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Abstract

Measurement error is ubiquitous in many
variables — from blood pressure recordings
in physiology to intelligence measures in
psychology.  Structural equation models
(SEMs) account for the process of measure-
ment by explicitly distinguishing between la-
tent variables and their measurement indica-
tors. Users often fit entire SEMs to data, but
this can fail if some model parameters are
not identified. The model-implied instru-
mental variables (MIIVs) approach is a more
flexible alternative that can estimate subsets
of model parameters in identified equations.
Numerous methods to identify individual
parameters also exist in the field of graph-
ical models (such as DAGs), but many of
these do not account for measurement ef-
fects. Here, we take the concept of “latent-
to-observed” (L20) transformation from the
MIIV approach and develop an equivalent
graphical L20 transformation that allows
applying existing graphical criteria to latent
parameters in SEMs. We combine L20 trans-
formation with graphical instrumental vari-
able criteria to obtain an efficient algorithm
for non-iterative parameter identification in
SEMs with latent variables. We prove that
this graphical L20 transformation with the
instrumental set criterion is equivalent to
the state-of-the-art MIIV approach for SEMs,
and show that it can lead to novel identifi-
cation strategies when combined with other
graphical criteria.
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1 INTRODUCTION

Graphical models such as directed acyclic graphs
(DAGs) are currently used in many disciplines for
causal inference from observational studies. How-
ever, the variables on the causal pathways modelled
are often different from those being measured. Imper-
fect measures cover a broad range of sciences, includ-
ing health and medicine (e.g., blood pressure, oxygen
level), environmental sciences (e.g., measures of pol-
lution exposure of individuals), and the social (e.g.,
measures of socioeconomic status) and behavioral sci-
ences (e.g., substance abuse).

Many DAG models do not differentiate between the
variables on the causal pathways and their actual mea-
surements in a dataset (Tennant et al., 2019). While
this omission is defensible when the causal variables
can be measured reliably (e.g., age), it becomes prob-
lematic when the link between a variable and its mea-
surement is more complex. For example, graphical
models employed in fields like Psychology or Edu-
cation Research often take the form of latent variable
structural equation models (LVSEMs, Figure 1; Bollen
(1989)), which combine a latent level of unobserved
variables and their hypothesized causal links with a
measurement level of their observed indicators (e.g., re-
sponses to questionnaire items). This structure is so
common that LVSEMs are sometimes simply referred
to as SEMs. In contrast, models that do not differen-
tiate between causal factors and their measurements
are traditionally called simultaneous equations or path
models?.

Once a model has been specified, estimation can be
performed in different ways. SEM parameters are
often estimated all at once by iteratively minimizing
some difference measure between the observed and
the model-implied covariance matrices. However,
this “global” approach has some pitfalls. First, all

1Path models can be viewed as LVSEMs with all noise
set to 0; some work on path models, importantly by Sewall
Wright himself, does incorporate latent variables.
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Figure 1: SEM based on the Industrialization and Polit-
ical Democracy model (Bollen, 1989) with latent vari-
ables ; (industrialization), and I, (political democ-
racy). The model contains 3 indicators for /;: (1)
gross national product (y1), (2) energy consump-
tion (y2), and (3) labor force in industry (y3), and
4 indicators for I: (1) press freedom rating (ya),
(2) political opposition freedom (ys5), (3) election
fairness (ys), and (3) legislature effectiveness (y7).
A11... A3, Agg ... Agy, and g are the path coefficients.
€1,...,€7, and (; represent noise/errors.

model parameters must be algebraically identifiable
for a unique minimum to exist; if only a single model
parameter is not identifiable, the entire fitting proce-
dure may not converge (Boomsma, 1985) or provide
meaningless results. Second, local model specification
errors can propagate through the entire model (Bollen
et al., 2007). Alternatively, Bollen (1996) introduced
a “local”, equation-wise approach for SEM parame-
ter identification termed “model-implied instrumen-
tal variables” (MIIVs), which is non-iterative and ap-
plicable even to models where not all parameters are
simultaneously identifiable. MIIV-based SEM identi-
fication is a mature approach with a well-developed
underlying theory as well as implementations in mul-
tiple languages, including R (Fisher et al., 2019).

Of all the model parameters that are identifiable in
principle, any given estimator (such as the MIIV-based
approach) can typically only identify parameters in
identified equations and identified parameters in un-
deridentified equations. Differentidentification meth-
ods are therefore complementary and can allow more
model parameters to be estimated. Having a choice
of such methods can help users to keep the stages of
specification and estimation separated. For example, a
researcher who only has access to global identifica-
tion methodology might be tempted to impose model
restrictions just to “get a model identified” and not
because there is a theoretical rationale for the restric-
tions imposed. With more complementary methods to
choose from, researchers can instead base model spec-
ification on substantive theory and causal assump-
tions.

The development of parameter identification method-
ology has received intense attention in the graphical

modeling field. The most general identification algo-
rithm is Pearl’s do-calculus, which provides a com-
plete solution in non-parametric models (Huang and
Valtorta, 2006; Shpitser and Pearl, 2006). The back-
door and front-door criteria provide more convenient
solutions in special cases (Pearl, 2009). While there is
no practical general algorithm to decide identifiabil-
ity for models that are linear in their parameters, there
has been a flurry of work on graphical criteria for this
case, such as instrumental sets (Brito and Pearl, 2002),
the half-trek criterion (Foygel et al., 2012), and auxil-
iary variables (Chen et al., 2017). Unfortunately, these
methods were all developed for the acyclic directed
mixed graph (ADMG) framework and require at least
the variables connected to the target parameter to be
observed —which is rarely the case in SEMs. Likewise,
many criteria in graphical models are based on “sep-
arating” certain paths by conditioning on variables,
whereas no such conditioning-based criteria exist for
SEMs.

