
scenarios, as demonstrated in fig. 1. To address
this challenge, we propose Context-Aware Prompt
Tuning (CPT), a novel approach that integrates
concepts from ICL, Prompt Tuning (PT), and ad-
versarial attacks (Blau et al., 2022, 2023; Carlini
and Wagner, 2017; Athalye et al., 2018; Madry

ICL Prompt-Tuning

IPT CPT (ours)

Sample, Sample, Learnable Tokens ~ Sample,

Learnable Tokens Sample,

Learnable Learnable

Sample, Sample, sample, sample, sample,

=== [0ss Tokens

=== Updated Tokens

Figure 2: Comparison of Few-Shot Methods We highlight the key differences between CPT and the baseline
methods, focusing on /ICL, PT, and IPT. Each method includes two token types: prefix tokens (blue background)
and loss tokens (orange background). The tokens are categorized into Learnable Tokens (pink) and Sample Tokens
(brown), which remain fixed during training. A red line beneath the tokens indicates those used for loss calculation,
while a green line marks those updated during training. CPT introduces Learnable Sample tokens, shown in a
brown-pink color, initialized with training samples and progressively refined during optimization.

et al., 2017; Gowal et al., 2020). As illustrated
in fig. 2, CPT utilizes training examples in two
ways: first, to construct the context as in ICL, and
second, to optimize the context token embeddings
using methodologies inspired by PT and adversar-
ial attacks. To combat overfitting, CPT refines the
context tokens while preserving their structure, inte-
grates context labels into the loss function as a form
of regularization, and applies projected gradient de-
scent to maintain proximity to their original values.
Additionally, CPT employs a loss weighting mech-
anism that leverages recency bias—a phenomenon
where models prioritize later examples in the con-
text (Zhao et al., 2021), thereby guiding the model
to prioritize the most relevant examples during opti-
mization. These strategies collectively enable CPT
to strike a balance between optimization flexibility
and robustness, effectively addressing overfitting
challenges in few-shot learning scenarios.

We rigorously evaluate CPT across multiple clas-
sification tasks and model architectures, conduct-
ing extensive ablation studies to validate each de-
sign choice. To ensure robustness, we employ di-
verse templates and seeds—an essential consider-
ing ICL’s sensitivity to the selection and format-
ting of training examples, as highlighted by (Sun
et al., 2023; Zhao et al., 2021). Our results demon-

IcL
‘__./ e Prefix

—PT
— IPT

LoRA
= CPT (ours)

4 6 8 10 15 20 25 30
Number of Training Examples

o
S o

Accuracy (%)
5

—
e

N
o

[N}

40 50

Figure 3: Comparison of Few-Shot Methods. We com-
pare CPT with baseline methods using the GPT-J model
and the DBpedia dataset in few-shot settings, demon-
strating its superior performance, particularly when han-
dling a limited number of examples. Furthermore, our
results highlight that context-based methods encounter
memory constraints (indicated by dots) as the number of
training examples increases beyond a certain threshold.

strate that CPT consistently achieves superior per-
formance compared to existing baselines across
diverse scenarios.

To summarize, our key contributions are as fol-
lows:

* We identify overfitting as the primary lim-
itation of optimization-based methods in
few-shot learning scenarios and empirically
demonstrate its impact on performance degra-
dation.

* We propose Context-Aware Prompt Tuning
(CPT), a novel few-shot learning method that
enhances ICL with optimization-based tech-
niques. CPT employs targeted strategies to
effectively mitigate overfitting.

* We achieve state-of-the-art results across mul-
tiple classification datasets and perform exten-
sive ablation studies to validate each compo-
nent of our proposed method.

2 Related Work

Fine-Tuning Fine-tuning is a popular and effec-
tive method for adjusting LLLMs to specific tasks.
Standard fine-tuning (Radford et al., 2019; Brown
et al., 2020; Howard and Ruder, 2018; Liu et al.,
2019; Lan et al., 2019; Raffel et al., 2020; Sun et al.,
2019) retrains the model with new data. However, a
key disadvantage is the large number of parameters
that must be stored.

Efficient Fine-Tuning To alleviate the com-
putational burden of fine-tuning, Adapter-BERT
(Houlsby et al., 2019) proposes training only the
adapter layers inserted into the model, while Bit-
Fit (Zaken et al., 2021) focuses on fine-tuning just
the bias terms. Delta Tuning (Ding et al., 2022)
explores parameter-efficient methods that adjust
only a small portion of a model’s parameters. Low-
Rank Adaptation methods (LoRA) (Hu et al., 2021)

introduces a novel low-rank adaptation technique,
where additional low-rank matrices are added to
the weights during training. This allows the model
to to train only these matrices, reducing the num-
ber of trainable parameters significantly. VERA
(Kopiczko et al., 2023) builds on LoRA by in-
corporating adaptive learning rates. Compacter
(Karimi Mahabadi et al., 2021) leverages hyper-
complex layers, and LoRA-Pro (Wang and Liang,
2024) further refines optimization. Despite these
advancements, large models like GPT-3, which con-
tain 1758 parameters, require updating millions of
parameters, such as 17.5M for LoRA.

Prompt Tuning (PT) Unlike fine-tuning meth-
ods, PT reduces the number of trainable parameters
by introducing learnable tokens optimized while
keeping the model’s weights frozen. (Lester et al.,
2021) propose appending continuous prompts to
the input and optimizing them, while P-tuning (Liu
et al., 2023) and Prefix Tuning (Li and Liang, 2021)
extend this concept by incorporating learnable to-
kens at intermediate layers. More recently, (Wang
et al., 2023) introduced the idea of training a sin-
gle prompt to be shared across multiple tasks. Al-
though these methods significantly reduce the num-
ber of trainable parameters, they face challenges
in few-shot learning (Gu et al., 2021) and provide
limited interpretability for the learned continuous
tokens (Ghosal et al., 2024; Khashabi et al., 2021;
Deng et al., 2022).

In-Context Learning (ICL) In contrast to ear-
lier methods, ICL (Brown et al., 2020) avoids op-
timization entirely. Instead, it concatenates task-
specific examples before the input, allowing the
model to learn a new task purely through observa-
tion, leveraging its pre-trained knowledge. Despite
its advantages, ICL has limitations, often underper-
forming compared to optimization-based methods
(Liu et al., 2022; Peng et al., 2023; Sun et al., 2023).

Instruction Prompt Tuning (IPT) IPT (Singhal
et al., 2022) combines key elements of PT and ICL,
utilizing learnable tokens that are optimized dur-
ing training alongside static context tokens, similar
to ICL. The concept of using both soft and hard
prompts was previously introduced by PPT (Gu
etal., 2021) and PTR (Han et al., 2022). Yet, IPT
has struggled to consistently surpass PT in perfor-
mance (Sun et al., 2023). While our method shares
similarities with IPT, we focus on optimizing con-
text tokens without introducing additional learnable
tokens, and we are also leveraging context labels
in the process. Another key difference lies in the

optimization process, where our loss includes a
regularization term, and we employ projected gra-
dient descent to ensure the output stays close to the
user-supplied reliable input.

3 Our Method

3.1 Opverfitting in Few-Shot Learning

In few-shot learning scenarios with limited data,
the risk of overfitting in optimization-based meth-
ods is closely tied to the number of trainable pa-
rameters they introduce. For example, when work-
ing with LLaMA 3 8B, methods such as full fine-
tuning, LoRA, and PT involve updating approxi-
mately 8B, 4.2M, and 32K parameters, respectively.
This demonstrates that even the most parameter-
efficient optimization-based methods still require
training a significant number of parameters, which
can pose challenges when data is limited.

Our analysis, presented in fig. 1, confirms that
all optimization-based methods, including LoRA
and PT, exhibit a train-test loss gap, highlighting
overfitting in low-data regimes where the number
of examples ranges from 2 to 20. Despite variations
in the number of trainable parameters, these meth-
ods struggle to generalize effectively when data
is limited. These findings emphasize the need for
approaches like CPT, which is carefully designed
to balance flexibility and generalization, effectively
mitigating overfitting challenges in few-shot learn-
ing scenarios.

