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ABSTRACT

In the era of foundation models, fine-tuning pre-trained models for specific down-
stream tasks has become crucial. This drives the need for robust fine-tuning meth-
ods to address challenges such as model overfitting and sparse labeling. Molecular
graph foundation models (MGFMs) face unique difficulties that complicate fine-
tuning. These models are limited by smaller pre-training datasets and more severe
data scarcity for downstream tasks, both of which require enhanced model gener-
alization. Moreover, MGFMs must accommodate diverse pre-training objectives,
including both regression and classification tasks. To better understand and im-
prove fine-tuning techniques under these conditions, we classify eight fine-tuning
methods into three mechanisms: weight-based fine-tuning, representation-based
fine-tuning, and partial fine-tuning. We benchmark these methods on downstream
regression and classification tasks across both supervised and self-supervised pre-
trained models in diverse labeling settings. This extensive evaluation provides
valuable insights and informs the design of a refined robust fine-tuning method,
DWiSE-FT. This approach combines the strengths of simple post-hoc weight in-
terpolation with more complex weight ensemble fine-tuning methods, delivering
improved performance across both task types while maintaining the ease of use
inherent in post-hoc weight interpolation.

1 INTRODUCTION

In recent years, foundation models (Bommasani et al., 2021; Zhou et al., 2023) have achieved
remarkable success in learning high-quality, general-purpose representations of images and text
through pre-training on diverse datasets (Radford et al., 2021; Kirillov et al., 2023; Ramesh et al.,
2022; Touvron et al., 2023; Bubeck et al., 2023; Zhao et al., 2023). To adapt these pre-trained mod-
els for downstream applications, additional training on task-specific data, known as fine-tuning, is
often required. However, vanilla fine-tuning frequently encounters performance challenges, includ-
ing model overfitting (Howard & Ruder, 2018; Li et al., 2020a; Kornblith et al., 2019), catastrophic
forgetting of pre-trained knowledge (Lee et al., 2022; Li et al., 2019b; Xuhong et al., 2018; Lubana
et al., 2022), and distribution shifts between fine-tuned and test samples, which can lead to nega-
tive transfer (Wang et al., 2019; Chen et al., 2019). These challenges highlight the need for robust
fine-tuning strategies (Shen et al., 2021; Wortsman et al., 2022; Kumar et al., 2022; Shu et al., 2023;
Andreassen et al., 2021; Kirichenko et al., 2022).

Recently, the advantages of foundation models have been extended to various scientific applica-
tions (Golling et al., 2024; Leung & Bovy, 2024; Nguyen et al., 2023). Among these, molecular
graph foundation models (MGFMs) have gained significant attention for their promising potential in
biochemistry (Hu et al., 2020a; Hou et al., 2022b; Xia et al., 2023b; Suresh et al., 2021; Shoghi et al.,
2023; Beaini et al., 2023; Zheng et al., 2023; Ross et al., 2022; Rong et al., 2020; Mao et al., 2024).
While MGFMs exhibit scaling behaviors similar to foundation models in other domains (Chen et al.,
2024), they face unique challenges related to data and tasks.

A primary challenge stems from the significantly smaller pre-training datasets in this domain, typi-
cally consisting of at most O(100M ) molecular samples, compared to the billions of samples used in
other domains (Sun et al., 2022). This limitation restricts the parameter scale of MGFMs (O (100M)
parameters) and their generalization capacity (Wang et al., 2024; Akhondzadeh et al., 2023). Fur-
thermore, downstream tasks in this domain often involve limited data for fine-tuning, with datasets
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containing only tens or a few hundred labeled samples (Wijaya et al., 2024), exacerbating the dif-
ficulty of achieving robust model generalization. In addition to data constraints, many downstream
tasks, such as molecular property prediction, are regression-based (Wu et al., 2018; Hou et al.,
2022a). These tasks require models to capture fine-grained numerical patterns, which presents a
distinct requirement compared to the coarse-grained feature reliance typical in classification tasks in
CV and NLP. These factors collectively highlight the need for a careful examination of fine-tuning
strategies for MGFMs and their appropriate improvement.

To address this gap, we introduce ROFT-MOL, a benchmark designed to evaluate existing fine-
tuning methods across diverse molecular property prediction tasks, including 8 classification and
4 regression tasks. To investigate the factors influencing the fine-tuning performance of MGFMs,
we categorize 8 finetuning (FT) methods into 3 distinct mechanisms: 1) weight-based FT, which
ensembles the weights from both pre-trained and fine-tuned models, 2) representation-based FT,
which regularizes the proximity between pre-trained and fine-tuned latent data representations, and
3) partial FT, which optimizes only a subset of the pre-trained model’s weights while keeping the
rest frozen. To simulate the challenges encountered during the pre-training and fine-tuning stages
of MGFMs, we evaluate models from both self-supervised and supervised pre-training, and assess
their fine-tuning performance in few-shot and out-of-distribution settings. We summarize high-level
insights as follows, with further detailed results presented in Sec. 4:

* Different fine-tuning methods: For self-supervised pre-trained models, weight-based fine-tuning
often results in better performance by effectively integrating general knowledge from pre-training
with task-specific knowledge from fine-tuning [Finding 1]. On the other hand, partial fine-tuning
typically leads to underfitted molecular representations in few-shot fine-tuning, particularly for
regression tasks [Finding 2]. For supervised pre-trained models, representation-based fine-tuning
performs well due to the preservation of domain-relevant pre-trained representations [Finding 4].

* Classification vs. Regression downstream tasks: Due to the need for more precise numerical
labels and finer molecule modeling, MGFMs generally face less risk of overfitting in regression
tasks compared to classification tasks, particularly in the few-shot setting [Q1].

* Supervised pre-trained vs. Self-supervised pre-trained models: In few shot fine-tuning, su-
pervised pre-training, which often involves more domain-relevant tasks, generally yields better
finetuning performance than self-supervised pre-training based on more generic synthetic tasks.
This holds true even when the pre-training tasks do not align well with the finetuning tasks. In con-
trast, for non-few-shot settings, supervised pre-training performs better only when the supervised
pre-training tasks closely align with the downstream tasks [Q2].

Inspired by Finding 1 and Q1, we propose a new method, DWIiSE-FT. We observe that simple post-
hoc weight interpolation between pre-trained and fine-tuned model weights (WiSE-FT) performs
well for classification tasks but struggles with regression tasks. In contrast, a more complex weight
ensemble approach (L2-SP) achieves better performance in regression tasks, though it comes with
the cost of increased tuning complexity. DWiSE-FT combines the strengths of WiSE-FT and L2-SP,
providing strong performance for both task types while maintaining the plug-and-play ease of post-
hoc interpolation. The success of DWiSE-FT illustrates how this benchmark can provide valuable
insight for fine-tuning strategies for MGFMs.

2 PRELIMINARIES

As preliminaries, we briefly introduce representative methodologies used in pre-training and fine-
tuning for molecular graph foundation models.

Self-supervised Pre-training strategies have been proven to be effective in generating transfer-
able molecular representations for downstream tasks (Zhao et al., 2024). In a high level, they can
be divided into reconstruction methods and contrastive methods. The generative-based strategies
adopt mask-based graph reconstruction by utilizing graph autoencoders (Hou et al., 2022b; Tan
et al., 2023; Wang et al., 2017; Pan et al., 2018), context predictions (Hu et al., 2020a; Rong et al.,
2020) and generative language model pre-training (Hu et al., 2020b; Zhang et al., 2021b). On the
other hand, contrastive-based methods aim for maximizing the similarity between perturbed instance
pairs (Velickovi¢ et al., 2018; Suresh et al., 2021; You et al., 2020; Xia et al., 2023a; Wang et al.,
2022; Zhu et al., 2022; You et al., 2021; Qiu et al., 2020; Li et al., 2022; Xu et al., 2021). Moreover,
the advancement of language models has prompted numerous studies to employ multi-modal frame-
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works. These approaches harness language models to enhance molecular understanding through
techniques such as cross-modal contrastive learning and cross-modal alignment (Su et al., 2022; Liu
et al., 2023a; Seidl et al., 2023; Liu et al., 2023b). In this work, we select GraphMAE (Hou et al.,
2022b) as the representative of the recontruction-based pre-trained model, which focuses on masked
feature reconstruction with scaled cosine error that enabled robust training. Regarding the con-
trastive pre-trained model, we choose Mole-BERT (Xia et al., 2023a) that combines the node-level
masked atom modeling to predict the masked atom tokens and the graph-level contrastive learn-
ing through triplet loss and contrastive loss. Lastly, we choose MoleculeSTM (Liu et al., 2023a)
as the representative of multi-modal molecule structure-text model that jointly learning molecules’
chemical structures and textual descriptions via a contrastive learning strategy.

Supervised Pre-training. Recently, in order to leverage more diversified datasets and prediction
tasks, researchers have started exploring the capability of supervised pre-training with multi-task
learning for molecular representations (Gasteiger et al., 2022; Shoghi et al., 2023; Beaini et al.,
2023). We adopt the pre-trained model by being trained on multi-task labeled samples in the super-
vised manner from the Graphium library (Beaini et al., 2023).

The overall goal for fine-tuning is to adapt the pre-trained model to downstream applications. Specif-
ically, given a pre-trained GNN encoder fg with parameters 0 initialized from the pretrained param-
eters Oy, fine-tuning optimizes the encoder fg and an additional prediction head g4 with parameters
¢ over downstream molecules {(G;, ;) }}_,. The vanilla fine-tuning version, full-FT, optimizes the
entire model weights following:

N
{rgig} L(gp © fo(Gi),y:), where @ is initialized as . (D
=1
Here, £ denotes the loss function for prediction tasks. As discussed, there are advanced fine-tuning
strategies proposed on top of the full-FT framework. As shown in Fig. 1, we group them into three
categories based on their mechanisms and benchmark representative methods for each category.
More fine-tuning methods that fall into each category or others will be discussed in Appendix C.

e Partial model FT strategies only optimizes partial weights of the pre-trained model. Namely, a
subset of weights within {0, ¢} will be updated following the same objective as Eq. 1.

t Linear Probing (LP) only trains the additional prediction head g during the FT.

1 Surgical FT (Lee et al., 2022) updates only partial layers within the encoder. For instance, we can
update the weights for k-th layer of the GNN encoder as ming(g), 4} ZZI\; L(ge © fo(Gi), vi),
where k is the hyperparameter that can be tuned.

1 LP-FT (Kumar et al., 2022) aims to address the issue of pre-trained feature distortion during the
full-FT process. It first performs the LP step to the prediction head g4 while keeping the encoder
fe with fixed pre-trained parameters 8, followed by applying full-FT with the tuned prediction
head.

e Weight-based FT strategies mainly update the entire model weights through combining pre-
trained model weights and fine-tuned model weights.

1 WISE-FT (Wortsman et al., 2022) linearly interpolates between pre-training parameters 6. and
fine-tuning parameters Oy using a mixing coefficient v, to get the interpolated GNN fg,, with
weights Oin = (1 — @) - Opre + ¢ - O We first perform full-FT to obtain the adapted encoder fg,
and classifier g4, then apply post-hoc weight ensembling to get fg,,, with final predictions given
by g¢ © fe,,(Gi).  is tuned as a hyperparameter to control the weight ensemble.

T L2-SP (Xuhong et al., 2018) regularizes the fine-tuning model weights @ closer to the pre-trained
weights Oy by (6, @) = 5[0 — Ope||3. We optimize for 6 and ¢ by combining the prediction
loss from Eq. 1 and Q(6, ¢) with tunable trade-off coefficient 4.

o Representation-based FT methods mainly regulate the latent representation space during FT.

1 Feature-map (Li et al., 2019b) adds distance regularization between the latent representations of
pre-trained and fine-tuned models to the Full-FT loss. The regularization is defined as Q(0) =

) Zi\; 311fo(Gi) — fo,.(Gi)||3, where § controls the regularization strength.
1 BSS (Chen et al., 2019) aims at resolving the negative transfer issue through eliminating the spec-

tral components corresponding to small singular values that are less transferable. The regulariza-
tion is done as QU(F) = § Y1, 02, where F' = [fo(Go), -+ , fo(Gb)] is the feature matrix of a
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Figure 1: The overall framework of fine-tuning strategies evaluated in our benchmark, ROFT-MOL,
and the proposed novel method, DWiSE-FT. (I) The GNN encoder is pre-trained on a large database
by the pre-training objective Ly, and fine-tuned on the downstream dataset by Ly as stated in Eq. 1.
1) Partial-FT, 2) Weight-based FT, and 3) Representation-based FT achieve robust fine-tuning by
freezing partial pre-trained model weights, regularizing model weights and latent representations,
respectively. (II) The refined method DWiSE-FT that combines the strength of simple post-hoc
weight interpolation with more complex weight ensemble, demonstrating the improved performance
while maintaining easy usage.

batch of graphs and o_; are the i-th smallest singular values obtained from the SVD of F'. We
can tune k and § to determine the number of singular values to penalize and the degree of penalty.

3 EXPERIMENTAL SETTINGS

In this section, We briefly introduce the experimental settings in this work, including the selection
of foundation models and datasets, the strategies of dataset splitting and fine-tuning training size
configurations, as well as evaluation metrics. The selection of fine-tuning algorithms can be seen in
Sec. 2. More detailed experimental settings like hyperparameters tuning and training implementa-
tions can be found in Appendix E.

Foundation Models. For self-supervised pre-training, we adopt the open-source pre-trained check-
points from Mole-BERT and GraphMAE both of which are pre-trained over 2M molecules sam-
pled from the ZINC15 database (Sterling & Irwin, 2015), following previous works (Hu et al.,
2019). For MoleculeSTM, we utilize the publicly available pre-trained checkpoint. This model is
initially trained on PubChemSTM, a large multimodal dataset comprising over 280,000 chemical
structure—text pairs contructed from the PubChem database (Kim et al., 2021). For supervised pre-
training, we use the model from the Graphium (Beaini et al., 2023) library, which gets pre-trained
on the Toymix dataset provided in this library. Here, we consider adopting the Toymix dataset
mainly due to the data-processing computation constraints and to keep a more fair comparison to
the other self-supervised pre-trained models in terms of pre-training model and data scale. The
ToyMix dataset (Beaini et al., 2023), totally 154K molecules, contains QM9 (Ramakrishnan et al.,
2014), Tox21 (Wu et al., 2018) and Zinc12K (Dwivedi et al., 2023). Specifically, QM9 consists
of 19 graph-level quantum properties associated to an energy-minimized 3D conformation of the
molecules. Zinc12K is to predict the constrained solubility which is the term logP — SA — cycle
(octanol-water partition coefficients, logP, penalized by the synthetic accessibility score, SA, and
number of long cycles, cycle). The pre-trained model size is around 2M parameters and the GIN
backbone is known as having same expressive power as 1-WL test, which cannot distinguish non-
isomorphic graphs that 1-WL fails to differentiate (Xu et al., 2018).

Downstream Datasets. We use 8 classification and 4 regression datasets for downstream task eval-
uation as follows. Detailed statistics for the 12 downstream tasks are in Appendix D.

1 Classification. The BBBP (Martins et al., 2012) dataset measures if a molecule will penetrate
blood-brain barrier. All three datasets, Tox21, ToxCast (Richard et al., 2016), and ClinTox (Gayvert
et al., 2016) are related to toxicity qualitative measurements. The Sider (Kuhn et al., 2016) dataset
stores qualitative results of different types of adverse drug reactions. The MUV dataset (Rohrer &
Baumann, 2009) contains 17 challenging tasks and is specifically designed for validation of virtual
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screening techniques. The HIV, collected from Zaharevitz (2015), provides qualitative activity re-
sults of the molecular ability to inhibit HIV replication. BACE (Subramanian et al., 2016) contains
qualitative binding results for a set of inhibitors of human 3-secretase 1 (BACE-1).

1 Regression. Esol (Delaney, 2004) is a standard regression dataset which measures aqueous sol-
ubility of molecules. The Lipo dataset is a subset of ChEMBL (Gaulton et al., 2012) measur-
ing the octanol-water partition coefficient. Cep is a subset of the Havard Clean Energy Project
(CEP) (Hachmann et al., 2011), which estimates the organic photovoltaic efficiency. Malaria (Gamo
et al., 2010) measures the drug efficacy against the parasite that causes malaria.

Dataset Splits. For each downstream dataset, we experiment with random, scaffold, and size splits
to create the Train/Val/Test subsets. Specifically, the random splitting shuffles the data, maintain-
ing the Train/Val/Test sets as in-distribution (ID). The other two splitting methods simulate out-of-
distribution (OOD) challenges in real-world applications. For scaffold splitting, we follow prior
works (Ramsundar et al., 2019), ensuring structural differences in molecular scaffolds across splits.
Size splitting, following (Zou et al., 2023), arranges molecules in ascending order by size, evaluating
model generalization across different molecule sizes.

