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Abstract

Tree-based models are used in many high-stakes application domains such as
finance and medicine, where robustness and interpretability are of utmost impor-
tance. Yet, methods for improving and certifying their robustness are severely
under-explored, in contrast to those focusing on neural networks. Targeting this
important challenge, we propose deterministic smoothing for decision stump en-
sembles. Whereas most prior work on randomized smoothing focuses on evaluating
arbitrary base models approximately under input randomization, the key insight of
our work is that decision stump ensembles enable exact yet efficient evaluation via
dynamic programming. Importantly, we obtain deterministic robustness certificates,
even jointly over numerical and categorical features, a setting ubiquitous in the real
world. Further, we derive an MLE-optimal training method for smoothed decision
stumps under randomization and propose two boosting approaches to improve their
provable robustness. An extensive experimental evaluation on computer vision
and tabular data tasks shows that our approach yields significantly higher certified
accuracies than the state-of-the-art for tree-based models. We release all code and
trained models at https://github.com/eth-sri/drs.

1 Introduction

Tree-based models have long been a favourite for making decisions in high-stakes domains such
as medicine and finance, due to their interpretability and exceptional performance on tabular data
[1]]. However, recent results have highlighted that tree-based models are, similarly to other machine
learning models [2} 3]], also highly susceptible to adversarial examples [4-6], raising concerns about
their use in high-stakes domains where errors can have dire consequences.

While the robustness of neural models has received considerable attention [7H21]], the challenge
of obtaining robustness guarantees for ensembles of tree-based models has only been investigated
recently [4} 122} 23]. However, these initial works only consider numerical features and are based on
worst-case approximations, which do not scale well to the difficult £,,-norm setting.

This Work In this work, we address this challenge and present DRS, a novel (De-)Randomized
Smoothing approach, for constructing robust tree-based models with deterministic £,-norm guarantees
while supporting both categorical and numerical variables. Unlike prior work, our method is based
on Randomized Smoothing (RS) [24], an approach that obtains robustness guarantees by evaluating a
general base model under an input randomization ¢(x). However, in contrast to standard applications
of RS, which use costly and imprecise approximations via sampling and only obtain probabilistic
certificates, we leverage the structure of decision stump ensembles to compute their exact output
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Figure 1: Given an ensemble of 3 meta-stumps f; (piecewise constant univariate functions), each operating on a
different feature z; of an input @, we calculate the probability of every output under input randomization (a) to
obtain a distribution over their outputs (b). We aggregate these individual PDFs via dynamic programming to
obtain the probability distribution over the ensemble’s outputs (c). We can then compute the corresponding CDF
(d) to evaluate the smoothed stump ensemble exactly.

distributions for a given input randomization scheme and thus obtain deterministic certificates.
Our key insight is that this distribution can be efficiently computed by aggregating independent
distributions associated with the individual features used by the ensemble.

We illustrate this idea in Fig.[I} In (a), we show an ensemble of decision stumps over three features
(z1, z2, x3), aggregated to piecewise constant functions over one feature each (discussed in Section[3)
and evaluated under the input randomization ¢(), here a Gaussian. We can compute the independent
probability density functions of their outputs (PDFs) (shown in (b)) directly, by evaluating the
(Gaussian) cumulative density function (CDF) over the constant regions. Aggregating the individual
PDFs (discussed in Section [3), we can efficiently compute the exact PDF (c) and CDF (d) of the
ensemble’s output. To evaluate and certify the smoothed model, we can now simply look up the
median prediction and success probability, respectively, in the CDF, without requiring sampling.

DRS combines /,-norm certificates over numerical features, computed as described above, with
an efficient worst-case analysis for {y-perturbations of categorical features in order to, for the first
time, provide joint certificates. To train models amenable to certification with DRS, we propose a
robust MLE optimality criterion for training individual stumps and two boosting schemes targeting
the certified robustness of the whole ensemble. We show empirically that DRS significantly improves
on the state-of-the-art, increasing certified accuracies on established benchmarks up to 4-fold.

Main Contributions Our key contributions are:

* DRS, a novel and efficient (De-)Randomized Smoothing approach for robustness certifi-
cation, enabling joint deterministic certificates over numerical and categorical variables
(Section[3).

* A novel MLE optimality criterion for training decision stumps robust under input random-
ization and two boosting approaches for certifiably robust stump ensembles (Section [).