3.2 Input Preparation

Our method takes as input a few-shot classifica-
tion dataset containing N examples. Each exam-
ple consists of a pairing of = (an instruction) and
y (a label). We embed (z,y) using input, out-
put, and separation templates, converting them
into readable text that LLMs better understand,
as done in ICL (Brown et al., 2020). The input
and output templates, denoted 7; and T,, along
with separators Siyga and Sipeer, are provided in
appendix E. To embed a single example (x,y)
using the template, we concatenate the input x
embedded in T; with Siyy,, followed by the out-
put y embedded in 7T,, and finally Siper, result-
ing in Xgmp, = [E("El), Sintra, To(yi)a Sinter]- To
generate the complete context, we concatenate all
XEmb,» forming Xconext = [XEmbi]i]\il. To con-
struct a complete training example, we randomly
select an embedded example from the training set
Xgmb,;, and concatenate it after the context, result-

ing Xtrain; = [XcContext, XEmb,], Which is then fed
into the LLM. This process is also visualized in
fig. 4, with additional concrete examples provided
in appendix G.

Above, we described how we construct a train-
ing example Xr,ip,, as a text sequence. However,
before feeding it into the model, we must process
the text through a tokenizer, which splits the text
into tokens and returns an embedding vector for
each token. Each example contains six types of to-
kens: input, input template, intra-separator, output,
output template, and inter-separator. For simplicity,
we ignore the separators and the fact that each part
usually contains multiple tokens. For each train-
ing example ¢ and its sub-example k, we focus on
four token types: t(f), t%lT?, t(ol? , t(()kT)i, which repre-
sent the input, input template, output, and output
template, respectively. Each training example
consists of N + 1 sub-examples, N sub-examples
in the context and one training sub-example at the
end.

3.3 Optimization

In this section, we discuss the optimization process
of our method, which draws inspiration from Ad-
versarial Attacks (AT) (Madry et al., 2017). The AT
process typically consists of two key components:
optimization and restriction. First, an attacker mod-
ifies an image to induce misclassification; second,
the attack constrains its changes to evade detec-
tion. Inspired by this approach, our method follows
a similar structure, consisting of two key phases:
optimization, which encompasses the loss design
outlined in section 3.3.1, and regulating token up-
dates, as detailed in section 3.3.2.

3.3.1 Loss Design

The optimization process aims to refine the input
embeddings to enhance classification performance.
To achieve this, we introduce a novel loss function
for each training example Xtr,ip;, Which incorpo-
rates all the context sub-example labels X conext-
More formally, the loss compares the model’s pre-
dicted values fg? to the ground truth tokens tgz)
for all k£ € [1, N]. These target tokens and their
corresponding predictions, as illustrated in eq. (1),
form the basis of our optimization objective.

i

N
Lcontext; = Zwk . CrossEntropy(fgi), tgﬂ)) ()
k=1

In addition to Lcontext;» We also apply the stan-
dard loss on the training sub-example in eq. (2).

LTraini = CrossEntropy(fg:H'l)’ t(O]:H'l)) 2)

Lastly, we sum both losses to create the final
loss Lj = Lcontext; + LTrain;» Where Lcontext; can
be thought of as a regularization for the standard
loss Lyain, -

As explained in section 3.2, each training ex-
ample Xy, contains NV + 1 sub-labels, from [V
sub-examples in the context and one training sub-
example. However, not all sub-examples should
be weighted equally. For instance, the last sub-
example is more important as it is located in the
location of the test examples. Additionally, sub-
examples closer to the end of the context carry
more importance (Zhao et al., 2021). Thus, we ap-
ply exponential loss weight decay starting from the
end of the context and decaying towards the begin-
ning, while keeping Ltr,in, unchanged. Formally,
each sub-example k is multiplied by 7/, where
7 = N 41 — k. For example, the last sub-example
is multiplied by ~!, and the second-to-last by ~2,
and so on. The decay is shown in eq. (1) as wg.

3.3.2 Controlled Token Embedding
Optimization

As mentioned in section 3.3.1, we utilize all the
labels within each training example X, to opti-
mize the context tokens. However, within the con-
text Xcontext;» Some tokens serve as labels and are
crucial for the optimization process. Therefore, we
keep these label tokens fixed, as they carry valuable
information that acts as a regularization component
in the loss term, as explained in section 3.3.1. The
remaining context tokens are updated through the
optimization process in a carefully controlled man-
ner, as detailed in the following section.

The controlled optimization process is an effec-
tive strategy for improving generalization and is
commonly addressed through techniques such as
the Adam optimizer (Kingma, 2014), which lim-
its the magnitude of model weight updates. In
our method, all updates are applied to the context;
thus, constraining these changes prevents the model
from overfitting to the provided training examples
and instead promotes better generalization. Ad-
ditionally, maintaining the context’s proximity to
the user-provided examples enhances interpretabil-
ity—similar to ICL—allowing the model to lever-

[Cross-Entropy

T Forward
i Backward

|
i
i
i

00-00000-00000-000 =~
[TT N R 2 e O 20 O Y]
£ R SN £ N O A I |

B - WBBHE-WBE00-000 ==

Input “the greatest musicians”

template

Output “positive” Input
template template

“the action is stilted” Output “negative” Input
template

“the action is stilted” Output “negative”

template template

X X
Emb, Emb,

X
Emb,

XContext

XTraingy

Figure 4: Constructing a Training Example with CPT . This figure illustrates how CPT builds the second training
example, Xtrin,, in a dataset containing two examples. We begin by concatenating the embedded input-output
templates, [XEmbi]?:p to create the context, Xconext- The embedding of the second example, Xgpy,, is then
appended to X context, forming the complete input Xyin,. This input is passed through the frozen LLM, and the loss
is computed using all labels in Xr,in,, which include both the context and training labels. Importantly, while the
context is updated during this process, its labels remain unchanged.

age meaningful examples without introducing ex-
cessive modifications.

To achieve this, we employ projected gradient de-
scent (PGD), a widely used technique in adversar-
ial attacks, to constrain token embedding updates
within an {5 norm of size € after each optimization
step. This ensures controlled adjustments while
preserving the integrity of the original context. Fur-
ther details are provided in appendix H. As the
modification norm e decreases, our method grad-
ually converges to ICL, which inherently exhibits
robustness against overfitting. This controlled opti-
mization strikes a balance between flexibility and
stability, enabling the model to refine the context
while mitigating the risk of overfitting.

4 Experimental Setup

In this section, we provide details regarding the
datasets, models, baselines, and evaluation used
in our experiments. Implementation details are
provided in appendix F.

4.1 Datasets

In this work, we focus on a classification task and
select a variety of datasets to ensure robust conclu-
sions across different task types. We include SST-2
(Socher et al., 2013) for sentiment analysis, AG
News (Zhang et al., 2015b) for news classification,
DBpedia (Zhang et al., 2015a) for ontology classifi-

cation, and TREC (Li and Roth, 2002) for question
classification. These datasets represent a diverse
range of natural language classification tasks, in-
clude different number of classification classes, al-
lowing us to evaluate our method comprehensively.
More details are provided in appendix D.

4.2 Models

We use models of varying sizes and quality to
ensure robust evaluation and conclusions. For
the relatively small model, we use BLOOM1.7B
(Scao et al., 2022), while for larger models, we opt
for GPT-J6B(Wang and Komatsuzaki, 2021) and
Llama3 8B(Al@Meta, 2024). The GPT-J model is
noted for its robust performance, while Llama3 is
currently among the leading models in the field.

4.3 Baselines

We compare our method to several groups of few-
shot learning techniques. In the first group, we
include LoRA (Hu et al., 2021), one of the leading
efficient fine-tuning methods. Additionally, we
compare against several prompt-tuning approaches,
including Prompt Tuning (PT) (Lester et al., 2021),
Prefix Tuning (Li and Liang, 2021), and Instruction
Prompt Tuning (IPT) (Singhal et al., 2022). Finally,
we compare our method to In-Context Learning
(ICL) (Brown et al., 2020).

For some of the few-shot methods, we introduce
an alternative version that incorporates instructions,

SST2 Test Set AGNews Test Set

DBpedia Test Set TREC Test Set

0 o
o o

S
Accuracy (%)

Accuracy (%)

o
o

70
60
50
40
B 30

ICL Prefix PT IPT LoRACPT
(ours)

w
o

ICL Prefix PT IPT LoRACPT

Accuracy (%)
w B
o o

(ours)

w
o

(=)}

o
H
w

u
=)
IS
o

Accuracy (%)
w
w

N

o
w
o

Ll

ICL Prefix PT IPT LoRA CPT
(ours)

N
w

ICL Prefix PT IPT LoRACPT

(ours)

Figure 5: Accuracy and Standard Deviation Comparison of accuracy and standard deviation between CPT and
baselines, evaluated with 4-shot on GPT-J model. The black bars represent the mean std across different templates,
while the blue bars represent the mean std across different seeds.

as indicated in table 1 with a §. Instead of initial-
izing the learnable tokens randomly, we initialize
them with instructions specified in appendix C. We
apply instructions to PT, IPT, and our method, re-
porting results for both random and instruction-
based prompt initialization. An example illustrat-
ing how inputs are constructed with and without
tis provided in appendix G.