Number of fine-tuning samples. In practice, molecular property prediction tasks can have very
limited experimentally-validated data, e.g. with less than 100 samples (Wijaya et al., 2024). Thus,
we consider both non-few-shot and few-shot settings to better simulate the label scarcity issue. In
the non-few-shot setting, we use all available samples from the splitted train set. In the few-shot
settings, we sample subsets of 50, 100, and 500 molecules from the Train set for fine-tuning, while
keeping the Val/Test sets unchanged to ensure a fair comparison. Note that we exclude MUYV, Tox21,
and ToxCast datasets for the fewshot settings, as we cannot randomly select training samples while
ensuring that all tasks have a specified number of labels simultaneously, due to the severe label
scarcity issues in these datasets.

Evaluation. We use AUC to evaluate the performance for classification datasets and RMSE for
regression datasets. We report the model performance over 5 random seeds and the test performance
are reported based on the best validation performance. The AVG, AVG-F, AVG-R denote the average
metrics, average metrics without max and min values, and average rank over all the datasets for each
evaluated method, respectively.

4 RESULTS AND ANALYSIS

We put experimental results of Mole-BERT (self-supervised) and Graphium (supervised) models
under the non-few-shot setting to Table 1 and 2, and visualize results of these two models under the
few-shot-50 and 100 settings to Fig. 2. The results of few-shot-500 settings are put in Appendix F
due to the limited space. Also, the results of the Graph-MAE and MoleculeSTM model, which
we find follow similar trends with Mole-BERT, are put in Appendix F. In each section, we begin
by analyzing how different pre-training objectives influence the downstream finetuning and then
present the findings after accessing different fine-tuning strategies across each experimental setting.

4.1 SELF-SUPERVISED PRE-TRAINED MODELS

Q1I: Can self-supervised pre-training help downstream molecular property prediction tasks?

(1a) Molecular representations learned from self-supervised pre-training are not informative
enough for downstream tasks. In particular, regression tasks require more task-specific knowl-
edge from downstream fine-tuning compared to classification tasks.

As shown in Tables 1 and 2, as well as Fig. 2a and 2c, LP is consistently the worst performing
method for self-supervised pre-trained models across all data splits, even under the few-shot fine-
tuning. This contrasts the observations in CV where LP demonstrates robust OOD performance by
preserving high quality and generalizable features from pre-trained embeddings (Wortsman et al.,
2022; Kumar et al., 2022). We attribute this to the misalignment between general-purpose represen-
tations produced by self-supervised pre-training and the features required by the specific molecular
tasks. Consequently, relying solely on tuning the classifier g4 is insufficient to extract meaningful
predictions from these non-informative representations.
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Table 1: Robust fine-tuning performance on 8 classification datasets (AUC metrics) in the Non-
Fewshot setting, evaluated across 3 dataset splits (RANDOM, SCAFFOLD, SIZE) and 2 pre-training
strategies (SELF-SUPERVISED, SUPERVISED). AVG, AVG-F, AvG-R denote the average AUC met-
rics, average AUC without max and min values, and average rank over all the datasets for each
evaluated method, respectively. Standard deviations across five replicates are shown in parentheses.
We bold and underline the best and second-best performances in each scenario.

SPLIT METHODS CLINTOX BBBP BACE HIV MUV SIDER Tox21 TOXCAST AVG  AVG-F  AVG-R
SELF-SUPERVISED PRE-TR NG (MOLE-BERT)
FuLL-FT 87.17+0.28 93.52 +0.37 89.27 4+ 0.21 85.98 + 0.44 85.34 +0.82 61.94 +£0.99 83.45 +0.34 74744035 82.68 84.33 4.62
LP 84.80 £0.41 90.26 £ 0.17 77.314+0.18 79.09+0.38 88.38+0.71 61.17+0.20 83.90 + 0.09 72.86+0.17 79.72  81.06 6.12
SURGICAL-FT  90.14 £1.61 94.19+0.35 892040.16 86.81+0.24 87884120 61.60+046 84.03+0.30 74.66+£0.22 83.56 85.45 2.62
RANDOM LPVFT- 87.65 93.43 +0.40 90.17‘ +0.16 85.70 % 0.?9 8(? + 0,02‘ 63.14+0.30 83.84 £ 0.60 73.65 +0.22
WISE-FT p 94.15 + 0.46 89.26 + 0.58 85.89 + 0.57 86.38 4 1.56 62.13 +0.62 1
L*-SP g 93.81 + 0.49 89.11 4 0.65 82.39 £ 0.50 83.724+0.19 60.92 £ 0.59
FEATURE-MAP  86.36 & 2.49 92.01 +£0.19 81.15 4 0.26 80.66 + 0.64 86.49 + 0.69 61.62 4 0.41 73.20 +£0.23
BSS 87.61 + 0.66 93.74 £ 0.51 89.38 4+ 0.54 86.42 + 0.36 80.20 + 0.44 62.36 + 0.65 75.67 +0.32
FULL-FT 77.70 £1.50 80.12 4+ 1.07 77.00 +0.80 80.50 + 0.81 63.47 +0.77 78.31£0.28 65.18 +0.35
LP 66.49 + 0.46 5.42 £ 0.26 78.70 £ 0.27 79.27£0.48 62.01 £ 0.60 78.12£0.15 64.75 4 0.17
SURGICAL-FT ~ 68.19 £+ 1.58 67.70+£0.54 84.24+0.37 81.60 +1.02 64.61 4+ 0.31 78.34 £0.10 65.21 +0.28
SCAFFOLD LP-FT 70.354+0.99 68.30+0.65 81.90+0.70 76.69 £ 0.40 77.65 + 1.15 63.38 £ 0.67 77.60 £0.19 65.32 4+ 0.24
WISE-FT 73.59 +3.74 66.52 + 3.29 82.734+0.87 77.21+0.69 81.92+0.94 63.62+0.62 78.05+0.28 65.41 4+ 0.25
L-sP 73.95+ 1.86 67.86 + 1.68 81.47 4 0.80 76.63 + 0.56 77.21+0.72 65.27+0.45 78.66+0.17 63.55+0.16
FEATURE-MAP  70.65 + 0.76 65.41 37 73.44 4023 76.71+0.26 64.35 £0.17 76.61£0.39 65.77£0.15
76.07 4 3.23 67.47 £ 3.80 80.98 & 1.27 77.12£0.86 63.88 £ 0.80 78.19 £ 0.40 65.00 & 0.27
FULL-FT 72.78 £ 1.74 87.37+0.82 66.00 + 1.99 79.85 4 0.64 52.46 +0.29 75.74 £0.48 63.13 + 0.32
LP 76.07£0.32 82.73+0.76 4718 £0.45 78.16 +0.24 78.52 + 1.60 51.25 4+ 0.22 74.92+0.22 63.33 +0.20
SURGICAL-FT ~ 73.55+0.81 88.82+0.53 66.43+£0.88 79.30£0.87 80.52+1.47 51.87+0.23 76.32+£0.16  64.51 +0.20
SIZE LP-FT 75.32 4 0.93 83.42 + 1.67 64.84 +1.38 79.10 = 1.]-'_1 79.38 4+ 1.86 ?2.82 +0.32 76.40 + 0.28 63.37 +0.29
WISE-FT +1.08 87.794+1.53 66.58 + 1.11 79.89+1.75 78.41+1.88 52.46 +0.49 76.46 £+ 0.46 63.53 4+ 0.65
L*-SP 73.97 £ 0.88 87.15+0.68 64.58+1.93 80.05+0.53 74.83+1.06 52.374+0.22 75.84 £0.28 60.63 + 0.36
FEATURE-MAP  74.61 4 0.53 85.42 4+ 0.31 51.23 4 0.46 76.39 £ 0.91 75.20 4+ 2.27 51.96 £0.26  76.81+0.25 63.42+0.76
73.99 +£0.77 86.84+1.00 66.97+1.58 79.64+1.44 73424260 53.50+0.66 75.69+0.26 62.41 +0.69
SUPERVISED PRE-TRAINING (GRAPHIUM)
FULL-FT 94.42 +2.36 92.25 4+ 0.88 88.54 +0.72 83.87+1.03 77.08 £ 1.58 58.19 4+ 0.21 82.91+0.33 73.61+0.23
Lp 93.66 £ 0.00 87.00 £ 0.00 83.77 £ 0.00 77.67+0.00 79.65+0.00  59.29 £ 0.00 83.13 £ 0.00 71.14 4 0.00
SURGICAL-FT ~ 96.27+0.00 93.12+0.00 90.1 84.20+0.00 76.43 4+ 0.00 59.80 4 0.00 83.19 +0.00 8
RANDOM LP-FT 93.56 + 1.21 91.70 £ 0.79 83.54 £ 0.90 75.60 & 1.48 ?9.9-’1 =+0.00 83.28 + 0.(_)0
WISE-FT 93.37+£2.74 91.80 +0.39 82.99 +0.94 76.15+ 3.11 59.53 +0.30 83.03 £ 0.52 73.28 £0.21
L?-sp 90.82 +2.30 88.80 + 1.01 85.41 4+ 0.52 64.96 £ 0.05 67.30+£0.00 60.56+1.73 83.71+0.24 70.35 4+ 0.32
FEATURE-MAP  95.40 4 0.39 92.08+£0.47  90.79£0.03  69.54 £ 0.09 78.25 4+ 0.07 50.38 + 0.03  84.73+0.04  69.73 4 0.02
BSS 90.07 £3.70 90.46 +0.83 85.22 + 0.67 67.00 £ 0.01 66.63 + 1.68 59.43 +1.34 83.81+0.63 74.05+0.44
FULL-FT 81.27 £3.88 69.17 + 1.32 79.75 £ 1.07 76.42 £ 0.72 76.84+1.80  63.63 4 0.06 78.12 £ 0.46 66.37 & 0.26
LP 80.48 4+ 0.00 66.90 + 0.00 80.44 4+ 0.00 75.83 +0.00 73.35 4 0.00 62.03 +0.00 79.02 £+ 0.00 66.09 4+ 0.00
SURGICAL-FT ~ 86.174+0.00 73.71+0.00 84.16+0.00 77.47+0.00 7887+0.00 64.02+0.00 7823+0.00 67.34+0.00
SCAFFOLD LP-FT 83.67 & 3. 69.98 +0.83 79.28 £ 0.32 76.17 £ 2.01 77.82+1.15 61.20 + 0.00 76.94 £+ 0.00 66.28 +0.00
WISE-FT 85.40 £ 1.61 71.894+1.79 78.13 4+ T + 1.76 3.58 £ 0.00 T7.98 +£0.33
L*-SP 76.83 4+ 8.87 67.35 +0.82 78.17 4+ 0.02 T. +0.03 62.21 £0.45 76.27 +0.32 +0.88
FEATURE-MAP  90.13 £2.12  70.99 £ 0.27 83.17 4 0. 73.61+0.03 62.12+£0.02 79.99+0.12  65.03 +0.08
S 79.99 +5.89 67.10 +£0.93 78.12 4 2. 72.50 £0.51 61.13 £0.95 76.69 £+ 0.64 65.45 4+ 0.89
FULL-FT 85.96 +4.28 87.62 +0.90 67.41 +2.44 81.47+1.94 72.03 +£2.55 54.72 4+ 0.01 61.3140.37
LP 81.84 £ 0.02 78.09 + 0.00 58.08 4+ 0.01 77.48 +0.00 69.46 4 0.00 53.59 4 0.00 61.25 4 0.00
SURGICAL-FT ~ 86.59 £0.01  89.07+0.00 70.94 +0.01 82.50+0.00 74.47+0.00 56.24+0.00 62.74 + 0.00
SIZE LP-FT 86.78 £2.69 88.024+1.50 63.724+1.85 82.57 £0.46 52.40 £ 0.00 60.85 4 0.00
WISE-FT 82.44 +3.02 87.76 £ 0.5 72.89+0.66 81.37+1.07 60.61 4+ 0.53
L2-SP 71.03 & 3.67 81.32 4+ 1.51 68.82 4 0.06 70.66 £ 0.00 64.69 4+ 0.32 52.08 4 0.84 70.91 +0.34 56.50 4 0.01
FEATURE-MAP  82.48 +3.25 87.70 + 0.64 69.56 + 0.20 67.23+£1.93 71.494+0.13 54.434+0.03 7412+£0.09 58.73+0.04
72.4240.03 82.92 + 1.60 62.76 4 4.23 72.81 £ 0.66 65.79 & 5.31 52.89 + 1.12 71.91 +0.44 57.79 4 1.80

Table 2: Robust fine-tuning performance on 4 regression datasets (RMSE metrics) in the Non-
Fewshot setting, evaluated across 3 dataset splits (RANDOM, SCAFFOLD, SIZE) and 2 pre-training
strategies (SELF-SUPERVISED, SUPERVISED). AVG-R,AvG-R* denote the average rank and the
rank based on the average normalized performance over all the datasets for each evavluated method,
respectively. Standard deviations across five replicates are shown in parentheses. We bold and
underline the best and second-best performances in each scenario.

SELE-SUPERVISED PRE-TRAINING (MOLE-BERT)

SUPERVISED PRE-TRAINING (GRAPHIUM)

SPLIT METHODS

Esol LiPO MALARIA CEP AVG-R  AVG-R” | EsoL LIPO MALARIA CEP AVG-R  AVG-R"

FULL-FT 0.852 £ 0.014 1076 £0.007  1.394+0.030  2.25 2 0.752£0.022 063440018  1.098+0.010  1.449£0.017 1.50 5

L] 1.147 £ 0.015 1.154 £ 0.001 2.008 £ 0.001 8.00 8 0.972 + 0.000 0.882 + 0.000 1.166 £ 0.000 1.834 = 0.000 7.50 8

SURGICAL-FT ~ 0.929 £+ 0.014 1.088 £ 0.003 1.614 £ 0.006 5.25 6 0.668 + 0.000 0.635+0.000 1.044 £0.000 1.607 £ 0.000 4.00 3

RANDOM LP-FT 0.839 + 0.017 1.080 + 0.008 1.413 +0.017 3.00 3 0.715 £ 0.011 0.647 £ 0.016 1.082 4 1.389 £ 0.018 3.75 2

WISE-FT 0.973 £0.012 1.051+£0.005 150740022  4.00 4 0.707£0.025  0.62040.017 1.0 1.512 £0.041 4.00 4

L*-SP 0.835 + 0.023 1.091 £ 0.013 1.634 £ 0.009 4.25 5 0.653 £ 0.022 0.670 £0.017 261 £ 0.004 1.605 £ 0.029 5.75 7

FEATURE-MAP  1.039 £+ 0.014 1.130 £ 0.001 1.820 £ 0.004 7.00 7 0.647 £0.018 0.605+0.016 1.064 +0.011 1.451 £0.012 2.00 1

BSS 0.854 £ 0.014 1.057 £ 0.009 1.406 4 0.012 2.25 1 0.652 + 0.023 0.662 £ 0.016 1.271 £ 0.000 1.437 + 0.035 4.50 6

FULL-FT 1.126 £ 0.014 1.152£0.015  1.377 £ 0.015 3.75 5 0.911 £ 0.041 0.709 + 0.009 1.110 £ 0.009 1.419£0.014 4

LP 1.614 £+ 0.010 1.110 £ 0.002 2.006 + 0.002 7.00 8 0.973 + 0.000 0.881 + 0.000 1.105 £ 0.000 1.826 + 0.000 8

SURGICAL-FT  1.166 4+ 0.017 1.120 £+ 0.014 1.601 4 0.006 5.25 6 2 + 0.000 1.105 4 0.000 1.419 £ 0.000 2

SCAFFOLD LP-FT 1.070 +0.021 114440022 139740013 350 4 0.922£0.004 1.080 £0.005  1.368 +0.037 3

1.264 + 0.055 1.072+£0.001  1.47040.029  4.00 2 0.888 4 0.014 LI28+£0.021  1.490 +0.024 6

1.099 + 0.030 1.101 £ 0.001 1.631 £ 0.006 3.75 3 0.948 + 0.022 1.141 £+ 0.015 1.606 £ 0.013 7

1.403 £0.012 1.0834+0.002  L787+£0.003 575 7 0.895 £ 0.016 1.074 + 0.000 1

1.110 + 0.022 TI125+0.018 138540018  3.00 1 0.896 £ 0.018 1.130 =+ 0.005 5

FULL-FT 1.419 4 0.044 0.745 £ 0.008 0.896 +£0.007  1.893 + 0.035 3.2 3 1.070 £ 0.082 0.719 £ 0.010 0.886 + 0.007 4

LP 2073£0.012  0.912+0.004  0.921+0.008  2.381 +0.006 8 1.115 + 0.000 94+ 0.000  0.907 + 0.000 2 8

SURGICAL-FT 1.685 £ 0.060 0.775 £ 0.007 0.890 + 0.005 2.145 £ 0.022 6 0.993 + 0.000 H+£0.000 0.860+0.000 1.906 £ 0.000 1

Sz LP-FT 1.440 £ 0.081 0.735 013 0.893 £ 0.007 1.905 £ 0.016 2 1.038 £ 0.038 0.694 £ 0.012 0.883 + 0.005 1.913 £0.031 2

WISE-FT 1.814 £ 0.092 0.831 007  0.873+£0.005 1.951+0.024 5 1.100 £0.005  0.691+0.015  0.894 +0.007 1.943 £0.039 6

L2-SP 14384£0.046  0.799+0.002  0.888+0.005  2.101+0.016 4 1.05340.026  0.72040.015  0.904£0.002  2.122+0.018 7

FEATURE-MAP  1.656 & 0.025 0.880 £ 0.011 0.893 £ 0.002 2.252 £ 0.008 7 0.993 £0.034  0.724 £ 0.009 0.884 £ 0.001 1.970 £ 0.013 3

BSS 1.375+£0.019 0.731 £0.007  0.887 £ 0.010 1.900 £ 0.016 1 1.043 £ 0.022 0.703 £ 0.016 0.905 £ 0.005  1.890 £0.071 5

Furthermore, we observe that this behavior is more pronounced in regression tasks than in classifica-
tion tasks. Specifically, full fine-tuning ranks the highest for regression tasks but only achieves mid-
tier performance for classification tasks. This disparity likely arises from the distinct nature of these
tasks. Classification tasks typically require coarser-grained features, as exemplified by the Tox21
dataset. In this case, determining toxicity may largely rely on recognizing certain functional groups,
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Figure 2: Average Rank improvements over Full-fine-tuning for 7 robust fine-tuning methods in self-
supervised and supervised pre-training scenarios across 8 classification (a, b) datasets and across 4
regression (c, d) datasets. Each subfigure presents both few-shot-50 (left of the dashed line, colored
in red) and few-shot-100 (right of the dashed line, colored in blue) settings, with random, s
and size splits.

such as toxicophores or structural alerts (Singh et al., 2016). In contrast, regression tasks demand
finer-grained features. For example, predicting precise solubility involves factors such as partial
charge distribution, conformational flexibility, and hydrogen bond patterns, among others (Faller &
Ertl, 2007). Consequently, models fine-tuned for regression tasks must acquire more downstream
knowledge during the fine-tuning process and are generally less prone to overfitting compared to
those used for classification tasks.