* An extensive empirical evaluation, demonstrating the effectiveness of our approach and
establishing a new state-of-the-art in a wide range of settings (Section 3)).

2 Background on Randomized Smoothing

For a given base model F': R — [C], classifying inputs to one of C' € Z>2 classes, Randomized
Smoothing (RS) is a method to construct a classifier G: R? — [C] with robustness guarantees. For a
randomization scheme ¢: R? — R% we define the success probability p, =Py g(a) [F(z')=y] and
G(x):=arg max,c ) Py- Depending on the choice of ¢, we obtain different certificates of the form:

Theorem 2.1 (Adapted from Cohen et al. [24], Yang et al. [25]). If P(F(¢(x)) = y) 1= py > Py
and py > 0.5, then G(x + 0) = y for all § satisfying ||6]|, < R with R := p(py).



In particular, we present two instantiations that we uti- Table 1: Randomized Smoothing guarantees.
lize throughout this paper in Table (1} where ®~! is the
inverse Gaussian CDF. Similar results, yielding other o(x) R:= P(Pfy)
£,-norm certificates, can be derived for a wide range . d 1

o]; input randomization schemes [25} 26]. Note that, by G @+ Unif{[=A A9 2)\(& B 2)
using more information than just p,, e.g., p. for the f> x +N(0,0I) o® (p,)

runner-up class ¢, tighter certificates can be obtained
(24, 27]]. Once p, is computed, we can directly calculate the certifiable radius R := p(p,). For a

broader overview of variants of Randomized Smoothing, please refer to Section[6]

For most choices of I and ¢, the exact success probability p, can not be computed efficiently.
Thus a lower bound p,, is estimated with confidence 1 — « (typically e = 10~2) using Monte Carlo
sampling and the Neyman-Pearson lemma [28]]. Not only is this extremely computationally expensive,
as typically 100 000 samples have to be evaluated per data point, but this also severely limits the
maximum certifiable radius (see Fig.[6) and only yields probabilistic guarantees. Additionally, if the
number of samples is not sufficient for the statistical test, the procedure will abstain from classifying.

In the following, we will show how considering a specific class of models ' allows us to compute
the success probability p, exactly, overcoming these drawbacks, and thus invoke p(p,) to compute
deterministic certificates over larger radii, orders of magnitude faster than RS.

3 (De-)Randomized Smoothing for Decision Stump Ensembles

Tree-based models such as decision stump ensembles often combine exceptional performance on
tabular data [1]] with good interpretability, making them ideal for many real-world high-stakes
applications. Here, we propose a (De-)Randomized Smoothing approach, DRS, to equip them with
deterministic robustness guarantees. For this, we first revisit decision stump ensembles and then show
that their structure permits an exact evaluation under isotropic input randomization schemes, such as
those discussed in Section[2] Finally, we propose joint certification over numerical and categorical
variables, as many practical tabular datasets often contain both variable types.

Stump Ensembles We define a decision stump as f,,, () = Y1,m + (Vrm — Y,m) 1z, >0, > With
leaf predictions 7y, Vr.m € [0, 1], split position v,,, and split variable jm; We construct unweighted
ensembles, particularly suitable for Smoothing [29], of M such stumps f;: R? + [0, 1] as

_ 1 M
fur(@) =57 D fm(®), M
m=1

and treat them as a binary classifiers 17, (4)-¢.5- While our approach is extensible to multi-class
classification by replacing the scalar leaf predictions y with prediction-vectors, assigning a score per
class, we focus on the binary case in this work.

Smoothed Stump Ensemble We now define a smoothed stump ensemble gj, along the lines of
Randomized Smoothing as discussed in Section by evaluating fj; not only on the original input x
but rather on a whole distribution of &’ ~ ¢(x):

G (@) := Por oy [fr (') > 0.5].