4.4 Evaluation

We evaluate each model and dataset using three
different numbers of training samples: 2, 4, and
6. For each configuration, the reported results are
averaged accuracy over 30 experiments, consisting
of 10 randomly sampled templates and 3 differ-
ent random seeds, with the templates described in
appendix E. By utilizing randomized seeds, we en-
sure variation in the selection of training examples.
This extensive setup is crucial for achieving a com-
prehensive and robust evaluation, especially given
that these methods are known to be highly sensitive
to the selection of training examples and templates
(Voronov et al., 2024; Zhao et al., 2021). Further
evaluation details can be found in appendix B.

5 Results
5.1

In table 1, we demonstrate that CPT convincingly
performs better than the baselines in most cases,
with particularly pronounced gains in harder tasks.
Furthermore, CPT ’s performance becomes more
efficient and effective as the models grow stronger,
such as with Llama3.

Performance on Challenging Tasks CPT
demonstrates improvements across various
datasets, with more pronounced gains in tasks we
define as harder based on two factors: the number
of shots and the number of classes. As illustrated

Main Results

in table 1, task difficulty increases with fewer shots
and more classes. For example, on the DBpedia
dataset, which has 14 classes, decreasing the shots
from 6 to 4 widens the performance gap between
CPT and the baselines from (3, 6, 1) to (11, 10, 3)
across the models: BLOOM, GPT-J, and Llama3.

Decisive Advantage with Powerful Models
The strength of the model plays a significant role in
performance. As the model becomes better, CPT’s
advantage becomes more pronounced across all
datasets and shot settings. For instance, Llama3
consistently outperforms other baselines across all
datasets, except in one case where results are com-
parable. With GPT-J, a slightly older model, the
results are lower in two instances, with one com-
parable outcome, both on SST-2 , the easier task
as previously discussed. When comparing with
BLOOM , the weakest model in our comparison,
we observe lower performance on two occasions,
specifically on the two easier datasets.

5.2 Standard Deviation

Standard deviation (std) plays a crucial role in few-
shot learning due to the sensitivity of these methods
to both the training examples and the chosen tem-
plate (Zhao et al., 2021; Voronov et al., 2024). In
fig. 5, we present accuracy along with two types of
std bars: black bars represent the mean std across
different templates, while blue bars represent the
mean std across different seeds. We demonstrate
that CPT significantly improves accuracy across
various models and datasets in a statistically sig-
nificant manner. More information is presented in
appendix A.

Our method’s standard deviation performs equiv-
alently to other methods in most cases, while in
certain cases, such as with DBpedia, CPT exhibits
both higher accuracy and lower std, reinforcing its

BLOOM 1.7B GPT-J 6B Llama3 8B
Dataset Method 2 4 6 2 4 6 2 4 6
Prefix 47.80 47.33 49.00 52.23 52.50 52.87 - - -
ICL 50.53 60.83 61.87 50.57 67.47 77.47 76.43 80.63 83.10
PT} 64.97 65.07 65.07 57.10 52.93 55.70 72.97 73.47 84.57
PT 56.03 56.90 58.33 64.07 64.37 64.60 64.27 65.70 67.03
SST-2 IPT 58.50 61.83 62.80 51.50 83.20 84.80 86.90 88.03 94.40
IPT 48.50 58.80 61.87 48.13 82.27 87.17 57.20 87.40 90.43
LoRA 6640 66.93 66.90 69.80 71.53 73.17 68.73 71.27 83.97
CPT¥} 59.53 7240 74.83 52.53 82.03 88.07 92.73 95.07 96.40
CPT 50.77 70.70 74.10 50.53 82.90 88.03 83.83 96.30 96.50
Prefix 24.87 25.35 26.02 32.32 33.33 46.08 — — —
ICL 35.12 34.28 42.48 66.73 62.38 69.57 79.38 82.32 85.27
PT¥ 28.67 30.73 41.17 37.85 44.85 62.92 59.60 57.02 68.02
PT 33.57 36.98 56.08 56.85 56.13 75.10 69.32 67.92 69.33
AG News IPTY 36.95 31.90 42.93 67.02 63.00 74.85 82.93 84.45 85.08
IPT 38.77 38.20 47.78 66.02 63.92 74.00 80.52 76.30 80.98
LoRA 29.50 30.80 33.98 56.12 56.03 72.55 70.62 74.97 73.70
CPT¥ 33.68 33.13 41.10 71.35 68.73 75.68 83.17 84.28 84.67
CPT 40.85 44.48 50.40 74.80 68.62 76.22 83.78 81.92 8543
Prefix 19.76 19.74 23.65 13.25 16.43 24.94 — — —
ICL 48.20 51.40 55.17 50.87 62.46 70.76 71.66 72.44 79.93
PTY 2490 26.32 34.75 21.01 22.12 37.44 55.30 57.21 66.26
PT 46.71 41.94 45.93 23.39 29.69 40.53 55.81 52.72 55.02
DBpedia IPTY 33.28 40.36 45.85 47.10 67.60 75.09 81.10 87.69 92.06
IPT 48.09 54.60 70.57 52.86 67.27 70.73 72.92 76.11 78.44
LoRA 43.30 41.13 41.18 30.15 28.02 41.50 54.24 59.50 63.21
CPT¥ 33.80 48.13 51.18 53.20 77.30 81.00 84.23 90.33 93.08
CPT 58.85 65.78 73.55 68.29 75.07 77.65 77.38 78.49 8242
Prefix 19.10 24.49 29.92 30.76 30.04 27.87 — - -
ICL 33.54 33.33 28.53 28.94 35.14 3249 35.32 42.48 40.34
PT+ 30.91 33.70 39.31 29.02 34.66 43.89 43.42 48.81 51.73
PT 32.18 32.26 35.69 31.16 32.79 37.86 32.77 33.98 33.83
TREC IPTY 27.83 36.64 42.92 31.04 43.12 43.09 51.72 62.14 65.13
IPT 32.37 36.59 42.60 29.59 38.90 40.38 36.94 45.62 52.08
LoRA 34.07 33.22 33.50 34.17 33.73 37.63 31.21 33.21 36.36
CPT¥ 29.72 35.64 45.38 33.39 44.20 4583 57.26 67.00 69.29
CPT 35.68 41.79 45.16 35.37 44.66 42.71 45.12 57.54 60.18

Table 1: Baseline Comparisons Mean accuracy of various methods and our CPT, across several models and datasets.

Evaluations are conducted using 2, 4, and 6 shots.

robustness in complex tasks. However, the sensi-
tivity of our method does not follow a clear pattern
across random seeds or templates. For instance,
while randomness in templates and training exam-
ples has an equal influence on std in DBpedia and
TREC, SST-2 shows a higher std for template ran-
domness, and AG News 1s more sensitive to varia-
tions in training examples.

5.3 Ablations

Our ablation studies aim to dissect the contribu-
tions of individual components in CPT, highlight-
ing the elements that drive its performance improve-
ments across few-shot learning tasks, as shown in
table 2. As shown, the loss design and the pro-
jections are the most important component of out
method. Further ablation experiments can be found
in appendix L.

Loss Design Different options for the loss design

are specified under “Loss Tokens”, with three con-
figurations: using only the training label, using the
training label plus one random context label, and
using the training label plus all context labels. The
latter outperforms the training-only configuration
by 11%, 12%, 10% for 2, 4 and 6 shots.

Effect of Projection Magnitude The ablation
study on projection magnitude is specified under
“Input €’ and “Format €”, which define the allow-
able deviation from the original values for input
tokens and format tokens, respectively. The results
demonstrate that both excessively small changes
(leading to convergence toward ICL) and overly
large norms (failing to limit overfitting) are subop-
timal, emphasizing the importance of selecting an
appropriate projection magnitude.