Below, we summarize some insightful findings by examining the performance of different fine-
tuning strategies and explain the observations in the context of molecular representation learning.

e Finding 1. Weight-based fine-tuning strategies stand out under few-shot fine-tuning, with
WISE-FT for classification tasks and L2-SP for regression tasks.

Among various fine-tuning methods, weight-based approaches consistently outperform others across
a wide range of experiments, regardless of the few-shot sample sizes (cf., Fig.2a and 2c). Self-
supervised models are known to capture general-purpose knowledge for substructure discov-
ery(Wang et al., 2024). During fine-tuning, combining pre-trained and fine-tuned weights proves
effective in extracting molecular patterns relevant to downstream tasks. Notably, WiSE-FT demon-
strates superior performance on classification datasets, whereas L2-SP excels in regression tasks.
WIiSE-FT applies a straightforward post-hoc linear interpolation between pre-trained and fine-tuned
models, governed by a single coefficient. In contrast, L?-SP implicitly determines the weight com-
bination through the training loss (Lubana et al., 2022; Xuhong et al., 2018), aligning with the idea
that regression tasks typically demand more nuanced modeling.

e Finding 2. Partial fine-tuning results in underfitted molecular representations under few-
shot fine-tuning, which is more severe for regression tasks compared to classification.

For the non-few-shot fine-tuning (c.f., Tables | and 2), surgical FT and LP-FT improve over full
FT in both classification and regression tasks. However, in few-shot fine-tuning, both methods rank
as the worst methods. This is likely because partial fine-tuning underfits and bias towards the the
limited samples. This issue is more pronounced in regression tasks.

e Finding 3. Regulating feature representations brings significant benefits under few-shot fine-
tuning but has only a marginal impact in non-few-shot fine-tuning.

Representation-based methods incorporates additional representation regularization in addition to
full FT. BSS aims to eliminate noisy or non-transferable dimensions by regularizing small singular
values of representations and Feature-map enforces a close distance of the fine-tuned representations
to the pre-trained representations. Since the baseline full FT performs well under non-few-shot
settings (c.f., Tables | and 2), and pre-trained molecular representations are unsatisfying as discussed
in Q1, having fine-tuned representations to unsatisfying pre-trained representations does not lead to
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any benefits. While under few-shot fine-tuning, representation regularization prevents overfitting
with limited samples on top of full FT to some extend.

4.2 SUPERVISED PRE-TRAINED MODELS

Q2: Can supervised pre-training help downstream molecular property prediction tasks?

We first discuss the task similarity between the datasets used in the pre-training and downstream
fine-tuning process. As introduced in Sec. 3, the ToyMix dataset used for supervised pre-training
contains QM9, Tox21 and Zinc12K. The predictions from QM9 are not directly related to our down-
stream tasks, but we do not rule out potential indirect correlations, as the quantum chemical proper-
ties provided by QM9 are highly valuable for characterizing molecular features. Tox21 is an over-
lapping dataset that also exists as one of the downstream datasets. Its tasks in predicting qualitative
toxicity measurements are highly related to the downstream ClinTox and ToxCast datasets, and also
correlate to the Sider dataset which contains evaluation in drug side effects. Lastly, Zinc12K, which
is to predict the constrained solubility, is relevant to the Esol and Lipo datasets that involve solubility
predictions. Other downstream tasks do not share the same tasks with pre-training directly.

(2a) Under few-shot fine-tuning, supervised pre-training models generally yield higher fine-
tuning performance compared to self-supervised pre-training, regardless of the task correla-
tions between pre-training and fine-tuning.

Supervised pre-training brings more benefits to downstream tasks than self-supervised pre-training
in few-shot situations when checking Tables 5 and 6. Besides, the benefits are less relevant to the task
similarity in contrast to the non-few-shot cases. For example, the improvements are also observed
in HIV and Cep datasets even their tasks do not share with pre-training tasks directly.

(2b) Under non-few-shot fine-tuning, supervised pre-training has better fine-tuning perfor-
mances than self-supervised pre-training when its objectives align closely with downstream
tasks. However, it may hurt downstream performance if the tasks do not align.

From Tables 1 and 2, we observe consistent fine-tuning performance improvements over self-
supervised pre-training on highly task-correlated downstream datasets including ClinTox, Esol, Lipo
and Tox21. We can see that even pre-training uses regression tasks and some of the downstream tasks
are classification, there is still performance gain if the physical meaning of the tasks are aligned. For
datasets that do not directly share tasks with pre-training, we observe mixed performance on Sider,
Malaria, and Cep datasets, and even performance declines on HIV and MUYV datasets. This find-
ing resonates with the previous work (Sun et al., 2022) to some extend. They concluded that if the
supervised pre-training with target labels that are aligned with the downstream tasks, pre-training
with pure supervised objective leads to marginal improvement over self-supervised pre-training and
adding supervised objective on top of self-supervised pre-training leads to further benefits. The dif-
ference is that they pre-trained on single ChEMBL dataset (Gaulton et al., 2012) and did not evaluate
for few-shot fine-tuning or on regression datasets.

Below are some detailed findings with different fine-tuning methods given supervised pre-training.

e Finding 4. Fine-tuning strategies that regularizes towards pre-trained molecular represen-
tations rank top, while weight-based methods are suboptimal.

From both non-few-shot (c.f., Tables 1 and 2) and few-shot fine-tuning (c.f., Fig. 2b and 2d), surgical
FT and Feature-map tend to be the top-ranking methods. However, best performing weight-based
methods for self-supervised pre-training, only show mediocre performance here. In addition, the
other representation-based method BSS show limited performance compared to Feature-map that
directly regularize the distance to pre-trained representations. These observations suggest that given
the task alignment between supervised pre-training and downstream fine-tuning, pre-trained repre-
sentations tend to contain transferable features for downsteam tasks. Consequently, controlling the
degree to preserve pre-trained representations is the key to downstream fine-tuning performance.

¢ Finding 5. LP with pre-trained molecular representations from supervised pre-training sur-
passes full FT under few-shot fine-tuning, except for size splits.

For few-shot fine-tuning with 50 and 100 samples (c.f,, Fig. 2b and 2d), LP surpasses full FT in
random and scaffold splits, differing from self-supervised pre-training discussed in (1a). This again
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supports the claim that directly adopting molecular representations from supervised pre-training re-
tain useful knowledge for downstream tasks. But interestingly, this does not hold for size splits. We
believe it is due to the susceptibility of graph level tasks under size shift, as noted in prior OOD
studies (Zou et al., 2023). Namely, the prediction head tends to overfit to the mapping from repre-
sentations to output labels with molecules in a specific range of sizes, and thus cannot generalize to
OOD molecules of different sizes.

5 METHODOLOGY EXPLORATION

Upon investigating the findings in Section 4, we observe that weight-based fine-tuning generally
performs well under self-supervised pre-training. However, the top strategy varies: WiSE-FT excels
in classification tasks, while L2-SP is more effective for regression tasks. This motivates us to further
explore the connections and trade-offs between these methods to identify potential improvements.
In this section, we introduce DWiSE-FT, an extension of the weight ensemble method unifying the
strengths from WiSE-FT and L2-SP. DWiSE-FT demonstrates top-ranking results through efficient
post-processing that better suits the practical fine-tuning needs.

5.1 MOTIVATION

As introduced in Sec. 2, WiSE-FT adopts the post-hoc linear interpolation between the pre-trained
and fine-tuned model weights as (1 — @) - Oy + @ - Oy Although L2-SP does not explicitly have

weight interpolation in the form, the optimal weight 0y from the weight-regularized loss 5(9) is
indeed the linear interpolation of the optimal model from full FT 6;; and the pre-trained model 0.
Proposition 1. Given £(8) = L(0) + 3(|0 — 6,
argming £(0) and 07 = argming £(6).

2, we define the optimal weights as éﬁ =

Q"6 = (A+61)"'AQ"; + 5(A +61)7'Q. . 2
where H is the hessian matrix of L evaluated at 0}; and H = QAQT.

Namely, L2-SP can be seen as a more tailored weight ensemble method, employing variable mixing
coefficients for different weights. This approach balances the influence of the prediction loss and the
degree of weight regularization, unlike the fixed interpolation controlled by « across all weights in
WiSE-FT. By accounting for subtle differences in loss values, L2-SP is better suited for regression
tasks, which are more sensitive to numerical variations.

While L2-SP excels on regression datasets, its regularization coefficient is less interpretable and
necessitates retraining when experimenting with different values. In contrast, WiSE-FT offers a
simpler and more flexible approach, performing post-hoc interpolation without additional training
once the model is fine-tuned once. Furthermore, the mixing coefficient « is both easy to adjust and
straightforward to interpret. Therefore, our goal is to find a method that benefits from both WiSE-FT
and L2-SP to accommodate regression and classification tasks at the same time.

5.2 ALGORITHM

We propose DWiIiSE-FT that shares the framework of using the a to control the weight ensemble
between the pre-trained model and fine-tuned model. The key idea, inspired by Eq. 4 is to enable
different o values when ensembling the weights for different encoder layers as shown in Fig. 1.
Given the pre-trained model with parameters 8, and model after full fine-tuning with parameters

0y, The interpolated model has weights 871 with mixing coefficient a; for the i-th layer as:

6l = (1 — o) - 6, +q, -6 3)

pre

This approach naturally incorporates the characteristics of L2-SP and even surgical FT: The weight
ensemble in DWiSE-FT offers the flexibility through varying mixing layer-wise coefficients between
the pre-trained and fine-tuned models, addressing the limitations of WiSE-FT. Additionally, we
enable the selection of a through optimization via validation loss gradient inspired by the Gradient-
based Neural Architecture Search (NAS) (Dong & Yang, 2019).



Under review as a conference paper at ICLR 2025

Table 3: DWISE-FT performance on 4 regression datasets (RMSE metrics) in the few-shot setting
with 50, 100 samples, evaluated across 3 dataset splits (RANDOM, SCAFFOLD, SI1ZE) given Mole-
BERT model. AvG-R denote the average rank. Standard deviations across five replicates are shown
in parentheses. We bold and underline the best and second-best performances in each scenario.

FEWSHOT 50 FEWSHOT 100

SPLIT METHODS ESOL LIPO MALARIA CEP AVG | ESOL LIPO MALARIA CEP AVG
WISE-FT 1.384 4 0.047 1.212 4+ 0.020 1.276 4+ 0.007 2.410 £ 0.051 3.75 1.189 4+ 0.030 1.142 £ 0.025 1.256 + 0.006 2.211 £0.028 3.00

RANDOM L*-SP 1.372 4+ 0.029 1.196 £ 0.019 1.277 £ 0.006 2.280 £ 0.031 3.00 1.161 £+ 0.016 1.149 £ 0.007 1.260 £ 0.004 2.131 £0.014 3.25
Top 1.329+0.021 1.164+0.010 1.271+0.007  2.275 £ 0.022 1.25 | 1.120 +0.038 1.139 +0.017 1.256 + 0.006 2.131£0.014 1.50

DWISE-FT  1.378 £ 0.055 1.189 4 0.020 1.273+0.009  2.222£0.059  2.00 1.13240.025 1.138£0.028 1.256+0.004 2.129+£0.020 1.25

WISE-FT 1.842 4 0.056 1.177 4 0.009 1.162 £ 0.004 2.454 £0.043 3.50 1.544 4 0.063 1.041 £0.017 1.151 4 0.007 2.301 £ 0.042 3.50

SCAFFOLD L?-sp 1.699 £ 0.049 1.086 4 0.009 1.162 4+ 0.002 2.33140.024 2.50 1.473 4+ 0.009 0.961 £ 0.003 1.153 4 0.002 2.201 £0.038 2.50
h . Top 1.680 & 0.042 1.036 £ 0.007 1.159+0.000 2.292+0.026 1.25 | 1.436 £0.054 0.937+0.008 1.149+0.003 2.187 £0.034 1.25
DWISE-FT 1.616 +0.047 1.110 +£0.013 1.173 +0.005 2.306 £ 0.030 2.50 1.485 4+ 0.041 0.979 £0.014 1.158 4 0.009 2.149+0.040 2.75

WISE-FT 2.615+0.072 1.391 4 0.042 0.929 £ 0.004 2.762 £+ 0.053 4.00 2.216 £ 0.056 1.124 +£0.031 0.917 4 0.004 2.543 £0.027 3.75

SIZE L?-SP 2.393 £ 0.068 1.306 4 0.037 0.915£0.002  2.497+0.019 250 1.7314+0.071  1.025£0.028  0.905 & 0.002 2.424 £ 0.024 175
Tor 2.369 £ 0.075 1.29740.040 0.911£0.002 2.497+0.019 1.50 1.7314+0.071  1.025£0.028 0.898 + 0.003 .424 £ 0.024 1.50

DWISE-FT 1.488+£0.101 1.11340.021  0.913 £ 0.007 2.539 £ 0.023 1.75 | 1.469 +£0.052  1.031 £0.022 0.9204£0.006  2.390 £0.025 2.25

5.3 EXPERIMENT RESULTS

Regarding the classification datasets, DWiSE-FT should have the performance at least as good as
WIiSE-FT since WiSE-FT is the special case of DWiSE-FT with one fixed mixing coefficient. We
evaluate DWiSE-FT to see how it improves upon WiSE-FT and matches the superior performance
of L2-SP for regression tasks under few-shot fine-tuning. Please note that, due to space constraints,
we only present the experiments for few-shot fine-tuning with 50 and 100 samples in the main text.
The complete table is available in Appendix E, Table 10. In Table 3, we compare DWiSE-FT’s per-
formance against WiSE-FT, L2-SP, and the best-performing method in each setting. Specifically, we
find that DWiSE-FT consistently outperforms WiSE-FT. Furthermore, DWiSE-FT often surpasses
L2-SP or at least maintains comparable results in most scenarios. Additionally, in some cases,
DWIiSE-FT even exceeds the performance of the best-performing methods. Therefore, DWiSE-FT
can be a great candidate for fine-tuning on regression datasets in practice since it guarantees top
performance with easier usage.

6 CONCLUSION

This work benchmarks totally 8 fine-tuning methods, categorizing them into three groups, and evalu-
ate them across 12 downstream datasets under 36 different experimental settings covering 3 dataset
splits, 4 training sample sizes, and 3 molecular pre-trained models. The design of these settings
reflects practical demands of molecular representation fine-tuning under 1) diversified foundation
model with both supervised and self-supervised pre-training, 2) wide range of downstream tasks
in both classification and regression that has not been widely studied by previous literature and 3)
scarcely labeled molecules for fine-tuning. The study analyzes what is needed when facing classi-
fication vs. regression tasks and when given supervised vs. self-supervised pre-training. Then, we
provide insights in best performing fine-tuning methods accordingly under aforementioned scenar-
ios. Additionally, we propose an extended fine-tuning method DWiSE-FT, driven by our observa-
tions, that maintains top-ranking results through a more efficient and automated design for certain
fine-tuning scenarios. This highlights the value of our benchmark in offering valuable insights for
both fine-tuning methodology design and practical guidance in molecular representation learning.

10
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A PROOF OF PROPOSITION 1

Proposition 2. Given £(8) = L(0) + 3(|0 — 0,
argming £(0) and 0 = argming £(6).

2, we define the optimal weights as 0~f, =

Q76; = (A + 1) "' AQT; + 5(A + 1) Q76 . (4)

where H is the hessian matrix of L evaluated at 0;; and H = QAQT.