In this work, we consider randomization schemes ¢(x) that are

Vi1 =1 Vi2 = V2

fl(Ii) Y1 Vr,1 Yr,1

(i) isotropic, i.e., the dimensions of ' ~ ¢(x) are indepen- + i +
dently distributed, and (ii) permit an efficient computation of
their marginal cumulative distribution functions (CDF). This foxi) o 2 Tr2

includes a wide range of distributions, e.g., the Gaussian and - = =
Uniform distributions used in Table [T] and others commonly
used for RS [25]]. filz) i Yia | Vs

By denoting the model CDF as Fpy ¢ (2) = Py g [f(2') < /\
z], we can alternatively define gas as gas () := 1 — Faro(0.5),
which will become useful later. For a label y € {0, 1} we obtain
the success probability p, = |y — Fas,2(0.5)| of predicting y Figure 2: A meta-stump constructed
for a sample from ¢(x). from two stumps.
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Algorithm 1 Stump Ensemble PDF computation via Dynamic Programming

function COMPUTEPDF({(T',v);}L,, , ¢)
pdf(i][t] = 0fort € [M - A+ 1],i € [d]
pdf[0][0] =1 > For 0 stumps all probability mass is on 0
fori=1toddo
for j = 1to M; do
fort =0toM -A+1-1T;;do
pdf[i][t + Ty ;] = pdf[d][t + T 5] + pdf[i — 1[t] - Por wga)[vij—1 < 2} < v

return pdf

Meta-Stumps To evaluate p,, exactly as illustrated in Fig. [T} we group the stumps constituting an
ensemble by their split variable j,, to obtain one meta-stump f; per feature i. The key idea is that
outputs of these meta-stumps are now independently distributed under isotropic input randomization
(illustrated in Fig. [T] (b)), allowing us to aggregate them efficiently later on.

We showcase this in Fig. 2| where two stumps (f1 and f3) are combined into the meta-stump ﬁ
Formally, we have

fi(@) =" fmlx),  Ti={me[M]]|jm =i}, ©)
meZ;
define M; = |Z;| and rewrite our ensemble as fy/(x) = 4 25:1 fi(x;). Every meta-stump

can be represented by its split positions v; ;, sorted such that v; ; < v; j41, and its predictions

Yig = Y0t e+ YN0
CDF Computation Now we leverage the independence of our meta-stumps’ output distributions
under an isotropic input randomization scheme ¢ to compute the PDF of their ensemble efficiently
via dynamic programming (DP) (illustrated in Fig. [T] (c) and explained below). Given its PDF, we can
trivially compute the ensemble’s CDF Fy , allowing us to evaluate the smoothed model exactly

(illustrated in Fig.[T](d)). This efficient CDF computation constitutes the core of DRS.

~i.m on each of the resulting |Z;| + 1 regions, written as (v, v);.

In more detail, we observe that the PDF of a stump ensemble is the convex sum of exponentially
many (O((max; Z;)9)) Dirac-delta distributions. To avoid this exponential blow-up, we discretize all
leaf predictions v to a grid of A values (typically A = 100), when constructing the smoothed model
gur. For each ; ;, we define a corresponding I'; ; € {0,...,M; - A} such that y; ; = Fg] . Now,
we construct a DP-table, where every entry pdf[i] [t] corresponds to the weight of the Dirac-delta
associated with an output of ﬁ after considering the first ¢ meta-stumps (in any arbitrary but fixed
order). We show the PDF computation in Algorithm |l{and provide an intuition below. We initialize
pdf[0] [*] by allocating all probability mass to t = 0 (pdf[0][0]=1). Now, we compute pdf[i][*]
from pdf[i-1][*] by accounting for the effect of the i meta-stump as follows: The weight of the
Dirac-delta at t after considering i meta-stumps is exactly the sum over the weights of the Dirac-deltas
at t-I'; ; after i-1 meta-stumps, weighted with the probability p; ; := Pypr wg(a) [vij—1 < z} < v; ]

of the i meta stump predicting T'; ;- We compute p; ; as the probability of the randomized z; lying
between v; ;1 and v; ; (padded with —oo and oo on the left and right, respectively), as illustrated in
Fig.[2] After termination, the last line of the DP-table pdf [d][] contains the full PDF (see Fig.[I|c)).
Formally we summarize this in the theorem below, delaying a formal proof to App.[A.T}

Theorem 3.1. For z € [0,1], Fara(z) = L=MAL pat(d)[t] describes the exact CDF and thus

success probability py = P [far (@) = y] = |y — Far,2(0.5)| fory € {0,1}.

Note that the presented algorithm is slightly simplified, and we actually only have to track the range
of non-zero entries of one row of the DP-table. This allows us to compute the full PDF and thus
certificates for smoothed stump ensembles very efficiently, e.g., taking only around 1.2 s total for the
MNIST 2 vs. 6 task (around 2.000 data points and over 500 stumps).