Loss Weighting We evaluated the impact of dif-
ferent loss weighting strategies and propose three
options: (1) Mean, which applies uniform weight-

Loss Tokens

Loss Weighting Projection Type Inpute Formate Updated Tokens

Mask Training Example Number of Training Examples

2 4 6
Train Example 58.09 61.54 66.69
Train Example & 1 Random Decay 0.95 Token-Wise 0.1 0.1 Input & Format X 69.48 72.08 76.80
Train Example & All Context 69.54 73.03 76.58
Mean 69.62 72.91 76.49
Equal 1 69.07 72.82 76.23
p 35 5
Train Example & All Context g‘il:j; 10[?99 Token-Wise 0.1 0.1 Input & Format X 22;; ;;g; Z(;/llé
Decay 0.95 69.54 73.03 76.58
Decay 0.5 69.60 72.39 76.44
0.001 51.52 63.41 71.50
iy
Train Example & All Context Decay 0.95 All-Tokens 8(1)1 Input & Format X ;2;1 (7352;(1%21 Zggg
1.0 63.11 64.78 71.94
0.01 0.1 65.61 70.12 75.63
0.1 0.1 69.54 73.03 76.58
Train Example & All Context Decay 0.95 Token-Wise 1.0 0.1 Input & Format X 65.29 66.30 73.63
0.1 0.01 69.53 73.55 76.55
0.1 1.0 68.27 71.91 68.27
Input 69.47 74.13 76.63
Train Example & All Context Decay 0.95 Token-Wise 0.1 0.1 Masks X 63.74 69.21 74.91
Input & Format 69.54 73.03 76.58
Train Example & All Context Decay 0.95 Token-Wise 0.1 0.1 Input & Format v 67.55 64.26 68.58

Table 2: Ablation Study We present the mean accuracy for various ablations using the GPT-J model and the
DBpedia dataset, including loss tokens (train example, random, or all context), loss weighting (decay and mean),
projection type (token-wise or all-tokens), epsilon values for input and format, updated tokens (input, format,

masks), and masking of the training example.

ing across all labels; (2) Equal, which assigns equal
weight to the training label loss and the context la-
bel losses, with an optional scaling factor applied
to the training loss (e.g., 1, 10); and (3) Decay,
which exponentially reduces the weight of context
labels further from the training example, with the
decay factor specified (e.g., 0.99, 0.95, 0.5).

Projection Type: Token-wise vs. All-Tokens
We evaluated the “All-Tokens” projection approach,
which applies the projection to the entire con-
text collectively rather than processing it token-
by-token. Our results indicate that the token-wise
approach is preferable, as it provides stronger regu-
larization by limiting each token individually rather
than the context as a whole, resulting in better per-
formance.

Updated Tokens Under “Updated Tokens”, we
explored modifying only specific parts of the con-
text to determine if certain components are more
critical for updates than others. Our results indi-
cate that allowing changes to both the input and
format tokens yields better performance, provided
these changes are constrained using the projection
limitation.

Mask Training We also experimented with
“Mask Training,” where the training example was
masked from the context to prevent the model from
simply copying the answer. In our setup, the train-
ing example appears both in the context (along with
the correct answer) and as an additional concate-
nated example at the end. Masking the training
example from the context and removing this dupli-
cation seemed like a plausible strategy to improve

generalization. However, this approach did not lead
to any performance improvements.

6 Discussions

In this work, we identify overfitting as the primary
reason for the underperformance of optimization-
based methods in few-shot learning scenarios, sub-
stantiated by empirical evidence. To address this
challenge, we propose CPT , an optimization-based
method that effectively mitigates overfitting. Our
results demonstrate that CPT consistently outper-
forms existing baselines across diverse datasets,
models, and experimental setups.

Beyond its direct contributions to few-shot learn-
ing, CPT highlights the critical importance of bal-
ancing optimization flexibility and regularization in
data-scarce scenarios. The insights from this work
can inspire the development of parameter-efficient,
robust, and interpretable approaches for a range
of machine learning challenges, including trans-
fer learning, domain adaptation, and fine-tuning in
resource-constrained environments.

Limitation & Future Work The computational
cost associated with the iterative optimization of
context embeddings is significant compared to ICL.
Additionally, similar to ICL and IPT, CPT is lim-
ited in the number of examples it can handle, as
memory consumption scales with context length.
In contrast, traditional methods are better suited for
larger datasets. Future work could explore more
efficient optimization strategies to reduce computa-
tional overhead and improve scalability.

References
Al@Meta. 2024. Llama 3 model card.

Anish Athalye, Logan Engstrom, Andrew Ilyas, and
Kevin Kwok. 2018. Synthesizing robust adversarial
examples. In International conference on machine
learning, pages 284-293. PMLR.

Tsachi Blau, Roy Ganz, Chaim Baskin, Michael Elad,
and Alex Bronstein. 2023. Classifier robustness
enhancement via test-time transformation. arXiv
preprint arXiv:2303.15409.

Tsachi Blau, Roy Ganz, Bahjat Kawar, Alex Bronstein,
and Michael Elad. 2022. Threat model-agnostic
adversarial defense using diffusion models. arXiv
preprint arXiv:2207.08089.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Nicholas Carlini and David Wagner. 2017. Adver-
sarial examples are not easily detected: Bypassing
ten detection methods. In Proceedings of the 10th
ACM workshop on artificial intelligence and security,
pages 3-14.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan
Wang, Han Guo, Tianmin Shu, Meng Song, Eric P
Xing, and Zhiting Hu. 2022. Rlprompt: Optimizing
discrete text prompts with reinforcement learning.
arXiv preprint arXiv:2205.12548.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zong-
han Yang, Yusheng Su, Shengding Hu, Yulin Chen,
Chi-Min Chan, Weize Chen, et al. 2022. Delta tuning:
A comprehensive study of parameter efficient meth-
ods for pre-trained language models. arXiv preprint
arXiv:2203.06904.

Soumya Suvra Ghosal, Samyadeep Basu, Soheil Feizi,
and Dinesh Manocha. 2024. Intcoop: Interpretability-
aware vision-language prompt tuning. arXiv preprint
arXiv:2406.13683.

Sven Gowal, Chongli Qin, Jonathan Uesato, Timo-
thy Mann, and Pushmeet Kohli. 2020. Uncover-
ing the limits of adversarial training against norm-
bounded adversarial examples. arXiv preprint
arXiv:2010.03593.

Yuxian Gu, Xu Han, Zhiyuan Liu, and Minlie Huang.
2021. Ppt: Pre-trained prompt tuning for few-shot
learning. arXiv preprint arXiv:2109.04332.

Xu Han, Weilin Zhao, Ning Ding, Zhiyuan Liu, and
Maosong Sun. 2022. Ptr: Prompt tuning with rules
for text classification. Al Open, 3:182—192.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.

Parameter-efficient transfer learning for nlp. In In-
ternational conference on machine learning, pages
2790-2799. PMLR.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification.
arXiv preprint arXiv:1801.06146.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of
large language models. Preprint, arXiv:2106.09685.

Rabeeh Karimi Mahabadi, James Henderson, and Se-
bastian Ruder. 2021. Compacter: Efficient low-rank
hypercomplex adapter layers. Advances in Neural
Information Processing Systems, 34:1022-1035.

Daniel Khashabi, Shane Lyu, Sewon Min, Lianhui
Qin, Kyle Richardson, Sean Welleck, Hannaneh Ha-
jishirzi, Tushar Khot, Ashish Sabharwal, Sameer
Singh, et al. 2021. Prompt waywardness: The curi-
ous case of discretized interpretation of continuous
prompts. arXiv preprint arXiv:2112.08348.

Diederik P Kingma. 2014. Adam: A method for stochas-
tic optimization. arXiv preprint arXiv:1412.6980.

Dawid J. Kopiczko, Tijmen Blankevoort, and Yuki M.
Asano. 2023. Vera: Vector-based random matrix
adaptation. Preprint, arXiv:2310.11454.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. Preprint, arXiv:2104.08691.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190.

Xin Li and Dan Roth. 2002. Learning question clas-
sifiers. In COLING 2002: The 19th International
Conference on Computational Linguistics.

Haokun Liu, Derek Tam, Mohammed Mugeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin A Raf-
fel. 2022. Few-shot parameter-efficient fine-tuning
is better and cheaper than in-context learning. Ad-

vances in Neural Information Processing Systems,
35:1950-1965.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2023. Gpt
understands, too. Al Open.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2310.11454
https://arxiv.org/abs/2310.11454
https://arxiv.org/abs/2310.11454
https://arxiv.org/abs/2104.08691
https://arxiv.org/abs/2104.08691
https://arxiv.org/abs/2104.08691
https://www.aclweb.org/anthology/C02-1150
https://www.aclweb.org/anthology/C02-1150
https://www.aclweb.org/anthology/C02-1150

Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. 2017.
Towards deep learning models resistant to adversarial
attacks. arXiv preprint arXiv:1706.06083.

Sourab Mangrulkar, Sylvain Gugger, Lysandre De-
but, Younes Belkada, Sayak Paul, and Benjamin
Bossan. 2022. Peft: State-of-the-art parameter-
efficient fine-tuning methods. https://github.
com/huggingface/peft.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstra-
tions: What makes in-context learning work? arXiv
preprint arXiv:2202.12837.