Proof. Based on the quadratic approximation, we can approximate £(6) as follows:
L(0) = L(6;) + L(67)(6 — 67) + %(9 ~6;)"H(6 - 6f)
= £(67) + 5(0— 6;)TH (0 — 67)
since L’ (0f) = 0 as @} is the minimum. Then, we add the weight regularization term, such that
£(6) = £(63) + 5 (0~ 03 H(O — 6;) + 5161 — By}

Then, we solve for 6y by setting VL(0) = 0

H (0 — 0}) + (0 — Opre) = 0
(H +61)0y = HO}; + 66,
O = (H + 0I) " (HO}, 4 50,
0 = (QAQ™ + 1) (QAQ"6}; + 56
0 = (Q(A +0)Q")  (QAQT0; + 36,r.)
Q"6r = (A + 1) 'AQTO;; + 6(A + 0T) ' Q" e

B LIMITATIONS AND FUTURE WORKS

We acknowledge certain limitations in this current work and highlight potential improvements for fu-
ture research. Firstly, this study primarily focuses on the property prediction tasks of small molecules
using 2D-graph based foundation models. Exploring a broader array of foundation models across
a wider range of applications—such as covering more areas like DNA, proteins, and materials, ad-
dressing various scientific tasks like linker design and chemical reactions, and incorporating di-
verse data formats like 3D geometric data—is highly worthwhile. Secondly, although we attempt to
include many representative fine-tuning methods from various categories in this study, additional
fine-tuning methods from different categories, as discussed in Appendix C, deserve investigation.
For instance, future research could explore whether graph-specific fine-tuning methods offer ad-
ditional benefits over non-graph fine-tuning approaches across various settings we design. Thirdly,
the method DWiSE-FT introduced here is an extension and combination of existing methods directly
motivated by our benchmark findings for specific fine-tuning scenarios. Future work may involve
more thorough exploration into fine-tuning methodology design inspired by our current findings,
and aiming to develop approaches effective across a broader range of fine-tuning scenarios.

C ADDITIONAL DISCUSSIONS OF RELATED WORKS

In this section, we additionally discuss more related works about fine-tuning (FT) techniques. De-
signing advanced fine-tuning strategies first gained attention in the computer vision (CV) and natural
language processing (NLP) domains, leading to the development of various research directions. We
categorize the mainstream approaches into the following groups.

18



Under review as a conference paper at ICLR 2025

Partial model FT. Numerous studies demonstrate that freezing certain parameters while fine-tuning
only specific components of the pre-trained model can help mitigate overfitting during the fine-
tuning process (Kirkpatrick et al., 2017; Lee et al., 2019; Ramasesh et al., 2020; Eastwood et al.,
2021; Evci et al., 2022; Cohen et al., 2022). Specifically, Linear Probing (LP) only trains the ad-
ditional prediction head during FT. Surgical FT (Lee et al., 2022) selectively fine-tunes a subset of
layers based on the specific mechanism of distribution shifts.

Weight-based FT strategies mainly control the model weights during the FT. Specifically, WiSE-
FT (Wortsman et al., 2022), grounded on the linear mode connectivity (Frankle et al., 2020), linearly
interpolates between pre-training parameters and fine-tuning parameters by a mixing coefficient. L?-
SP (Xuhong et al., 2018) regularizes the fine-tuning model weights using L? distance to constrain
the parameters around pre-trained ones. REGSL (Li & Zhang, 2021) further introduces a layer-wise
parameter regularization, where the constraint strength gradually reduces from the top to bottom
layers. MARS-SP (Gouk et al., 2020) adopts the projected gradient method (PGM) to constrain the
fine-tuning model weights within a small sphere centered on the pre-trained ones. More recently,
TPGM (Tian et al., 2023) further incorporates trainable weight projection radii constraint for each
layer, inspired by MARS-SP, to support layer-wise regularization optimization.

Representation-based FT methods mainly regulate the latent representation space during FT.
Feature-map (Li et al., 2019b) adds distance regularization between the latent representations of
pre-trained and fine-tuned models to the Full-FT loss. DELTA (Li et al., 2019a) specifically con-
strains feature maps with the pre-trained activations selected by channel-wise attention. BSS (Chen
et al., 2019) penalizes the spectral components corresponding to small singular values that are less
transferable to prevent negative transfer. Li et al. (2020b) proposes to transfer representations by
encouraging small deviations from the reference one through an regularizer based on optimal trans-
port. Inspired by this, GTOT-Tuning (Zhang et al., 2022) presents optimal transport-based fine-
tuning framework. LP-FT (Kumar et al., 2022) first performs LP to prediction head while keeping
the pre-trained encoder fixed, followed by applying full-FT with the tuned prediction head.

Architecture Refinement. Besides the weight and representation based FT, StochNorm (Kou et al.,
2020) refactors the widely used Batch Normalization (BN) module and proposes Stochastic Nor-
malization, to transfer more pre-trained knowledge during the fine-tuning process and mitigate over-
fitting.

Contrastive-based FT. As discussed in Sec. 2, contrastive-based strategies have been widely
demonstrated to be effective in the pre-training stage. There are other works which explore its
effectiveness in the fine-tuning process. Gunel et al. (2020), Bi-tuning (Zhong et al., 2020), Core-
tuning (Zhang et al., 2021a) and COIN (Pan et al., 2023) introduce supervised contrastive learn-
ing (Khosla et al., 2020) to better leverage the label information in the target datasets with more
discriminative representations as a result. More recently, FLYP (Goyal et al., 2023) shows that sim-
ply finetuning a classifier via the same contrastive loss as pre-training leads to superior performance
in finetuning image-text models. Oh et al. (2024) fine-tunes the model with contrastive loss on
additional hard negative samples, which are generated by geodesic multi-modal Mixup, for robust
fine-tuning in multi-modal models.

Graph-specific fine-tuning techniques. Apart from the CV and NLP domains, several fine-tuning
techniques specifically designed for the Graph-ML domain have recently been proposed. GTOT-
Tuning (Zhang et al., 2022) achieves efficient knowledge transfer from the pre-trained models by an
optimal transport-based FT framework. Bridge-Tune (Huang et al., 2024) introduces an intermediate
step that bridges pre-training and downstream tasks by considering the task similarity between them.
G-tuning (Sun et al., 2024) tunes the pre-trained GNN so that it can reconstruct the generative
patterns (graphons) of the downstream graphs. Li et al. (2024) leverages expressive adapters for
GNNSs, to boost adaptation to the downstream tasks.

D DATASET STATISTICS

The statistics of the downstream datasets included in this work are shown in Table 4.

19



Under review as a conference paper at ICLR 2025

Table 4: Summary for the molecular datasets used for downstream FT, where “# TASKS” and “#
MOLECULES” denote the number of tasks and molecules of each dataset, respectively.

DATASET  EVALUATION METRICS TASK # TASKS  # MOLECULES
BBBP AUC CLASSIFICATION 1 2,039
Tox21 AUC CLASSIFICATION 12 7,831

TOXCAST AUC CLASSIFICATION 617 8,576
SIDER AUC CLASSIFICATION 27 1,427

CLINTOX AUC CLASSIFICATION 2 1,478
MUV AUC CLASSIFICATION 17 93,087

HIV AUC CLASSIFICATION 1 41,127
BACE AUC CLASSIFICATION 1 1,513
EsoL RMSE REGRESSION 1 1,128
Lirpo RMSE REGRESSION 1 4,200

MALARIA RMSE REGRESSION 1 9,999

CEP RMSE REGRESSION 1 29,978

E DETAILS OF EXPERIMENTAL IMPLEMENTATION

Pre-training Implementations. For self-supervised pre-training, we use the open-source pre-
trained checkpoints of Mole-BERT'! and GraphMAE?. For supervised pre-training, we follow the
same training pipeline as proposed in the Graphium®. We drop out the task head MLPs used for
supervised pre-training during the downstream fine-tuning process, keeping only the graph encoder
component. Note that we keep the architecture of the GNN encoder and the graph pooling strategy
the same across the three pre-training models. Specifically, we use a 5-layer Graph Isomorphism
Networks (GINs) with 300 hidden dimension and mean pooling as the readout function.

Fine-tuning Implementations. We keep the same training configurations across all the downstream
datasets, pre-training models, and fine-tuning strategies, following Hu et al. (2020a). Specifically,
for each distinct setting, we fine-tune the pre-training models with 5 random seeds (0-4). We use a
batch size of 32 and a dropout rate of 0.5. For each dataset, We train models for 100 epochs and
report the test performance when the optimal validation performance is achieved.

Hyperparameter Tuning. We set learning rate to be 0.001 for all the methods and train for 100
epochs. Below is the detailed sets of hyperparameters we tuned for each fine-tuning strategy.

* Surgical FT: We tune k as which layer in GNN encoder to be updated from {0, 1,2,3,4}
since our backbone architecture is a 5-layer GIN.

* WiSE-FT: We tune the mixing coefficient @ from {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}
to control the weight ensemble from pre-trained model and fine-tuned model. A larger o
indicates the weights are adopted more from the fine-tuned model.

s L2-SP/BSS/ Feature-map: For these three methods that involve an additional regularization
term in the loss, we tune the regularization coefficient § from {1, 0.1, 0.01,0.001,0.0001}
to control the degree of regularization. For BSS, we follow the original paper and set k to
be 1 meaning that we are regularizing the smallest singular value.

* LP-FT: We train the LP step before full fine-tuning for 100 epochs and then use the updated
prediction head as initilization for the full-FT afterwards for 100 epochs. The training all
use the default learning rate 0.001.

e Full FT/ LP: There is no additional hyperparameter tuning, where we use the default fine-
tuning setting.

* DWISE-FT: We tune the initialization of «; for each layer ¢, where we use the same value to
initialize for all layers from {0.9,0.7,0.5} and the learning rate for validation loss descent
from {0.001, 0.005,0.01}. We tune o over validation sets over 200 epochs.

1https ://github.com/junxia97/Mole-BERT
Mttps://github.com/THUDM/GraphMAE
3https ://github.com/datamol-io/graphium
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Table 5: Robust fine-tuning performance on 5 classification datasets (AUC metrics) in the Fewshot
setting (covering FEWSHOT-50, FEWSHOT-100, FEWSHOT-500), evaluated across 3 dataset splits
(RANDOM, SCAFFOLD, SIZE) and 2 pre-training strategies (SELF-SUPERVISED, SUPERVISED).
We bold and underline the best and second-best performances in each scenario.

S METHODS SELF-SUPERVISED PRE-TRAINING (MOLE-BERT) 'SUPERVISED PRE-TRAINING (GRAPHIUM)
CLINTOX BBBP BACE HIV SIDER AVG AVG-F AVG-R | CLINTOX BBBP BACE HIV SIDER AVG AVG-E AVG-R
FEWSHOT-50
FULL-FT 74454210 S8.56+£083 75804 0.43 52224048 6060 6922 440 | T0.14+052 77574001  8045£0.00 6357 £0.00 6946 70.43  6.00
LP 77504+ 131 82.05+ 037 04+ 058 5 6787  68.63 680 | $4.09+0. BLOAE0.00  BLST£0.00  49.05+0.00 7027 7274 420
SURGICAL-FT  77.91£125 85414066  75.94 +0.40 51 6983 70.58 380 | 764000 54994000 8193000 64.72+0.00 T34 TAT6 240
Ranbos LP-FT 88994014 7518+0.48 5 7008 7007 440 | 69.84+£000  S015£000  T864+£000 6582000 69.60 7143 6.00
WISE-FT 8872 1 75.50 % 0.51 5: 7025 7010 300 | SL94£003 83744000 63.17 +0.00 7275 7453 440
L2-SP ESETEY 2. 7026 708 360 | 72264146  8L0T+0.13 63.68 +0.92 7045 7LD 5.20
FEATURE-MAP 88.40 + 0.84 5 69.28 6873 640 | 84.80+0.129 85.33+0.021 60.64 + 0.016 T3T6 7566 2.60
BSS 75314321 88.69£0.54 E 5 5: 7006 70.00 360 | 7414%215 944035 64.45 + 1.10 7048 7218 5.20
FULL-FT 60184170 5968179  G888+£231 5547657 b 5047 5841 6.00 | 61944000  62.140.00 63.74+0.00 63.67 6261 7.0
LP 6 X ST584082 70254128 STA5£576 5 5048 5846 640 | 7910000  57.7440.00 65.43 +0.00 66.94 6657  4.80
SURGICAL-FT  60.80+1.05 60.86-0.98 7LIG+0.81  58.60+633 5 60.73  60.09 400 | TL30E0.00  63.24%0.00 66.81 +0.00 66.85  67.12 440
SCAFFOLD 5959+ 111 60.36+£120 TLST+037  56.18£207 5331+£029 6020 5871 440 | 65304000  63.16+000 771542000  66.60 +0.00 6517 63.02  6.00
w T GT.60£367 G051+ 1.64 72255125 6365+£200 50.66+093 6293 6392 300 | 67344000  6555+£000  7T866+000 6528 +0.00 6640 66.06 480
L2-SP 6176+122 59532200 T081+£079 6476+240 5295+045 6196 6202 3.60 | 83.15+0.03 6764000  78.75+£071 68224002  55.86+£000 7055 7121 220
FEATURE-MAP 6 194 5591204 £009  6LIS+235 52644103 5028 5046 560 | 77494004 6713001 T857L003 6430L001 56.74+£0.00 6886 69.67  3.20
BSS 67.94=258 60.40+218 70514182  60.30+£223 53IS+046 6248 6291 300 | 69744002 6564000 79.10+0.00 68.47+0.01 5497+0.03 6758 67.95  3.20
FULL-FT 66754092  80.03£054 43234152  6200£304  ATSI£077 5996 5885 580 | 67.61+£001  7TL89E576 4857001  5254£000  5345£000 5882 5788 520
LP 60074041 7819032 39814034 AS9TE166  4613+£024 5645 5476 700 | 71212001 57794000  4044£001  48.13+0.00 5 5385 6.00
SURGICAL-FT  68.76+0.63 82194086 42264237 5673+£132 46774014 5931 5742 560 | 7L70£001 68214000 46064001  53.00%0.00 5872 5.00
Sizm LP-FT 60434030 8200083 42834130  6L12+ 115 4877+032  60.83 5077 420 | 6890+£001  65.03%0.01 T5TH0.00  47.28 +0.00 5558 6.20
> WISE-FT 7076 £1.31 8192319 6 5658 10.19 47244057 6442 6431 400 | 72034001  7014£565 45244001  53.43+0.00 59.05 480
L2-SP 69.094+1.06 83984198 04451  6368£3.16 5080£297 6405 6182 200 73 63384527 63.46£390 66.83+003 6456 3.20
FEATURE-MAP 67574145 82524074 5161 +125 66.37+356 4965057 6354 G6L85 300 | 76.6 06 71394005 65204001 57294043  53.01+£001 6471 6463  3.00
BSS 67654132 S020£312 50734635 6256253 40051061 6206 6031 440 | 7226£016  GS79L60S 6698001 5561 L0.00  55.40£001 6381 6379 260
FEWSHOT-100
FULL-FT T8T0£525  S68TL080 79914070 GOS8 137 5388069 7205 4.20 82854000 8376044 64824236 56.88+£000 5.00
LP 79454085 8418062 T3I0E£040 5126E 130  5278+£031 6817 7.20 B0.80£000 79252000 5L60£0.00  57.78+0.00 6.00
SURGICAL-FT 8154162  85.66+£052 77.00+0.74 50344042  53.63+£044 7143 5.40 £0.00 84.51+0.00 66.28+0.00 87 4 0.00 2.00
RANDOM LP-FT TOSGELI2 8726081 78864048 5037051  54.31+032 3.80 83544002 SLOLE0.04 6546+ 0.62 TAE0.00 3.20
WISE-FT 8555143 8676042 7453+£097 61.90+1.36 56.41+0.69 3.00 83634095  G3S0+£036  57.66+0.00 5.00
L2-SP 79134368 8680040 79664035 5992104 54.64+035 3.80 80714144 6400098  59.02+0.54 4.40
FEATURE-MAP  78.124301 87.80+£0.62 73504060 5097075 5350 %021 5.40 85044056 82094102 63344011  57.82+005 3.60
BSS 79004462  ST38+£052 80124083 60224107 5388+£0.72 3.20 ROATE0.78  BL64£0.61  63.65+0.65 5685+ 081 6.80
FULL-FT 705147051 6211£1.32  6839+3.19  6L60+£174  5220£026 6296 480 | 70754000 65394025  T7.66+£030  59.73%0.00 53 +0.00 6529 5.80
LP 60.68+60.68 5810099  6941+169 5712463 52114051 5948 7.60 =0 53894000  7839£000  6411£000  56.03+0.00 66,18 3.80
SURGICAL-FT  65.93 + 6 6LA5+101 7020191 59624061 52494067 6191 520 61494000 78424000  67.41+0.00 68.99 3.0
ScarroLp LP-FT 66.18 61,524 0.91 8 60764104 53684046 6272 100 66.33 = 0.00 O1L041  64.40 +0.00 . 5.80
6471+ 62.88 + 2.30 62.67+242 5427082 6410 220 61.90+0.06  T8.06+096  62.56+0.00 5.00
70984249 6193 +203 6643076 15093 64.87 260 | 7406+£020 66144000 77154000 72.98+1.69 9.03 3.80
E-MAP G383+ 160 5878+ 166 58.27 £3.68 60.49 620 | 7979£036  6360£003 7891038 (9714032 5633£0.63  69.67 2.60
BSS 7099 =194 6247062 62.00 +0.93 63.45 340 | GS20E175 65354000 78314001 GLI3E£0.16 £045 6541 5.80
FULL-FT 72074223 80.54+ 153 6L90£219  48.97+030 64.62 480 664001 SLT7T+0.00 60314427  59.36 +4.03 £0.00  65.80 5.60
LP 68134043 81.53£052 46.66+3.40 47084022 5861 740 | 72124001 52134000 4TS1£007  4T1840.00 11£000  54.87 7.00
SURGICAL-FT 70804056  83.61+£040 5 55.86+£129  AT75+£049  63.31 520 80764000 56.62+001 66,14 +0.00 124000 6745 3.40
Sizn LP-FT 68.0540.12 50024108  G0.87T+157 50.40+£020 64.57 400 | 7690£200  8529+000 6672002 5180+000 56.61=0.00 67.46 2.80
WISE-FT 71914119 55664206 5327810 48264031 6220 580 | 73224001 82394000 6281+£146 6123£003  5499+£000  66.93 440
L2-SP 73.25 % 1.91 6046+ 1.08 63144217 50.74+251  66.20 220 | 7611+£263  T535E041 6617001 74.02+1.42  SLT6L088  69.28 3.80
FEATURE-MAP 0078 £2.65 83554125 6251=138 5764325 5126+0.38 64.95 320 | 7690004 76514006 G1A9E316 62514143 6640 66.84 460
BSS 7374281 S091+112 60024105 6305233 5020091 65.60 340 | 78114747 73924009  6484£040 6842+ 0.08 6777 69.06 440
FEWSHOT-500
FULL-FT 86.07+ 180 02.76+054 £5.004040 6749+ 0.86 6133 +0.24 7985 340 | 88534179 OL44+106 83724059 70254176  585140.00 7849  80.83
LP 81854040 8T.91£020  T359+0.24 5954 40.14 7266 760 | 91564000 85154000 83184000 6682000 58784000 7710 T83S
SURGICAL-FT  87.77+056  9214£057  $1.09+0.45 59.66 4 0.22 7987 440 | 9131£000 92114000  8449£000  69.71 +0.00 93000 7951 8184
Ranbos LP-FT 85554075  9220+£020  85.79+0.37 61.06 % 0.55 7993 360 | 882181 OLO7E0.99 9L000  66.62+0.69 79.78
WS BTT04 147 91024072 85.3640.44 64.11+0.55 79.06 400 | 89.75+ 1.06 3584000  66.27 +2.15 7987
L2-SP S5AGELO6  9244£082 85114032 68424077 59.37+0.56 7966 500 | 85294489  $238+ 117 S083£091  66.64+ 1.36 95 40.76 76.62
FEATURE-MAP 83424342 90.57£049 76694041 68244093  59.62+0.36 7612 640 | 91.58+023 91804046 8529+081 7278+0.13 60.19+0.04 83.22
BSS 86.07+131 92764038 86.04+0.32 69.34+040 (L45+051 8052 160 | 82204172 81214130  8313+£136  6465+£105  5T.16+0.83 76.02
FULL-FT 60.184251  69.56+0.99 79.1440.95 56024020 6893 6953 420 | TTU6+195  67.79+£050 74304348  64.63£267 97 4 0.00 68.91
LP 61914052 6403055  T7.67+0.10 50604030 6587 6402 660 | 81394000  65.24+£000  80.66+0.00  67.92+0.00 93 & 0.00
SURGICAL-FT  66.754043  67.11£080  80.66+0.43 5RO2E038 6913 6869 400 | 80564000 70474000  S0.TTH0.00 7203 +0.00 £0.00
SCAFFOLD LP-FT 6991183 G858+018 7846074 5507020 6888 6929 420 | 8520+139  GSASE055  TTAIE032 6697052 +0.00
WISE-FT 68664186  6482+£171 8201 +0.60 6035111 69.76 G881 320 6801408  8028+018  6181+383 +0.02
L2-SP 60224259  68.11+£095 77744 108 58.864+0.63 6040 70.03  3.80 67.6640.75 77774003 69704004 5684+ 127
FEATURE-MAP  66.144 179 64.83£223 72,50 +0.52 50564029 6690 6749 5.60 7095040 8256+0.05 73.09+:0.20 5958 = 0.07
BSS 6965+ 186  69.01£033 78204139  T085+£075 56754046 6890 6985 440 | TI20£533 66024131 7840+ 152 95094 57.0540.91
FULL-FT 7496+ 119  ST81£132  5453+£181  G6586=0.67 5LOS£059 6685 6512 360 | 7032485 82674065  5941+£001 TLTS =410 99 40.00
GTROL062 82214047 AST74042 52204332  50.51+£031  60.30 5681 720 | 75604001 75144000 5085010  58.30+0.00 810,00
SURGICAL-FT 70354030 8856070 60.12+1.38  6109+081 5185040 6639 6385 360 | 77.04-£001  8847£0.00  5264+£001 69724000  54.82+0.00
SizE LP-F 8643+0.68 5350198  65.30£073  4999+030 6532 6339 620 SISTELOS  4910£302  TL614+467 5543 +0.00
wis| 86.56+1.25  65.74+137 5155£946 48624038 6520 6361 520 85264199 48524083 7523171  55.22+0.00
86.82+164 56.73+341  G7.80+£183  5L01+0.60 67.16 6599 380 T860£220  59.94+£002 7361+ 182 149
FEATURE-MAP 7 81834064 58424090 67.04LL4l 50844030 67.02 67.47 360 | 80.69+£011 8849080  58.95+0.13 764000 7010 69.09
BSS 74264107  S8.06+£096 56714182 6620110 5291065 67.65 6575 280 | 68014070 7945268  59.30+6.07 884150 6670 66.39

