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Abstract

Calibration is a fundamental concept that aims at ensuring the reliability of proba-
bilistic predictions by aligning them with real-world outcomes. There is a surge of
studies on new calibration measures that are easier to optimize compared to the
classical ℓ1-Calibration while still having strong implications for downstream appli-
cations. One such recent example is the work by Fishelson et al. (2025) who show
that it is possible to achieve Õ(T 1/3) pseudo ℓ2-Calibration error via minimizing
pseudo swap regret of the squared loss, which in fact implies the same bound for all
bounded proper losses with a smooth univariate form. In this work, we significantly
generalize their result in the following ways: (a) in addition to smooth univariate
forms, our algorithm also simultaneously achieves Õ(T 1/3) swap regret for any
proper loss with a twice continuously differentiable univariate form (such as Tsallis
entropy); (b) our bounds hold not only for pseudo swap regret that measures losses
using the forecaster’s distributions on predictions, but also hold for the actual swap
regret that measures losses using the forecaster’s actual realized predictions.
We achieve so by introducing a new stronger notion of calibration called (pseudo)
KL-Calibration, which we show is equivalent to the (pseudo) swap regret with
respect to log loss. We prove that there exists an algorithm that achieves Õ(T 1/3)

KL-Calibration error and provide an explicit algorithm that achieves Õ(T 1/3)
pseudo KL-Calibration error. Moreover, we show that the same algorithm achieves
O(T 1/3(log T )−

1
3 log(T/δ)) swap regret with probability at least 1 − δ for any

proper loss with a smooth univariate form, which implies Õ(T 1/3) ℓ2-Calibration
error. A technical contribution of our work is a new randomized rounding procedure
and a non-uniform discretization scheme to minimize the swap regret for log loss.

1 Introduction

We consider online calibration — a problem of making sequential probabilistic predictions over
binary outcomes. Formally, at each time t = 1, . . . , T , a forecaster randomly predicts pt ∈ [0, 1]
while simultaneously the adversary chooses yt ∈ {0, 1}, and subsequently the forecaster observes
the true label yt. Letting np denote the number of rounds the forecaster predicts pt = p, the
forecaster’s predictions are perfectly calibrated if for all p ∈ [0, 1], the empirical distribution of the
label conditioned on the forecast being p, i.e., the quantity ρp :=

∑
t:pt=p yt/np, matches p. The

ℓq-Calibration error (q ≥ 1) is then defined as Calq :=
∑

p∈[0,1]

∑T
t=1 I[pt = p] (p− ρp)

q .

A related concept used in Fishelson et al. (2025) that we call pseudo calibration error measures the er-
ror using the forecaster’s conditional distribution Pt ∈ ∆[0,1] at time t, instead of the actual prediction
pt. More specifically, the pseudo ℓq-Calibration error is defined as PCalq :=

∑T
t=1 Ep∼Pt

[(p− ρ̃p)
q
],

*Author ordering is alphabetical.
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where ρ̃p :=
∑T

t=1 ytPt(p)∑T
t=1 Pt(p)

. By not dealing with the random variable pt, pseudo calibration is often
easier to optimize.

Two of the most popular calibration measures are ℓ1 and ℓ2-Calibration. It has been long known that
Cal1 = O(T 2/3) is achievable, and there are some recent breakthroughs towards closing the gap
between this upper bound and a standard lower bound Cal1 = Ω(

√
T ) (see more discussion in related

work). For ℓ2-Calibration, Foster and Hart (2023) proposed an algorithm based on the concept of
“calibeating” that achieves E[Cal2] = Õ(T

1
3 ). Moreover, a recent work by Fishelson et al. (2025)

showed that PCal2 = Õ(T
1
3 ) is achievable by establishing equivalence to pseudo swap regret of the

squared loss and proposing an efficient algorithm based on the well-known Blum-Mansour reduction
(Blum and Mansour, 2007) for minimizing pseudo swap regret.

More specifically, given a loss function ℓ : [0, 1]× {0, 1} → R, the swap regret of the forecaster is
defined as SRegℓ := supσ:[0,1]→[0,1] SReg

ℓ
σ , where SRegℓσ :=

∑T
t=1 ℓ(pt, yt)−ℓ(σ(pt), yt) measures

the difference between the forecaster’s total loss and the loss of a strategy that always swaps the
forecaster’s prediction via a swap function σ. Similarly, pseudo swap regret (Fishelson et al., 2025;
referred in their work as full swap regret) is defined using the conditional distribution of predictions Pt

instead of pt itself: PSRegℓ := supσ:[0,1]→[0,1] PSReg
ℓ
σ, where PSRegℓσ :=

∑T
t=1 Ep∼Pt

[ℓ(p, yt)−
ℓ(σ(p), yt)]. Fishelson et al. (2025) show that it is possible to achieve PSRegℓ = Õ(T

1
3 ) when ℓ is

the squared loss, which, as we will show, further implies that the same bound holds for any bounded
proper loss ℓ with a smooth univariate form (refer to Section 2 for concrete definitions of proper
losses and their univariate form).

In this work, we significantly generalize their results by not only recovering their results for pseudo
swap regret, but also proving the same Õ(T

1
3 ) bound for new losses such as log loss and those

induced by the Tsallis entropy. Moreover, we prove the same bound (either in expectation or with
high probability) for the actual swap regret, which was missing in Fishelson et al. (2025). To achieve
these goals, we introduce a natural notion of (pseudo) KL-Calibration, where the penalty incurred
by the forecaster’s prediction p deviating from the empirical distribution of y (conditioned on the
forecast being p) is measured in terms of the KL-divergence. Specifically, the KL-Calibration and the
pseudo KL-Calibration incurred by the forecaster are respectively defined as

KLCal :=
∑

p∈[0,1]

T∑
t=1

I[pt = p]KL(ρp, p), PKLCal :=
T∑

t=1

Ep∼Pt
[KL(ρ̃p, p)], (1)

where KL(q, p) = q log q
p + (1 − q) log 1−q

1−p is the KL-divergence for two Bernoulli distributions
with mean q and p respectively. It follows from Pinsker’s inequality that KL(ρp, p) ≥ (ρp − p)2,
therefore, KLCal ≥ Cal2 and PKLCal ≥ PCal2, making (pseudo) KL-Calibration a stronger measure
for studying upper bounds than (pseudo) ℓ2-Calibration.

Contributions and Technical Overview Let L denote the class of bounded (in [−1, 1]) proper
losses. Our concrete contributions are as follows.

• In Section 3, we start by discussing the implications of (pseudo) KL-Calibration towards minimizing
(pseudo) swap regret. In particular, in subsection 3.1, we show for each ℓ ∈ L2, where L2 is the
class of bounded proper losses whose univariate form ℓ(p) := Ey∼p[ℓ(p, y)] is twice continuously
differentiable in (0, 1), we have SRegℓ = O(KLCal),PSRegℓ = O(PKLCal). In subsection 3.2,
we show that for each ℓ ∈ LG, where LG is the class of bounded proper losses with a G-smooth
univariate form, (pseudo) KL-Calibration implies that SRegℓ ≤ G · Cal2 ≤ G · KLCal,PSRegℓ ≤
G · PCal2 ≤ G · PKLCal. This gives us strong incentives to study PKLCal and KLCal.

• In Section 4, we prove that there exists an algorithm that achieves E[KLCal] = O(T
1
3 (log T )

5
3 ).

To achieve so, we first realize that (pseudo) KL-Calibration is equivalent to the (pseudo) swap regret
of the log loss ℓ(p, y) = −y log p− (1− y) log(1− p), i.e., KLCal = SRegℓ,PKLCal = PSRegℓ.
Subsequently, we propose a non-constructive proof for minimizing SRegℓ; our proof is based on
swapping the forecaster and the adversary via von-Neumann’s minimax theorem. Two particularly
technical aspects of our proof are the usage of a non uniform discretization, which is contrary to all
previous works, and the use of Freedman’s inequality for martingale difference sequences.
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We remark that our non-constructive proof is motivated from Hu and Wu (2024), who provide a
similar proof to show the existence of an algorithm that simultaneously achieves O(

√
T log T )

swap regret for any bounded proper loss. However, compared to Hu and Wu (2024), we use a non
uniform discretization, which requires a more involved analysis.* Moreover, due to the desired
O(T

1
3 ) nature of our final bounds, we cannot merely use Azuma-Hoeffding that guarantees O(

√
T )

concentration. The aforementioned reasons combined make our analysis considerably non-trivial
and different than Hu and Wu (2024).

Combined with the implications of Section 3, we show the existence of an algorithm that simul-
taneously achieves the following bounds on E[SRegℓ]: (a) O(T

1
3 (log T )

5
3 ) for the log loss; (b)

O(T
1
3 (log T )

5
3 ) for each ℓ ∈ L2; (c) O(G·T 1

3 (log T )
5
3 ) for each ℓ ∈ LG; and (d) O(T

2
3 (log T )

5
6 )

for each ℓ ∈ L\{L2 ∪ LG}. Notably, our result is better than Luo et al. (2024) who studied
the weaker notion of external regret, defined as REGℓ := supp∈[0,1]

∑T
t=1 ℓ(pt, yt) − ℓ(p, yt),

and showed that the Follow-the-Leader (FTL) algorithm achieves REGℓ = O(log T ) for each
ℓ ∈ L2 ∪ LG, however incurs REGℓ = Ω(T ) for a specific ℓ ∈ L\{L2 ∪ LG}.

• In Section 5, we propose an explicit algorithm that achieves PKLCal = O(T
1
3 (log T )

2
3 ). Similar

to Fishelson et al. (2025), we utilize the Blum-Mansour reduction for minimizing PSRegℓ for the
log loss. However, our key novelty lies in the usage of a non uniform discretization and a new
randomizing rounding procedure (Algorithm 4) for the log loss. Since the log loss is not Lipschitz,
we show that the common rounding schemes studied in the literature fail to work for our considered
discretization. A natural implication of our result is that, since PSRegℓ ≤ G · PKLCal for any
ℓ ∈ LG, we recover the result of Fishelson et al. (2025). However, since PSRegℓ = O(PKLCal)
for any ℓ ∈ L2, we are able to deal with new losses, and even the log loss which is unbounded.

• Finally, in Appendix E, we show that if we only consider the class of bounded proper losses with a
smooth univariate form, our algorithm guarantees

Cal2 = O
(
T 1/3(log T )−

1
3 log(T/δ)

)
, MsrLG

= O
(
G · T 1/3(log T )−

1
3 log(T/δ)

)
with probability at least 1− δ, where MsrLG

= supℓ∈LG
SRegℓ. This marks the first appearance

of a sub-
√
T high probability bound for classical ℓ2-Calibration via an efficient algorithm.

Related Work Calibration can also be viewed from the lens of simultaneous regret minimization
(Kleinberg et al., 2023; Hu and Wu, 2024; Luo et al., 2024). It is known from Kleinberg et al. (2023)
that ℓ1-Calibrated forecasts can simultaneously lead to sublinear swap regret for all ℓ ∈ L, where
recall that L is the class of bounded (in [−1, 1]) proper losses. However, as shown by Qiao and Valiant
(2021); Dagan et al. (2024), for any forecasting algorithm there exists an adversary that ensures
that Cal1 = Ω(T 0.54389), thereby sidestepping the goal of achieving the favorable

√
T style regret

guarantee. Despite the limitations of calibration, Hu and Wu (2024) proposed an explicit algorithm
that achieves E[supℓ∈L SRegℓ] = O(

√
T log T ). Compared to (Hu and Wu, 2024), we show that

a single algorithm in fact achieves Õ(T
1
3 ) swap regret for important subclasses of L and even the

log loss, while simultaneously achieving Õ(T
2
3 ) swap regret for any arbitrary ℓ ∈ L. Notably, the

result of Hu and Wu (2024) does not apply to the log loss since it does not belong to L. With an
appropriate post-processing of the predictions, a stronger analogue of simultaneous swap regret
minimization has also been studied in the contextual setting (Garg et al., 2024; referred to as swap
omniprediction), where the forecaster competes with functions from a hypothesis class F . Notably,
in swap omniprediction, both the loss function and the competing hypothesis are parameterized
by the predictions themselves. For this, Garg et al. (2024) showed that it is impossible to achieve
O(

√
T ) swap omniprediction error for the class of convex and Lipschitz loss functions, even in the

simplest setting where F contains the constant 0, 1 functions. Additional related work is deferred to
Appendix A.