Certification Recall from Sectionthat, given the success probability p,, robustness certification
for £,-norm bounded perturbations reduces to computing the maximal certifiable robustness radius
R = p(py). For all popular £,-norms, p (and its inverse p~'; used shortly) can be either evaluated

symbolically [24} 25]] or precomputed efficiently [30}|31]], such that the core challenge of certification



becomes computing (a lower bound to) p,,, which we solve efficiently via Theorem[3.1] Alternatively,
for a given target radius r, we need to check whether p, > p~!(r) by equivalently calculating

. - 1—p1t ify=1
G (@) = Frpa(2) o {p—1<pr) " 1&3:0’ ©

and checking gas »(2) > 0.5. This corresponds to asserting that class y is predicted at least z of
the time. Here, the inverse CDF ﬁﬂ}}m(z) can be efficiently evaluated using the step-wise F. M,z
computed via Theorem [3.1] We will see in Section [4]that this view is useful when training stump
ensembles for certifiability. Finally, we want to highlight that this approach can be used with all
common randomization schemes yielding certificates for different £,,-norm bounded adversaries.

Categorical Variables & Joint Certificates For practical applications, it is essential to handle both
numerical and categorical features jointly. To consider a categorical feature z; € {1,...,d;} in our
stump ensemble, we construct a d;-ary stump f;: [d;] — [0, 1] returning a value +; ; corresponding
to each of the d; categorical values and treated as a meta-stump with M; = 1 for normalization.

To provide certificates in this setting, we propose a novel scheme combining an arbitrary £,-norm
certificate of radius r,, over all numerical features, computed as discussed above, with an ¢, certificate
of radius 7 over all categorical features C, computed using an approach adapted from Wang et al. [23].
Conceptually, we compute the worst-case effect of every individual categorical variable independently,
greedily aggregate these worst-case effects, and account for them in our ensemble’s CDF.

Given a meta-stump’s prediction on a concrete sample ¢; = f;(z;) as well as its maximal and
minimal output u; and [;, respectively, we compute the maximum and minimum perturbation effect
to §; = “tand §; = LMW, respectively. Given the set of categorical features C, we can compute
the worst-case effect when perturbing at most rg samples as

drg = m%xz 0iy 8t R <1, RCC
iI€ER
Farx

_ 1.0-
ogously. Shifting the CDF, computed as above, by d and ¢ for =10
samples with labels y = 0 and y = 1, respectively, before com-
puting the success probability p,,, allows us to account for the ~ 0-5-
worst-case categorical perturbations exactly. We illustrate this
for a sample with y = 0 in Fig. [3] where we show the CDFs

by greedily picking the 7 largest &;. For 9,, we proceed anal-

obtained by all possible perturbations of at most ry categorical 03 05 07
variables, bounded to the right by those obtained by shifting the z

original by §,.,. Note that here no smoothing over the categorical ~Figure 3: CDF shifted by the effect of
variables is done or required, making inference trivial. categorical feature perturbations.

4 Training for and with (De-)Randomized Smoothing

To obtain large certified radii via smoothing, the base model has to be robust to the chosen randomiza-
tion scheme. To train robust decision stump ensembles, we propose a robust MLE optimality criterion
for individual stumps (Section [4.T)) and two boosting schemes for whole ensembles (Section 4.2).

4.1 Independently MLE-Optimal Stumps

To train an individual stump f,,(2) = Yi,m + (Yrom — Vim)Le;,, >0, its split feature jp,, split
position v,,, and leaf predictions v, m,, ¥r,m have to be determined. We choose them in an MLE-
optimal fashion with respect to the randomization scheme ¢, starting with v,,,, as follows: We consider
the probabilities p; ; (vy,) = meqb(mi)[w;’m < vy and p,; = 1 — p;i(vy,) of ) lying to the left or
the right of v,,, respectively, under the input randomization scheme ¢. To avoid clutter, we drop the
explicit dependence on vy, in the following. For an i.i.d. dataset with n samples (x;,y;) ~ (X,)),
we define the probabilities p¥ = 1y (ilyi=y} Pj.i Of picking the j € {l, r} leaf, conditioned on the

target label, and p; = p? + p} as their sum to compute the entropy impurity Hengopy [32]] as

p; p;
Henlropy = - Z Py Z ilog (pj) .

je{try  wefo,1} 7Y



We then choose the v,,, approximately minimizing Henyopy Via line-search. After fixing vy, this way,

we compute the MLE-optimal leaf predictions v/ and ¢ MLE as:

YPMEE APME = arg max PV | (X), fin] = argmax ¥ Earg(a,) log Plyi | @', fnl]
YV RN C—

n

=argmax Y prilog(l— ")+ prilog(l—7,)
YisYr Ze{llyq,:()}

+ Y pilog(m) + prlog(y,)
iefilyi=1)

= argmax p; log(1 — ) + py log(1 — v..) + p} log(v) + py log (),
Y Vr

where the second line is obtained by splitting the sum over samples by class and explicitly computing

the expectation. We solve the maximization problem by setting the first derivatives 8%1 and % of
our optimization objective to zero and checking its Hessian to confirm that
SMLE le MLE Py
W= PE = ot @)

pi +p} Py + 1
are indeed maxima. We show in App. that Wf”MLE, wf’MLE, and v,, are even jointly MLE-optimal,
when v,,, is chosen as the exact instead of an approximate minimizer of the entropy impurity.

Ensembling To train an ensemble of independently MLE-optimal decision stumps, we sequentially
train one stump for every feature j,,, € [d] and construct an ensemble with equal weights, rejecting
stumps with an entropy impurity Heqyopy above a predetermined threshold.

4.2 Boosting Stump Ensembles for Certifiable Robustness

Decision stumps trained this way maximize the expected
likelihood under the chosen randomization scheme. As-
suming (due to the law of large numbers) a Gaussian out-

put distribution, this corresponds to optimizing for the
median output, which determines the clean prediction. Clean
However, certified correctness at a given radius r is deter- Prediction class 1

mined by the prediction y/(x,r) = .F,;l_l,m(z(r)) atthe ;-
z(r) := |y — p~1(r)| percentile of the output distribution.
Where we call y the certifiable prediction, as certification
is now equivalent to checking y = 1,/(4 r)>0.5 (EqQ. ). E
This difference is illustrated in Fig. 4] where the clean 0055 05 0
prediction is correct (class 1) while the certifiable predic- z _

tion is incorrect. To align our training objective better Figure 4: Tnverse CDF F '

with certified accuracy, we propose two novel boosting

schemes along the lines of the popular TREEBOOST [33]]

and ADABOOST [34].

Gradient Boosting for Certifiable Robustness The key idea of gradient boosting is to compute the
gradient of a loss function with respect to an ensemble’s outputs and then add a model to the ensemble
that makes a prediction along this gradient direction. Implementing this idea, we adapt TREEBOOST
[33]] to propose ROBTREEBOOST: At a high level, we add stumps to the ensemble, which aim
to predict the residual between the target label and the current certifiable prediction. Concretely,
to add the m™ stump to our ensemble, we begin by computing the current ensemble’s certifiable
predictions y(r) at a target radius r and then defining the pseudo labels § = y — 3/ (r) as the residual
between the target labels y and the certifiable predictions ' (r). This yields a regression problem,
which we tackle by choosing a feature j,, and split threshold v,,, (approximately) minimizing MSE
impurity under input randomization before computing -; ,,, and 7. ,,, as approximate minimizers of
the cross-entropy loss over the whole ensemble. Please see App.[A.3|for a more detailed discussion
of ROBTREEBOOST.

class 0

Cert. Prediction
iat r(g =0.9)




Table 2: Natural accuracy (NAC) [%)] and certified accuracy (CA) [%)] with respect to ¢;- and ¢3-norm
bounded perturbations. Results for Wang et al. [23]] as reported by them. Larger is better.

Standard Training Wanget al. [23] Ours (Independent)  Ours (Boosting)

Perturbation Dataset Radius r
NAC NAC CA NAC CA NAC CA
BREASTCANCER 1.0 99.3 98.5 64.2 100.0 81.0 100.0 83.9
DIABETES 0.05 74.7 7217 68.2 76.0 69.5 779 721
£1-norm FMNIST-SHOES 0.5 95.0 87.6 67.8 85.8 83.3 87.2 84.2
MNIST 1vs. 5 1.0 99.1 95.5 83.8 96.6 94.1 99.3 98.1
MNIST 2 vs. 6 1.0 96.0 92.3 66.5 96.3 93.9 96.6 94.1
BREASTCANCER 0.7 99.3 91.2 60.6 100.0 752 100.0 82.5
DIABETES 0.05 74.7 - - 71.3 68.2 79.9 714
{2-norm FMNIST-SHOES 0.4 95.0 75.5 51.5 86.8 81.2 91.0 84.5
MNIST 1vs. 5 0.8 99.1 95.6 63.4 95.8 91.6 99.2 96.3
MNIST 2 vs. 6 0.8 96.0 86.3 23.0 96.3 89.6 96.3 89.6