Indeed, from the DWiSE-FT experiments with different starting points of mixing coefficients, the
variance of final results is small since it will converge towards the optimal value of mixing coeffi-
cients regardless of the initial starting point given a reasonable training time.

F ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present complementary baseline results that are not shown in the main text due
to space limit. Specifically, the results on classification tasks in the Fewshot settings over the Mole-
BERT (self-supervised pre-training) and Graphium (supervised pre-training) models are in Table 5.
The results on regression tasks in the Fewshot settings over the Mole-BERT and Graphium models
are in Table 6. The results on classification tasks in the Non-Fewshot setting over the Graph-MAE
(self-supervised pre-training) model are in Table 7. The results on classification tasks in the Fewshot
settings over the Graph-MAE model are in Table 8. The results on regression tasks over the Graph-
MAE model, including both Non-Fewshot and Fewshot settings, are in Table 9.

The results of classification datasets over the MoleculeSTM model are in Tables 11-14. The results
of regression datasets over the MoleculeSTM model are in Tables 15-18.

The complete table including all few-shot fine-tuning results for DWiSE-FT are in Table 10.
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Table 6: Robust fine-tuning performance on 4 regression datasets (RMSE metrics) in the Fewshot
setting (covering FEWSHOT-50, FEWSHOT-100, and FEWSHOT-500), evaluated across 3 dataset
splits (RANDOM, SCAFFOLD, SIZE) and 2 pre-training strategies (SELF-SUPERVISED, SUPER-
VISED). AVG-R, AVG-R* denote the average rank and the rank based on the average normalized
performance over all the datasets for each evavluated method, respectively. Standard deviations
across five replicates are shown in parentheses. We bold and underline the best and second-best
performances in each scenario.

SpLiT METHODS SELF-SUPERVISED PRE-TRAINING (MOLE-BERT) SUPERVISED PRE-TRAINING (GRAPHIUM)
EsoL Lipo MALARIA CEP AVG-R  AVG-R® | EsoL LipO MALARIA CEP AVG-R  AVG-R*
FEWSHOT-50
FULL-FT 1.390 £ 0.051 76 + 0.006 2.383 + 0.046 3.50 4 1.223 £ 0.000 1.062 £ 0.000 1.284 4 0.000 6.25 7
LP 6 +0.005 3.736 £ 0.020 8.00 8 1.085+0.000 1.072+40.000  1.272 + 0.000 4.00 3
SURGICAL-FT 1.2954+0.004  3.596+£0.037  7.00 7 1.1744+0.000  1.009+0.000  1.277 £ 0.000 3.25 2
RANDOM LP-FT 1.29 22960012 525 6 1.386+0.000  1.01940.000  1.286 % 0.000 8
WISE-FT 1 2.410 £ 0.051 5 1.219 £ 0.000 1.060 £ 0.000 1.280 £ 0.000 4
L2-SP 1. +0.006 2.280 + 0.031 3 1.147 £ 0.026 1.092 £ 0.001 1.283 £ 0.000 2.312 £ 0.020 5
FEATURE-MAP 1.271£0.007 2448 4+ 0.010 1 1.089 4 0.001 1.046 £ 0.000 1.276 £ 0.000  2.191 +0.017 1
BSS 1.365 4 0.028 1.277£0.006  2.275 4+ 0.022 2 11754 0.011 1.128 4 0.035 1.281 4 0.000 262 + 0.064 6
FULL-FT 96 £ 0.058 1.178 £ 0.005 2.356 £ 0.033 5 1.353 £ 0.000 1.071 £ 0.000 1.168 £ 0.000 2.001 % 0.000 8
LP 754 £ 0.020 1.167 £ 0.002 3.849 + 0.009 8 1.226 + 0.000 1.013 4 0.000 1.166 £ 0.000 6
SURGICAL-FT 99 + 0. 1.167+0.003  3.819+0.017 7 1.2394+0.000  LOI9£0.000 1.162+0.000 2
SCAFFOLD LP-FT 822+ 0.0 L184+0.004  2.292+0.026 6 1.283+0.000  1.03340.000  1.169 + 0.000 5
WISE-FT 1.842 £ 0.056 1.162 + 0.004 2.454 £0.043 4 1.320 £ 0.000 1.071 £ 0.000 1.168 £ 0.000 1 =+ 0.000 7
L2-SP 1.699 £ 0.049 1.162 £ 0.002 2.331 £0.024 2 1.273 £ 0.047 1.015 £ 0.007 1.166 £ 0.000 2.132 £ 0.048 4
FEATURE-MAP  1.823 4 0.028 1.159 £ 0.000  2.425+0.012 1 1.2134+0.001  0.991 +0.000  1.164 + 0.000 2.128 + 0.006 1
BSS 1.680 +0.042 1.165 4 0.001 2.319 + 0.025 3 1.222 4 0.012 1.039 £ 0.000 1.166 £ 0.000 2.121 +0.029 3
FULL-FT 2.382 + 0.079 0.929 + 0.004 2.656 + 0.039 4 1.441 £ 0.000 1.055 4 0.000 0.914 + 0.000 2.329 + 0.000 7
LP 4+ 0.021 0.941 + 0.004 4.706 + 0.022 8 1.443 4 0.000 1.003 4 0.000 0.936 + 0.000 2.688 + 0.000 8
SURGICAL-FT 44 £ 0.026 0.943£0.004  4.265 £ 0.028 7 1.469+0.000 101540000  0.914+0.000  2.313 %+ 0.000 5
Size LP-FT 2.421 + 0.060 0.939+0.007 2525 +0.013 6 1.395+0.000 0.999+0.000  0.907+0.000  2.410 £ 0.000 1
WISE-FT 2.615£0.072 0.929 + 0.004 2.762 £ 0.053 5 1.411 £ 0.000 1.071£0.000  0.905 +0.000  2.324 = 0.000 4
L2-SP 2.393 £ 0.068 0.915+0.002  2.497 +0.019 2 1.446 £ 0.055 0.997 £+ 00 0.908 + 0.000 2.340 = 0.020 3
FEATURE-MAP  2.422 4 0.021 1911 £ 0.002  2.659 4 0.021 1 1.415 £ 0.005 989 +0.027  0.921 £0.002  2.254 £ 0.001 2
BSS 2, +0.075 0.925 + 0.003 2.563 + 0.022 2.50 3 1.499 £ 0.028 0.997 + 0.000 0.907 + 0.000 2.381 + 0.006 6
FEWSHOT-100
FULL-FT 1.141 £ 0.030 1.256 £0.006  2.150 4 0.021 2.00 1 1.191 £ 0.000 1.103 £ 0.000 1.258 £ 0.000 2.076 +£0.118 4
LP 2273 £0.029 1.280 + 0.003 3.235+0.019 8.00 8 1.066 £ 0.000 1.045 £ 0.000 2.383 + 0.000 5
SURGICAL-FT  1.953 + 0. 1.270 + 0.006 3.019 £ 0.047 6.75 7 1.075 £ 0.000 1.030 4 0.000 1.935 + 0.000 2
RANDOM LP-FT 1.244 £ 0. 1.2774£0.003 2156 +£0.019 525 6 1.689+0.000  T.097 £0.000  1.273+£0.000  2.044+0.015 8
WISE-FT 1.189 + 0.030 1.256+0.006 2211+0.028  3.50 2 LI1314£0.000  1.07840.000 1.256+0.000  2.001 +0.071 3
L2-Sp 1.161 £ 0.016 1.260 £0.004  2.131 +£0.014 3.25 4 1.098 £ 0.012 1.077 £ 0.001 1.270 £ 0.001 2.261 = 0.008 6
FEATURE-MAP  1.120 + 0.038 1.266 £ 0.004 2.283 +£0.011 3.25 5 0.995+0.018 1.025+0.000 1.258 £ 0.003 1.937 +0.023 1
BSS 1.199 £ 0.033 1.259 £ 0.006 2.132 +0.019 4.00 3 1.055 £ 0.009 1.136 4 0.000 =+ 0.000 1269 £ 0.010 7
FULL-FT 1.436 +£0.054 1.160 £ 0.011 2.198 + 0.034 3.25 4 1.111 £ 0.000 1.037 £ 0.000 1.172 £ 0.000 1.965 + 0.023 6
LP 3.255 £ 0.025 1.154 £ 0.003 3.350 £ 0.007 7.00 8 1.228 40.000  0.960 + 0.000  1.162 + 0.000 2.423 + 0.000 5
SURGICAL-FT  2.587 4 0.076 1.156 + 0.003 2.914 + 0.066 6.50 7 1.087 £ 0.000  0.966 4+ 0.000 1.156 4+ 0.000 1.959 + 0.000 1
SCAFFOLD LP-FT 1.544 £ 0.042 1.163+0.004  2187+0.034  4.00 6 111140000  0.984£0.000  LI73+£0.000  2.149 +0.012 4
WISE-FT 1.544 + 0.063 L151£0.007  2.301 4 0.042 5 3 L110£0.000  1.02740.000  1.169+0.000  2.013 £ 0.049 3
L2-Sp 1.473 £ 0.009 1.153 £ 0.002 2.201 £ 0.038 2 1.252 £ 0.021 0.994 £ 0.013 1.163 £ 0.000 2.367 = 0.052 7
FEATURE-MAP  1.677 £ 0.020 1.149 £0.003  2.356 £+ 0.018 1 1.158 £ 0.020 0.966 + 0.010 1.161 £ 0.000 2.024 +£0.019 2
BSS 1.463 4 0.008 1.160 + 0.006 2.210 £ 0.018 5 1.253 4 0.027 1.033 4 0.015 1.167 4 0.000 2.333 + 0.022 8
FULL-FT 1.889 £ 0.065 0.918 £ 0.005 2.425 + 0.024 4.00 3 1.411£0.000  0.962+0.000  0.921 £ 0.006 2.328 +0.015 5
LP 3.851 £0.033 0.911 + 0.003 4.115 £ 0.038 6.75 8 1.253 4 0.000 0.981 + 0.000 0.924 + 0.000 2.635 + 0.000 8
SURGICAL-FT 5 0.912 + 0.002 3.174 £ 0.048 6.25 7 1.329 £ 0.000 0.965 + 0.000 0.910 + 0.000 =+ 0.000 2
Size - X 0.920+£0.008  2.468 4 0.021 4.75 4 1.242+0.000 0.962+0.000  0.912+0.000  2.375£0.000 1
WISE-FT 2.216 + 0.056 0.917+£0.004  254340.027  5.75 5 1.398£0.000  0.96340.000  0.907+0.002  2.319£0.014 4
L2-SP 1.731 £0.071 0.905 £ 0.002  2.424 +0.024 1.25 1 1.418 £ 0.035 0.998 £0.038  0.906 £0.000  2.436 £ 0.072 6
FEATURE-MAP  2.135 £ 0.077 0.898 £0.003  2.500 £ 0.017 3.25 2 1.335 £ 0.005 0.967 £ 0.008 0911 £0.001  2.265 £ 0.020 3
1.734 4 0.060 0.931 + 0.008 2.439 £ 0.015 4.00 6 1.387 £ 0.039 0.998 £0.006  0.906 £0.000 2518 +0.137 7
FEWSHOT-500
FULL-FT 83 £ 0.032 1.194 £ 0.003 1.891 £ 0.026 2.50 3 0.753 £ 0.000 0.842 + 0.000 1.221 £0.012 1.806 = 0.005 4.75 4
LP 1.274 £0.011 1.216 £ 0.002 2.285 + 0.004 8.00 8 1.007 £ 0.000 0.972 + 0.000 1.223 £ 0.000 2.117 £ 0.000 7.25 8
SURGICAL-FT  0.961 £ 0.013 1.201 £ 0.005 1.962 + 0.009 5.75 6 0.748 £0.000  0.825+0.000  1.210 + 0.000 1.795 £ 0.000 3.00 2
RANDOM T 0.884 +0.035 1.215 4 0.002 1.904 4+ 0.011 4.75 5 0.697 £0.000  0.835 + 0.016 1.220 4 0.008 94 + 0.004 2.00 3
0.995 £ 0.010 1.1934+0.003  1.893 %+ 0.021 4.00 4 74 0852 £0.001  1.228+0.004 T809£0.006 525 5
0.878 + 0.026 1.192 £0.004 93 £ 0.018 1 0.907£0.020  1.2434£0.006  1.822+0.003  6.00 7
FEATURE-MAP  1.057 & 0.008 1.196 £ 0.002 2.019 £ 0.004 7 0.840 £0.013  1.200£0.014 1.773 £0.008 1.75 1
BSS 0.886 £ 0.010 1.194 £0.006  1.862 4+ 0.010 2 0.715 £ 0.024 0.892 £ 0.014 1.248 £ 0.006 1.824 £ 0.006 6.00 6
FULL-FT 1.196 £ 0.013 1.137 £ 0.016 1.892 £ 0.017 4 0.956 + 0.000 0.888 £0.011 1.149£0.014  1.787 = 0.020 4.50 5
LP 1.867 £ 0.006 1.140 £ 0.002 2.338 £ 0.005 8 1.006 £ 0.000 0.921 + 0.000 1.162 £ 0.000 2.183 = 0.000 8.00 8
SURGICAL-FT  1.221 +£0.011 1.130 £ 0.005 1.953 4 0.007 6 0.955 + 0.000 0.887 + 0.000 1.138 £ 0.000  1.787 + 0.000 3.75 3
SCAFFOLD. LP-FT 1.112+0.015 1.153 £ 0.005 1.895 4 0.013 5 0.951 + 0.000 0.883 + 0.025 1.143 £ 0.000 1.791 £ 0.008 3 4
WISE- 1.114+0.002  1.936 +0.037 3 0.947£0.000  0.893+0.007  1.134£0.011  1.800 +0.006 2
L2-SP 1126 £0.011  1.885 4 0.011 2 0.991+£0.018 087840012  11284+0.002  2017£0.179  4.50 7
FEATURE-MAP 1495 1.118 £ 0.001 2.008 £0.010 7 0.966 £0.014  0.826 £0.017  1.136 £ 0.003 1.792 £0.011 3.50 1
1.188 £ 0.026 1.123£0.005 1.881+0.010 1 0.977 £ 0.021 0.885+£0.014 1.126 £0.007  1.949 £0.127 4.25 6
FULL-FT 1.692 £ 0.070 0.922 £0.013 2.364 + 0.030 3 1.115 £ 0.019 0.848 £ 0.038 0.915 £ 0.000 2.230 = 0.009 5.25 5
LP 2290 £0.017 0.908 + 0.002 2.749 £ 0.018 8 1.073 +0.000 0. =+ 0.000 0.904 + 0.000 2.435 + 0.000 5.25 8
SURGICAL-FT  1.928 4 0.039 0.919 + 0.007 2.397 £ 0.014 5.50 6 1.094 £ 0.000 0.807 + 0.000 0.904 £ 0.000  2.200 + 0.000 2.75 1
SizE LP-FT 1.674 £ 0.030 2.328 + 0.017 3.25 5 1.081 + 0.024 0.842 + 0.021 0.925 + 0.000 2.280 + 0.000 5.25 7
WISE-FT 071£0.078  0.902 +0.016 2.379+£0.086 575 7 TI16+£0.023  0.805+0.015 0.907+0.001  2.228+0.010  4.00 2
L2-SP 1.629+0.084 0.821£0.011  0.904+0003 23680013 250 1 1.183£0.055 085340031  0.903+0.004  2227£0.038  5.00 6
FEATURE-MAP  1.963 £ 0.035 0.910 009  0.895+0.002  2.366 £ 0.006 4.25 4 1.193 £ 0.058 0.850 £ 0.021 0.901 +£ 0.02 2.203 = 0.023 4.50 4
BSS 1.630 £ 0.035 0.818 005 0.925 £ 0.019 2.370 £0.013 4.00 2 1.142 £ 0.049 0.834 £0.018  0.900 £0.003 2245 £ 0.027 4.00 3
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Table 7: Robust fine-tuning performance on 8 classification datasets (AUC metrics) in the Non-
Fewshot setting, evaluated across 3 dataset splits (RANDOM, SCAFFOLD, SIZE) over the Graph-
MAE based pre-trained model. AvG, AVG-F, AvG-R denote the average AUC metrics, average
AUC without max and min values, and average rank over all the datasets for each evaluated method,
respectively. Standard deviations across five replicates are shown in parentheses. We bold and
underline the best and second-best performances in each scenario.