*Our non-uniform discretization scheme has appeared before (Kotłowski et al., 2016), albeit in a different
context. Its combination with other techniques in our paper results in a significantly different approach.
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2 Preliminaries and Background

Notation For a m ∈ N, [m] denotes the index set {1, . . . ,m}. We reserve bold lower-case
alphabets for vectors and bold upper-case alphabets for matrices. The notation I[·] refers to the
indicator function, which evaluates to 1 if the condition is true, and 0 otherwise. We use ei to
represent the i-th standard basis vector (dimension inferred from context), which is 1 at the i-th
coordinate and 0 everywhere else. For any k ∈ N, we use ∆k to represent the (k − 1)-dimensional
simplex. Moreover, we use ∆[0,1] to represent the set of all probability distributions over [0, 1]. We
use Pt,Et to represent the conditional probability, expectation respectively, where the conditioning is
over the randomness till time t− 1 (inclusive). We use KL(p, q),TV(p, q), χ2(p, q) to represent the
KL divergence, total variation distance, chi-squared distance between two Bernoulli distributions
with means p, q. For a set I , its complement is Ī = Ω\I , where the sample set Ω shall be clear from
the context. A twice differentiable function f : D → R is α-smooth over D ⊂ R if f ′′(x) ≤ α for all
x ∈ D. A function f : W → R is α-exp-concave over a convex set W if the function exp(−αf(w))

is concave over W . We use the notation Õ(·) to hide lower order logarithmic terms.

Proper Losses A loss ℓ : [0, 1] × {0, 1} → R is called proper if Ey∼p[ℓ(p, y)] ≤ Ey∼p[ℓ(p
′, y)]

for all p, p′ ∈ [0, 1]. Intuitively, a proper loss incentivizes the forecaster to report the true distribution
of the label. Throughout the paper, we shall be primarily concerned about the family L (or a subset)
of bounded proper losses, i.e., L := {ℓ s.t. ℓ is proper and ℓ(p, y) ∈ [−1, 1] for all p ∈ [0, 1], y ∈
{0, 1}}, even though our results hold for (and in fact achieved via) the unbounded log loss. For a
proper loss ℓ, the univariate form of ℓ is defined as ℓ(p) := Ey∼p[ℓ(p, y)]. It turns out that a the
univariate form of a proper loss is concave. Moreover, one can construct a proper loss using a concave
univariate form based on the following characterization lemma.
Lemma 1 (Theorem 2 in Gneiting and Raftery (2007)). A loss ℓ : [0, 1] × {0, 1} → R is proper
if and only if there exists a concave function f such that ℓ(p, y) = f(p) + ⟨gp, y − p⟩ for all
p ∈ [0, 1], y ∈ {0, 1}, where gp denotes a subgradient of f at p. Also, f is the univariate form of ℓ.

Examples of proper losses include squared loss ℓ(p, y) = (p− y)2, log loss ℓ(p, y) = y log 1
p + (1−

y) log 1
1−p , spherical loss ℓ(p, y) = −py+(1−p)(1−y)√

p2+(1−p)2
, etc.

Bregman Divergence For a convex function ϕ, let BREGϕ(x, y) = ϕ(x)− ϕ(y)− ⟨∂ϕ(y), x− y⟩
denote the Bregman divergence associated with ϕ. The following lemma is important to our results.
Lemma 2 (Lemma 3.8 in Hu and Wu (2024)). Let u : [0, 1] → [−1, 1] be a twice differentiable
concave function. Then, we have BREG−u(p̂, p) =

∫ p̂

p
|u′′(µ)| · (p̂− µ)dµ.

Problem Setting As mentioned in Section 1, we consider calibration, where the interaction between
the forecaster and the adversary is according to the following protocol: at each time t = 1, . . . , T , (a)
the forecaster randomly predicts pt ∈ [0, 1] and simultaneously the adversary chooses yt ∈ {0, 1}; (b)
the forecaster observes yt. Throughout the paper, we shall consider algorithms that make predictions
pt that fall in a finite discretization Z ⊂ [0, 1]. According to (1), the KL-Calibration, Pseudo
KL-Calibration incurred by the forecaster are KLCal =

∑
p∈Z

∑T
t=1 I[pt = p]KL(ρp, p),PKLCal =∑

p∈Z
∑T

t=1 Pt(p)KL(ρ̃p, p), where ρp =
∑T

t=1 ytI[pt=p]∑T
t=1 I[pt=p]

, ρ̃p =
∑T

t=1 ytPt(p)∑T
t=1 Pt(p)

.* For simplicity, we
assume that the adversary is oblivious, that is it selects y1, . . . , yT at time t = 0 with complete
knowledge of the forecaster’s algorithm.* Our goal is to minimize the (pseudo) KL-Calibration error,
which as we show in Section 3, has powerful implications.

As mentioned, the swap regret of the forecaster with respect to a loss function ℓ against a swap
function σ : [0, 1] → [0, 1] is SRegℓσ =

∑T
t=1 ℓ(pt, yt) − ℓ(σ(pt), yt). Swap regret is then

defined as SRegℓ = supσ:[0,1]→[0,1] SReg
ℓ
σ. Similarly, the pseudo swap regret is PSRegℓ =

supσ:[0,1]→[0,1] PSReg
ℓ
σ, where PSRegℓσ =

∑
p∈Z

∑T
t=1 Pt(p)(ℓ(p, yt) − ℓ(σ(p), yt)). We fur-

ther define maximum (pseudo) swap regret with respect to the class of bounded proper losses L as
*For convenience, we set 0

0
= 0. This is because if np = 0, the forecast pt = p was never made and thus

does not contribute to the calibration error.
*However, our results generalize directly to an adaptive adversary who decides yt based on p1, . . . , pt−1.
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MsrL := supℓ∈L SRegℓ,PMsrL := supℓ∈L PSRegℓ. For a subset of losses L′ ⊆ L, we define MsrL′

and PMsrL′ similarly, with the supremum over ℓ ∈ L′. The usage of ℓ for a bounded proper loss, or
the log loss (which does not belong to L) shall be clear from the context.

3 Implications of (Pseudo) KL-Calibration

In this section, we discuss the implications of (pseudo) KL-Calibration towards minimizing the
(pseudo) swap regret. In particular, we shall show that (pseudo) KL-Calibration upper bounds the
following: (a) (P)SRegℓ for all ℓ ∈ L2 (subsection 3.1); (b) (P)MsrLG

(subsection 3.2). This gives a
strong incentive to study (pseudo) KL-Calibration.

The following proposition, which relates (pseudo) swap regret with Bregman Divergence is central to
all subsequent results developed in this work.
Proposition 1. For any proper loss ℓ and a swap function σ : [0, 1] → [0, 1], let BREG−ℓ be the
Bregman divergence associated with the negative univariate form −ℓ. We have

SRegℓσ =
∑
p∈Z

(
T∑

t=1

I[pt = p]

)
(BREG−ℓ(ρp, p)− BREG−ℓ(ρp, σ(p))) ,

PSRegℓσ =
∑
p∈Z

(
T∑

t=1

Pt(p)

)
(BREG−ℓ(ρ̃p, p)− BREG−ℓ(ρ̃p, σ(p))) ,

where ρp =
∑T

t=1 I[pt=p]yt∑T
t=1 I[pt=p]

, ρ̃p =
∑T

t=1 Pt(p)yt∑T
t=1 Pt(p)

. Furthermore,

SRegℓ =
∑
p∈Z

T∑
t=1

I[pt = p]BREG−ℓ(ρp, p), PSReg
ℓ =

∑
p∈Z

T∑
t=1

Pt(p)BREG−ℓ(ρ̃p, p).

The proof of Proposition 1, deferred to Appendix B, follows by an application of Lemma 1 and is
similar to Hu and Wu (2024). Two particularly interesting applications of Proposition 1 are:

• For the squared loss ℓ(p, y) = (p−y)2, the univariate form is ℓ(p) = p−p2, and BREG−ℓ(ρp, p) =

(ρp − p)2. Therefore, SRegℓ = Cal2,PSReg
ℓ = PCal2.

• For the log loss ℓ(p, y) = y log 1
p +(1− y) log 1

1−p , the univariate form is ℓ(p) = Ey∼p[ℓ(p, y)] =

−p log p− (1− p) log(1− p). Moreover, as can be verified by direct computation, the associated
Bregman divergence BREG−ℓ(p̂, p) is exactly equal to KL(p̂, p). Therefore, we have SRegℓ =

KLCal,PSRegℓ = PKLCal. This equivalence between (pseudo) KL-Calibration and (pseudo) swap
regret of the log loss shall be our starting tool towards the developments in Sections 4, 5, where we
bound KLCal,PKLCal respectively.

Note that since PSRegℓ ≤ E[SRegℓ] trivially holds by definition, PCal2 and PKLCal are indeed
weaker notions compared to Cal2 and KLCal respectively.

3.1 (Pseudo) KL-Calibration implies (pseudo) swap regret for all ℓ ∈ L2

In this subsection, we show that SRegℓ = O(KLCal),PSRegℓ = O(PKLCal) for each ℓ ∈ L2, where

L2 := {ℓ ∈ L s.t. the univariate form ℓ(p) is twice continuously differentiable in (0, 1)}.
Note that according to Lemma 1, for all ℓ ∈ L, the univariate form must be concave, Lipschitz,
and bounded, for the induced loss ℓ(p, y) to be proper and bounded. In addition to these implicit
constraints, we require the condition that the second derivative ℓ′′(p) is continuous in (0, 1). We state
several examples of losses that belong to L2. First, the squared loss clearly belongs to L2, since its
univariate form is ℓ(p) = p− p2. Second, consider a generalization of the squared loss via Tsallis
entropy, which corresponds to a loss with the univariate form ℓ(p) = −c · pα, where we choose α > 1
and the proportionality constant c > 0 is to ensure that the induced loss ℓ(p, y) is in [−1, 1] (refer
Lemma 1). We have, ℓ(p, y) = c(α− 1)pα − αcpα−1y, which is in L2. Third, the spherical loss has
the univariate form ℓ(p) = −

√
p2 + (1− p)2 and is also contained in L2.
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The following lemma, derived by Luo et al. (2024), provides a growth rate on the second derivative
of any ℓ ∈ L2 and is a key ingredient for our proof of the desired implication.
Lemma 3 (Lemma 2 in Luo et al. (2024)). For a function f that is concave, Lipschitz, and bounded
over [0, 1] and twice continuously differentiable over (0, 1), there exists a constant c > 0 such that

|f ′′(p)| ≤ c ·max
(

1
p ,

1
1−p

)
for all p ∈ (0, 1).

Using this to bound |u′′(p)| in the statement of Lemma 2, we immediately obtain the following
proposition whose proof can be found in Appendix B.
Proposition 2. Let ℓ ∈ L2. Then, we have BREG−ℓ(p̂, p) = O (KL(p̂, p)) and thus

SRegℓ = O(KLCal), PSRegℓ = O(PKLCal).