The present paper aims to make identification meth-
ods from the graphical model literature available to
the SEM field. We offer the following contributions:

e We note that Bollen (1996)’s latent-to-observed
(L20) transformation that transforms a latent
variable SEM into a model with only observed
variables can be used more generally in models
containing arbitrary mixtures of latent and ob-
served variables (Section 3).

e We present a graphical equivalent of L20 trans-
formation that allows us to apply known graphi-
cal criteria to SEMs (Section 4).

e We prove that Bollen’s MIIV approach (Bollen,
1996; Bollen and Bauer, 2004; Bollen et al., 2022)
is equivalent to a graphical L20 transformation
followed by the application of the graphical in-
strumental set criterion (Brito and Pearl (2002);
Section 5).

e We give examples where the graphical L20O trans-
formation approach can identify more param-
eters compared to the MIIV approach imple-
mented in the R package MIIVsem (Fisher et al.
(2019); Section 6).

Thus, by combining the L20 transformation idea from
the SEM literature with identification criteria from the
graphical models field, we bridge these two fields —
hopefully to the benefit of both.
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2 BACKGROUND

In this section, we give a brief background on basic
graphical terminology and define SEMs.

2.1 Basic Terminology

We denote variables using lowercase letters (x;), sets
and vectors of variables using uppercase letters (X),
and matrices using boldface (A). We write the car-
dinality of a set V as |V/|, and the rank of a matrix A
as rk(A). A mixed graph (or simply graph) G = (V, A)
is defined by sets of variables (nodes) V = {x1, ..., x,}
and arrows A, where arrows can be directed (x; — x;)
or bi-directed (x; < x;). A variable x; is called a parent
of another variable x; if x; — x; € A, or a spouse of x; if
x; © xj € A. We denote the set of parents of x; in G as
Pllg(x,‘).

Paths: A path of length k is a sequence of k variables
such that each variable is connected to its neighbours
by an arrow. A directed path from x; to x; is a path on
which all arrows point away from the start node x;.
For a path 7, let t[x; ~ x;] denote its subsequence from
x; to x;, in reverse order when x; occurs after x;; for ex-
ample, if T = x; < xp — x3 then nt[x; ~ 23] = xp = x3
and m[x; ~ x2] = x, — x1. Importantly, this definition
of a path is common in DAG literature but is different
from the SEM literature, where “path” typically refers
to a single arrow between two variables. Hence, a
path in a DAG is equivalent to a sequence of paths in
path models. An acyclic directed mixed graph (ADMG)
is a mixed graph with no directed path of length > 2
from a node to itself.

Treks and Trek Sides: A trek (also called open path)
is a path that does not contain a collider, that is, a
subsequence x; — x; < x;. A path thatis not openisa
closed path. Let 7t be a trek from x; to x;, then 7 contains
a unique variable ¢t called the top, also written as 7,
such that [t ~ x;] and nt[t ~ x;] are both directed paths
(which could both consist of a single node). Then we
call m := m[t ~ x;] the left side and ©™ := 7t[t ~ x;] the
right side of 1.2

Trek Intersection: Consider two treks 7t; and 71, then
we say that 7t; and 7t intersect if they contain a common
variable v. We say that they intersect on the same side
(have a same-sided intersection) if v occurs on 7~
and n}_ or 1’ and n? ; in particular, if v is the top of
i; or 7, then the intersection is always same sided.
Otherwise, 7t; and t; intersect on opposite sides (have an
opposite-sided intersection).

2In the literature, treks are also often represented as tu-
ples of their left and right sides.

t-separation: Consider two sets of variables, L and
R, and a set T of treks. Then we say that the tuple
(L, R) t-separates (is a t-separator of) T if every trek
in T contains either a variable in L on its left side
or a variable in R on the right side. For two sets of
variables, A and B, we say that (L, R) t-separates A and
B if it t-separates all treks between A and B. The size
of a t-separator (L, R) is |L| + |R].

2.2 Structural Equation Models

We now define structural equation models (SEMs) as
they are usually considered in the DAG literature (e.g.,
Sullivant et al., 2010). This definition is the same as the
Reticular Action Model (RAM) representation (McAr-
dle and McDonald, 1984) from the SEM literature. A
structural equation model (SEM) is a system of equations
linear in their parameters such that:

X=BX+E

where X is a vector of variables (both latent and ob-
served), B is a |X]| X |X| matrix of path coefficients, and
E = {e1,...,€x} is a vector of error terms with a posi-
tive definite covariance matrix ® (which has typically
many or most of its off-diagonal elements set to 0)
and zero means.® The path diagram of an SEM (B, ®)
is a mixed graph with nodes V = X U E and arrows
A={e - xliel,.. IXJUlx — x| Blij] #
0bUle; & €| i# j,®[ijl # 0}. We also write By,
for the path coefficients in B and ¢, for the diag-
onal entries (variances) in ®. Each equation in the
model corresponds to one node in this graph, where
the node is the dependent variable and its parent(s)
are the explanatory variable(s). Each arrow represents
one parameter to be estimated, i.e., a path coefficient
(e.g., directed arrow between latents and observed
variables), a residual covariance (bi-directed arrow), or
aresidual variance (directed arrow from error term to la-
tent or indicator). However, some of these parameters
could be fixed; for example, at least one parameter per
latent variable needs to be fixed to set its scale, and co-
variances between observed exogenous variables (i.e.,
observed variables that have no parents) are typically
fixed to their observed values. In this paper, we focus
on estimating the path coefficients. We only consider
recursive SEMs in this paper —i.e., where the path di-
agram is an ADMG - even though the methodology
can be generalized.