SPLIT METHODS CLINTOX BACE MUV SIDER Tox21 TOXCAST AVG-F
FULL-FT 83.22 £2.07 89.26 + 0.40 80.71 +0.58 61.53 +0.48 +0.15 73.01 +£0.16 82.31
LP 78.82 4 1.55 .16 £ 0.58 5+ 1.27 78.54 4+ 1.16 61.51 4+ 0.35 7 +0.16 66.96 +0.16 75.00
SURGICAL-FT  83.85 & 1.52 92.11 £0.35 86.77 £ 0.09 82.71+0.81 61.7940.19 79.90 +0.14 71.5140.21
RANDOM LP-FT 88.09+1.04 94.68+0.19 89.58 £0.23 86.06+0.43 80.75+ 1.53 61.694+0.26 82.50+0.21 73.66 +0.07
WISE-FT 80.01 +4.00 93.04£0.46  90.15+0.50 8542 +0.52 82.0742.10 62.18 4 0.49 81.55 4 0.43 48 £+ 0.26
L2-SP 83.39 +£1.88 93.89 +0.28 88.70 £0.10 +1.54 62.36+0.43 77.4540.47 68.71 +0.31
FEATURE-MAP  73.08 £ 0.89 85.36 £ 0.46 75.88+0.75 7 +1.25 62.06 4+ 0.32 364+0.13 65.69 +0.24
BSS 83.98£3.00 94.85+0.31 89.31£0.21 80.55 4 0.75 61.92 +0.21 82.4840.28
FULL-FT 74.744+0.93 66.35 £ 0.65 80.33 +0.37 TT.47+1.33 60.98 +0.19 6.18 +£0.31
LP 71.34 4 1.48 64.36 £ 0.24 61.70 £ 7.34 70.62 4 0.64 58.23 4+ 1.29 70.89 +0.10 B
SURGICAL-FT  71.88 +1.07 66.81 +0.29 80.24 4+ 0.90 76.90 + 0.30 64.00+0.09 7418 £0.40 62.60 4 0.27
SCAFFOLD LP-FT 74.88 +2.00 67.39 £0.55 80.67 £0.57 77.97+0.38 60.76 4 0.45 76.18 +0.20 64.29+0.23
WISE-FT 77.30£530 69.29+234 82164150 76.75+0.69 B 59.76 4 0.86 74.99 £+ 0.44 63.61 4 0.34
L2-SP 73.40 +0.45 67.39 £0.90 80.36 + 0.92 74.63 +0.44 73.20 +0.90 6. 73.16 £ 0.14 61.29 +0.38
FEATURE-MAP 440.62 62.46 £ 0.26 69.22 + 2.06 72.34 +0.58 .63 £ 0.54 5 71.254+0.13 57.78 £ 0.26
BSS 75.80 £ 1.11 67.46 £ 1.35 80.82 + 0.62 77.10£0.77 78.53 & 1.03 76.45+0.24  64.03 £ 0.09
FULL-FT 56.52 4 0.81 80.05 £2.01 77.214+0.94 74.64 £ 1.72 53.04 +£0.74 70.874+0.24 60.80 4 0.50
LP 57.44 £0.94 73.52 4+ 1.68 73.9140.89 65.97 & 3.36 51.84 4+ 0.31 67.56 & 0.10 57.49 £0.11
SURGICAL-FT ~ 57.47+1.16 81.96 £ 80.48 +0.18  75.86 £ 2.96 54.32 4 0.43 71.194+0.30
SIZE LP-FT 56.35 4 0.62 76.80 4 2.24 77.144£0.69 79.10+£0.89 5269+035 71.33+0.26
o WISE-FT 59.25+3.49 82.99+1.91 55.74+1.28 70.94+0.42
L2-SP 59.11 4 0.88 80.40 £+ 1.50 61.10 £ 1.54 7 53.81+0.72 7.85 £ 0.36 64.80
FEATURE-MAP  59.02 4 0.89 77.604+0.45  43.1740.32 79.17 3 52.23 4+ 0.32 53.39 4 0.51 64.09
58.58 + 1.31 80.86 £1.92 61.96 £2.00 79.14+0.79 53.14 4+ 0.63 70.76 + 0.37 60.62 + 0.35 67.40
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Table 8: Robust fine-tuning performance on 5 classification datasets (AUC metrics) in the Few-
shot setting (covering FEWSHOT-50, FEWSHOT-100, FEWSHOT-500), evaluated across 3 dataset
splits (RANDOM, SCAFFOLD, SIZE) over the Graph-MAE based pre-trained model. We bold and
underline the best and second-best performances in each scenario.

SPLIT METHODS CLINTOX BBBP BACE HIV SIDER AVG  AVG-F  AVG-R
FEWSHOT-50
FULL-FT 59.67 + 3.35 83.04 £ 0.39 7497+1.30 62.63+0.92 52.52+0.19 66.57 65.76 4.20
LP 57.56 & 4.09 71.69 £ 0.89 72.96 +0.91 48.27 + 4.06 55.09+0.39 61.11 61.45 6.20
SURGICAL-FT  59.83 & 2.64 78.37 £ 1.06 75.25 +0.92 55.35 +£0.81 54.97+0.49 64.75 63.48 4.40
RANDOM LP-FT 60.20 £2.14 84.54+041 76.82+0.34 62.244+0.28 54.41+0.32 67.64 66.42 2.60
WISE-FT 63.50+7.72  70.77 +1.42 70.57 £1.13 58.10 + 2.35 51.23 +£2.01 62.83  64.06 6.00
L2-SP 61.02 4 2.03 83.79 = 0.60 74.24 +0.96 61.58 +0.81 55.34+0.44 67.19 65.61 3.20
FEATURE-MAP  59.99 + 3.80 73.57+£1.12 71.18 £+ 2.60 4824 £4.14 55.85+0.10 61.77 62.34 5.20
BSS 58.86 & 3.63 83.81 £ 0.57 74.38 £1.20 62.06 £ 0.80 54.46 £0.56  66.71  65.10 4.20
FuLL-FT 55.61 &+ 2.60 58.53 £+ 0.58 58.21 £ 7.54 45.89 £ 4.20 54.86 £ 0.67 54.62  56.23 5.60
LP 62.76 + 3.66 56.21 £+ 1.38 56.67 £ 6.74 52.12 £+ 3.82 53.39 £0.50 56.23  55.42 6.20
SURGICAL-FT  63.53 +3.11 59.33 £ 0.82 60.97 £ 3.53 52.62+1.46 54.94+0.39 5828 58.41 3.20
SCAFFOLD LP-FT 60.62 & 2.83 58.45 +0.72 59.561 +1.11 51.87 +3.30 54.67+0.64 57.02 57.54 5.20
WISE-FT 55.45 + 5.80 59.33+£0.74 67.39+2.69 58.03 +4.66 53.77+0.49 58.79  57.60 4.00
L2-SP 64.76 £ 2.87 59.99 £ 0.63 61.49 £+ 1.47 51.94 + 3.28 54.31+£0.86 58.50  58.60 3.60
FEATURE-MAP 68.84 +£1.77  56.59 £+ 1.37 64.71 + 2.65 43.90 = 0.98 50.07£0.75 56.82 57.12 5.20
BSS 60.27 +3.40 60.16 +£0.57 61.83+£1.07 62.17+1.89 54.354+0.96 59.76 60.75 3.00
FULL-FT 53.86 +4.15 58.43 +1.97 45.83 £+ 8.42 51.39 +8.97 52.27+0.60 5236 52.51 5.60
LP 52.46 £+ 3.47 47.60 £ 7.34 51.80+9.61 46.50+11.95 51.79+£0.75 50.03 50.40 6.60
SURGICAL-FT  53.27 £ 3.82 48.97 £ 8.11 52.03+9.45 52.11+9.11 53.37+£0.34 51.95 5247 4.40
SIZE LP-FT {74.43 +3.19 59.46 + 1.82 40.76 + 2.04 57.05 + 1.85 53.41+0.19 53.02 {74.96 3.40
WISE-FT 56.434+294 60.62+3.42 51.59+493 66.93+590 5096+1.29 5731 56.21 3.00
L2-SP 53.09 £+ 0.96 58.43 +£4.43 45.90 £9.25 53.69 +£4.19 52.31+£0.70  52.68 53.03 5.00
FEATURE-MAP 53.75 + 1.04 60.21 +7.22 46.65 + 1.64 53.42 + 4.82 51.88 +0.54 53.18 53.02 4.20
BSS 58.80+1.49 59.13+4.12 46.62 + 8.69 53.94+4.11 51.87+0.64 54.07 54.87 3.80
FEWSHOT-100
FULL-FT 67.65 +1.95 82.80 +0.74 79.73 £ 0.72 62.47 £ 0.47 55.03+0.56 69.54  69.95 4.20
LP 64.03 +£2.41 7219+ 1.10 75.93 £1.12 48.46 £ 3.79 58.11+£0.51  63.74 64.78 6.40
SURGICAL-FT  66.99 + 2.08 81.07 £ 0.32 79.05 £+ 0.49 54.93 £+ 0.64 58.16 +£0.60 68.04  68.07 5.00
RANDOM LP-FT 66.54 + 1.29 84.02+0.63 81.49+0.40 62.60+0.30 57.29 £+ 0.49 70.39 70.21 2.80
WISE-FT 69.92+3.24 81.88+3.16 71.01 £ 1.00 59.41 £+ 1.02 52.12+1.56 66.87 66.78 5.40
L2-SP 68.17 +£0.71 83.52 £ 0.97 80.29 £ 0.64 61.40+0.73 58.85+0.38 70.45 69.95 2.80
FEATURE-MAP  63.25 £1.14 73.95+1.04 74.90 = 2.19 48.29 +4.11 58.80+0.21 63.84 65.33 6.40
BSS 68.22 £+ 0.52 83.55 £ 0.97 80.32 £ 0.67 62.24 £+ 0.61 56.13£0.74 70.09  70.26 3.00
FULL-FT 63.22 £ 5.57 60.67 £+ 0.99 65.72 £ 2.20 54.23 £ 2.65 54.93 £+ 0.84 59.75  59.61 4.80
LP 61.64 +3.21 53.87+0.93 60.85 + 1.01 53.99 +4.84 53.02+0.35 56.67 56.24 7.40
SURGICAL-FT  66.38 £ 1.62 58.25 £ 0.90 62.95+247 62.20+1.88 55.24+0.47 61.00 61.13 4.00
SCAFFOLD LP-FT 65.08 & 3.59 60.15 £ 0.20 66.58 £ 0.96 57.03 £ 3.48 54.12+0.52  60.59  60.75 4.60
WISE-FT 53.83 £ 2.78 64.13+1.64 72.12+1.43 57.64 £ 4.40 55.64 +2.15 60.67 59.14 2.80
L2-SP 66.91 +1.79 60.77 £ 1.57 66.02 £ 1.53 54.34 £ 2.25 54.72+1.16  60.55  60.50 3.80
FEATURE-MAP 68.84 +1.56  55.98 £ 0.58 64.15 £+ 2.87 50.87 £ 2.38 49.55+0.88 57.88  57.00 6.00
BSS 67.11 +2.10 60.54 + 1.13 66.61 +1.12 60.74 £+ 0.93 55.06 + 1.14 62.01 62.63 2.60
FuLL-FT 55.01 £ 3.57 66.52 + 1.39 51.73 £2.47 54.13 £ 8.59 53.93£0.76  56.26  54.36 3.60
LP 52.73 £ 3.21 49.27 £ 5.99 47.22+6.09 46.39+11.18 51.72+£0.76  49.47  49.40 7.40
SURGICAL-FT 53.80 &+ 3.52 52.34 £ 6.18 49.29 £+ 5.93 51.50 £ 12.55 53.47 £ 0.71 52.08 52.44 6.00
SIZE LP-FT 54.19 +2.32 67.66 + 1.06 54.39 £ 2.27 58.09+1.24 55.25+0.33 57.92 5591 2.40
WISE-FT 54.89 £ 5.22 65.76 + 1.61 48.32+2.36 67.43+6.52 47.06+094 56.69 56.32 4.60
L2-SP 53.99 £ 1.00 66.39 & 3.08 54.50 + 3.14 54.52 + 7.69 5434 +£1.20 56.75 54.45 3.40
FEATURE-MAP  50.62 £+ 1.90 58.47 £ 9.57 46.18 £ 1.57 52.40 £ 5.59 51.81+£0.64 51.90 51.61 6.80
BSS 5871+144 67.67+291 54.89+3.17 54.60+7.72 54.33 £1.18 58.04  56.07 1.80
FEWSHOT-500
FULL-FT 78.63 £ 0.77 91.08 £ 1.35 85.62+0.30 70.55+0.32 59.68+0.36 77.11  78.27 4.40
LP 72.34 £2.23 79.79 £1.23 75.57 £ 1.04 54.42 £ 2.54 61.10£0.33 68.64 69.67 7.20
SURGICAL-FT 79.09 £0.81 85.22 +0.36 83.77+0.94 65.78 = 0.56 61.10£0.47 7499 76.21 5.00
RANDOM LP-FT 80.52+1.76 91.82+0.25 86.02+0.20 69.28+0.65 61.10£0.48 77.75 78.61 2.20
WISE-FT 78.34 £ 3.82 91.54 £ 0.76 84.49 £ 0.56 61.15+1.37 63.77+1.03 75.86 75.53 4.20
L2-SP 78.56 £0.91  91.38+0.46  85.81+£0.40  68.73+£0.18 61.34+0.30 77.16 77.70 3.80
FEATURE-MAP  69.96 & 1.65 81.31 +£0.48 71.65 £ 0.61 58.54 £+ 1.57 61.40£0.19  68.57 67.67 6.40
BSS 79.17+£0.93 91.98+0.48 85.85+0.41 69.74 £ 0.41 60.32 £+ 0.51 77.41 78.25 2.80
FULL-FT 68.64+0.79  68.65+0.62 77.69+0.21 66.32+1.81 57.55+0.33 67.77 67.87 4.20
LP 67.38 +£2.22 60.02 £ 0.77 62.66 £+ 5.53 60.14 £ 4.18 58.74£1.34 61.79 60.94 6.40
SURGICAL-FT  70.31+2.21  65.27 +0.39 74.86+1.30 70.52+1.05 61.99+040 6859 68.70 3.00
SCAFFOLD LP-FT 6558 +£1.33  69.05+0.77 7848+0.58  70.224+0.94 55.89+0.40 67.84 68.28 4.60
WISE-FT 68.48 £ 3.60 65.58 £1.56 82.78 £0.77  58.90 £2.63 57.28£0.75 66.60  64.32 5.00
L2-SP 68.86 4 1.22 68.81 & 0.65 78.24 £1.13 65.12 + 1.11 60.63 £0.73  68.33  67.60 3.40
FEATURE-MAP  68.16 + 0.88 59.42 +0.29 68.25 +1.93 67.01 +2.26 56.567 £0.43 63.88  64.86 6.20
BSS 68.59+1.15 69.09+0.57 78.85+0.93 66.05 £ 2.20 58.73£0.39 68.26 6791 3.20
FULL-FT 65.78 = 1.28 83.11 £ 0.77 49.15 £ 1.50 58.35 £ 9.96 52.46 £1.33 61.77  58.86 4.00
LP 5859+2.86  60.74+£5.06 47.284+2.25 4596+ 1156 51.67+0.43 52.85 52,51 7.40
SURGICAL-FT  65.88 £1.23 72.86 £1.29 47.62 £ 1.58 57.44 £ 9.55 52.61 £0.51  59.28  58.64 4.80
SIZE LP-FT (:)6.09 +1.44 82.96 £ 0.52 50.17 £ 0.69 63.07 £+ 0.97 52.25+£0.55 6291 60.47 2.60
WISE-FT 57.72+2.58 7731+156 6042+245 68.17+247 51.524+0.50 63.03 62.10 4.60
L2-SP 65.91 +2.13 82.22 £ 0.63 49.40 £ 0.87 60.24 £2.10 52.794+0.72 62.11 59.65 3.20
FEATURE-MAP  60.84 £ 1.37 63.60 £ 6.18 44.07 £0.77 49.33 £ 7.05 51.80£0.59 53.93  53.99 6.80
BSS 66.64 +2.47 83.60+0.32 49.73 +0.59 62.63 £ 1.27 52.24 +0.98 62.97 60.50 2.60
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Table 9: Robust fine-tuning performance on 4 regression datasets (RMSE metrics) in both Fewshot
and Non-Fewshot settings (covering NON-FEWSHOT, FEWSHOT-50, FEWSHOT-100, FEWSHOT-
500), evaluated across 3 dataset splits (RANDOM, SCAFFOLD, SIZE) over the Graph-MAE based
PT model. AvG-R,AVG-R* denote the average rank and the rank based on the average normalized
performance over all the datasets for each evavluated method, respectively. Standard deviations
across five replicates are shown in parentheses. We bold and underline the best and second-best
performances in each scenario.