Note the constant cℓ hidden in the O(.) notation in the result above is exactly the constant guaranteed
by Lemma 3, which is finite. However, this is not sufficient to conclude that supℓ∈L2

cℓ < ∞
(since L2 is infinite), therefore, we do not necessarily guarantee that (P)MsrL2

(defined as
supℓ∈L2

(P)SRegℓ) is O((P)KLCal). We remark that this is only a minor technical issue (that
has also implicitly appeared in the prior work of Luo et al. (2024)), and our result in Proposition 2
implies that (pseudo) KL-Calibration simultaneously bounds (pseudo) swap regret for all ℓ ∈ L2.
This in itself is quite meaningful and perfectly aligns with the goal in downstream decision making
— to guarantee diminishing (swap) regret for all loss functions simultaneously. Henceforth, all
subsequent results related to (pseudo) swap regret for L2 are stated similarly. We also remark that
Proposition 2 holds more generally for any subclass of proper losses where each loss satisfies the
growth rate in Lemma 3. To keep the exposition simple, we only state our results for L2.

3.2 (Pseudo) KL-Calibration implies (pseudo) maximum swap regret against LG

We now consider another class LG, containing proper losses whose univariate form is G-smooth,
i.e., LG := {ℓ ∈ L s.t. |ℓ′′(p)| ≤ G for all p ∈ [0, 1]}. Losses that belong to LG include squared
loss, spherical loss, Tsallis entropy for α ≥ 2, etc. Notably, the latter does not lie in LG for
α ∈ (1, 2). Using Lemma 2 again, along with the fact PCal2 ≤ PKLCal,Cal2 ≤ KLCal due to
Pinsker’s inequality, we immediately obtain the following.
Proposition 3. Let ℓ ∈ LG. Then, we have BREG−ℓ(p̂, p) ≤ G(p̂− p)2, and thus

MsrLG
≤ G · Cal2 ≤ G · KLCal, PMsrLG

≤ G · PCal2 ≤ G · PKLCal.

The proof of Proposition 3 is deferred to Appendix B. As already mentioned, Fishelson et al. (2025)
proposed an algorithm that achieves PCal2 = Õ(T

1
3 ), which implies that the same algorithm in

fact ensures PMsrLG
= Õ(G · T 1

3 ). However, the implications of KLCal,PKLCal allow us get
simultaneous guarantees for a broader subclass of proper losses, particularly, L2 ∪ LG.

4 Achieving KL-Calibration

In this section, we prove that there exists an algorithm that achieves E[SRegℓ] = O(T
1
3 (log T )

5
3 ) for

ℓ being the log loss, therefore the same algorithm achieves E[KLCal] = O(T
1
3 (log T )

5
3 ). Our proof

is non-constructive, since it is based on swapping the adversary and the algorithm via the minimax
theorem (Theorem 3 in Appendix C), and deriving a forecasting algorithm in the dual game.

Theorem 1. There exists an algorithm that achieves E[SRegℓ] = O(T
1
3 (log T )

5
3 ) for the log loss,

where the expectation is taken over the internal randomness of the algorithm.

The proof of Theorem 1 is quite technical and is deferred to Appendix C. We discuss the key novelty
of our proof here. Two particularly technical aspects of our proof are the usage of a non uniform
discretization, which is contrary to all previous works, and the use of Freedman’s inequality for
martingale difference sequences (Lemma 8). In particular, we employ the following discretization
scheme: Z = {z1, . . . , zK−1} ⊂ [0, 1], where zi = sin2

(
πi
2K

)
and K ∈ N is a constant to be

specified later. For convinience, we set z0 = 0, zK = 1, however, z0, zK are not included in the
discretization. For our analysis, we require a discretization scheme that satisfies the following
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constraints: (a) zi − zi−1 = O( 1
K ) for all i ∈ [K]; (b) max2(zi−zi−1,zi+1−zi)

zi(1−zi)
= O

(
1

K2

)
for all

i ∈ [K − 1]; (c)
∑K−1

i=1
1

zi(1−zi)
= O(K2); and (d)

∑K−1
i=1

1√
zi(1−zi)

= Õ(K). The uniform

discretization Z = { 1
K , . . . , K−1

K } satisfies (a), (c), (d) above, however, doesn’t satisfy (b). As we
show in Lemma 6 (Appendix C), our considered non uniform discretization achieves all these required
bounds by having a finer granularity close to the boundary of [0, 1], thereby making it suitable for our
purpose. The following steps provide a brief sketch of our proof, which is proved for an adaptive
adversary and therefore also holds for the weaker oblivious adversary.

Step I We only consider discretized forecasters that make predictions that lie inside Z . Since the
strategy space of such forecasters is finite, and that of the adversary is trivially finite, the minimax
theorem (Theorem 3) applies, and we can swap the adversary and the algorithm, thereby resulting
in the dual game. In this dual game, at every time t, the adversary first reveals the conditional
distribution of yt, based on which the forecaster predicts pt. We consider a forecaster F which at
time t does the following: (a) it computes p̃t = Et[yt]; (b) predicts pt = argminz∈Z |p̃t − z|. For
such a forecaster, we obtain a high probability bound on SRegℓ, and subsequently bound E[SRegℓ].

Step II Applying Lemma 8, we show that for each i (with ni = nzi )∣∣∣∣∣
T∑

t=1

I[pt = zi](p̃t − yt)

∣∣∣∣∣ ≤ 2

√
log

2

δ
·max

(√
ni

(
zi(1− zi) +

π

2K

)
,

√
log

2

δ

)
with probability at least 1− δKT . Using this, we bound |zi − ρi|, where ρi is a shorthand for ρzi .
Notably, the bound above dictates separate consideration of i ∈ I and i ∈ Ī (depending on which
term realizes the maximum), where I :=

{
i ∈ [K − 1];ni <

log 2
δ

zi(1−zi)+
π

2K

}
.

Step III Next, we write SRegℓ as the sum of two terms SRegℓ = Term I + Term II, where
Term I =

∑
i∈I niKL(ρi, zi),Term II =

∑
i∈Ī niKL(ρi, zi), and bound Term I, II individu-

ally. Since KL(ρi, zi) ≤ χ2(ρi, zi) = (ρi−zi)
2

zi(1−zi)
, we utilize the bound on |ρi − zi| obtained in

the previous step and show that Term II = O
(

T
K2 +K log 1

δ

)
. Importantly, the use of Freed-

man’s inequality provides a variance term that mitigates the potentially small denominator of
(ρi−zi)

2

zi(1−zi)
. Similarly, we show that Term I = O

(
T
K2 +K(logK)

3
2 log 1

δ

)
. Combining, we ob-

tain SRegℓ = O
(

T
K2 +K(logK)

3
2 log 1

δ

)
with probability at least 1 − δKT . Subsequently, we

bound E[SRegℓ] by setting δ = 1/T,K = T
1
3 /(log T )

5
6 .

Equipped with Theorem 1, we prove the following stronger corollary (proof deferred to Appendix C).

Corollary 1. There exists an algorithm that achieves the following bounds simultaneously:

E [KLCal] = O(T
1
3 (log T )

5
3 ), E [MsrLG

] = O(G · T 1
3 (log T )

5
3 ),

E [MsrL2 ] = O(T
1
3 (log T )

5
3 ), E

[
MsrL\{LG∪L2}

]
= O(T

2
3 (log T )

5
6 ),

where the expectation is taken over the internal randomness of the algorithm.

5 Achieving Pseudo KL-Calibration

In this section, we propose an explicit algorithm that achieves PSRegℓ = O(T
1
3 (log T )

2
3 ) for the

log loss, therefore the same algorithm achieves PKLCal = O(T
1
3 (log T )

2
3 ). Our algorithm is based

on the well-known Blum-Mansour (BM) reduction (Blum and Mansour, 2007) and extends the
idea from Fishelson et al. (2025). First, we employ a similar but slightly different non uniform
discretization scheme that adds two extra end points z0 and zK to the one used in the previous section
(for technical reasons):

Z = {z0, z1, . . . , zK−1, zK},where z0 = sin2
π

4K
, zi = sin2

πi

2K
for i ∈ [K − 1], zK = cos2

π

4K
,
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and K ∈ N is a constant to be specified later. The same scheme was used before by Rooij and Erven
(2009); Kotłowski et al. (2016) for different problems. Since the conditional distribution Pt has
support over Z , taking supremum over all swap functions σ : Z → Z in Proposition 1, we obtain

sup
σ:Z→Z

PSRegℓσ = PSRegℓ −
∑
p∈Z

T∑
t=1

Pt(p) inf
σ:Z→Z

BREG−ℓ(ρp, σ(p)) ≥ PSRegℓ − (2−
√
2)π2T

K2
,

where the inequality follows by choosing σ(p) = argminz∈Z BREG−ℓ(ρp, z). For this choice of σ,
from Kotłowski et al. (2016, page 13), we have BREG−ℓ(ρp, σ(p)) ≤

(
2−

√
2
)

π2

K2 . Therefore,

PSRegℓ ≤ sup
σ:Z→Z

PSRegℓσ +
(
2−

√
2
)
π2 T

K2
, (2)

and it suffices to bound supσ:Z→Z PSRegℓσ, which we do via the BM reduction. Towards this
end, we first recall the BM reduction. The reduction maintains K + 1 external regret algorithms
A0, . . . ,AK . At each time t, let qt,i ∈ ∆K+1 represent the probability distribution over Z output
by Ai. Let Qt = [qt,0, . . . , qt,K ] be the matrix obtained by stacking the vectors qt,0, . . . , qt,K as
columns. We compute the stationary distribution of Qt, i.e., a distribution pt ∈ ∆K+1 over Z that
satisfies Qtpt = pt. With pt being our final distribution of predictions (that is, Pt(zi) = pt,i), we
draw a prediction from it and observe yt. After that, we feed the scaled loss function pt,iℓ(., yt)

to Ai. Let ℓ̃t,i = pt,iℓt ∈ RK+1 be a scaled loss vector, where ℓt(j) = ℓ(zj , yt). It then follows
from Blum and Mansour (2007, Theorem 5) that supσ:Z→Z PSRegℓσ ≤

∑K
i=0 REGi,where REGi :=

supj∈[K+1]

∑T
t=1

〈
qt,i − ej , ℓ̃t,i

〉
, i.e., the pseudo swap regret is bounded by the sum of the external

regrets of the K + 1 algorithms. We summarize the discussion so far in Algorithm 1.

Algorithm 1 BM for log loss

Initialize: Ai for i ∈ {0, . . . ,K} and set q1 =
[

1
K+1 , . . . ,

1
K+1

]
;

1: for t = 1, . . . , T
2: Set Qt = [qt,0, . . . , qt,K ];
3: Compute the stationary distribution of Qt, i.e., pt ∈ ∆K+1 that satisfies Qtpt = pt;
4: Output conditional distribution Pt, where Pt(zi) = pt(i) and observe yt;
5: for i = 0, . . . ,K
6: Feed the scaled loss function ft,i(w) = pt,iℓ(w, yt) to Ai (Algorithm 2) and obtain qt+1,i;

It remains to derive the i-th external regret algorithm Ai that minimizes REGi. Note that Ai is
required to predict a distribution qt,i over Z and is subsequently fed a scaled loss function pt,iℓ(., yt)
at each time t. We propose to employ the Exponentially Weighted Online Optimization (EWOO)
algorithm along with a novel randomized rounding scheme for Ai (Algorithm 2).

EWOO was studied by Hazan et al. (2007) for minimizing the regret supw∈W
∑T

t=1 ft(wt)− ft(w),
when W is a convex set, and the loss functions ft’s are exp-concave. Since the log loss is 1-exp-
concave in p over [0, 1] ((Cesa-Bianchi and Lugosi, 2006, page 46), EWOOi (an instance of EWOO
for Ai) with functions {ft,i}Tt=1 defined as ft,i(w) = pt,iℓ(w, yt) for all w ∈ W , where W = [0, 1]
is a natural choice.