Sullivant et al. (2010) established an important con-
nection between treks and the ranks of submatrices of
the covariance matrix, which we will heavily rely on
in our paper.

3This can be extended to allow for non-zero means, but
our focus here is on the covariance structure, so we omit
that for simplicity.
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Theorem 1. Trek separation; (Sullivant et al., 2010, The-
orem 2.8) Given an SEM G with an implied covariance
matrix 3, and two subsets of variables A, B C X,

rk(2[A, B]) < min{|L| + |R| | (L, R) t-separates A and B}

where the inequality is tight for generic covariance matrices
implied by G.

In the special case A = {x1}, B = {x;}, Theorem 1 im-
plies that x; and x, can only be correlated if they are
connected by a trek. Although the compatible covari-
ance matrices of SEMs can also be characterized in
terms of d-separation (Chen and Pearl, 2014), we use
t-separation for our purpose because it does not re-
quire conditioning on variables, and it identifies more
constraints on the covariance matrix implied by SEMs
than d-separation (Sullivant et al., 2010).

3 LATENT-TO-OBSERVED
TRANSFORMATIONS FOR SEMS

A problem with IV-based identification criteria is that
they cannot be directly applied to latent variable pa-
rameters. The MIIV approach addresses this issue
by applying the L20 transformation to these model
equations, such that they only consist of observed
variables. The L20 transformation in Bollen (1996)
is presented on the LISREL representation of SEMs
(see Supplementary Material). In this section, we first
briefly introduce “scaling indicators”, which are re-
quired for performing L20 transformations. We then
use it to define the L20 transformation on the RAM
notation (defined in Section 2.2) and show that with
slight modification to the transformation, we can also
use it to partially identify equations. We will, from
here on, refer to this transformation as the “algebraic
L20 transformation” to distinguish it from the purely
graphical L20 transformation that we introduce later
in Section 4.

3.1 Scaling Indicators

The L20 transformation (both algebraic and graphi-
cal) uses the fact that any SEM is only identifiable if
the scale of each latent variable is fixed to an arbitrary
value (e.g., 1), introducing new algebraic constraints.
These constraints can be exploited to rearrange the
model equations in such a way that latent variables
can be eliminated.

The need for scale setting is well known in the SEM
literature and arises from the following lemma (since
we could not find a direct proof in the literature —
perhaps due to its simplicity — we give one in the
Appendix).

Lemma 1. (Rescaling of latent variables). Let x; be a vari-
able in an SEM (B, ®). Consider another SEM (B’, ®’)
where we choose a scaling factor o # 0 and change the
coefficients as follows: For every parent p of xi, By_,,, =
a™! By, for every child ¢ of x;, By . = a Bx,—c; for every
spouse s of Xi, P s = A Py,eos; and @, = a2y, Then
forall j,k #i, 3[j, k] = X'[], k].

If x; is a latent variable in an SEM, then Lemma 1
implies that we will get the same implied covariance
matrix among the observed variables for all possible
scaling factors. In other words, we need to set the scale
of x; to an arbitrary value to identify any parameters
in such a model. Common choices are to either fix
the error variance of every latent variable such that its
total variance is 1, or to choose one indicator per latent
and set its path coefficient to 1. The latter method is
often preferred because it is simpler to implement.
The chosen indicators for each latent are then called
the scaling indicators. However, note that Lemma 1
tells us that we can convert any fit based on scaling
indicators to a fit based on unit latent variance, so this
choice does not restrict us in any way.

3.2 Algebraic L20 Transformation for RAM

The main idea behind algebraic L20O transformation
is to replace each of the latent variables in the model
equations by an observed expression involving the
scaling indicator. As in Bollen (1996), we assume that
each of the latent variables in the model has a unique
scaling indicator. We show the transformation on a
single model equation to simplify the notation. Given
an SEM G on variables X, we can write the equation
of any variable x; € X as:

Xi =€ + Z ﬁxﬁx,.xj

xj€Co(x;)

where Co(x;) = {Co;(x;), Coo(x;)} is the set of covariates
in the equation for x;. Coj(x;) and Co,(x;) are the latent
and observed covariates, respectively. Since each la-
tent variable x; has a unique scaling indicator xj, we
can write the latent variable as x; = xj. —€x. Replacing

all the latents in the above equation with their scaling
indicators, we obtain:

Xi =€ + Z ﬁx/-—m,-(xj' - ex;) + Z ﬁxk—m,-xk

x;€Co(x;) x,€Co,(x;)

If x; is an observed variable, the transformation is com-
plete as the equation only contains observed variables.
But if x; is a latent variable, we can further replace x;
as follows:
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xj€Coy(x;) x,€Cop(x;)

As the transformed equation now only consists of ob-
served variables, IV-based criteria can be applied to
check for identifiability of parameters.