Marius Mosbach, Tiago Pimentel, Shauli Ravfogel, Di-
etrich Klakow, and Yanai Elazar. 2023. Few-shot
fine-tuning vs. in-context learning: A fair comparison
and evaluation. arXiv preprint arXiv:2305.16938.

Hao Peng, Xiaozhi Wang, Jianhui Chen, Weikai Li,
Yunjia Qi, Zimu Wang, Zhili Wu, Kaisheng Zeng,
Bin Xu, Lei Hou, et al. 2023. When does in-context
learning fall short and why? a study on specification-
heavy tasks. arXiv preprint arXiv:2311.08993.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text

transformer. Journal of machine learning research,
21(140):1-67.

Nir Ratner, Yoav Levine, Yonatan Belinkov, Ori Ram,
Inbal Magar, Omri Abend, Ehud Karpas, Amnon
Shashua, Kevin Leyton-Brown, and Yoav Shoham.
2022. Parallel context windows for large language
models. arXiv preprint arXiv:2212.10947.

Teven Le Scao, Angela Fan, Christopher Akiki, and
et al. 2022. Bloom: A 176b-parameter open-
access multilingual language model. arXiv preprint
arXiv:2211.05100.

Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mah-
davi, Jason Wei, Hyung Won Chung, Nathan Scales,
Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl,
et al. 2022. Large language models encode clinical
knowledge. arXiv preprint arXiv:2212.13138.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631-1642, Seattle, Washington, USA. Association
for Computational Linguistics.

10

Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang.
2019. How to fine-tune bert for text classification?
In Chinese computational linguistics: 18th China
national conference, CCL 2019, Kunming, China,
October 18-20, 2019, proceedings 18, pages 194—
206. Springer.

Simeng Sun, Yang Liu, Dan Iter, Chenguang Zhu,
and Mohit Iyyer. 2023. How does in-context
learning help prompt tuning? arXiv preprint
arXiv:2302.11521.

Anton Voronov, Lena Wolf, and Max Ryabinin. 2024.
Mind your format: Towards consistent evaluation of
in-context learning improvements. arXiv preprint
arXiv:2401.06766.

Ben Wang and Aran Komatsuzaki. 2021. Gpt-
j-6b: A 6 billion parameter autoregressive lan-
guage model. https://github.com/kingoflolz/
mesh-transformer-jax. Accessed: 2024-05-26.

Zhen Wang, Rameswar Panda, Leonid Karlinsky, Roge-
rio Feris, Huan Sun, and Yoon Kim. 2023. Multitask
prompt tuning enables parameter-efficient transfer
learning. arXiv preprint arXiv:2303.02861.

Zhengbo Wang and Jian Liang. 2024. Lora-pro: Are
low-rank adapters properly optimized? arXiv
preprint arXiv:2407.18242.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transformers:
State-of-the-art natural language processing.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold-
berg. 2021. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-
models. arXiv preprint arXiv:2106.10199.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015a.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems, volume 28. Curran Associates, Inc.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015b.
Character-level convolutional networks for text clas-
sification. In NIPS.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In

International conference on machine learning, pages
12697-12706. PMLR.

A Standard Deviation

In table 3 we present the standard deviations (STD)
corresponding to the main results shown in Table 1.
For each experiment, we display three STD values,

https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf

Model

Dataset Method BLOOM 1.7B GPT-J 6B Llama3 8B
2 4 6 2 4 6 2 4 6
Prefix Tuning 00.5/00.4/00.1 03.1/02.7/01.9 03.1/02.6/02.1 00.8/00.6/00.2 02.3/01.5/00.7 05.8/04.3/03.9 - - -
IcL 04.3/04.0/01.5 12.6/08.6/09.4 14.9/10.6/09.7 05.5/04.0/03.0 14.1/12.6/08.2 13.1/09.9/09.9 13.2/12.7/06.1 15.7/11.9/10.2 13.7/12.2/06.5
PTt 07.6/07.6/00.4 08.2/08.2/00.7 08.1/08.1/00.6 06.8/06.5/02.3 07.8/06.9/04.3 09.5/09.0/04.9 16.6/16.5/01.0 17.1/17.1/01.6 12.7/10.9/05.7
PT 08.6/08.5/01.7 08.9/08.6/02.4 08.7/08.4/02.5 07.7/07.6/01.3 07.0/07.0/00.9 07.4/07.4/01.0 06.4/06.1/03.1 06.8/06.6/02.8 07.0/06.5/03.7
SST-2 IPTY 12.3/12.3/03.4 14.1/11.4/09.8 15.3/10.1/12.6 05.8/05.1/02.5 11.1/08.0/08.3 12.3/12.3/02.0 08.7/06.8/05.6 12.5/11.2/07.3 02.7/02.6/01.6
IPT 02.0/01.5/00.4 11.6/08.7/08.2 14.8/09.0/11.8 00.7/00.4/00.2 13.0/08.1/10.0 07.2/05.7/04.7 13.7/13.7/03.9 10.6/09.6/05.5 12.0/10.3/05.3
LoRA 06.9/06.9/00.2 06.5/06.5/00.5 06.4/06.3/00.5 09.5/09.5/00.8 10.2/10.2/01.2 10.0/09.9/01.4 11.4/11.4/01.4 15.0/14.6/07.6 12.1/11.9/07.2
CPT} 12.3/12.3/03.6 13.8/09.8/10.5 15.4/14.2/09.6 07.6/06.7/03.2 11.1/09.1/07.0 07.0/06.2/04.1 05.0/04.3/02.5 04.1/03.0/02.3 02.0/01.7/01.2
CPT 07.7/05.3/02.9 12.0/11.1/06.9 12.9/10.5/09.7 05.5/03.9/02.9 12.7/12.0/05.9 10.7/08.9/05.1 13.2/10.9/08.5 01.6/01.5/01.0 01.3/01.2/01.0
Prefix Tuning 01.7/01.7/00.6 05.8/02.9/05.2 05.3/03.9/03.9 05.9/05.9/00.5 06.2/06.1/01.4 12.7/09.4/08.2 — — -
ICL 10.5/06.8/08.7 11.7/10.1/06.4 12.2/11.1/06.0 10.0/08.9/05.2 13.3/10.6/09.2 10.4/09.4/05.0 08.8/03.2/08.1 03.2/03.0/02.3 03.1/02.7/02.4
PTH 05.2/04.1/04.1 06.0/04.3/04.4 10.9/10.5/07.3 16.2/16.1/00.9 13.7/11.5/09.5 13.6/11.9/07.8 11.9/11.8/06.1 10.9/10.3/05.8 10.5/09.0/06.5
PT 07.9/04.6/06.9 08.4/06.8/05.7 09.9/09.3/05.2 12.3/11.5/05.3 10.8/06.7/08.6 07.0/02.5/06.8 15.0/15.0/01.5 15.4/15.2/02.7 12.4/12.3/02.2
AG News IPTY 11.7/09.2/08.4 07.5/05.5/05.0 15.0/09.4/12.4 11.0/08.3/07.9 07.1/03.1/06.5 07.6/03.5/06.8 02.7/02.5/01.6 03.5/02.8/02.2 03.4/02.9/02.5
IPT 12.0/08.6/08.9 10.6/09.1/07.2 12.0/09.4/07.9 11.1/10.0/06.3 08.8/04.6/07.6 07.4/04.6/05.7 03.6/03.1/01.8 08.1/03.2/07.6 05.2/02.2/04.7
LoRA 03.2/03.2/00.5 06.8/03.3/06.1 04.6/04.4/02.7 09.0/09.0/01.3 09.4/09.3/01.8 08.8/05.3/07.3 15.0/15.0/01.5 15.4/15.2/02.7 12.4/12.3/02.2
CPTf 07.2/05.7/05.4 06.0/03.4/04.8 11.9/08.5/09.2 09.6/07.2/07.1 09.0/03.6/08.5 09.2/04.4/08.1 03.1/02.5/02.2 02.9/02.6/02.4 03.4/01.8/03.2
CPT 12.8/08.7/10.3 12.2/07.8/10.3 11.3/08.9/07.1 08.6/05.4/07.4 09.1/03.8/08.5 07.2/03.7/06.2 03.3/02.6/02.3 04.3/03.6/02.8 02.9/02.3/02.3
Prefix Tuning 03.5/03.4/01.9 06.4/03.1/05.7 08.7/03.6/08.1 02.3/02.3/01.7 04.5/02.7/03.6 07.9/04.9/06.2 — — -
IcL 24.1/23.3/06.9 25.8/23.5/08.9 23.9/23.6/06.0 16.6/16.3/05.9 15.7/13.1/08.1 06.7/05.8/04.0 07.7/06.4/06.2 06.8/02.6/06.5 04.2/02.3/04.0
PT} 15.6/08.5/13.2 09.7/09.6/01.7 07.1/04.6/05.8 10.3/10.3/00.9 06.3/05.8/04.2 06.3/05.8/04.2 19.5/17.3/11.0 15.7/12.7/09.0 15.4/13.7/08.2
PT 11.2/11.1/04.2 10.8/10.8/01.3 13.0/12.4/05.9 09.9/08.2/06.4 11.3/07.1/09.1 08.9/05.0/07.5 11.9/11.7/04.2 15.7/15.3/02.9 13.5/13.4/01.5
DBpedia IPTY 25.6/21.2/14.7 24.3/22.6/08.9 27.3/26.2/08.5 16.4/15.5/05.7 11.0/09.7/06.2 06.8/05.3/05.2 05.3/04.3/03.0 04.5/03.8/02.7 04.5/04.1/01.9
IPT 26.2/25.1/07.5 25.0/20.3/11.9 07.6/07.0/02.9 12.2/11.2/06.0 09.6/06.0/07.2 05.4/03.7/04.1 09.7/08.4/04.6 06.0/03.6/05.1 05.6/03.1/05.3
LoRA 11.4/11.0/03.1 11.6/11.6/00.3 11.7/11.7/00.4 11.6/10.9/04.9 13.0/06.0/11.6 09.8/06.0/07.9 13.1/13.0/01.7 14.3/14.2/02.2 13.7/13.7/01.5
CPT# 23.2/14.5/18.0 12.0/10.1/07.1 22.1/20.1/10.5 15.6/08.6/14.3 06.5/05.0/04.5 06.0/03.2/05.2 06.2/05.6/02.7 03.8/03.4/02.4 02.3/02.2/01.7
CPT 15.5/13.4/06.5 11.8/08.8/07.1 04.7/04.0/02.5 10.9/08.2/05.5 05.0/03.8/03.5 03.9/03.0/03.0 06.1/05.0/04.8 04.3/03.5/03.0 04.3/02.6/03.5
Prefix Tuning 06.7/00.8/06.6 06.4/02.9/06.0 07.0/04.6/06.0 03.1/02.0/02.5 05.9/02.6/05.1 03.7/03.6/00.8 - - -
IcL 11.0/07.2/08.2 10.5/08.2/06.8 13.8/09.0/09.1 08.9/05.9/06.8 11.0/08.2/07.8 12.6/08.3/09.4 08.6/05.6/06.3 14.2/07.9/12.0 13.2/08.3/10.7
PTt 05.9/04.4/03.7 07.5/06.7/04.5 11.2/08.7/07.8 05.5/04.3/03.4 06.2/06.0/04.3 13.5/08.2/11.7 09.5/05.7/08.3 11.3/06.1/09.4 10.3/08.4/08.1
PT 03.8/03.4/01.5 08.2/07.3/06.7 11.2/08.6/09.1 04.0/04.0/00.9 08.1/07.5/05.7 09.7/08.2/07.8 05.0/05.0/01.5 04.5/04.5/02.5 03.8/03.8/02.0
TREC IPTY 05.5/03.6/04.0 10.1/09.1/07.1 16.8/08.1/15.5 06.8/05.3/04.2 07.7/05.1/05.9 14.0/07.8/11.9 13.6/06.3/12.3 09.7/05.9/08.6 07.2/05.4/05.5
IPT 10.5/07.1/07.8 06.1/05.9/05.0 14.1/07.4/12.8 09.7/05.4/08.0 09.3/05.7/07.5 13.0/03.8/12.5 12.1/08.5/07.8 11.5/09.1/08.0 14.0/05.4/13.3
LoRA 03.9/03.9/01.0 04.0/04.0/00.3 04.1/04.1/00.4 02.5/02.5/00.4 03.6/03.5/02.2 11.9/07.2/10.4 03.3/03.3/01.0 03.5/02.7/02.5 16.5/08.1/15.4
CPT} 08.0/05.8/05.4 07.7/06.9/06.3 09.9/07.0/07.9 08.5/05.7/06.4 12.9/08.3/10.6 11.2/08.2/09.0 13.1/06.9/11.6 09.8/03.7/09.2 05.0/04.1/03.4
CPT 09.1/05.2/07.3 07.9/07.2/05.6 12.9/07.0/10.8 07.4/04.1/06.1 08.7/06.2/06.9 08.6/05.5/07.3 16.8/08.4/14.5 07.4/06.5/05.8 07.9/05.6/06.5