Next, we derive a bound on the regret of EWOOi. Towards this end, we realize that the scaled log loss
ft,i(w) = pt,iℓ(w, yt) is 1-exp-concave since exp(−ft,i(w)) = wytpt,i(1− w)(1−yt)pt,i is concave
when pt,i ∈ [0, 1]. Appealing to (Hazan et al., 2007, Theorem 7), we then obtain the following:

Lemma 4. The regret of Algorithm 3 satisfies supw∈W
∑T

t=1 ft,i(wt,i)− ft,i(w) ≤ log(T + 1).

Note that at each time t, EWOOi outputs wt,i ∈ [0, 1], however, Ai is required to predict a distribution
qt,i ∈ ∆K+1 over Z . Thus, we need to perform a rounding operation that projects the output wt,i

of EWOOi to a distribution over Z . In Remark 1 in Appendix D, we show that the following two
known rounding schemes: (a) rounding wt,i to the nearest z ∈ Z and setting qt,i as the corresponding
one-hot vector; (b) the rounding procedure proposed by Fishelson et al. (2025), cannot be applied to
our setting since they incur a Ω(1) change in the expected loss ⟨qt,i, ℓt⟩ − ℓ(wt,i, yt), which is not
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Algorithm 2 The i-th external regret algorithm (Ai)

1: for t = 1, . . . , T
2: Set wt,i ∈ [0, 1] as the output of EWOOi (Algorithm 3) at time t;
3: Predict qt,i = RROUNDlog(wt,i) (Algorithm 4);
4: Receive the scaled loss function ft,i(w) = pt,iℓ(w, yt).

Algorithm 3 Exponentially Weighted Online Optimization (EWOOi) with scaled losses

1: for t = 1, . . . , T

2: Set weights µt,i(w) = exp
(
−
∑t−1

τ=1 fτ,i(w)
)

for all w ∈ W;

3: Output wt,i =
∫
w∈W wµt,i(w)dw∫
w∈W µt,i(w)dw

.

sufficient to achieve the desired regret guarantee. To mitigate the shortcomings of these rounding
procedures, we propose a different randomized rounding scheme for the log loss (Algorithm 4) that
achieves a O

(
1

K2

)
change in the expected loss, as per Lemma 5.

Lemma 5. Let p ∈ [0, 1] and p−, p+ ∈ Z be neighbouring points in Z such that p− ≤ p < p+. Let
q be the random variable that takes value p− with probability ∝ p+−p

p+(1−p+) and p+ with probability

∝ p−p−

p−(1−p−) . Then, for all y ∈ {0, 1}, we have E[ℓ(q, y)]− ℓ(p, y) = O
(

1
K2

)
.

The high-level idea of the proof is as follows: since the log loss is convex in p (for any y ∈ {0, 1}),
we have ℓ(q, y) − ℓ(p, y) ≤ ℓ′(q, y) · (q − p) = (q−y)(q−p)

q(1−q) , which is p
q − 1 if y = 1, and 1−p

1−q − 1

if y = 0. By direct computation of E
[
1
q

]
and E

[
1

1−q

]
, we show that E

[
p
q

]
− 1 = E

[
1−p
1−q

]
− 1 ≤

(p+ − p−)2 ·max
(

1
p−(1−p−) ,

1
p+(1−p+)

)
= O

(
1

K2

)
, where the last step follows from a technical

result due to Lemmas 6 (Appendix C) and 7 (Appendix D).

Combining everything, we derive the regret guarantee REGi of Ai (Algorithm 2). It follows from
Lemma 5 that at any time t, the distribution qt,i obtained by rounding the prediction wt,i of EWOOi

as per Algorithm 4 satisfies ⟨qt,i, ℓt⟩ = ℓ(wt,i, yt) + O( 1
K2 ). Multiplying with pt,i and summing

over all t, we obtain

T∑
t=1

〈
qt,i − ej , ℓ̃t,i

〉
=

T∑
t=1

pt,iℓ(wt,i, yt)−
T∑

t=1

pt,iℓ(zj , yt) +O

(∑T
t=1 pt,i
K2

)
,

≤ sup
w∈W

T∑
t=1

ft,i(wt,i)− ft,i(w) +O

(∑T
t=1 pt,i
K2

)
= O

(
log T +

∑T
t=1 pt,i
K2

)
,

where the last equality follows from Lemma 4. Therefore, the regret REGi of Ai satisfies REGi =

O
(
log T + 1

K2

∑T
t=1 pt,i

)
. Summing over all i, we obtain

sup
σ:Z→Z

PSRegℓσ ≤
K∑
i=0

REGi = O

(
K log T +

1

K2

K∑
i=0

T∑
t=1

pt,i

)
= O

(
K log T +

T

K2

)
.

Finally, it follows from (2) that PSRegℓ = O
(
K log T + T

K2

)
= O

(
T

1
3 (log T )

2
3

)
on choosing

K = (T/ log T )
1
3 . Therefore, we have the main result of this section.

Theorem 2. Choosing K = (T/ log T )
1
3 , Algorithm 1 achieves PKLCal = O

(
T

1
3 (log T )

2
3

)
.

Note that Algorithm 1 requires knowledge of the horizon T to choose the discretization parameter
K. However, since (pseudo) KL-Calibration is equivalent to (pseudo) swap regret of the log loss,
we can use the doubling trick to avoid the requirement of knowing the time horizon. The analysis
of doubling trick for swap regret is exactly identical to that for external regret and is deferred to
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Algorithm 4 Randomized rounding for log loss (RROUNDlog)

Input: p ∈ [0, 1], Output: Probability distribution q ∈ ∆K+1;
Scheme: Let i ∈ {0, . . . ,K − 1} be such that p ∈ [zi, zi+1). Output q ∈ ∆K+1, where

qi =
1

D
· zi+1 − p

zi+1(1− zi+1)
, qi+1 =

1

D
· p− zi
zi(1− zi)

, and qj = 0, ∀j /∈ {i, i+ 1}

with D = p−zi
zi(1−zi)

+ zi+1−p
zi+1(1−zi+1)

being the normalizing constant.

Cesa-Bianchi and Lugosi (2006). Moreover, as we show in Appendix D, the overall computation
cost of Algorithm 1 over T rounds is Õ(T

5
3 + T · ST), where ST is the time required to compute

the stationary distribution of Qt, which can be obtained efficiently by the method of power iteration;
therefore, Algorithm 1 is efficient. In a similar spirit as Corollary 1, we can show Algorithm 1
achieves the following regret bounds simultaneously. The proof is in Appendix D and for most part
follows similar to Corollary 1, except that we prove and utilize the bounds (a) PCal1 ≤

√
T · PCal2;

(b) for any ℓ ∈ L, PSRegℓ ≤ 4PCal1.
Corollary 2. Algorithm 1 achieves the following bounds simultaneously:

PKLCal = O(T
1
3 (log T )

2
3 ), PMsrLG

= O(G · T 1
3 (log T )

2
3 ),

PMsrL2
= O(T

1
3 (log T )

2
3 ), PMsrL\{LG∪L2} = O(T

2
3 (log T )

1
3 ).

We remark that while we do not have a concrete algorithm for KLCal, in Appendix E, we show that
if we only consider LG, then our Algorithm 1 or the algorithm of Fishelson et al. (2025) already
achieves a O(G · T 1

3 (log T )−
1
3 log T

δ ) high probability bound for MsrLG
.

6 Conclusion and Future Directions

In this paper, we introduced a new stronger notion of calibration called (pseudo) KL-Calibration
which not only allows us to recover results for classical (pseudo) ℓ2-Calibration, but also obtain
simultaneous (pseudo) swap regret guarantees for several important subclasses of proper losses.
We also derived the first high probability and in-expectation bounds for Cal2. Several interesting
questions remain, including (1) obtaining an explicit high probability swap regret guarantee for the
log loss, similar to Section E; (2) improving the T

2
3 dependence (e.g., to

√
T as in Hu and Wu (2024))

for a bounded proper loss in Corollaries 1, 2; and (3) studying KL-Calibration in the offline setting.
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Weaker notions of calibration Understanding the limitations of online calibration, i.e., Cal1 =
O(

√
T ) is impossible, has led to a recent line of work aimed at studying weaker notions of calibration

which are still meaningful for downstream loss minimization tasks, e.g., continuous calibration
(Foster and Hart, 2021), U-Calibration (Kleinberg et al., 2023), distance to calibration (Qiao and
Zheng, 2024; Arunachaleswaran et al., 2025). Particularly, the last two works considered the
problem of minimizing the distance to calibration (CalDist1), defined as the ℓ1 distance between
the forecaster’s vector of predictions and that of the nearest perfectly calibrated predictor, and
proposed a non-constructive, constructive proof respectively that there exists an algorithm that
achieves CalDist1 = O(

√
T ). Since CalDist1 ≤ Cal1 ≤

√
T · Cal2, our Algorithm 1 in fact ensures

that CalDist1 = O(T
2
3 (log T )−

1
6

√
log(T/δ)) with probability at least 1− δ, while simultaneously

minimizing swap regret for several subclasses of L.

B Deferred proofs in Section 3

B.1 Proof of Proposition 1

Proof. For simplicity, we only prove the result for PSRegℓσ since the result for SRegℓσ follows by
simply replacing Pt(p) with I[pt = p]. We have the following chain of equalities:

PSRegℓσ =
∑
p∈Z

T∑
t=1

Pt(p)(ℓ(p, yt)− ℓ(σ(p), yt))

=
∑
p∈Z

T∑
t=1

Pt(p) (ℓ(p) + ⟨∂ℓ(p), yt − p⟩ − ℓ(σ(p))− ⟨∂ℓ(σ(p)), yt − σ(p)⟩)

=
∑
p∈Z

(
T∑

t=1

Pt(p)

)
(ℓ(p) + ⟨∂ℓ(p), ρ̃p − p⟩ − ℓ(σ(p))− ⟨∂ℓ(σ(p)), ρ̃p − σ(p)⟩)

=
∑
p∈Z

(
T∑

t=1

Pt(p)

)
(BREG−ℓ(ρ̃p, p)− BREG−ℓ(ρ̃p, σ(p))) ,

where the second equality follows from Lemma 1, while the final equality follows by adding and
subtracting ℓ(ρ̃p). Taking supremum over σ : [0, 1] → [0, 1], we obtain

sup
σ:[0,1]→[0,1]

PSRegℓσ =
∑
p∈Z

(
T∑

t=1

Pt(p)

)(
BREG−ℓ(ρ̃p, p)− inf

σ:[0,1]→[0,1]
BREG−ℓ(ρ̃p, σ(p))

)
.

Next, we realize that BREGϕ(x, y) ≥ 0 since ϕ is convex, and the choice of σ(p) = ρ̃p leads to
BREG−ℓ(ρ̃p, σ(p)) = 0. Therefore,

PSRegℓ =
∑
p∈Z

(
T∑

t=1

Pt(p)

)
BREG−ℓ(ρ̃p, p)

which completes the proof.

B.2 Proof of Proposition 2

Proof. For simplicity, we only consider the case when p ≤ p̂, since the other case follows exactly
similarly. Applying the result of Lemma 2, we obtain

BREG−ℓ(p̂, p) =

∫ p̂

p

|ℓ′′(µ)| (p̂− µ)dµ ≤ c ·
∫ p̂

p

(
1

µ
+

1

1− µ

)
· (p̂− µ)dµ,

where the inequality follows from Lemma 3. By direct computation, the integral above evaluates to

p̂ ·
∫ p̂

p

dµ

µ
+ (1− p̂) ·

∫ p̂

p

dµ

µ− 1
= p̂ · log p̂

p
+ (1− p̂) · log 1− p̂

1− p
= KL(p̂, p).