3.3 Algebraic L20 Transformations for Partial
Equation Identification

In the previous section, we used the L20 transforma-
tion to replace all the latent variables in the equation
with their scaling indicators, resulting in an equation
with only observed variables. An IV-based estimator
applied to these equations would try to estimate all
the parameters together. However, there are cases (as
shown in Section 6) where not all of the parameters of
an equation are identifiable. If we apply L20 transfor-
mation to the whole equation, none of the parameters
can be estimated.

Here, we outline an alternative, “partial” L20 trans-
formation that replaces only some of the latent vari-
ables in the equation. Assuming Coj(xi) C Coy(x;) as
the set of latent variables whose parameters we are
interested in estimating, we can write the partial L20
transformation as:

X; = €+ Z ,BXI_,X‘.(x;. - €x;‘.)+

x;€Coj(x;)

Z ﬁxk—mxk"" Z :sz—wixl

xx€Coy(x;)\Coj(x7) x1€Co(x;)

Similar to the previous section, we can further apply
L20 transformation for x; if it is also a latent variable.
As the parameters of interest are now with observed
covariates in the transformed equation, IV-based cri-
teria can be applied to check for their identifiability
while treating the variables in Co;(x;) \ Cof(xi) as part
of the error term.

4 GRAPHICAL L20
TRANSFORMATION

Having shown the algebraic L20 transformation, we
now show that these transformations can also be done
graphically for path diagrams. An important differ-
ence is that the algebraic transformation is applied
to all equations in a model simultaneously by replac-
ing all latent variables, whereas we apply the graphi-
cal transform only to a single equation at a time (i.e.,
starting from the original graph for every equation).
Applying the graphical transformation to multiple
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Figure 2: Example L20O transformations for path co-
efficients (a) from a latent to an observed variable; (b)
from an observed to a latent variable; (c) between two
latent variables.

equations simultaneously results in a non-equivalent
model with a different implied covariance matrix.

Given an SEM @G, the equation for any variable x; can
be written in terms of its parents in the path diagram
as: x; = Zxkepag(xj) Br—x; Xk + €x;- Using this equation,
we can write the relationship between any latent vari-
able x; and its scaling indicator xj as (where ‘Bx]._mj is
fixed to 1):

s_

XjZX] €x]‘_—

,Bxk—m’;xk (1)

xkel’ag(xj)\x]'

We use this graphical L20O transformation as follows.
Our goal is to identify a path coefficient By, in a
model G. If both x; and x; are observed, we leave the
equation untransformed and apply graphical identi-
fication criteria (Chen and Pearl, 2014). Otherwise,
we apply the graphical L20 transformation to G with
respect to x;, xj, or both variables — ensuring that the
resulting model G’ contains an arrow between two ob-
served variables x; and x;, where the path coefficient

,Bxl/__m; in G’ equals Brimy; IN G-
We now illustrate this approach on an example for

each of the three possible combinations of latent and
observed variables.

Latent-to-observed arrow: Consider the arrow [; —
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y3 in Figure 2a, and let  be the path coefficient of this
arrow. To perform the L20 transformation, we start
with the model equation involving f:

y3=ph+ ,By5—>y3y5 té€3

We then use Equation 1 to write the latent variable,
I in terms of its scaling indicator, y, as: I} = y» —
€ + By -y Y1, and replace it in the above equation to
obtain:

Y3 = BY2 = BByi—y Y1 + Pys—ys Y5 — Pe2 + €3

The transformation has changed the equation for ys,
which now regresses on the observed variables y», y1,
and ys, as well as the errors €; and €3. We make the
same changes in the graphical structure by adding the
arrows Y, — Y3, Y1 — Y3, €2 — Y3, and removing the
arrow I} — ys.

Observed-to-latent arrow: Consider the arrow y; —
l; in Figure 2b with coefficient 8. For L20 transforma-
tion in this case, we apply Equation 1 to replace /; in
the model equation I; = fy; + (; to obtain:

Ya = ﬁ]/l + ﬁy3—>y4y3 + ﬁy2—>y4y2 +C1+e

The equivalent transformation to the path diagram
consists of adding the arrows y; — y4, and Ci — ya,
and removing the arrows: [ = ysand y; — ;.

Latent-to-latent arrow: Consider the arrow I; — I,
in Figure 2c with coefficient . In this case, we again
apply Equation 1 to replace both /; and /; in the model
equation for [, = pl;+C,. Thisis equivalentto applying
two L20 transformations in sequence and leads to the
transformed equation:

Yo=Py1 —Pe1 + L + e

Equivalently, we now add the arrows y; — 1, (o —
Y2, and €1 — 1,. We also remove the arrows I — y»
and [} — I,.

5 MODEL-IMPLIED INSTRUMENTAL
VARIABLES ARE EQUIVALENT TO
INSTRUMENTAL SETS

After applying the L20 transformations from the pre-
vious sections, we can use either algebraic or graphical
criteria to check whether the path coefficients are iden-
tifiable. In this section, we introduce the Instrumental
set criterion (Brito and Pearl, 2002) and the MIIV ap-
proach from Bollen (1996) that precedes it, and show
that they are equivalent. Importantly, even though we
refer to the MIIV approach as an algebraic criterion to
distinguish it from the graphical criterion, it is not a

purely algebraic approach and utilizes the graphical
structure of the model to infer correlations with error
terms.