Adaptive Boosting for Certifiable Robustness The key idea of adaptive boosting is to build an
ensemble by iteratively training models, weighted based on their error rate, while adapting sample
weights based on whether they are classified correctly. We build on ADABOOST [34] to propose
ROBADABOOST: We construct an ensemble of K stump ensembles via hard voting, where every
ensemble is weighted based on its certifiable accuracy. To train a new ensemble, we increase the
weights of all samples that are currently not classified certifiably correctly at a given radius . We
choose stump ensembles instead of individual stumps as base classifiers because single stumps often
can not reach the success probabilities under input randomization required for certification. To
compute the certifiable radius for such an ensemble Fr, we compute the certifiable radii R* of the
individual stump ensembles f,, sort them in decreasing order such that R* > R**1 and obtain the
largest radius R* such that the weights of the first k ensembles sum up to more than half of the total
weights. Please see App.[A.4]for a more detailed discussion of ROBADABOOST.

S Experimental Evaluation

In this section, we empirically demonstrate the effectiveness of DRS in a wide range of settings. We
show that DRS significantly outperforms the current state-of-the-art for certifying tree-based models
on established benchmarks, using only numerical features (Section [5.1)), before highlighting its novel
ability to obtain joint certificates on a set of new benchmarks (Section[5.2). Finally, we perform an
ablation study, investigating the effect of DRS’s key components (Section [5.3).

Experimental Setup We implement our approach in PyTorch [35] and evaluate it on Intel Xeon
Gold 6242 CPUs and an NVIDIA RTX 2080Ti. We compare to prior work on the DIABETES
[36], BREASTCANCER [37]], FMNIST-SHOES [38], MNIST 1 vs. 5 [39], and MNIST 2 vs.
6 [39]] datasets and are the first to provide joint certificates of categorical and numerical features,
demonstrated on the ADULT [37] and CREDIT [37] datasets. For a more detailed description of the
experimental setup, please refer to App. [B]

5.1 Certification for Numerical Features

In Table[2] we compare the certified accuracies obtained via DRS on ensembles of independently
MLE optimal stumps (Independent) or boosted stump ensembles (Boosting) to the current state-of-
the-art, Wang et al. 23], and standard training [40] using established benchmarks [23]].

Independently MLE Optimal Stumps We first consider stump ensembles trained without boosting
as described in Section4.T|and observe that DRS obtains higher certified accuracies in all settings
and higher natural accuracies in most. For example, on MNIST 2 vS. 6, we increase the certified
accuracy at an {5 radius of o = 0.8 from 23.0% to 89.6%, almost quadrupling it compared to Wang
et al. [23]], while also improving natural accuracy from 86.3% to 96.3%.

Boosting for Certified Accuracy Leveraging the boosting techniques introduced in Section |4.2}
ROBTREEBOOST for BREASTCANCER and DIABETES and ROBADABOOST for FMNIST-SHOES,
MNIST 1 vs. 5, and MNIST 2 vs. 6, we increase certifiable and natural accuracies even further in
most settings. For example, compared to our independently trained stump ensemble, we improve
the certified accuracy for MNIST 1 vs. 5 at an ¢;-radius of 71 = 1.0 from 94.1% to 98.1% and for
BREASTCANCER at an {y-radius of ro = 0.7 from 75.2% to 82.5%.



Table 3: Balanced certified accuracy (BCA) [%)] under joint ¢y- and ¢2-perturbations of categorical
and numerical features, respectively, depending on whether model uses categorical and/or numerical
features. The balanced natural accuracy is the BCA at radius » = 0.0. Larger is better.

‘ Categorical ) BCA without BCA with Numerical Features at £2 Radius 72
Dataset £o Radius rg .