Table 3: Standard Deviation Analysis Standard deviations (STD) corresponding to Table 1. Each experiment
shows three STD values separated by a backslash: (1) STD over 30 experiments with 10 random templates and 3
seeds, (2) mean STD over templates, and (3) mean STD over seeds.

separated by a backslash. These values represent
the variability in the results across different config-
urations:

1. The first value shows the standard deviation
over 30 experiments, which includes 10 random
templates and 3 seeds that determine the training
examples. 2. The second value provides the mean
of the standard deviation over the templates, the
standard deviation across 10 templates, and the
mean of the standard deviation across 3 seeds. 3.
The third value presents the mean standard devia-
tion over the seeds, the standard deviation over 3
seeds, and the mean over 10 templates.

This detailed breakdown of standard deviations
allows for a more thorough understanding of the
variability in model performance across different
templates and seeds.

B Evaluation Details

All the graphs and ablation studies were conducted
and evaluated using the DBPedia dataset with the
GPT-J model. This setup was chosen due to the
diversity of the DBPedia dataset, which includes
a broad range of categories and entities, making it
an ideal candidate for comprehensive evaluation.
The use of GPT-J, a powerful generative model,

11

ensures that the results are reflective of state-of-the-
art performance in language modeling tasks. The
combination of DBPedia and GPT-J allows us to
thoroughly investigate the behavior of the model
across various ablation settings, ensuring robust
insights into the performance of different methods
and configurations.

B.1 Pruning for Classification

In our evaluation setup, we use pruning for classi-
fication by focusing only on the first token of the
label, which is unique across all datasets. A com-
mon approach in the in-context learning setup is to
iterate over all possible labels for each test sample
and select the label with the highest probability ac-
cording to the language model (LM). However, this
approach can become computationally expensive,
especially in cases where there are a large number
of classes.

Similarly to (Ratner et al., 2022), and given that
the first token in each dataset is unique, we predict
only the first token of the label and perform classi-
fication based on this value. While this approach
deviates slightly from the common practice of it-
erating over all possible labels, the effect on the
results should be minor.

B.2 Test Set Size

For our experiments, we used a varying number
of test examples depending on the dataset. Specif-
ically, we used 100 test examples for the SST-2
dataset, and for datasets with a larger number of
classes, the number of test examples was scaled
linearly with the number of classes. For example,
in the DBpedia dataset, which has 7 times more
classes than SST-2, we used 700 test examples to
ensure that the evaluation is proportional to the
number of classes. This scaling helps to maintain a
balanced evaluation across datasets with differing
complexities, ensuring robust performance metrics
for each method.

C Instruction Details

In some of the experiments, we use specific in-
structions to guide the model in performing the
classification tasks. Below in table 4 that shows the
instructions used for each dataset across all relevant
methods:

D Dataset Details

In our experiments, we used four different datasets,
each representing a unique classification task. Ta-
ble 5 provides an overview of the datasets and their
respective tasks. Each dataset has a varying num-
ber of classes, denoted by |C'|, which are detailed
below:

* SST-2: This dataset is used for sentiment anal-
ysis, where the task is to classify movie re-
views as either positive or negative. It contains
2 distinct classes.

AG News: The AG News dataset is used
for news classification. The task is to clas-
sify news articles into one of four categories:
World, Sports, Business, and Technology.
This dataset contains 4 classes.

DBpedia: The DBpedia dataset is focused
on ontology classification. The task involves
classifying textual content into one of 14 dis-
tinct categories, which include entities such
as Company, Artist, Village, and more.

TREC: This dataset is used for question clas-
sification, where the goal is to classify ques-
tions into one of 6 answer types, including
Description, Entity, Human, and Location.

12

Each dataset contains a specific number of exam-
ples based on its classification task, allowing us to
evaluate the model’s performance across a diverse
range of challenges.

E Template Details

In our experiments, we use randomly selected tem-
plates from the options provided in table 6, sug-
gested in (Voronov et al., 2024). Each dataset is
associated with both input and output templates,
which are used to format the input data and the
expected output during few-shot learning tasks.

* Input Template: As shown, this column lists
the different templates for formatting the input
data. For example, the SST-2 dataset uses
"input: " and "text: " as input templates to
introduce the input text.