We will first focus on the instrumental set criterion
proposed by Brito and Pearl (2002). We state the cri-
terion below in a slightly rephrased form that is con-
sistent with our notation in Section 2:

Definition 1 (Instrumental Sets (Brito and Pearl,
2002)). Given an ADMG G, a variable y, and a subset
X of the parents of y, a set of variables I fulfills the instru-
mental set condition if for some permutation iy ... i of I
and some permutation x1 ... x; of X we have:

1. There are no treks from I to y in the graph G obtained
by removing all arrows between X and y.

2. Foreach j, 1 < j <k, there is a trek 1t; from I; to X;
such that for all i < j: (1) I; does not occur on any trek
7tj; and (2) all intersections between m; and Tt; are on
the left side of 1t; and the right side of 7t;.

Its reliance on permutation makes the instrumental set
criterion fairly complex; in particular, it is not obvious
how an algorithm to find such sets could be imple-
mented, since enumerating all possible permutations
and pathsis clearly not a practical option. Fortunately,
we can rewrite this criterion into a much simpler form
that does not rely on permutations and has an obvious
algorithmic solution.

Definition 2 (Permutation-free Instrumental Sets).
Given an ADMG G, a variable y and a subset X of the
parents of y, a set of variables I fulfills the permutation-
free instrumental set condition if: (1) There are no treks
from I to y in the graph G obtained by removing all arrows
leaving X, and (2) All t-separators (L, R) of I and X have
size > k.

Theorem 2. The instrumental set criterion is equivalent
to the permutation-free instrumental set criterion.

Proof. This is shown by adapting a closely related ex-
isting result (van der Zander and Liskiewicz, 2016).
See Supplement for details. ]

Definition 3 (Algebraic Instrumental Sets (Bollen
(1996), Bollen (2012))). Given a regression equation y =
B - X + €, where X possibly correlates with €, a set of vari-
ables I fulfills the algebraic instrumental set condition
if: (1)1 W e (2) rk(X[1, X]) = |X|, and (3) rk(Z[1]) = ||

Having rephrased the instrumental set criterion with-
out relying on permutations, we can now establish a
correspondence to the algebraic condition for instru-
mental variables — which also serves as an alternative
correctness proof for Definition 1 itself. The proof of
the Theorem is included in the Supplementary Mate-
rial.
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(a) (b)

Figure 3: (a) Example model following the structure
of Figure 1 with explicit error terms. (b) L20O trans-
formation for the model in (a) for identifying both
coefficients of the equation for y3 simultaneously. We
end up with the regression equation y3 ~ v, + y4 and
can identify both coefficients using y; and ys as in-
strumental variables.

Theorem 3. Given an SEM (B, ®) with path diagram
G = (V,A) and a variable y € V, let X be a subset of the
parents of y in G. Then a set of variables I C V fulfills
the algebraic instrumental set condition with respect to the
equation

y=B-X+e€; wheree = p+ey
pePag(y\X

if and only if I fulfills the instrumental set condition with
respect to X and y in G.

In the R package MIIVsem (Fisher et al., 2019) imple-
mentation of MIIV, all parameters in an equation of
an SEM are simultaneously identified by (1) applying
an L20 transformation to all the latent variables in
this equation; (2) identifying the composite error term
of the resulting equation; and (3) applying the alge-
braic instrumental set criterion based on the model
matrices initialized with arbitrary parameter values
and derived total effect and covariance matrices; see
Bollen and Bauer (2004) for details. Theorem 3 implies
that the MIIVsem approach is generally equivalent to
first applying the graphical L20 transform followed
by the instrumental set criterion (Definition 1) using
the set of all observed parents of the dependent vari-
able in the equation as X.

6 EXAMPLES

Having shown that the algebraic instrumental set cri-
terion is equivalent to the graphical instrumental set
criterion, we now show some examples of identifi-
cation using the proposed graphical approach and

compare it to the MIIV approach implemented in MI-
IVsem *. First, we show an example of a full equation
identification where we identify all parameters of an
equation altogether. Second, we show an example of
partial L20 transformation (as shown in Section 3.3)
that allows us to estimate a subset of the parame-
ters of the equation. Third, we show an example
where the instrumental set criterion fails to identify
any parameters, but the conditional instrumental set
criterion (Brito and Pearl, 2002) can still identify some
parameters. Finally, we show an example where the
parameters are inestimable even though the equation
is identified.

6.1 Identifying Whole Equations

In this section, we show an example of identifying
a whole equation using the graphical criterion. Let
us consider an SEM adapted from Shen and Takeuchi
(2001), as shown in Figure 3a. We are interested in
estimating the equation y3 ~ I; + I, i.e., parameters
A1z and Azs. Doing a graphical L20 transformation
for both these parameters together adds the edges
Yo — Y3, Ya — VY3, €2 — VY3, and €4 — VY3, and re-
moves the edges I — y3, and [ — y3, resulting in the
model shown in Figure 3b. Now, for estimating Ai3
and A,z we can use the regression equation y3 ~ y2+Ya,
with y1 and ys as the IVs. As y; and ys5 satisfy Defi-
nition 2, both the parameters are identified. Both of
these parameters are also identifiable using MIIVsem.