Therefore, we have BREG−ℓ(p̂, p) ≤ c · KL(p̂, p), which completes the proof of the first part of the
Proposition. The second part follows by combining the result of Proposition 1 with the result obtained
above, and taking a supremum over ℓ ∈ L2. This completes the proof.
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B.3 Proof of Proposition 3

Proof. For simplicity, we only consider the case when p ≤ p̂, since the other case follows exactly
similarly. Applying the result of Lemma 2, we obtain

BREG−ℓ(p̂, p) ≤ G

∫ p̂

p

(p̂− µ)dµ = G

(
p̂(p̂− p)− p̂2 − p2

2

)
=

G

2
(p̂− p)2.

The case when p̂ ≤ p follows similarly. Applying the result of Proposition 1, taking a supremum
over ℓ ∈ LG, and bounding Cal2,PCal2 in terms of KLCal,PKLCal completes the proof.

C Deferred proofs in Section 4

C.1 Proof of Theorem 1

Theorem 3 (Von-Neumann’s Minimax Theorem). Let M ∈ Rr×c for r, c ∈ N. Then,

min
p∈∆r

max
q∈∆c

p⊺Mq = max
q∈∆c

min
p∈∆r

p⊺Mq.

Proof of Theorem 1. We prove a stronger statement that the result holds against any adaptive adver-
sary. In the forecasting setup, let Ht−1 = {p1, . . . , pt−1} ∪ {y1, . . . , yt−1} denote the history till
time t (exclusive). With complete knowledge about the forecaster’s algorithm, an adaptive adversary
chooses yt depending on Ht−1. As mentioned in Section 4, we shall consider forecasters that make
predictions which belong to the discretization

Z = {z1, . . . , zK−1}, where zi = sin2
(

πi

2K

)
,

and K ∈ N is a constant to be specified later. For convinience, we set z0 = 0, zK = 1, however,
z0, zK are not included in the discretization. In Lemma 6, we prove some important facts regarding
Z which shall be useful for the subsequent analysis. For a deterministic forecaster, pt is obtained via
a mapping Ft−1 : Ht−1 → Z . Similarly, for a deterministic adversary, yt is obtained via a mapping
At−1 : Ht−1 → {0, 1}. Therefore, a deterministic forecaster can be represented by the sequence
of mappings F = (F1, . . . , FT ), and a deterministic adversary can be represented by the sequence
A = (A1, . . . , AT ). Given F,A, we let SRegℓ(F,A) denote the swap regret achieved by executing
F,A.

Let {F}, {A} be all possible enumerations of F,A respectively, and ∆({F}),∆({A}) denote the set
of all distributions over {F}, {A}. Then, F ∈ ∆({F}),A ∈ ∆({A}) are distributions over {F}, {A}
and represent a randomized forecaster, adversary respectively. Note that |{F}| , |{A}| < ∞, since
the domain and range of each map Ft, At is finite. Therefore, by Theorem 3, we have

min
F∈∆({F})

max
A∈∆({A})

EF∼F,A∼A[SReg
ℓ(F,A)] = max

A∈∆({A})
min

F∈∆({F})
EF∼F,A∼A[SReg

ℓ(F,A)].

(3)

For a v ∈ R, to upper bound the quantity on the right hand side of (3) by v, it is sufficient to prove that
for any randomized adversary there exists a forecaster F that guarantees that E[SRegℓ(F,A)] ≤ v.
Moreover, swapping the adversary and forecaster allows the forecaster to witness the distribution
of yt before deciding pt. Towards this end, we consider a forecaster F which at time t does the
following: (a) it computes p̃t = Et[yt]; (b) predicts pt = argminz∈Z |p̃t − z|.

For each i ∈ {1, . . . ,K − 1} and n ∈ [T ], let ni(n) :=
∑n

t=1 I[pt = zi]. For convinience, we refer
to ni(T ) as ni. Fix a i ∈ [K − 1], and define the sequence X1,i, . . . , XT,i as follows:

Xj,i :=

{
0 if j > ni,

ytj − p̃tj if j ≤ ni.

Here tj denotes the j-th time instant when the prediction made is pt = zi. Observe that the sequence
X1,i, . . . , XT,i is a martingale difference sequence with |Xj,i| ≤ 1 for all j ∈ [T ]. In the subsequent
steps we obtain a high probability bound on prefix sums of this sequence.
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Fix n ∈ [T ], µ ∈ [0, 1], δ ∈ [0, 1]. Applying Lemma 8, we obtain that the following inequality holds
with probability at least 1− δ: ∣∣∣∣∣∣

n∑
j=1

Xj,i

∣∣∣∣∣∣ ≤ µVi(n) +
1

µ
log

2

δ
,

where Vi(n) =
∑min(n,ni)

j=1 p̃tj (1− p̃tj ). To uniformly bound Vi(n) in terms of n, we consider the 2
cases n ≤ ni and n > ni. When n ≤ ni, Vi(n) can be bounded in terms of zi as follows

Vi(n) = nzi(1− zi) +

n∑
j=1

(
p̃tj (1− p̃tj )− zi(1− zi)

)
= nzi(1− zi) +

n∑
j=1

(p̃tj − zi) · (1− p̃tj − zi)

≤ nzi(1− zi) +

n∑
j=1

∣∣p̃tj − zi
∣∣

≤ n
(
zi(1− zi) +

π

2K

)
,

where the last inequality follows from Lemma 6. When n > ni, we note that Vi(n) = Vi(ni) ≤
n
(
zi(1− zi) +

π
2K

)
, since n > ni. Therefore, with probability at least 1− δ, we have∣∣∣∣∣∣

n∑
j=1

Xj,i

∣∣∣∣∣∣ ≤ µn
(
zi(1− zi) +

π

2K

)
+

1

µ
log

2

δ
.

Minimizing the bound above with respect to µ ∈ [0, 1], we obtain∣∣∣∣∣∣
n∑

j=1

Xj,i

∣∣∣∣∣∣ ≤
{
2
√
n
(
zi(1− zi) +

π
2K

)
log 2

δ if n ≥ log 2
δ

zi(1−zi)+
π

2K
,

n
(
zi(1− zi) +

π
2K

)
+ log 2

δ otherwise.

Note that when n <
log 2

δ

zi(1−zi)+
π

2K
, we can simply bound n

(
zi(1− zi) +

π
2K

)
+ log 2

δ < 2 log 2
δ .

The bounds obtained for both cases can be combined into the following single bound:∣∣∣∣∣∣
n∑

j=1

Xj,i

∣∣∣∣∣∣ ≤ 2

√
log

2

δ
·max

(√
n
(
zi(1− zi) +

π

2K

)
,

√
log

2

δ

)
,

which holds with probability at least 1 − δ. Taking a union bound, we obtain that
∣∣∣∑n

j=1 Xj,i

∣∣∣ ≤
2
√
log 2

δ ·max
(√

n
(
zi(1− zi) +

π
2K

)
,
√

log 2
δ

)
holds simultaneously for all i ∈ [K−1], n ∈ [T ]

with probability at least 1− (K − 1)Tδ ≥ 1−KTδ. In particular, setting n = ni, we obtain that∣∣∣∣∣∣
ni∑
j=1

Xj,i

∣∣∣∣∣∣ ≤ 2

√
log

2

δ
·max

(√
ni

(
zi(1− zi) +

π

2K

)
,

√
log

2

δ

)
(4)

holds for all i ∈ [K − 1] with probability at least 1 − KδT . Equipped with this bound, in the
following steps we obtain a high probabilty bound on SRegℓ(F,A). This shall be used to bound
E[SRegℓ(F,A)] eventually.
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We begin by bounding the quantity |zi − ρi|, which shall be used to obtain the high probability bound
on SRegℓ(F,A). We proceed as

|zi − ρi| =
1

ni

∣∣∣∣∣
T∑

t=1

I[pt = zi](zi − yt)

∣∣∣∣∣
≤ 1

ni

(∣∣∣∣∣
T∑

t=1

I[pt = zi](zi − p̃t)

∣∣∣∣∣+
∣∣∣∣∣

T∑
t=1

I[pt = zi](p̃t − yt)

∣∣∣∣∣
)

≤ max(di, di+1) +
1

ni

∣∣∣∣∣∣
ni∑
j=1

Xj,i

∣∣∣∣∣∣ ,
where for each i ∈ [K], we define di := zi − zi−1. The first inequality above follows from the
Triangle inequality; the second inequality is because, if pt = zi, we must have p̃t ∈ [z0,

z1+z2
2 ]

if i = 1, p̃t ∈
[
zi−1+zi

2 , zi+zi+1

2

]
if 2 ≤ i ≤ K − 2, and p̃t ∈

[
zK−2+zK−1

2 , 1
]

if i = K − 1,

therefore, |p̃t − pt| ≤ max(di, di+1). For each i ∈ [K − 1], let ti :=
log 2

δ

zi(1−zi)+
π

2K
. Next, we write

SRegℓ(F,A) as

SRegℓ(F,A) =
∑
i∈I

niKL(ρi, zi)︸ ︷︷ ︸
Term I

+
∑
i∈Ī

niKL(ρi, zi)︸ ︷︷ ︸
Term II

,

where I := {i ∈ [K − 1];ni < ti}, and bound Term I, II individually. We begin by bounding Term
II in the following manner:

Term II ≤
∑
i∈Ī

niχ
2(ρi, zi)

=
∑
i∈Ī

ni

(
(ρi − zi)

2

zi
+

(ρi − zi)
2

1− zi

)

=
∑
i∈Ī

ni(ρi − zi)
2

zi(1− zi)

≤
∑
i∈Ī

2ni

zi(1− zi)

(max(di, di+1))
2 +

 1

ni

∣∣∣∣∣∣
ni∑
j=1

Xj,i

∣∣∣∣∣∣
2


≤
∑
i∈Ī

2ni ·
(max(di, di+1))

2

zi(1− zi)
+ 8 log

2

δ
·

∑
i∈Ī

(
π

2K
· 1

zi(1− zi)
+ 1

)
= O

(
T

K2

)
+O

(
K log

1

δ

)
,

where the first inequality follows since KL(ρi, zi) ≤ χ2(ρi, zi); the second inequality follows from
the bound on |zi − ρi| established above, and since (a+ b)2 ≤ 2a2+2b2; the third inequality follows
from (4); the final equality follows from Lemma 6, particularly, we use the bounds (max(di,di+1))

2

zi(1−zi)
=

O( 1
K2 ) and

∑K−1
i=1

1
zi(1−zi)

= O(K2). To bound Term I, we first note from the proof of Proposition
2 that

niKL(ρi, zi) = sup
σ:[0,1]→[0,1]

T∑
t=1

I[pt = zi](ℓ(pt, yt)− ℓ(σ(pt), yt)) ≤ ni log
1

sin2 π
2K

,

where the last inequality is because for the rounds where pt = zi, we have

ℓ(pt, yt) ≤ max

(
log

1

zi
, log

1

1− zi

)
≤ max

(
log

1

sin2 π
2K

, log
1

1− cos2 π
2K

)
= O(logK).