SpLIT METHODS NON-FEWSHOT | FEWSHOT-50
ESOL MALARIA CEP AVG-R  AVG-R* EsoL Lipo MALARIA CEP AVG-R  AVG-R*
FULL-FT 0.987 +£0.013 1109£0.015  1.342£0.015  3.00 3 143240019 13280051 12970015  2927+0226  4.25 3
LP 1304 £ 0.012 1.263£0.002  3.079+£0.105  8.00 8 16460027 1.395+0.076 7.50 8
SURGICAL-FT  1.088 £ 0.011 112040012 L69T£0.012 625 6 1.497+0.017  1.303 +0.051 7
RANDOM T 0.953 % 0.009 1.096+0.009 1.322+0.025 LT 1 1.386+0.022 1.217+0.021 2
WISE-FT 1.210 £ 0.032 TO60Z0008 153140030 450 5 1622 4 0.053 3 23854002 3 5
L2-SP 0.995 +0.024 111540006  1.363+£0.040 425 4 1444 4 0.027 120440005 231540106 3.7 1
FEATURE-MAP  1.207 £ 0.007 111540016 1473£0018 625 7 163540027 1312400020 12780003 2363£0.127 375 6
BSS 0.975 + 0.019 11000004 133440004 200 2 143940020  1.351+£0.051  1204+0005 2.682+0.115  4.25 4
FULL-FT 1332+ 0.015 1104£0.007 1327 £0.017 350 3 171740028 1214£0051 116940005  2612+0178 550 5
LP 1.703 £ 0.016 15040003 310240136 8.00 8 220040039 118340045  1170£0.004  4.565+£0.048  6.75 8
SURGICAL-FT  1.335 + 0.005 111140013 L669+£0.022  6.00 6 183440031 L198+£0.049  L166+0.001 31420589 500 7
SCAFFOLD T 1.312 +0.024 1.104+0.006  1318£0.017  2.00 1 164240026 1.147+0.008 13000061  2879+0.264  4.00 6
1.617 +0.031 1.077+0.004  1.498 +0.031 s 222140047 117540016  1166£0.002 2.326+0.031  4.00 4
1.329 £ 0.030 1108 £0.011  1.325+0.021 4 171840053  1.200£0.053 1167 £0.002 23660059  4.25 3
FEATURE-MAP 140,013 1.097 £0.008  1.415+0.030 7 219740075 1148400 1.163+£0.003 2400 £0175  3.00 2
BSS 6 T104£0.009  1.302+0.012 2 171240056  LI6S£0.050  1168+0.002  2551+0.121  3.50 1
FULL-FT 090810000 1.722 £ 0.016 3 265440075 15570093  0.943£0.026  2.550 +0.053 3
LP 3814+ 0.175 8 281840087 167640115  0.963+£0.030 5 14L(AO 8
SURGICAL-FT 5 2.135 + 0.038 6 2658+ 0.088 164140114 092940027 3. 6
Size LP-FT 1 754+ 0.075 1.710 4 0.010 2 244040056 1.422+0.111 1.166+0.053 2. 339 L0010 1
WISE-FT 2.323 +0.041 1982 4 0.039 7 3.050 % 0.087 £0.049  0.909£0.001 3.223+0.224 7
L2-SP 1.849 £ 0.041 091120006 1748+ 0.041 4 606+0.085 1614£0.112  0914+0016 2466 +0.079 2
FEATURE-MAP  2.136 -+ 0.030 0.891+£0.012 1.94740.013 5 2,630 + 0.036 6970080  0.920 £0.007 24080 0 5
BSS 1.808 + 0.039 0.899+0.006 1712 +0.021 1 2.579 + 0.066 613+0.110 092640018 4
SPLIT METHODS FEWSHOT-100 ‘ FEWSHOT-500
EsoL MALARIA CEP R AVG-R® | EsoL Lipo MALARIA AVG-R  AVG-R®
FULL-FT  1.304+0.041 1.280£0.003  3.028+0.310 3 10420017 1.023+£0.022  1.290 % 0.004 4.00 5
LP 1.609 + 0.032 133440009 4.562+0.047 8 148740011 123340019  1.33140.012 8.00 8
SURGICAL-FT  1.356 % 0.022 1.298+0.008  3.100 £ 0.805 4 116440010 112740007 1240 £0.011 357740498 500 6
RANDOM LP-FT 1.310 £ 0.021 1.374+0.045 3241 £0.438 6 0.995£0.010 0.975+0.007 13100019  2004£0.056 3 4
/ WISE-FT IGOOiOO 1 1.245+0.017  2.294 £0.024 7 1.251£0.029  0.976£0.010 1.231+0.016  1.975+0.017 2
L2-SP 014 2.271+£0.065 1 10480014 T036£0.009 124140007 1.886 +0.032 1
FEATURE-MAP 276£0.004 227140116 5 1340 £0.007 120240004 124140010  1.992+0.013 7
BSS 1251 +0.028 3+0.006 254140128 2 103140013 102040006  1.2724+0.007 1896+ 0.034 3
FULL-FT L168£0.030 1L 3.087 +0.765 2 14060016 0.945+£0.021  1.199+0.025 20570072 3
LP 1 X 1211+ «mm LI73£0000 4579+ 0037 8 184940028  L1024£0.019 118240007  4.607 = 0.020 8
SURGICAL-FT  1.693 % 0.019 4 1169 +0.003 1 1436 +0.010  1.020+£0.006 1156 4+0.010  2.874 £ 0.652 5
SCARFOLD LP-FT 1.626 +0.016 1.31240.023 364 6 1.354+0.011 0.940+0.012 1.278£0.044  2.052+0.053 6
WISE-FT QDBQiOOGB 1158 £0.008  2.244 + 0,068 7 170740029 1.028+£0.025 1.125+0.008 1.906 = 0.020 4
L2-SP 1.168 + 0.003 27 -+ 0.030 3 141320045  0.943£0.022  1156+0012 1931 +0.054 1
FEATURE-MAP 116440029 1164+ 0,001 5 188040035  LOSL+£0.006 112940006  1.992 % 0.008 7
BSS 1191£0.046  1.169 £ 0.004 566 + 0.149 4 140440042 0.941:£0.019  T.I99 0.0 1.926 £ 0.041 2
FULL-FT 0.911+0.008 26774 0.139 1 2 102£0.080 0968 + 0.0 0.955+0.031 2283 % 0.060 4
LP 5.420 + 0.033 8 " T10£0.046  0.968 +0.027 +0.018 8
SURGICAL-FT 3.707 % 0.589 6 0.98240.014  0.949+0.032  3.765 £ 0.499 7
Suze LP-FT 2217 +0.047 1,065 £ 0.020 62 -+ 0.076 4 0.889+0.017  0.985+0.033  2.339 £0.049 2
WISE-FT 2.507 £ 0.098 0.904£0.002 282340031 3 1.040£0.015  0.906+0.003 2437 +0.032 5
L2-SP 244240047 1.362+0082 091640009 2451 +0.093 5 101240030 0.951+£0.030 2 20& +0.030 3
FEATURE-MAP  2.716£0.026 1551 +0.085 091240003 2.424+0.039 7 225340017 1174+ 0.023 908 + 0.001 6
ss 340046 1.358+£0.084 091240005 253340103 4.00 2 1.980+0.051  0.980+0.025  0.956 £ 0.041 1

Table 10: DWiSE-FT performance on 4 regression datasets (RMSE metrics) in the few-shot setting
with 50,100, 500 samples, evaluated across 3 dataset splits (RANDOM, SCAFFOLD, SIZE) given
Mole-BERT model. AVG-R denote the average rank. Standard deviations across five replicates
are shown in parentheses. We bold and underline the best and second-best performances in each
scenario.

FEWSHOT 50 FEWSHOT 100 FEWSHOT 500

SeuiT METHODS EsoL Liro MALARIA cEr AVG EsoL ) MALARIA cEp AVG EsoL Liro MALARIA cEp
WISEFT L3007 12122000 LZGE0007 24100051 375 | LIE00 L2002 120040006 221120028 300 | 0095000  0SE001  LIBL0003 L8002
RANDOM L*-sP 029 1196+0.019 1277 +0.006 300 | 116140016 114940007 126040000 2. 011 325 | 0.878+0.026 0.806+0007 11920004 1893+0.018
Top 1.3 021 1.164+0.010 1.271+0.007 125 | 112040038 113940017 1256+0006 21310011 150 | 0.878=0.026 0.806+0.007 1.192+0.004 1.862+0.010
DWISEFT iasi00m  LIMLO0MN 1200w 3933 i008 200 | Limioos 1300 125650004 AIWEOON 125 | 0OI8S0012 GRIRE001 119250004 isesto0m
WISEFT 181240056 117740009  L162£0004  2454£0043 350 | 154440063  L041£0017 LI514£0.007 230140042 350 | 13880023 0834£0012 1114+0002 1.936% 0037
ScarFoLD L2-SP. 1699+0.019  10SG+£0009 11620002 233140024 250 | 147340009 096140003 1153 £0002 2201 +0.038 250 | L163+0.026 L126+0.011 1885 +0.011
Top 168040042 103610007 LI59L0000 229240026 125 | 143650054 093710008 11490003 21870031 111210015 0.8 111440002 1881%0.010
DWISE-FT i616%0.047 11100013 117340005 230640030 250 | L485+0.041 097940014  LI158+0.009 2149 % 0.040 1266 40.021  0.823+0.010  1121£0.004  1.900 % 0.019
WISE-FT 261550072 1391£0042 092040001 276240053 400 | 2216+0056 11210031 0917+ 0.001 207140078 0902£0016  0912£0003 2379 £ 0.08
Size PSP 2 13060037 0.915£0002 2.497+0.019 250 | L7T31+0.071 1.025+0.028 0905 +0.002 1629 0.084 08210011  0.904%0003  2.368+0.013
“ Top 3 127 E0010 091150002 240750010 150 | THTEOO 1035 i00s8 OBBIO0N Tiiroosl 16200051 0.803+0.006 0895%0002 2.328+0.017
DWISEFT 1488+0.101 11130021 0913+£0007 2539+0023 175 | 1469+0052 1031+0.022  0.920+0006 2390 = 0.025 1466+0.040 0816£0022  0.915+0.003 2.322+0.081
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Table 11: Robust fine-tuning performance on 8 classification datasets (AUC metrics) in the
Non-Fewshot setting, evaluated across 3 dataset splits (RANDOM, SCAFFOLD, SI1ZE) under the
MoleculeSTM pre-trained model. AVG, AVG-F, AvG-R denote the average AUC metrics, average
AUC without max and min values, and average rank over all the datasets for each evaluated method,
respectively. Standard deviations across five replicates are shown in parentheses. We bold and
underline the best and second-best performances in each scenario.