6.2 Identifying Partial Equations

For this section, we consider a slightly modified ver-
sion of the model in the previous section. We have
added a correlation between €; and €;, and have al-
lowed the latent variables, I; and I, to be uncorrelated,
as shown in Figure 4a. The equation y3 ~ 1 + I, is
not identified in this case, as ys is the only available
IV (Figure 4b). However, using the partial graphical
transformation for I, while treating /; as an error term
(Figure 4c), the parameter A;3 can be identified by us-
ing ys as the IV. As the R package MIIVsem always
tries to identify full equations, it is not able to iden-
tify either of the parameters in this case — although
this would be easily doable when applying the MIIV
approach manually.

6.3 Identification Based on Conditional IVs

So far, we have only considered the instrumental set
criterion, but many other identification criteria have

4In some examples, a manual implementation of the
MIIV approach can permit estimation of models that are
not covered by the implementation in MIIVsem
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Figure 4: (a) Adapted SEM from Shen and Takeuchi
(2001); modified by making I; and I, uncorrelated and
€1 and €, correlated. (b) Transformed model for esti-
mating y3 ~ I; + [. The equation is not identified as
ys is the only IV. (c) With partial L20 transformation,
A3 can be estimated using ys as the IV.

been proposed for DAGs. For example, we can gener-
alize the instrumental set criteria to hold conditionally
on some set of observed variables (Brito and Pearl,
2002). There can be cases when conditioning on cer-
tain variables allows us to use conditional IVs. This
scenario might not occur when we have a standard
latent and measurement level of variables, but might
arise in specific cases; for example, when there are
exogenous covariates that can be measured without
error (such as the year in longitudinal studies), or in-
terventional variables in experimental settings (such
as complete factorial designs) which are uncorrelated,
and observed exogenous by definition. Figure 5a
shows a hypothetical example in which the latent vari-
ables I; and [, are only correlated through a common
cause Y, which could, for instance, represent an ex-
perimental intervention. Similar to the previous ex-
ample, a full identification for y3 ~ [; + 15 + ys still does
not work. Further, because of the added correlation
between I; and I, partial identification is not possible
either. The added correlation between I; and I, opens
a path from ys to y3, resulting in y5 no longer being
an IV for y3 ~ ys. However, the conditional instru-
mental set criterion (Brito and Pearl, 2002) can be used
here to show that the parameter A3 is identifiable by
conditioning on y, in both stages of the IV regres-
sion. In graphical terms, we say that conditioning on
Ye d-separates the path between [; and I, (Figure 5b),
which means that we end up in a similar situation as
in Figure 4c. We can therefore use ys as an IV for the
equation y3 ~ y4 once we condition on ys. As the
MIIV approach does not consider conditional IVs, it
is not able to identify either of the parameters.

® @ ® @.

@O—@ —
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Figure 5: (a) Modified version of the Figure 4a model,
where [; and I, share an observed cause ys. A3 and
Az are still not simultaneously identified as no IVs
are available. (b) Even with partial transformation,
A»3 is no longer identified as ys5 is not an IV because
of the open paths y5 « I « ys — y3 and ys «
I < y¢ — I1 = y3. However, using the conditional
instrumental set criterion, we can identify A3 by using
ys as a conditional IV for the equation y3 ~ y4, as
conditioning on y¢ blocks the open paths.

6.4 Inestimable Parameters in Identified
Equations

In the previous examples, the L20 transformation cre-
ates a new edge in the model between two observed
variables that has the same path coefficient that we
are interested in estimating. But if the L2O transfor-
mation adds a new edge where one already exists,
the new path coefficient becomes the sum of the exist-
ing coefficient and our coefficient of interest. In such
cases, certain parameters can be inestimable even if
the transformed equation is identified according to
the identification criteria.

In Figure 6a, we have taken a model about the eco-
nomic effects of schooling from Griliches (1977). All
parameters in the equation of y4 are identifiable by
using y; and y, as the IVs. However, we get an in-
teresting case if we add two new edges y; — y3 and
Y2 — Y4 (Figure 6b): The L20 transformation for the
equation of y4 adds the edges €3 — ys and y3 — y4, as
shown in Figure 6¢c. But since the original model al-
ready has the edge i3 — ya, the new coefficient for this
edge becomes A4+ A34. The regression equation for vy
isstill: y4 ~ y3+y», and itis identified according to the
instrumental set criterion as y, and y; are the IVs for
the equation. But if we estimate the parameters, we
will obtain values for Ay4 and A4 + Azg. Therefore, Ayy
remains identifiable in this more general case, but A4
and Az4 are individually not identified. The graphical
L20 approach allows us to easily visualize such cases
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Figure 6: (a) An example model from Griliches (1977)
about the economic effects of schooling. The model
has 1 latent variable x; (Ability) with 4 observed vari-
ables y1 (IQ), y2 (Schooling), ys; (knowing how the
world works), and y4 (Income). (b) A slightly modi-
fied version of the model in Figure 6a where we add
two new edges y1 — ¥y, and y3 — y4. (c) L20 trans-
formed model for the equation of y4. The transformed
regression equation for yy is: y4 ~ y3 + y» but because
of the transformation, the coefficient of y3 has changed
to A14 + Az4. Because of this changed coefficient, even
though the equation is identified, it is not possible to
estimate either A4 or A3y individually.

after transformation.