(5)
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Moreover, repeating the exact same steps done to bound Term II above, we can also bound
niKL(ρi, zi) as

niKL(ρi, zi) ≤
2ni

zi(1− zi)

(max(di, di+1))
2 +

 1

ni

∣∣∣∣∣∣
ni∑
j=1

Xj,i

∣∣∣∣∣∣
2


= O
( ni

K2

)
+ 8

(
log

2

δ

)2

· 1

nizi(1− zi)

= O

(
ni

K2
+

(
log

1

δ

)2

· 1

nizi(1− zi)

)
,

where the first equality follows from Lemma 6 and (4). Taking minimum of the two bounds obtained
above, we obtain

niKL(ρi, zi) = O

(
min

(
ni logK,

ni

K2
+

(
log

1

δ

)2

· 1

nizi(1− zi)

))

= O

(
ni

K2
+min

(
ni logK,

(
log

1

δ

)2

· 1

nizi(1− zi)

))

= O

(
ni

K2
+
√
logK log

1

δ
· 1√

zi(1− zi)

)
,

where the final inequality follows since for a fixed a > 0, min(x, a
x ) ≤

√
a holds for all x ∈ R.

Summing over i ∈ I, we obtain the following bound on Term I:

Term I = O

(
1

K2

∑
i∈I

ni +
√
logK log

1

δ
·
∑
i∈I

1√
zi(1− zi)

)
= O

(
T

K2
+K(logK)

3
2 log

1

δ

)
,

where the last equality follows from Lemma 6, particularly,
∑K−1

i=1
1√

zi(1−zi)
= O(K logK).

Summarizing, we have shown that

Term I = O
(

T

K2
+K(logK)

3
2 log

1

δ

)
, Term II = O

(
T

K2
+K log

1

δ

)
hold simultaneously with probability at least 1−KTδ. Therefore,

SRegℓ(F,A) = O
(

T

K2
+K(logK)

3
2 log

1

δ

)
(6)

with probability at least 1−KTδ. To bound E[SRegℓ(F,A)], we let E be the event in (6). Therefore,

E[SRegℓ(F,A)] = E[SRegℓ(F,A)|E ] · P(E) + E[SRegℓ(F,A)|Ē ] · P(Ē)

= O
(

T

K2
+K(logK)

3
2 log

1

δ
+ (K logK)T 2δ

)
= O

(
T

K2
+K(logK)

3
2 log T +K logK

)
= O(T

1
3 (log T )

5
3 ),

where the second equality follows by using the high probability bound on SRegℓ(F,A) obtained
in (6), and bounding E[SRegℓ(F,A)|Ē ] = O(T logK), which follows from (5); the third equality

follows by choosing δ = 1
T 2 ; the final equality follows by choosing K = T

1
3

(log T )
5
6

. This completes

the proof.

Lemma 6. Fix a k ∈ N. Let {zi}Ki=0 be a sequence where z0 = 1, zi = sin2
(

πi
2K

)
for i =

1, . . . ,K− 1, and zK = 1. For each i = 1, . . . ,K, define di := zi− zi−1. Then, the following holds:
(a) di ≤ π

2K for all i ∈ [K]; (b) max2(di,di+1)
zi(1−zi)

= O
(

1
K2

)
; (c)

∑K−1
i=1

1
zi(1−zi)

= O(K2); and (d)∑K−1
i=1

1√
zi(1−zi)

= O(K logK).
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Proof. By direct computation, we have

zi − zi−1 = sin2
πi

2K
− sin2

π(i− 1)

2K
=

cos π(i−1)
K − cos πi

K

2
= sin

π

2K
sin

(
π

K

(
i− 1

2

))
,

(7)

where the second equality follows from the identity sin2 θ = 1−cos 2θ
2 , while the last equality follows

from the identity cosα− cosβ = 2 sin α+β
2 sin β−α

2 . Since sin θ ≤ θ for all θ ∈ R, and bounding
sin θ ≤ 1, we obtain zi − zi−1 ≤ π

2K , which completes the proof for the first part of the lemma.

For the second part, we note that

max2(di, di+1)

zi(1− zi)
=

max2(di, di+1)

sin2 πi
2K cos2 πi

2K

= 4 · max2(di, di+1)

sin2 πi
K

,

where the second equality follows from the identity sin 2θ = 2 sin θ cos θ. It follows from (7) that

max(di, di+1) = sin
π

2K
·max

(
sin

(
π

K

(
i− 1

2

))
, sin

(
π

K

(
i+

1

2

)))
.

For simplicity, we assume that K is odd, although a similar treatment can be done for even K. Let
1 ≤ i ≤ K−1

2 . Then, max(di, di+1) = sin π
2K sin

(
π
K

(
i+ 1

2

))
. Observe that

sin
(
π
K

(
i+ 1

2

))
sin πi

K

=
sin πi

K cos π
2K + cos πi

K sin π
2K

sin πi
K

= cos
π

2K
+ cot

πi

K
sin

π

2K
≤ 1 +

sin π
2K

sin π
K

,

where the first equality follows from the identity sin(α+ β) = sinα cosβ + cosα sinβ, while the
inequality follows by noting that cot πi

K ≤ cot π
K for all 1 ≤ i ≤ K−1

2 . Finally, since sin π
2K

sin π
K

=

1
2 cos π

2K
= O(1), we obtain max2(di,di+1)

zi(1−zi)
= O(sin2 π

2K ) = O( 1
K2 ). Next, we consider the case

when K+1
2 ≤ i ≤ K − 1. Then, max(di, di+1) = sin π

2K sin
(
π
K

(
i− 1

2

))
. Repeating a similar

analysis as before, we obtain

sin
(
π
K

(
i− 1

2

))
sin πi

K

=
sin πi

K cos π
2K − cos πi

K sin π
2K

sin πi
K

= cos
π

2K
− cot

πi

K
sin

π

2K
≤ 1 +

sin π
2K

sin π
K

,

which is O(1) as claimed earlier. Therefore, max2(di,di+1)
zi(1−zi)

= O( 1
K2 ). Combining both the cases

completes the proof of (b) above.

For (c), similar to (b), we assume for simplicity that K is odd. Then,

K−1∑
i=1

1

zi(1− zi)
= 4

K−1∑
i=1

1

sin2 πi
K

= 8

K−1
2∑

i=1

1

sin2 πi
K

,

and the summation
∑K−1

2
i=1

1
sin2 πi

K

can be bounded in the following manner:

K−1
2∑

i=1

1

sin2 πi
K

≤

(
1

sin2 π
K

+

∫ K−1
2

1

1

sin2 πν
K

dν

)

≤

(
1

sin2 π
K

+

∫ K
2

1

1

sin2 πν
K

dν

)

=

(
1

sin2 π
K

+
K

π

∫ π
2

π
K

1

sin2 ν
dν

)

=

(
1

sin2 π
K

+
K

π
cot

π

K

)
= O(K2).
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This completes the proof for (c). Repeating the exact same steps as (c) proves (d). We include the full
proof for completeness. Observe that

K−1∑
i=1

1√
zi(1− zi)

= 2

K−1∑
i=1

1

sin πi
K

= 4

K−1
2∑

i=1

1

sin πi
K

,

and the summation
∑K−1

2
i=1

1
sin πi

K

can be bounded in the following manner:

K−1
2∑

i=1

1

sin πi
K

≤ 1

sin π
K

+

∫ K−1
2

1

1

sin πν
K

dν ≤ 1

sin π
K

+

∫ K
2

1

1

sin πν
K

dν =
1

sin π
K

+
K

π

∫ π
2

π
K

1

sin ν
dν.

The integral above evaluates to log
(
csc π

K + cot π
K

)
. Therefore, we have that

K−1∑
i=1

1√
zi(1− zi)

≤ 4

(
csc

π

K
+

K

π
log
(
csc

π

K
+ cot

π

K

))
= O(K logK).

This completes the proof.

C.2 Proof of Corollary 1

Proof. Let A be the algorithm guaranteed by Theorem 1. By Pinsker’s inequality, we get that A
guarantees E[Cal2] = O(T

1
3 (log T )

5
3 ). Moreover, since Cal1 ≤

√
T · Cal2 (Kleinberg et al., 2023,

Lemma 13), by Jensen’s inequality we have E[Cal1] ≤
√
T · E[Cal2] = O(T

1
3 (log T )

5
6 ). Next,

(Kleinberg et al., 2023, Theorem 12) states that for any proper loss ℓ, we have SRegℓ ≤ 4Cal1.
Therefore, E[SRegℓ] ≤ 4E[Cal1] = O(T

2
3 (log T )

5
6 ). Combining this with the result of Proposition

2, 3 completes the proof.

D Deferred proofs and discussion in Section 5

D.1 Computational cost of Algorithm 1

The cost of Algorithm 1 at every time step is at most O
(
K2 + INT + ST

)
, where ST is the time

required to compute the stationary distribution of Qt and INT denotes the computation required

for evaluating the integral
∫ 1
0
wµt,i(w)dw∫ 1

0
µt,i(w)dw

in line 3 of Algorithm 3; the O(K2) cost is incurred in
forming the matrix Qt, and all other operations in Algorithm 1 can be carried out in time that is
no worse than O(K2). For ST, the stationary distribution of Qt can be computed by the method
of power iteration; notably, each iteration shall incur cost O(nnz(Qt)), where nnz(Qt) represents
the number of non-zero entries in Qt. Since each column of Qt has at most two non-zero entries
(Algorithm 4 randomizes over two adjacent points in the discretization), nnz(Qt) = Θ(K). For
INT, the integral is over [0, 1] and has a closed-form expression in terms of the gamma function
Γ(z) :=

∫ 1

0
exp(−t)tz−1dt as derived below. Recall that

fτ,i(w) = pτ,iℓ(w, yτ ) = −pτ,i (yτ logw + (1− yτ ) log(1− w))

= log
(
w−yτpτ,i(1− w)−pτ,i(1−yτ )

)
.

Therefore, µt,i(w) = exp
(
−
∑t−1

τ=1 fτ,i(w)
)
= w

∑t−1
τ=1 yτpτ,i(1 − w)

∑t−1
τ=1 pτ,i(1−yτ ). For conve-

nience, let γ :=
∑t−1

τ=1 yτpτ,i, δ :=
∑t−1

τ=1 pτ,i(1−yτ ). Then,
∫ 1

0
µt,i(w)dw =

∫ 1

0
wγ(1−w)δdw =

B(γ + 1, δ + 1), where B(z1, z2) denotes the beta function, defined as B(z1, z2) :=
∫ 1

0
tz1−1(1 −

t)z2−1dt. Since B(z1, z2) =
Γ(z1)Γ(z2)
Γ(z1+z2)

for all z1, z2 with z1, z2 > 0, we have∫ 1

0

µt,i(w)dw =
Γ(γ + 1)Γ(δ + 1)

Γ(γ + δ + 2)
.
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Similarly,∫ 1

0

wµt,i(w)dw =

∫ 1

0

wγ+1(1− w)δdw = B(γ + 2, δ + 1) =
Γ(γ + 2)Γ(δ + 1)

Γ(γ + δ + 3)
.

Taking ratio of the two integrals above and using the identity Γ(z + 1) = zΓ(z), which holds for all
z with z > 0, we obtain∫ 1

0
wµt,i(w)dw∫ 1

0
µt,i(w)dw

=
Γ(γ + 2)

Γ(γ + 1)
· Γ(γ + δ + 2)

Γ(γ + δ + 3)
=

γ + 1

γ + δ + 2
=

(
1 +

δ + 1

γ + 1

)−1

.

Clearly, at each time t, both γ and δ can be computed in O(1) time using the previously memorized
values corresponding to time t − 1. Therefore, INT = O(1). Since K = Θ̃(T

1
3 ), the overall

computation cost over T rounds is Õ(T
5
3 + T · ST).

D.2 Expected loss of common rounding schemes

We recall the discussion in Section 5: at each time t, EWOOi outputs wt,i ∈ [0, 1], however, Ai

is required to predict a distribution qt,i ∈ ∆K+1 over Z . Thus, we need to perform a rounding
operation that projects the output wt,i of EWOOi to a distribution over Z . In the remark below, we
show that the following two known rounding schemes: (a) rounding wt,i to the nearest z ∈ Z and
setting qt,i as the corresponding one-hot vector; (b) the rounding procedure proposed by Fishelson
et al. (2025), cannot be applied to our setting since they incur a Ω(1) change in the expected loss
⟨qt,i, ℓt⟩ − ℓ(wt,i, yt), which is not sufficient to achieve the desired regret guarantee.