Features Numerical Features 0,00 0.25 050 075 1.00 125 150

no - - 749 657 424 27.4 14.5 8.9 5.1

0 76.6 715 739 68.1 63.3 48.7 40.7 35.2

ADULT s 1 57.4 66.0 61.7 539 474 34.3 26.6 21.8
y 2 335 514 462 375 29.3 21.5 17.1 13.4

3 8.9 36.7 314 241 154 10.3 8.1 5.7

no - - 56.1 445 333 177 9.7 7.2 5.0

0 70.7 74.1 703 673 59.7 57.1 54.9 53.4

CREDIT es 1 48.2 52,7 4777 417 38.3 37.1 35.1 34.7
Y 2 26.4 29.3 260 23.8 19.2 16.8 13.5 13.0

3 7.8 13.6 103 7.8 4.9 44 39 34

5.2 Joint Certificates for Categorical and Numerical Features

In Table |3} we compare models using only numerical, Balanced Certified Accuracy [%]
only categorical, or both types of features with regards  100-
to their balanced certified accuracy (BCA) (accounting

for class frequency) at different combinations of ¢5- and 7
{y-radii for numerical and categorical features, respec-
tively. We observe that models using both categorical
and numerical features perform notably better on clean
data, highlighting the importance of utilizing and thus
also certifying them in combination. Moreover, categori-
cal features make the model significantly more robust to
{5 perturbations, e.g., at ¢o-radii > 0.75, they improve
certified accuracies, even when 2 categorical features
(of only 8 and 7 for ADULT and CREDIT, respectively)
are adversarially perturbed. We visualize this in Fig.[5] showing BCA over /»-perturbation radius and
confirm that the model utilizing only numerical features (dotted line) loses accuracy much quicker
with perturbation magnitude than the model leveraging categorical variables (solid lines). As we
are the first to tackle this setting, we do not compare to other methods but provide more detailed

experiments in App. [C.T]

— rg=0 — rp=2
rg =1 — =3

=== no categorical features

0.0 0.5 1.0 1.5 2.0
{5 Radius 19
Figure 5: Effect of {p-perturbations on fa-
robustness for CREDIT.

5.3 Ablation Study

We first illustrate the effectiveness of our derandomization approach, before demonstrating the benefit
of training with our MLE optimality criterion and investigating the effect of the noise level on DRS.

(De-)Randomized vs Randomized Smoothing In Fig. @, Certified Accuracy [%]
we compare DRS, (dotted line) and sampling-based RS
(solid lines), w.r.t. certified accuracy over ¢, radii. We
observe that the sampling-based estimation of the success
probability in RS significantly limits the obtained certifi-

— n =100

n = 1000
— n=10000
n = 100000

able radii. While this effect is particularly pronounced for o v
small sample counts n, increasing the maximum certifiable
radius, visible as the sudden drop in certifiable accuracy,
requires an exponentially increasing number of samples, i n 7 = 4‘0

making the certification of large radii intractable. DRS, in
contrast, can compute exact success probabili.t'ies .and' thus Figure 6: DRS vs. RS with various sample
determl'nlstlc guarantees for much larger. radii, yieldinga oo MINIST 1 vs. 5.

33.1% increase in ACR compared to using n = 100 000

samples. Additionally, DRS is multiple orders of magnitude faster than RS, here, only requiring
approximately 6.45 - 10~# s per sample. For more extensive experiments, please refer to App.
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MLE Optimality Criterion In Table[d] we eval-
uate our robust MLE optimality criterion (MLE) Table 4: Comparison of training with the exact
by comparing it to the standard entropy criterion distribution (MLE), randomly perturbed data
applied to samples drawn from the input randomiza- (Sampling), or clean data (Default) on BREAST-
tion scheme (Sampling) or the clean data (Default). CANCER for o = 1.

We observe that the ensemble trained on the clean
data (Default) suffers from a mode collapse when Method ACR

Certified Accuracy [%)] at Radius 7

) 00 025 05 0.75

evaluated under noise. In contrast, both approaches VLE Ous) 0675 1000 971 861 7
: . : : : urs . 8 . . .
considering the input randomization perform much Sampling 0567 993 956 752 38

better, with our robust MLE approach outperform- Default 0356 263 255 255 255
ing sampling by a significant margin, especially at
large radii. For more extensive experiments, please
refer to App.[C.3]

Effect of Noise Level In Fig. [/} we compare the Certified Accuracy [%]

certified accuracy over ¢;-radii for a range of dif- 100~ — a—05
ferent noise magnitudes A and ensembles of inde- ﬂ A=10
pendently MLE optimal stumps. We observe that 75- — A=20
at large perturbation magnitudes, we obtain stumps ) — if;g

that ‘think outside the (hyper-)box’, i.e., choose 50-
splits outside of the original data range, making

A =16.0

their ensembles exceptionally robust, even at large »

radii. In particular, we obtain a certifiable accuracy o- U

of 87.3% at radius r; = 4.0, while the state-of- 0.0 40 80 120 160
the-art achieves only 83.8% at r; = 1.0 [23]. We (1 Radius

provide more experiments for varying noise magni- Figure 7: Comparing DRS for various noise levels
tudes in App.[C.4] on MNIST 1 vs. 5.