7 DISCUSSION

In this paper, we showed the latent-to-observed (L20)
transformation on the RAM notation and how to use
it for partial equation identification. We then gave
an equivalent graphical L20 transformation which
allowed us to apply graphical identification criteria
developed in the DAG literature to latent variable
parameters in SEMs. Combining this graphical L20
transformation with the graphical criteria for param-
eter identification, we arrived at a generic approach
for parameter identification in SEMs. Specifically, we
showed that the instrumental set criterion combined
with the graphical L20 transformation is equivalent to
the MIIV approach. Therefore, the graphical transfor-
mation can be used as an explicit visualization of the
L20 transformation or as an alternative way to im-
plement the MIIV approach in computer programs.
To illustrate this, we have implemented the MIIV ap-
proach in the graphical-based R package dagitty (Tex-
tor et al., 2017) and the Python package pgmpy (Ankan
and Panda, 2015).

Our equivalence proof allows users to combine re-
sults from two largely disconnected lines of work. By
combining the graphical L20 transform with other
identification criteria, we obtain novel identification
strategies for LVSEMs, as we have illustrated using the

conditional instrumental set criterion. Other promis-
ing candidates would be auxiliary variables (Chen
et al., 2017) and instrumental cutsets (Kumor et al.,
2019). Conversely, the SEM literature is more de-
veloped than the graphical literature when it comes
to non-Gaussian models. For example, MIIV with
two-stages least squares estimation is asymptotically
distribution-free (Bollen, 1996), and our results imply
that normality is not required for applying the instru-
mental set criterion.
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A L20 Transformation for LISREL
Models

In this section, we show the LISREL notation of SEMs
and L20 transformation as presented in Bollen (1996).

A1 LISREL Notation

The LISREL notation of SEMs was first introduced
in the LISREL (LInear Structural Relation) software
(Joreskog and Sorbom, 1993). This notation is based
on the assumption that the models have an underlying
latent structure and that the only observed variables
are those that act as the measurement variables for
these latents. This assumption allows us to split the set
of model equations into two subsets representing: the
latent model and the measurement model as follows:

Latent Model:
n=Bn+T&+C
Measurement Model: (2)
Y=Ayn+e
X=AxE+06

Here, ) (§) is the sets of endogenous (exogenous) latent
variables, and Y (X) is the set of observed measure-
ment variables for n (£). B, I', Ay, and Ay are the
parameter matrices specifying the path coefficients in
the model. , ¢, 6 are the error vectors with the covari-
ance matrix ®;, ®., and ®; respectively. An example
of an SEM in LISREL notation along with its path
model representation is shown in Figure 7.

From the model equations, it appears that many pos-
sible variable relations cannot be specified directly.
For example, it is not clear how to specify direct re-
lations between two observed variables, between an
observed and latent variable, or an error correlation
between C and € terms. But these relations can be mod-
elled in the LISREL notation by making some simple
modifications to the model (Bollen, 1989). For exam-
ple, for adding a direct causal relation between two
observed variables, we can instead use two latent vari-
ables (with the same causal direction and path coeffi-
cient), and add the actual observed variables as single
measurement variables for each latent, fixing the mea-
surement errors for these relations to 0. This modifi-
cation transforms the model into having a latent and
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measurement levels which can be represented in the
LISREL notation.

moy _ [ ¢\ . _ 1 B2
(772>_<C2>’(I)C_<512 1 )

(% A 0 €1
Y2 Az 0 €2
ys | = | Az Az < n ) + | €3
Ya 0 Ay 12 €4
Ys 0 Aos €5
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Y1 ke, ; @Nﬁ’ Ys
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Y2 2
» A13 A23

Ys
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Figure 7: Example of an SEM in LISREL notation. The
parameters f3;; and A;; are the so-called path coefficients
on latent-latent and latent-observed arrows, respec-
tively. The bi-directed arrow represents a correlation
between the error terms that is allowed to be nonzero,
reflecting our belief that n; and 7, may be correlated.
(a) Model in equation form; (b) path diagram.

A.2 Algebraic L20 Transformation for LISREL
Models

We now introduce the L20 transformation as shown
in Bollen (1996). Let us assume that every latent vari-
able in the model has a unique scaling indicator that
is not an indicator of any other latent variable. Then
we can replace this latent variable by the difference of
its scaling indicator and the scaling indicator’s error
term. For instance, applying this to the latent vari-
able 11 with y; as its scaling indicator in the model in
Figure 7 we would get

m=Y1—€

Applying this L20 transformation to all latent vari-
ables in the Equation 2 simultaneously, we get:

Y1 =BY1+T'X;+¢1 —Bey —T'61 +C
Yz = Ay2Y1 — Ay2€1 + € (3)
X, = AX2X1 - AXzél + 0o

where X; and Y; are the scaling indicators for i and
& respectively. X, and Y, are the remaining observed
variables, X, = X\ X; and Y, = Y\ Y;. Ay, and
Ay, are submatrices of Ax and Ay with only rows
corresponding to X, and Y>. Similarly, the error terms
€; and 6; correspond to Y; and X; respectively.

As a result of applying L20 transformation to all the
latent variables, Equation 3 now only contains ob-
served variables and each of the individual equations
now resembles a standard regression equation. How-
ever, by construction, the error terms of these equa-
tions can be correlated with the covariates. This means
that applying a standard least-squares estimator will
provide biased estimates for the model parameters.
To get unbiased estimates we can instead use an In-
strumental Variable (IV) based estimator like 2-SLS
(Two-Stage Least Squares) (Bollen, 1996).