Remark 1. Let yt = 1 and wt,i =
z0+z1

2 . The rounding procedure in (a) above ensures that qt,i = e0
with probability one. Therefore, ⟨qt,i, ℓt⟩ − ℓ(wt,i, yt) = ℓ(z0, 1) − ℓ

(
z0+z1

2 , 1
)
= log z0+z1

2z0
.

Observe that z1
z0

=
sin2 π

2K

sin2 π
4K

= 4 cos2 π
4K = 2 + 2 cos π

2K . Therefore, ⟨qt,i, ℓt⟩ − ℓ(wt,i, yt) =

log
(
3
2 + cos π

2K

)
= Ω(1). For the chosen example, the rounding procedure in (b) sets qt,i(0) =

qt,i(1) = 1
2 . Thus, ⟨qt,i, ℓt⟩ − ℓ(wt,i, yt) = ℓ(z0,1)+ℓ(z1,1)

2 − ℓ
(
z0+z1

2 , 1
)

= log z0+z1
2
√
z0z1

=

log
1+4 cos2 π

4K

4 cos π
4K

= Ω(1).

D.3 Proof of Lemma 5

Proof. Since the log loss ℓ(p, y) is convex in p (for any y ∈ {0, 1}), we have

ℓ(q, y)− ℓ(p, y) ≤ ℓ′(q, y) · (q − p) =
(q − y)(q − p)

q(1− q)
=

{
p
q − 1 if y = 1,
1−p
1−q − 1 if y = 0.

(8)

Let y = 1. Taking expectation on both sides of (8), we obtain E[ℓ(q, y)] − ℓ(p, y) = E
[
p
q

]
− 1.

To simplify the expressions involved in the computation of E
[
1
q

]
, we define the normalizing factor

D := p+−p
p+(1−p+) +

p−p−

p−(1−p−) . By direct computation, we have

E
[
1

q

]
=

1

D

(
p+ − p

p−p+(1− p+)
+

p− p−

p−p+(1− p−)

)
=

1

D
· (p+ − p−)(1− p)

p−p+(1− p−)(1− p+)
.

Similarly, by direct computation, we obtain

D =
p+ − p

p+(1− p+)
+

p− p−

p−(1− p−)
=

(p+ − p−) (p+ p−p+ − p(p− + p+))

p−p+(1− p−)(1− p+)
.

Therefore,

E
[
p

q

]
− 1 =

p(1− p)

p+ p−p+ − p(p− + p+)
− 1 =

(p+ − p)(p− p−)

p+ p−p+ − p(p− + p+)
≤ (p+ − p−)2

p+ p−p+ − p(p− + p+)
.
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Next, we let y = 0. Taking expectation on both sides of (8), we obtain E[ℓ(q, y)] − ℓ(p, y) =

E
[
1−p
1−q

]
− 1, thus, we require to bound E

[
1

1−q

]
. Direct computation yields

E
[

1

1− q

]
=

1

D

(
p+ − p

p+(1− p−)(1− p+)
+

p− p−

p−(1− p−)(1− p+)

)
=

1

D
· p(p+ − p−)

p−p+(1− p−)(1− p+)
.

Substituting the expression for D obtained above, we obtain

E
[
1− p

1− q

]
− 1 =

p(1− p)

p+ p−p+ − p(p− + p+)
− 1 =

(p+ − p)(p− p−)

p+ p−p+ − p(p− + p+)

≤ (p+ − p−)2

p+ p−p+ − p(p− + p+)
.

Let f(p) = p + p−p+ − p(p− + p+). Since f(p) is linear in p, for any p ∈ [p−, p+), we have
min(f(p−), f(p+)) ≤ f(p) ≤ max(f(p−), f(p+)). Since f(p−) = p−(1− p−), f(p+) = p+(1−
p+), we obtain

min
(
p−(1− p−), p+(1− p+)

)
≤ p+ p−p+ − p(p− + p+) ≤ max

(
p−(1− p−), p+(1− p+)

)
for all p ∈ [p−, p+). Therefore,

Eq[ℓ(q, y)]− ℓ(p, y) ≤ (p+ − p−)2 ·max

(
1

p−(1− p−)
,

1

p+(1− p+)

)
= O

(
1

K2

)
,

where the last equality follows from Lemma 7. This completes the proof.

Lemma 7. Fix a k ∈ N. Let {zi}Ki=0 be a sequence where z0 = sin2 π
4K , zi = sin2

(
πi
2K

)
for

i ∈ [K − 1], and zK = cos2 π
4K . For each i = 1, . . . ,K, define di := zi − zi−1. Then, the following

holds true for all i ∈ [K]: (a) d2
i

zi(1−zi)
= O

(
1

K2

)
, and (b) d2

i

zi−1(1−zi−1)
= O

(
1

K2

)
.

Proof. It follows from Lemma 6 that (a), (b) hold for all 2 ≤ i ≤ K − 1. For i = 1, since
d1 ≤ z1 = sin2 π

2K , we have

d21
z1(1− z1)

≤
sin4 π

2K

sin2 π
2K cos2 π

2K

= tan2
π

2K
,

which is O( 1
K2 ) for a large K. Similarly, for i = K, di = cos2 π

4K−cos2 π
2K = sin2 π

2K−sin2 π
4K ≤

sin2 π
2K . Therefore,

d2K
zK(1− zK)

≤
sin4 π

2K

sin2 π
4K cos2 π

4K

= 4 sin2
π

2K
≤ π2

K2
,

where the equality follows from the identity sin 2θ = 2 sin θ cos θ. This completes the proof for (a).
For (b), when i = 1, we have

d21
z0(1− z0)

≤
sin4 π

2K

sin2 π
4K cos2 π

4K

= 4 sin2
π

2K
≤ π2

K2
.

Similarly, when i = K, we have

d2K
zK−1(1− zK−1)

≤
sin4 π

2K

sin2 π
2K cos2 π

2K

= tan2
π

2K
,

which is O( 1
K2 ) for a large K. This completes the proof.
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D.4 Proof of Corollary 2

Proof. Since KLCal ≥ PCal2, Algorithm 1 ensures that PCal2 = O(T
1
3 (log T )

2
3 ). Next, we show

that the PCal1 satisfies (a) PCal1 ≤
√
T · PCal2; (b) for any proper loss ℓ, we have PSRegℓ ≤ 4PCal1.

The proof is exactly similar to the corresponding variants of (a), (b) above for Cal as shown by
Kleinberg et al. (2023). For (a), applying the Cauchy-Schwartz inequality, we obtain

∑
p∈Z

∑
t=1

Pt(p) |p− ρ̃p| ≤

∑
p∈Z

T∑
t=1

Pt(p)

 1
2
∑

p∈Z

T∑
t=1

Pt(p)(p− ρ̃p)
2

 1
2

=
√
T · PCal2.

Towards showing (b), we first rewrite PSRegℓ =
∑

p∈Z
∑T

t=1 Pt(p)BREG−ℓ(ρ̃p, p), which holds
for any proper loss ℓ as per Proposition 2. Next, we observe that

BREG−ℓ(ρ̃p, p) = ℓ(p)− ℓ(ρ̃p) + ∂ℓ(p)(ρ̃p − p) ≤ ∂ℓ(ρ̃p)(p− ρ̃p) + ∂ℓ(p)(ρ̃p − p)

≤ 4 |p− ρ̃p| ,

where the first inequality follows since ℓ(p) is concave; the second inequality follows by noting
that ℓ(p, 1) − ℓ(p, 0) = ∂ℓ(p) as per Lemma 1, and since ℓ(p, y) ∈ [−1, 1], we have |∂ℓ(p)| ≤ 2

for all p ∈ [0, 1]. Substituting the bound on BREG−ℓ(ρ̃p, p) obtained above into PSRegℓ, we
obtain PSRegℓ ≤ 4PCal1 as desired. Since Algorithm 1 ensures PCal1 = O(T

1
3 (log T )

1
3 ), we

obtain PSRegℓ = O(T
1
3 (log T )

1
3 ). Combining the above results with Propositions 2, 3 finishes the

proof.

E High probability bound for maximum swap regret against LG

While we do not have a concrete algorithm for KLCal, in this section, we show that if we only
consider LG, then our Algorithm 1 or the algorithm of Fishelson et al. (2025) already achieves a
O(G · T 1

3 (log T )−
1
3 log T

δ ) high probability bound for MsrLG
. To obtain so, we first prove a generic

high probability bound that relates Cal2 with PCal2. Subsequently, we instantiate our bound with an
explicit algorithm for minimizing PCal2 and use the result of Proposition 3. Our high probability
bound in Theorem 4 is independent of the choice of the discretization Z .

Theorem 4. For any algorithm ACal, with probability at least 1− δ over the randomness in ACal’s
predictions p1, . . . , pT , we have Cal2 ≤ 6PCal2 + 96 |Z| log 4|Z|

δ .

Our proof of Theorem 4 crucially relies on the following version of Freedman’s inequality from
Beygelzimer et al. (2011). Refer therein for a proof.

Lemma 8. Let X1, . . . , Xn be a martingale difference sequence adapted to the filtration F1 ⊆ · · · ⊆
Fn, where |Xi| ≤ B for all i = 1, . . . , n, and B is a fixed constant. Define V :=

∑n
i=1 E[X2

i |Fi−1].
Then, for any fixed µ ∈

[
0, 1

B

]
, δ ∈ [0, 1], with probability at least 1− δ, we have∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣ ≤ µV +
log 2

δ

µ
.

Proof of Theorem 4. Before discussing the proof, we introduce some notation. Let Z be enumerated
as Z = {z0, . . . , zK}, where K = |Z|−1. Observe that at time t, ACal can be equivalently described
by the following procedure: (a) it samples it from the set {0, . . . ,K} with Pt(it = i) = Pt(zi),
which we write as Pt,i for convenience; (b) forecasts pt = zit . Clearly, I[pt = zi] = I[it = i]. For
simplicity, we denote ρzi = ρi and ρ̃zi = ρ̃i. Under this notation, ρi, ρ̃i can be expressed as

ρi =

∑T
t=1 ytI[it = i]∑T
t=1 I[it = i]

, ρ̃i =

∑T
t=1 ytPt,i∑T
t=1 Pt,i

.

We begin by bounding |ρi − ρ̃i| using Lemma 8. Fix a i ∈ {0, . . . ,K} and define the martingale
difference sequences Xt := yt(Pt,i − I[it = i]) and Yt := Pt,i − I[it = i]. Observe that |Xt| ≤
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1, |Yt| ≤ 1 for all t. Fix a µi ∈ [0, 1]. Applying Lemma 8 to the sequences X,Y and taking a union
bound (over X,Y ), we obtain that with probability at least 1− δ,∣∣∣∣∣

T∑
t=1

yt(Pt,i − I[it = i])

∣∣∣∣∣ ≤ µiVX +
log 4

δ

µi
,

∣∣∣∣∣
T∑

t=1

Pt,i − I[it = i]

∣∣∣∣∣ ≤ µiVY +
log 4

δ

µi
, (9)

where VX ,VY are given by

VX =

T∑
t=1

E
[
X2

t |Ft−1

]
=

T∑
t=1

yt · Pt,i(1− Pt,i) ≤
T∑

t=1

Pt,i, and

VY =

T∑
t=1

E
[
Y 2
t |Ft−1

]
=

T∑
t=1

Pt,i(1− Pt,i) ≤
T∑

t=1

Pt,i.