'

* Intra-Separator: This separator is used be-
tween components (input and output) within a
single example. For instance, AG News uses
"\n" as an intra-separator between the input
sentence and the output label.

* Output Template: The output template de-
fines how the expected output is structured.
For example, SST-2 employs formats like
"output: , target: , label: " to guide the model
in generating structured output.

* Inter-Separator: This column represents the
separator used between multiple examples dur-
ing training. In datasets like AG News and
DBpedia, "\n\n" is used to separate examples.

We randomly select templates from the ones
listed in table 6 for each experiment. This random-
ness in selecting templates introduces variability
in the prompts, making the evaluation more robust
and testing the model’s ability to generalize across
different input-output structures.

F Implementation Details

F.1 Hyperparameter Details

In table 7 we present the hyperparameters used
in our experiments across different models and
datasets. The table provides the specific learn-
ing rates (‘Ir%), epsilon values (‘¢’), and format
settings for the various methods applied to each
dataset. The experiments were conducted using
multiple model architectures, including BLOOM
1.7B, GPT-J 6B, and Llama3 8B, and we selected

Dataset | Instruction
SST2 Classify the sentiment of the following text as positive or negative:
AG News | Classify the following text into one of the following categories: World, Sports,
Business, Technology
DBpedia | Classify the following text into one of the following categories: Company,
Educational Institution, Artist, Athlete, Office Holder, Mean Of Transportation,
Building, Natural Place, Village, Animal, Plant, Album, Film, Written Work
TREC Classify the following text into one of the following categories: Description,
Entity, Expression, Human, Location, Number

Table 4: Instructions used for relevant datasets in the experiments.

the best hyperparameters for each experiment: 2,
4, and 6 shots. Below is an overview of the key
hyperparameters:

* Learning Rate (‘Ir’): The table provides
the learning rates used for each method and
dataset combination. For methods like Prefix
Tuning (PT), Prompt Tuning (PT), IPT, and
LoRA, learning rates vary from le-5 to 1e-3,
depending on the specific model and dataset.

CPT Hyperparameters: For CPT, we also
report epsilon values (‘e’) for both the input
and the format components. These epsilon
values control the magnitude of the perturba-
tions applied during optimization. The values
of epsilon vary across different models and
datasets, generally ranging from 1le-2 to 1e-0
for both input and format components.

Model Variability: The table reflects variabil-
ity in hyperparameter choices depending on
the model size and architecture. For instance,
GPT-3 6B typically requires higher learning
rates compared to BLOOM 1.7B, as seen with
CPT and other methods. The hyperparameters
are carefully tuned to optimize performance
on tasks such as SST-2, AG News, DBpedia,

and TREC.
Dataset Task |C
SST-2 Sentiment analysis (movie) 2
AG News News classification (topic) 4
DBpedia Ontology classification 14
TREC Question classification (answer type) 6

Table 5: Dataset Overview These are the datasets used,
representing a range of different types of classification
tasks, including SST-2, AG News, DBpedia, and TREC.
Each dataset has a varying number of classes (denoted
by [C)).

13

These hyperparameters are critical for achieving
optimal performance in few-shot learning settings.
They control the learning process, model updates,
and how much the model is allowed to adapt to new
data. The values in table 7 are based on extensive
experimentation and fine-tuning to ensure the best
results for each method and dataset.

F.2 Methods Implementation Details

In our experiments, we utilized existing implemen-
tations for several methods and implemented IPT
ourselves. Specifically, we used the implemen-
tations provided by the Parameter-Efficient Fine-
Tuning (Mangrulkar et al., 2022) (PEFT) library
! for methods such as LoRA, Prefix Tuning, and
Prompt Tuning (PT). For IPT, we built our imple-
mentation based on the PEFT framework.

For all experiments, we used the recommended
parameters:

e For LoRA, we set & = 16 and the rank r = 8.

* For Prompt Tuning, Prefix Tuning, and IPT
we used 8 learnable tokens.

By using the PEFT framework, we ensure that
our fine-tuning processes for LoRA, Prefix Tuning,
and PT are aligned with current standards, while
our custom IPT implementation extends the frame-
work to allow for additional flexibility in parameter-
efficient training.

F.3 Training Details

We utilized the ‘Fine-tune a pretrained model’ pack-
age from (Wolf et al., 2020), which provides a com-
prehensive framework for training and evaluating
models®. For all baselines, we employed the de-
fault parameters provided by the trainer, ensuring

"https://huggingface.co/docs/peft/en/index
2https://huggingface.co/docs/transformers/en/
training

https://huggingface.co/docs/peft/en/index
https://huggingface.co/docs/transformers/en/training
https://huggingface.co/docs/transformers/en/training

Dataset Input Template Intra-Separator Output Template Inter-Separator
"output: {}", "target: {}", "label: {}",
SST-2 "input: {}", "emotion: {}", "semtiment: {}", "A {} one.", "o
"text: ", "y "It was {}.", "Allin all {}.", "A {} piece." "\n:'
AG News "sentence: {}", "\n" "output: {}", "target: {}", "label: {}", "\n\r;"
DBpedia (3" "Topic: {}.", "Subject: {}.",
TREC "This is about {}.", "It is about {}."

Table 6: Template Options for Various Datasets We provide various template options for different datasets. Each
dataset include both input and output templates, and also includes intra-separators between inputs and labels, as

well as inter-separators between examples.

consistency across experiments. Each model was
trained for 25 epochs, allowing sufficient time for
convergence while maintaining uniform training
conditions across methods.

G Input Preparation

In this section, we provide a detailed explanation of
how the input is constructed for different methods,
including Prompt Tuning (PT), Instruction Prompt
Tuning (IPT), and Context-Aware Prompt Tuning
(CPT), both with and without the { variant. To
clarify the differences, we use SST-2 as an example
with the instruction: "Classify the sentiment of the
following text as positive or negative."

Each example is constructed using a template
that includes input: and output:, where the
input corresponds to the actual text of the exam-
ple, and the output corresponds to its label. For
instance:

e Example 1: The input is "the greatest
musicians”, and the output is "positive”.

e Example 2: The input is "the action is
stilted"”, and the output is "negative”.

Using the template, these examples are repre-
sented as:

 Example 1: input: the
musicians output: positive

greatest

e« Example 2: input: the action is

stilted output: negative

This template-based construction ensures con-
sistency across the methods, allowing us to clearly
define how the input and output are represented in
different approaches, such as PT, IPT, and CPT.

table 8 outlines the construction of the prefix
for each method and highlights which parts are
updated during training.

14

H Projected Gradient Descent (PGD)
Algorithm

In our method, we initialize the context tokens,
denoted as x;, using the training examples, with
each token x; associated with a vector §;, which is
initially set to zero. For simplicity, we use x; and
d; to denote these components only in this part of
the explanation.

During the optimization process, the tokens x;
remain fixed, while the J; vectors are updated iter-
atively. After each optimizer update, we perform
a post-processing step where each J; is projected
to ensure that its L2 norm does not exceed a pre-
defined limit, e. It is important to note that this
projection step is independent of the optimizer and
serves as an additional operation to control the ex-
tent of change for each context token.

1: Initialize each §; < 0
2: Initialize x; < training_examples_tokens
3: for j < 1to num_of_training_steps do
4 0; < 0; — CMVLOSS(f(l’i + 51), yz)
Gradient descent step
n; < ||0;]] > Compute the L2 norm of ¢;
d; < 0; x clip(n;,€)/n; > Project d; to
ensure L2 norm < €
end for

>

el

7:
This ensures that the updates to d; remain con-
strained, preventing excessive modifications to
the context tokens and maintaining a balance be-
tween optimization and regularization. The pro-
cess allows the model to adapt while ensuring that
changes to the context tokens remain meaningful
and controlled.