B Implied Covariance Matrix and Trek
Rule

In this section, we show how the implied covari-
ance matrix that we use in the paper is related to the
model parameters. We show this both in algebraic
and graphical terms.

SEMs can be rewritten to a canonical form that does
not require correlations between error terms. For this,
we introduce a new variable x;; for each upper trian-
gular nonzero entry ®[i, j] and set By, .y, = fr;—x; = 1
and ¢¢; = ®[i, jl. The implied covariance matrix X of a
canonical SEM is given by :

>=BT®»B"!

The trek rule (Sullivant et al., 2010) allows us to express
covariances in SEMs in graphical terms:

= ), ¢ ]

treks 7t from x; to x j arrows k—! on trek 7

Bt (4)

Here it is important to note that treks can contain the
same nodes twice; this is required for the trek rule to
work.

C Proofs

In this section, we give proofs for the theorems in the
paper.

C.1 Proof of Lemmal

Proof. We assume that the SEM has been transformed
to canonical form with no bi-directed arrows. The
covariance of two variables variables u, v # x;, is given
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by the trek rule (Equation 4). Therefore 3[u, v] will be
the same in G and G’ if no treks from u to v pass
through x;. Otherwise, let 7t be a trek in G’ from u to v
that includes x;. There are two cases. (1) x; is the top
of 1. Then © differs between G and G’ in the sub-trek
Xj < x; — x; with path coefficient product in G’ of
APy, - a7y, - APrioy, = Bri—x; - Px, - Prisx, Which is
the same as in G. (2) m has a sub-trek x; — x; — x;
with path coefficient product afy,—x, - a™l Bxi—x,» Which
again is the same as in G. O

C.2 Proof of Theorem 2

Proof. The first conditions in both criteria are equal,
so we prove the equivalence between the second con-
ditions.

=: Suppose the condition (2) of the instrumental set
criterion (Definition 1) is satisfied. We need to show
that no two paths 7; and 7t; can be t-separated by one
variable. Indeed, 71; and 7t; can only be t-separated by
one variable if they have a same-sided intersection v.
But this would contradict condition (2) of Definition 1.
Consequently, we need k variables to t-separate all
paths, and since these paths are a subset of the paths
from X to Z, we cannot t-separate these variable sets
with fewer paths either.

&: Suppose condition (2) of the trek-based instrumen-
tal set criterion (Definition 2) is satisfied. Then there
must exist sets of k treks from I to X; let 7tq,..., 7, be
one such set of treks with minimal total length. No
7; intersects any 7;,i # j, on the same side, other-
wise we could separate all paths with k — 1 variables.
Therefore, all intersections between the m; are oppo-
site sided. Define an ordering < on the 7; as follows:
n; < n; if m; and 7; intersect at a variable k, which is
on the left side of 7; and on the right side of 7t; (note
that k cannot be the top of 7; or 7;).

Suppose that the 7; contain a cycle of length [ with
respect to <, that is, ;, < ... < m; < m;,. Then we
can combine a prefix of each trek in the cycle with a
suffix of the next trek to create ! other treks between
the same variables that cannot be separated by fewer
than / variables, since they do not have same-sided
intersections. But these new paths would be shorter
than the ones on the cycle, a contradiction (see Figure 1
for an example). Hence such a cycle cannot exist, and
the paths can be linearly ordered with respect to <.
Any such ordering fulfills requirement (b) of condition
(2) in Definition 1.

Now assume requirement (a) is violated, that is, there
exist paths 7i; from Z; to X; and 7t; from Z; to X; such
that i < j and Z; also occurs on 7;. Then Z; cannot
be on the left side of 7; because then Z; would be a

X1¢—X2

Yie——Yoe—VY3 Ya

Z1 V4 Z3 Z4

(@)

X1——X2 X4

y1<—yz\y4

21 Z%) Z4

(b)

Figure 8: (a) Paths 1 = x1 < xp < x3 = 25 — Xy,
Ty =Y < Y2 < Y3 = Xp = Ygand 73 = 21 «
Zp < z3 = Yp — z4 Where My < mp < w3 < 131. (b)
By rearranging segments of these paths, we obtain
shorter paths T} = x1 &~ x2 > Y4, Wy = y1 < Y2 > 24
and 7} = z1 « 2 — x4 between the same variables
that intersect less then the original paths and therefore
cannot be f-separated by fewer variables.

same-sided intersection of 7i; and 7t;. But if Z; is on
the right side of n;, then © i< T, a contradiction. So
requirement (a) must be fulfilled as well.

C.3 Proof of Theorem 3

Proof. Condition 3 of the algebraic instrumental set
criterion holds by definition as we require the covari-
ance matrix @ to be positive definite (in other words,
we do not allow deterministic relations). It remains to
be shown that the first two conditions of both criteria
are equivalent. For condition (1), assume that some
i € I is not independent of some parent p of y, then
there must be a trek from 7 to p which can be extended
to y. Conversely, assume that there is a trek 7 from i
to y in Gx. Then 7 ends with an arrow p — y where
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p ¢ X, so I is not independent of the composite er-
ror term €. For condition (2), the equivalence follows
directly from Theorem 1. O