The upper tail ρi − ρ̃i can then be bounded in the following manner:

ρi − ρ̃i =

∑T
t=1 ytI[it = i]∑T
t=1 I[it = i]

−
∑T

t=1 ytPt,i∑T
t=1 Pt,i

≤
∑T

t=1 ytI[it = i]∑T
t=1 I[it = i]

+
µi

∑T
t=1 Pt,i +

log 4
δ

µi
−
∑T

t=1 ytI[it = i]∑T
t=1 Pt,i

=

∑T
t=1 ytI[it = i](∑T

t=1 I[it = i]
)(∑T

t=1 Pt,i

) ·

(
T∑

t=1

Pt,i − I[it = i]

)
+

µi

∑T
t=1 Pt,i +

log 4
δ

µi∑T
t=1 Pt,i

≤
∑T

t=1 ytI[it = i](∑T
t=1 I[it = i]

)(∑T
t=1 Pt,i

) ·

(
µi

T∑
t=1

Pt,i +
log 4

δ

µi

)
+

µi

∑T
t=1 Pt,i +

log 4
δ

µi∑T
t=1 Pt,i

≤ 2µi +
2 log 4

δ

µi

∑T
t=1 Pt,i

,

where the first and second inequalities follow from (9), while the last inequality follows by bounding
ytI[it = i] ≤ I[it = i]. The lower tail can be bounded in an exact same manner as

ρ̃i − ρi =

∑T
t=1 ytPt,i∑T
t=1 Pt,i

−
∑T

t=1 ytI[it = i]∑T
t=1 I[it = i]

≤
∑T

t=1 ytI[it = i] + µi

∑T
t=1 Pt,i +

log 4
δ

µi∑T
t=1 Pt,i

−
∑T

t=1 ytI[it = i]∑T
t=1 I[it = i]

=

∑T
t=1 ytI[it = i](∑T

t=1 Pt,i

)(∑T
t=1 I[it = i]

) ·

(
T∑

t=1

I[it = i]− Pt,i

)
+

µi

∑T
t=1 Pt,i +

log 4
δ

µi∑T
t=1 Pt,i

≤
∑T

t=1 ytI[it = i](∑T
t=1 I[it = i]

)(∑T
t=1 Pt,i

) ·

(
µi

T∑
t=1

Pt,i +
log 4

δ

µi

)
+

µi

∑T
t=1 Pt,i +

log 4
δ

µi∑T
t=1 Pt,i

≤ 2µi +
2 log 4

δ

µi

∑T
t=1 Pt,i

.

Combining both the bounds, we have shown that for a fixed µi ∈ [0, 1], |ρi − ρ̃i| ≤ 2µi+
2 log 4

δ

µi
∑T

t=1 Pt,i

holds with probability at least 1− δ. Taking a union bound over all i, with probability 1− δ, we have
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(simultaneously for all i)∣∣∣∣∣
T∑

t=1

yt(Pt,i − I[it = i])

∣∣∣∣∣ ≤ µi

T∑
t=1

Pt,i +
log 4(K+1)

δ

µi
,∣∣∣∣∣

T∑
t=1

Pt,i − I[it = i]

∣∣∣∣∣ ≤ µi

T∑
t=1

Pt,i +
log 4(K+1)

δ

µi
, (10)

|ρi − ρ̃i| ≤ 2µi +
2 log 4(K+1)

δ

µi

∑T
t=1 Pt,i

. (11)

Consider the function g(µ) := µ+ a
µ , where a ≥ 0 is a fixed constant. Clearly, minµ∈[0,1] g(µ) =

2
√
a when a ≤ 1, and 1 + a otherwise. Minimizing the bound in (11) with respect to µi, we obtain

|ρi − ρ̃i| ≤ 4

√√√√ log 4(K+1)
δ∑T

t=1 Pt,i

,when log
4(K + 1)

δ
≤

T∑
t=1

Pt,i.

However, when log 4(K+1)
δ >

∑T
t=1 Pt,i, we obtain that |ρi − ρ̃i| ≤ 2 +

2 log
4(K+1)

δ∑T
t=1 Pt,i

. In particular,

when
∑T

t=1 Pt,i is tiny, which is possible if ACal does not allocate enough probability mass to the
index i, the bound obtained is large making it much worse than the trivial bound |ρi − ρ̃i| ≤ 1 which
follows since ρi, ρ̃i ∈ [0, 1] by definition. Based on this reasoning, we define the set

I :=

{
i ∈ {0, . . . ,K} s.t. log

4(K + 1)

δ
≤

T∑
t=1

Pt,i

}
, (12)

and bound (ρi − ρ̃i)
2 as

(ρi − ρ̃i)
2 ≤

{
16 log

4(K+1)
δ∑T

t=1 Pt,i
if i ∈ I,

1 otherwise.
(13)

Similarly,
∣∣∣∑T

t=1 Pt,i − I[it = i]
∣∣∣ can be bounded by substituting the optimal µi obtained above in

(10); we obtain ∣∣∣∣∣
T∑

t=1

Pt,i − I[it = i]

∣∣∣∣∣ ≤
{
2
√
log 4(K+1)

δ

∑T
t=1 Pt,i if i ∈ I,∑T

t=1 Pt,i + log 4(K+1)
δ otherwise.

(14)

Equipped with (13), (14), we proceed to bound Cal2 in the following manner:

Cal2 =

K∑
i=0

T∑
t=1

I[it = i] (zi − ρi)
2 ≤ 2

K∑
i=0

T∑
t=1

I[it = i]
(
(zi − ρ̃i)

2
+ (ρi − ρ̃i)

2
)
,

where the inequality is because (a + b)2 ≤ 2a2 + 2b2 for all a, b ∈ R. To further bound the term
above, we split the summation into two terms T1, T2 defined as

T1 :=
∑
i∈I

T∑
t=1

I[it = i]
(
(zi − ρ̃i)

2
+ (ρi − ρ̃i)

2
)
,

T2 =
∑
i∈Ī

T∑
t=1

I[it = i]
(
(zi − ρ̃i)

2
+ (ρi − ρ̃i)

2
)
,
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and bound T1 and T2 individually. We bound T1 as

T1 ≤
∑
i∈I

 T∑
t=1

Pt,i + 2

√√√√log
4(K + 1)

δ

T∑
τ=1

Pτ,i

((zi − ρ̃i)
2
+

16 log 4(K+1)
δ∑T

τ=1 Pτ,i

)

=
∑
i∈I

T∑
t=1

Pt,i (zi − ρ̃i)
2
+ 16 log

4(K + 1)

δ
|I|+

2
∑
i∈I

√√√√log
4(K + 1)

δ

T∑
τ=1

Pτ,i

(
(zi − ρ̃i)

2
+

16 log 4(K+1)
δ∑T

τ=1 Pτ,i

)

≤
∑
i∈I

T∑
t=1

Pt,i (zi − ρ̃i)
2
+ 16 log

4(K + 1)

δ
|I|+ 2

∑
i∈I

T∑
τ=1

Pτ,i

(
(zi − ρ̃i)

2
+

16 log 4(K+1)
δ∑T

τ=1 Pτ,i

)

= 3
∑
i∈I

T∑
t=1

Pt,i (zi − ρ̃i)
2
+ 48 log

4(K + 1)

δ
|I| ,

where the first inequality follows by substituting the bounds from (13), (14), while the final inequality

follows since by the definition of I in (12), we have
√

log 4(K+1)
δ

∑T
τ=1 Pτ,i ≤

∑T
τ=1 Pτ,i. Next,

we bound T2 as

T2 ≤
∑
i∈Ī

(
2

T∑
t=1

Pt,i + log
4(K + 1)

δ

)(
(zi − ρ̃i)

2
+ 1
)

≤ 2
∑
i∈Ī

T∑
t=1

Pt,i (zi − ρ̃i)
2
+ 2

∑
i∈Ī

T∑
t=1

Pt,i + 2 log
4(K + 1)

δ

∣∣Ī∣∣
≤ 2

∑
i∈Ī

T∑
t=1

Pt,i (zi − ρ̃i)
2
+ 4 log

4(K + 1)

δ

∣∣Ī∣∣ ,
where the first inequality follows by substituting the bounds from (13), (14); the second inequality
follows by bounding (zi − ρ̃i)

2 ≤ 1; the final inequality follows from the definition of I (12).
Collecting the bounds on T1 and T2, we obtain

T1 + T2 ≤ 3

K∑
i=0

T∑
t=1

Pt,i (zi − ρ̃i)
2
+ 48 log

4(K + 1)

δ
|I|+ 4 log

4(K + 1)

δ

∣∣Ī∣∣
≤ 3PCal2 + 48(K + 1) log

4(K + 1)

δ
,

where the last inequality follows from the definition of PCal2 and since |I|+
∣∣Ī∣∣ = K + 1. Since

Cal2 ≤ 2(T1 + T2), we have shown that

Cal2 ≤ 6PCal2 + 96(K + 1) log
4(K + 1)

δ
(15)

with probability at least 1− δ. This completes the proof.

Instantiating ACal in Theorem 4, we obtain the following corollary.

Corollary 3. On choosing K = (T/ log T )
1
3 , Algorithm 1 ensures that with probability at least

1− δ over its internal randomness

Cal2 = O
(
T

1
3 (log T )−

1
3 log

T

δ

)
, MsrLG

= O
(
G · T 1

3 (log T )−
1
3 log

T

δ

)
.

Furthermore, E[Cal2] = O(T
1
3 (log T )

2
3 ),E[MsrLG

] = O(G · T 1
3 (log T )

2
3 ).
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Proof. Since Algorithm 1 ensures that PCal2 = O
(

T
K2 +K log T

)
(refer Section 5), we obtain

Cal2 = O
(

T

K2
+K log T +K log

K

δ

)
with probability at least 1− δ, which is O

(
T

1
3

(log T )
1
3
log T

δ

)
on substituting K. The high probability

bound on MsrLG
follows since MsrLG

≤ G · Cal2. To bound E [Cal2], we let E denote the event that
Cal2 ≤ ∆, where ∆ := 6PCal2 + 96(K + 1) log 4(K+1)

δ . We then have,

E[Cal2] = E[Cal2|E ] · P(E) + E[Cal2|Ē ] · P(Ē) = O
(

T

K2
+K log T +K log

K

δ
+ δ · T

)
which is O(T

1
3 (log T )

2
3 ) on substituting δ = 1

T and K. Note that the second equality above follows
since E[Cal2|E ] ≤ ∆ and P(E) ≤ 1, Cal2 ≤ T and P(Ē) < δ. Finally, bounding MsrLG

≤ G · Cal2
finishes the proof.

Instantiating ACal with the algorithm of Fishelson et al. (2025), we also obtain the exact same
guarantee as Corollary 3. Compared to Algorithm 1, the algorithm of Fishelson et al. (2025) is more
efficient since it uses scaled online gradient descent for the i-th external regret algorithm, which is
more efficient than EWOOi. On the contrary, it does not posses the generality of Algorithm 1 towards
minimizing SRegℓ for all ℓ ∈ L2 simultaneously.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All relevant details related to claims made in the abstract and introduction are
either provided in the main body or in the appendix.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Refer to Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Assumptions are written in the main body and proofs are deferred to the
appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: The paper is a theory work and does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: The paper is a theory work and does not include experiments requiring code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper is a theory work and does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper is a theory work and does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The paper is a theory work and does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research abides in every respect with the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper is a theory work and there is no immediate societal impact of the
work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper is a theory work and poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper is a theory work and does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper is a theory work and does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper is a theory work and does not involve crowdsourcing nor research
with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The pape is a theory work and does not involve crowdsourcing nor research
with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper is a theory work and the core method development in this research
does not involve LLMs as any important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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