I Evaluating the Impact of Projected
Gradient Descent (PGD)

Our method use the same optimizer used for all
baselines. However, our method incorporates an
additional step after each parameter update: we

BLOOM 1.7B GPT-J 6B Llama3 8B
Dataset Method Paremeter 2 4 6 5 4 6 2 4 6
Prefix Tuning Ir le—3 1le—3 le—3 le—5 le—4 1le—3 — — -
PT+ Ir le—5 le—5 le—5 le—4 1le—3 1le—3 le—5 1le—5 le—5
PT Ir le—5 le—5 le—5 le—5 le—5 le—5 le—5 le—5 le—5
IPTY Ir le—5 le—4 le—4 1le—5 1le—3 1le—4 le—5 le—5 1le—4
IPT Ir le—5 le—5 le—5 le—5 le—4 le—4 1le—5 le—5 1le—5
SST2 LoRA Ir le—5 le—5 le—5 le—5 le—5 le—5 le—5 le—4 le—4
Ir le—5 le—3 le—4 1le—5 le—4 1le—3 1le—5 le—5 1le—5
CPT+ Input e le—3 1le—0 1le—0 le—3 le—1 le—1 le—1 le—1 1le—0
Format e le—3 le—3 1le—3 1le—3 le—2 1le—3 1le—2 le—1 1le—0
Ir le—3 1le—3 le—4 le—5 le—4 le—4 1le—3 le—4 le—4
CPT Input € le—2 1le—0 le—0 le—3 1le—0 le—0 le—2 1le—0 le—2
Format e le—2 le—2 1le—3 1le—3 1le—3 1le—2 1le—3 1le—3 1le—3
Prefix Tuning Ir le—4 1le—3 le—3 le—5 le—5 le—3 - — -
PT+ Ir le—3 1le—3 1le—3 1le—5 1le—3 1le—3 1le—4 le—4 le—4
PT Ir le—3 1le—3 1le—3 le—4 1le—3 1le—3 le—4 1le—5 le—4
IPTY Ir le—3 1le—3 1le—3 1le—5 le—4 1le—4 1le—4 le—5 1le—5
IPT Ir le—4 le—3 le—4 le—5 le—5 le—4 le—5 le—5 le—5
AG News LoRA Ir le—5 le—4 1le—3 1le—5 le—5 le—4 le—5 1le—5 le—5
Ir le—4 le—3 le—3 le—4 le—4 le—4 le—5 le—5 le—5
CPT+ Input € le—2 1le—0 1le—0 le—1 le—1 le—2 le—1 le—3 le—3
Format e le—1 1le—2 1le—0 le—1 1le—3 1le—0 le—1 1le—2 1le—3
Ir le—4 le—4 1le—3 1le—3 le—4 le—4 1le—3 le—4 1le—3
CPT Input € le—2 1le—0 1le—0 le—2 1le—0 le—0 le—2 le—3 1le—3
Format ¢ le—2 1le—0 le—0 le—3 le—3 1le—0 1le—3 le—3 1le—3
Prefix Tuning Ir le—=3 le—=3 le—3 le—3 le—3 1le—3 — - —
PT+ Ir le—3 le—5 1le—3 1le—5 1le—3 le—3 1le—4 le—4 le—4
PT Ir le—4 le—5 le—4 1le—3 1le—3 1le—3 le—4 le—5 1le—5
IPTY Ir le—4 le—5 le—5 le—5 le—4 1le—5 1le—5 1le—5 1le—5
IPT Ir le—5 le—5 le—5 le—5 le—5 le—5 le—5 le—5 le—5
DBpedia LoRA Ir le—4 le—5 le—5 le—4 le—4 1le—4 1le—5 le—5 1le—5
Ir le—5 le—5 le—5 le—4 le—5 le—5 le—5 le—5 le—5
CPT+ Input € le—2 le—2 le—1 le—0 le—1 le—1 1le—0 le—1 le—1
Format e le—1 1le—0 le—1 1le—3 le—0 le—1 le—1 le—0 le—1
Ir le—4 le—4 le—5 le—4 le—4 le—4 le—5 le—5 le—5
CPT Input € le—0 le—2 1le—0 le—0 1le—0 le—0 le—2 1le—0 1le—3
Format e le—0 1le—0 le—0 1le—0 le—3 1le—3 le—2 1le—3 le—2
Prefix Tuning Ir le—3 1le—3 le—3 le—3 le—3 1le—5 - - -
PT+ Ir le—3 1le—3 1le—3 1le—3 1le—3 1le—3 le—4 le—4 le—4
PT Ir le—5 1le—3 1le—3 1le—5 1le—3 1le—3 1le—5 le—5 1le—5
IPTY Ir le—3 1le—3 1le—3 le—4 1le—3 le—4 le—4 le—4 1le—5
IPT Ir le—5 1le—3 1le—3 le—4 le—4 le—4 le—5 1le—5 le—5
TREC LoRA Ir le—4 le—5 le—5 le—5 le—5 le—4 le—5 le—5 le—14
Ir le—3 1le—3 1le—3 le—4 le—4 le—zx le—4 le—5 1le—5
CPT+ Input € le—0 1le—0 le—0 le—1 1le—0 1le—0 le—1 le—1 1le—1
Format e le—3 le—1 le—2 le—1 1le—0 1le—2 1le—3 1le—0 1le—0
Ir le—3 le—3 le—4 1le—3 le—3 1le—3 1le—4 le—4 le—4
CPT Input e le—0 1le—0 1le—0 1le—0 1le—0 le—3 1le—0 1le—0 1le—0
Format e le—0 le—0 1le—3 1le—2 1le—2 1le—0 1le—2 1le—3 1le—0

Table 7: Hyperparameters Hyperparameters used for each experiment across 2, 4, and 6 shots for different models,
including BLOOM 1.7B, GPT-J 6B, and Llama3 8B. The table shows learning rates (Ir), epsilon values for input
and format, and other parameters for methods such as Prefix Tuning, Prompt Tuning, IPT, LoRA, and CPT. The
experiments were conducted on datasets like SST-2, AG News, DBpedia, and TREC.

project each token, restricting its allowed change.
The allowed change is determined by the hyperpa-
rameters Input e and Format e, which define the
L2 norm limit for each token’s modification.

To ensure that PGD (Madry et al., 2017) is not
the sole reason for our method’s improvement, we

15

conducted two types of experiments. First, we
compared our method without PGD to PT and IPT.
Second, we added a PGD step to PT and IPT for
comparison.

For the first experiment, we compared CPT
(without PGD) to PT and IPT on the DBpedia

Method | Prefix Construction

PT In this part, we use only random embedding initialization.

PTY Classify the sentiment of the following text as positive or
negative.

IPT In this part, we use only random embedding initialization. input:
the greatest musicians output: positive. input: the action is
stilted output: negative.

IPTY Classify the sentiment of the following text as positive or
negative. input: the greatest musicians output: positive. input:
the action is stilted output: negative.

CPT input: the greatest musicians output: positive. input: the
action is stilted output: negative.

CPTt Classify the sentiment of the following text as positive or
negative. input: the greatest musicians output: positive. input:
the action is stilted output: negative.

Table 8: Input Construction for PT, IPT, and CPT (with and without 1) using SST-2. The updated text during training

is marked in red.

dataset. The results for 2, 4, and 6 shots are pre-
sented in Table 9.

Method 2 Shots | 4 Shots | 6 Shots
PT 23.39 29.69 40.53
IPT 52.86 67.27 70.73
CPT (No PGD) | 68.28 74.17 77.52

Table 9: Performance Comparison Without PGD (DB-
pedia), using GPT-J.

For the second experiment, we compared CPT
to PT{ and IPTt (with and without PGD) on the
DBpedia dataset. To ensure a fair comparison, we
performed hyperparameter tuning (HPT) over € and
the learning rate for both PT and IPT. The results
for 2, 4, and 6 shots are presented in Table 10.

Method 2 Shots | 4 Shots | 6 Shots
PTj 12.96 22.12 37.44
PTt + PGD 12.80 22.02 38.69
IPTY 47.10 66.37 75.09
IPTY + PGD 47.10 66.40 75.09
CPTt+PGD | 52.87 77.30 81.00

Table 10: Performance Comparison With and Without
PGD (DBpedia), using GPT-J.

The results clearly demonstrate that, in both ex-
periments, our method consistently outperforms PT
and IPT. Furthermore, it is evident that other meth-
ods do not necessarily benefit from the addition
of PGD. While we cannot definitively explain this,
we hypothesize that it may be due to the highly ef-

16

fective way in which we employ PGD, leveraging
prior knowledge about the structure of the input,
format, and labels within the context. Our approach
allows us to apply distinct projections to different
components of the context, which we believe sig-
nificantly contributes to the superior performance
of our method.

	Introduction
	Related Work
	Our Method
	Overfitting in Few-Shot Learning
	Input Preparation
	Optimization
	Loss Design
	Controlled Token Embedding Optimization

	Experimental Setup
	Datasets
	Models
	Baselines
	Evaluation

	Results
	Main Results
	Standard Deviation
	Ablations

	Discussions
	Standard Deviation
	Evaluation Details
	Pruning for Classification
	Test Set Size

	Instruction Details
	Dataset Details
	Template Details
	Implementation Details
	Hyperparameter Details
	Methods Implementation Details
	Training Details

	Input Preparation
	Projected Gradient Descent (PGD) Algorithm
	Evaluating the Impact of Projected Gradient Descent (PGD)