6 Related Work

(De-)Randomized Smoothing Probabilistic certification methods [41},142,24]] are a popular approach
for obtaining robustness certificates for a wide range of tasks [31},43H46]), threat models [25H27, 130,
31,1431 147H53]], and robustness-accuracy trade-offs [54]]. These methods follow the general blueprint
discussed in Section[2)and consider arbitrary base classifiers, though specially trained [55H57]. While
recent work [29, 58] has found ensembles to be particularly suitable base classifiers, they use neural
networks and can thus, in contrast to our work, not leverage their structure. Specifically designed
randomization schemes [51} 53] enable efficient enumeration and thus a deterministic certificate for,
e.g., patch attacks or /1-norm perturbations. In contrast to these approaches, we permit arbitrary
isotropic continuous randomization schemes, allowing us to leverage comprehensive results on RS to
obtain robustness guarantees against a wide range of £,-norm bounded adversaries [25]].

Certification and Training of Tree-Based Models In the setting of /., robustness, where every
feature can be perturbed independently, various methods have been proposed to train [4} 22, [S9H61]]
and certify [22] [62H64] robust decision trees and stumps. However, ¢, robust models are still
vulnerable to other £, norm perturbations (65} [66]], which cover many realistic perturbations better
and are the focus of this work. There, the admissible perturbation of one feature depends on the
perturbations of all others, making the above approaches leveraging their independence not applicable.

On the other hand, Kantchelian et al. [67] discuss complete robustness certification of tree ensembles
in the £,-norm setting via MILP. However, this approach is intractable in most settings due to its Co-
NP-complete complexity. Wang et al. [23]] propose an efficient but incomplete DP-based certification
algorithm for stump ensembles based on over-approximating the maximum perturbation effect in
the £,-norm setting. While similarly fast as our approach, we show empirically in Section E] that
DRS obtains significantly stronger certificates. Wang et al. [23]] further introduce an incomplete
certification algorithm for tree ensembles, which is based on computing the distance between the
pre-image of all trees’ leaves and the original sample. As they report significantly worse results using
this approach than with stump ensembles, we omit a detailed comparison.



7 Limitations and Societal Impact

Limitations While able to handle arbitrary stump ensembles, and being extensible to arbitrary
decision trees (see App.[D), DRS can not handle arbitrary ensembles of decision trees. However,
as these have been shown to be significantly more sensitive to £,-norm perturbations than stump
ensembles [23]], we believe this limitation to be of little practical relevance. Further, like all Smoothing-
based approaches, we construct a smoothed model from a base classifier and only obtain robustness
guarantees for the former. In contrast to standard Randomized Smoothing approaches, we can,
however, evaluate the smoothed model exactly and efficiently.

Societal Impact As our contributions improve certified accuracy and certification radii while retaining
high natural accuracy, they could help make real-world Al systems more robust and thus generally
amplify both any positive or negative societal effects. Further, while we achieve state-of-the-art
results, these may not be sufficient to guarantee robustness in real-world deployment and could give
practitioners a false sense of security, leading to them relying more on our models than is justified.

8 Conclusion

We propose DRS, a (De-)Randomized Smoothing approach to robustness certification, enabling joint
deterministic certificates over numerical and categorical variables for decision stump ensembles by
leveraging their structure to compute their exact output distributions for a given input randomization
scheme. The key insight enabling this is that this output distribution can be efficiently computed by
aggregating independent distributions associated with the individual features used by the ensemble.
We additionally propose a robust MLE optimality criterion for training individual decision stumps
and two boosting schemes improving an ensemble’s certifiable accuracy. Empirically, we demonstrate
that DRS significantly outperforms the state-of-the-art for tree-based models in a wide range of
settings, obtaining up to 4-fold improvements in certifiable accuracy.
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