SPLIT METHODS CLINTOX BBBP BACE HIV MUV SIDER Tox21 TOXCAST AVG  AVG-F  AVG-R

FuLL-FT 89.90 + 1.49 93.43 +0.99 89.82 4+ 1.08 84.72+1.11 77.82 + 3.46 62,124+ 1.15 82.49 +0.41 72.95+0.31  81.66  82.95 3.62
LP 74.324+1.90 84.76 + 0.29 74.85 4 0.27 74.15 £+ 0.69 76.86 + 1.07 59.69 +0.24 73.72+£0.20 66.194+0.14  73.07  73.35 7.75
SURGICAL-FT  86.04 £ 0.89 93.68 +0.51 89.994+0.46 85.68+0.84 79.59+247 63.64+0.78 81.84+0.66 71.834+0.55 81.54  82.50 3.38
LP-FT 86.39 + 1.85 93.724+0.93 89.82 4 0.57 8417+ 1.41 76.87 +2.38 62.19 + 1.00 82.54 +0.51 72194052 80.99  82.00 3.75

RANDOM ' \yiSEFT  90.35+1.26 9293+0.80 90.41+086 s$438+105 77234308 O6217£125 8267+032 73081032 8165 8302 288
L*-sP 80.69+1.30 9377037 89214092 8194120 50214441  6LOT£122  8297:£039 TLO2L057 77 7932 5.00

FEATURE-MAP  79.93 +1.54 90.59 = 0.39 83.69 +0.24 7766 +0.46 80.03+1.01 59.93 +£0.14 75.32+0.19 67.51 +0.30 76.83  T77.36 6.25

BSS 90.17+2.84 94.16+0.55 89.74+1.12 83.96 £ 1.29 76.64 +1.29 61.874+0.69 83.26+£0.57 74.554+0.31 81.79 83.05 3.38

FULL-FT 74.944+7.23 68.62 + 0.80 75.35 + 2.06 76.03 £0.91 73.43 + 2.50 57.88 £ 1.18 76.67 £ 0.68 63.624+0.27 70.82  72.00 4.25

LP 65.07 £ 1.08 59.39 +0.35 69.24 4+ 0.16 69.97 + 0.57 71.81 4 2.40 59.93 4 0.37 69.87 +0.28 60.054+0.25  65.67  65.69 7.00

SURGICAL-FT 71.07 £ 4.16 67.78 £ 0.60 A 76.80 £ 1.06 59.24 +£1.22 75.54 £ 0.64 63.27 £ 0.70 7122 7172 3.75

SCAFFOLD LP-FT 75.074+2.24 67.05 + 1.42 76.68 4 0.82 58.51 & 1.15 76.85 £ 0.63 62.98 + 0.51 70.48  71.41 4.62
- WISE-FT T7.27+428 68.72+0.75 74.38 +£2.20 58.19+1.26 76.89+0.69 64.05+0.34 71.60 T2.87 3.12

L%-SP 74.62 +4.99 68.30 £ 1.19 79.914+229 61.62 +2.07 59.78 £ 0.33 75.39 +£0.51 62.34+0.82  69.49  69.37 5.25

FEATURE-MAP  61.06 & 2.00 65.12+1.98  82.66 £+ 0.62 4 K 7281+ 1.16 60.47 £0.45 70.39 £0.11 60.10+£0.19  68.39  67.40 5.25

BSS 73.89+6.04 70.04+2.00 77.94+2.04 76.28 £1.28  76.20 +£1.33 +1.39 75.86 +1.08 63.624+0.50 71.73  72.65 2.75

FULL-FT 61.94 £ 2.67 82.80 £ 2.31 33.62 + 1.19 77.8142.99 72.05 + 2.96 54.92 +0.79 71.08 +£0.77 62.474+0.83  68.34 68.16 5.12

55.54 + 0.65 75.89 £ 0.90 42.31 £0.48 67.54 £ 1.27 69.87 + 1.51 53.74 +0.43 68.10 = 0.39 57.50+£0.19  61.31 62.05 7.75

88.90+0.74 61.99+2.13 78104096 76.07+0.57 57.13+1.87 72.2440.28 60.52+£0.95 69.94 6891 2.50

SIZE 83.12+5.20 6548+0.70 76 72.24+2.79 56.314+0.72 72.65+0.59 61.71+0.63 6897 68.72 3.75

+0.63 71.27+£0.77 62.704+0.87 68.78  68.63 4.00

81.814+2.80 62.71+1.26 73.40 +2.08
3 23 +£1.70 71.93£0.21 59.294+0.72  67.35  65.76 4.50

L*-Sp 63.67 £ 1.79 88.00 +1.00 63.98 4+ 1.51 TT.38 +£1.25 58.29 4+ 3.74
FEATURE-MAP  64.41 + 1.38 86.82 +0.76 9.62 + 1.17 70.71 4+ 0.99 76.01 4 0.60 55.03 4 0.30 67.98 +0.41 57.91 4 0.31 67.31 66.11 5.25
BSS 67.80+4.60 84.90 +2.20 62.77+3.69 7813+2.21 T4.58+1.13 54.914+1.34 71.40+£0.44 63.04+£0.35 69.69 69.62 3.12

Table 12: Robust fine-tuning performance on 5 classification datasets (AUC metrics) in the Few-shot
50 setting, evaluated across 3 dataset splits (RANDOM, SCAFFOLD, S1ZE) under the MoleculeSTM
pre-trained model. AVG, AVG-F, AvG-R denote the average AUC metrics, average AUC without
max and min values, and average rank over all the datasets for each evaluated method, respectively.
Standard deviations across five replicates are shown in parentheses. We bold and underline the best
and second-best performances in each scenario.

SPLIT METHODS CLINTOX BBBP BACE HIV SIDER AVG  AVG-F  AvVG-R
FULL-FT 49.60 + 2.85 84.86 + 1.30 7474+ 1.44 60.58 + 1.47 49.47 £ 0.90 63.85 61.64 4.80
LP 52.66 £3.14  78.85+1.75 58.02+3.19  52.39+0.52 50.23+£0.47 5843  54.36 6.40
SURGICAL-FT 54.43 +4.39 86.64 + 0.96 74.92 +0.95 61.71 +0.64 51.10 £ 0.82 65.76 63.69 2.00
RANDOM LP-FT 47.71 +2.16 84.36 + 2.65 74.92 4+ 0.95 55.82 + 1.53 51.62+0.37 62.89 60.79 4.60
WISE-FT 55.69 + 5.37 84.62 +1.45 74.02 +1.36 60.05 + 1.26 49.41 £0.89 64.76 63.25 4.60
L2-SP 50.07+£2.37 85.69+1.19 7518+1.16 5844 +1.98 50.58+£0.93 63.99 61.40 3.60
FEATURE-MAP 54.09 £+ 3.21 78.77+4.05 67.88 £0.54 55.43 +£1.21 50.12+0.27  61.26 59.13 6.20
BSS 52.06 £ 3.58 85.62 +1.18 74.31+1.83  58.90=+0.76 51.18£0.69 6441 61.76 3.80
FULL-FT 45.62 £548 58.05+2.70 62.30+1.27 48.87+6.91 54.88+£0.29 53.94 53.93 2.60
LP 30.76 £1.34  50.50 + 1.35 56.94 £2.34  39.19+1.21 53.17+0.36  46.11  47.62 7.80
SURGICAL-FT  45.60 + 9.96 56.02+1.54  63.07+£0.78  44.00 +3.78 55.18 £0.47  52.77  52.27 3.80
SCAFFOLD LP-FT 33.97 + 3.65 55.31 + 2.06 61.87 £0.80 45.88 £1.92 55.16 + 0.46 50.44 52.12 5.20
} B WISE-FT 47.69 £ 5.22 57.80 +2.92 62.06 £ 1.03 47.33 +£5.84 55.16 £+ 0.57 54.01 53.55 2.60
L?-SP 45.54 +5.40 56.06 + 1.99 61.75 £ 1.66 45.56 £ 4.10 55.29 +0.92 52.84 52.30 4.20
FEATURE-MAP 26.69 + 2.38 56.71 +1.18 61.18 £5.30 43.71+£3.23 53.77+£0.39 48.41 51.40 6.60
BSS 4219+ 1.78 57.09 + 1.32 63.74 £2.79 50.07+8.79 54.75+0.37 53.57 53.97 3.20
FULL-FT 58.52 £ 2.98 58.80+9.95  36.17+6.29 52044274 51.97+1.34 5150 54.18 4.20
LP 57.53+4.82 45.54+17.14 47.39+1.62  48.21 £0.61 50.89 £0.73  49.91  48.83 6.60
SURGICAL-FT  61.32+8.19 54.19+11.51 4496 +7.70  51.79 +2.35 51.41+£0.98 52.73 52.46 4.80
SIZE LP-FT 54.70 £9.04 55.56 £3.73  43.08 +1.91 47.90 £ 2.39 51.88+£0.55 50.62 51.49 5.80
WISE-FT 61.60 £5.18 56.83 £9.47 4248 £6.40  50.61+2.71 52.28+£1.23 5276 53.24 3.80
L?-SP 60.54 £2.21 62.77+6.52 47.51+8.30 52.06+2.80 51.52+1.67 54.88 54.71 2.60
FEATURE-MAP  59.85 4 1.06 50.21 £1.87  47.65+3.15  44.09+1.27 5148 +0.50 50.66 49.78 5.40
BSS 62.26 £+1.89 60.79+7.04 49.70+2.37 51.85+3.42 51.19+1.56 55.16 54.61 2.80
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Table 13: Robust fine-tuning performance on 5 classification datasets (AUC metrics) in the Few-shot
100 setting, evaluated across 3 dataset splits (RANDOM, SCAFFOLD, SIZE) under the MoleculeSTM
pre-trained model. AVG, AVG-F, AvG-R denote the average AUC metrics, average AUC without
max and min values, and average rank over all the datasets for each evaluated method, respectively.
Standard deviations across five replicates are shown in parentheses. We bold and underline the best
and second-best performances in each scenario.

SPLIT METHODS CLINTOX BBBP BACE HIV SIDER AVG  AVG-F  AvG-R
FULL-FT 73.60 + 7.53 82.09 +2.90 80.72+£1.22 61.92 +2.62 51.58 £0.43 69.98 72.08 5.00
LP 69.43 £+ 1.40 73.63+£0.97  60.60+3.89  54.744+0.90 5347+0.21 6237 61.59 6.60
SURGICAL-FT 71.20 £ 2.70 83.50 +0.95 80.44 £ 0.62 62.65 + 1.44 53.43 +0.90 70.24 71.43 4.20
RANDOM LP-FT 68.16 + 1.86 84.26 +1.37 79.93 £ 2.67 60.14 + 3.04 52.18 £ 0.81 68.93 69.41 5.20
WISE-FT 72.72 £8.35 83.52+3.24 88.26 £1.45 62.19+2.74 51.66 +0.43 71.67 72.81 3.80
L2-SP 73.05+2.80 82.49+1.95 81.60 £1.23 63.21 +£2.21 53.92 +0.82 70.85 72.62 3.00
FEATURE-MAP  68.01 & 2.06 7835+0.58  69.27+0.87  58.07+1.89 54.33+0.73 65.61 65.12 6.00
BSS 76.21+6.50 83.52+1.90 81.69+0.40 63.54+2.05 53.26+0.84 71.64 73.81 2.20
FULL-FT 54.76 £ 2.86 56.25 £ 1.78  64.85+1.26  56.18 +6.68 55.07+1.47 57.42  55.83 4.20
LP 49.89 £3.86  48.69+1.72  60.40+2.76  40.97 £1.51 5298 £0.26  50.59  50.52 7.40
SURGICAL-FT 56.64 + 4.28 54.30 + 2.39 66.81 £+ 0.67 53.60 £+ 2.54 55.29 + 0.58 57.33 55.41 4.20
SCAFFOLD LP-FT 49.82 +6.97 52.74 + 3.13 64.81 £ 3.24 57.02 £4.98 57.58 +0.29 56.39 55.78 4.40
WISE-FT 58.53 +£ 5.22 56.16 + 1.85 64.17 £1.08 53.49 £ 6.18 55.11+1.23 57.49 56.60 4.40
L?-SP 57.60 + 4.63 57.53 +1.08 64.50 £1.83 59.39 + 3.16 57.056 +1.02 59.21 58.17 2.60
FEATURE-MAP  44.86 + 3.28 55.25 +0.79 57.69+5.35  45.60£4.50 54.00+0.88 51.48 51.62 7.00
BSS 58.38 £ 5.39 58.27+0.49 70.00+2.70 58.52 + 2.49 56.50 + 1.02 60.33 58.39 1.80
FULL-FT 70.85 £ 5.54 75.13 £ 3.96 54.43 £ 3.01 60.05 £ 6.91 52.07+1.73 6251 61.78 5.20
LP 58.36 £ 3.23 56.25 £8.75  43.06 £1.32  45.90 +2.48 52.35+0.37 51.18  51.50 7.60
SURGICAL-FT  67.51 +7.23 81.75+2.07  60.97+1.53 6245+1.60 54.19+0.38 65.37 63.64 3.00
SIZE LP-FT 67.07+£2.45 8212+3.68 57.30+2.65 65.84+510 53.10+0.96 65.09 63.40 3.20
WISE-FT 70.06 £ 5.49 73.88 +4.80 52.09+3.06 56.91+£590 54.214+0.75 61.43  60.39 4.80
L?-SP 65.62 + 4.40 79.46 £ 0.79 55.84 £4.07  63.81£7.20 53.82+1.27 63.71 61.76 4.40
FEATURE-MAP  65.63 4+ 1.73 70.03+3.19 63.06+:1.89 45094228 5532+0.92 5983 61.34 4.60
BSS 70.90 +£2.39  77.56 +2.51 59.84 +4.41 65.31 £6.67 5259+ 1.16 65.24  65.35 3.20

Table 14: Robust fine-tuning performance on 5 classification datasets (AUC metrics) in the Few-shot
500 setting, evaluated across 3 dataset splits (RANDOM, SCAFFOLD, SIZE) under the MoleculeSTM
pre-trained model. AVG, AVG-F, AvG-R denote the average AUC metrics, average AUC without
max and min values, and average rank over all the datasets for each evaluated method, respectively.
Standard deviations across five replicates are shown in parentheses. We bold and underline the best
and second-best performances in each scenario.

SPLIT METHODS CLINTOX BBBP BACE HIV SIDER AVG AVG-F  AVG-R
FULL-FT 85.93+£2.06 91.93+0.96 83.67 £+ 0.92 69.71 +£1.63 58.42 £2.20 77.93 79.77 3.20
LP 76.92 £ 0.43 85.18 + 0.26 70.83 £ 0.51 64.43 £0.53 56.80 £+ 0.21 70.83 70.73 8.00
SURGICAL-FT ~ 83.62 +1.90 91.68+0.46 86.18+0.83 6837+£0.74 60.29+0.87 78.03 79.39 3.40
RANDOM LP-FT 81.89 £2.72 90..‘_)3 +2.04 83.92 4+ 0.84 68.20 £ 1.53 58.56 £ 0.71 76.70 78.00 5.80
WISE-FT 85.10 £ 2.16 91.53+1.15 84.19 4+ 0.86 69.60 & 1.37 58.25 £ 2.04 7773 79.63 4.20
L2-SP 84.17+£3.97 9219+1.11 84.82 £+ 0.95 70.06 +0.93 59.31 £ 0.96 78.11 79.68 2.00
FEATURE-MAP  83.37 £1.03 88.80 &+ 0.29 79.88+0.14 69.38 +0.54 57.64 £ 0.65 75.81 77.54 6.40
BSS 85.84 £1.94 91.81 4+ 0.80 84.68 +£0.83 69.38 +1.98 58.85 £ 1.05 78.11 79.97 3.00
FULL-FT 63.02 £ 3.19 64.84 + 1.51 71.94 £2.43 68.53 £2.78 56.27 £0.94 64.92 65.46 5.60
LP 56.80 & 1.80 58.21 £0.93 67.33+0.37 53.12+1.19 56.58 & 0.58 58.41 57.20 7.20
SURGICAL-FT  69.47 £3.18  65.26 + 0.62 76.72 +£1.60 69.94 £+ 2.17 55.72 £ 0.55 67.42 68.22 3.00
SCAFFOLD LP-FT 65.09 + 3.54 64.23 +1.67 69.36 + 2.11 69.41 +1.48 57.33+0.44 65.08 66.23 4.60
WISE-FT 64.89 +4.07 64.85 £ 1.47 71.94 +2.08 69.00 £ 2.32 56.23 £0.76 65.38 66.25 5.00
L2-SP 69.03 + 2.49 66.06 4+ 1.43 74.07 £ 1.26 67.67 £2.21 56.42 + 0.97 66.65 67.59 3.80
FEATURE-MAP  60.04 £ 3.11 63.87 £ 0.70 75.42 £ 0.70 60.08 £2.03 58.45+0.38 63.57 61.33 4.80
BSS 68.30 £2.86 67.26 +0.98 74.83 £ 2.15 69.99+1.80 57.43+0.73 67.56 68.52 2.00
FULL-FT 60.10 £ 5.25 76.35 £ 2.26 50.25 £ 3.29 5623 + 5.29 54.40 +1.70 1172.82 63.62 4.80
LP 59.95 £+ 0.51 63.98 +1.71 40.46 £+ 4.26 58.26 = 7.53 51.43 £0.20 54.82 56.55 7.60
SURGICAL-FT 61.92 £ 5.41 86.62+1.84 51.72+2.80 58.76 £ 3.21 56.61 +1.07 63.13 59.10 3.20
SIZE LP-FT 55.39 & 4.42 78.83+£7.22 53.66+3.35 62.85+4.81 55.21 £ 1.62 61.19 57.82 4.80
WISE-FT 62.14 £1.97 75.21 £2.23 48.40 £2.94 53.63 £ 3.76 56.19 £1.22 59.11 57.32 5.80
L*-SP 64.97 £0.50 83.22 +1.87 51.14 +4.26 69.62+3.36 56.72+1.04  65.13 63.77 2.00
FEATURE-MAP 63.06 £1.12 80.15+1.70 43.45 £ 0.50 66.24 £0.37 53.29 £0.71 61.24 60.86 4.80
BSS 62.87 £ 5.70 80.69 + 2.55 51.61 4 4.52 67.37 £ 4.52 56.48 £ 2.00 63.80 62.24 3.00
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Table 15: Robust fine-tuning performance on 4 regression datasets (RMSE metrics) in the Non-
Fewshot settings, evaluated across 3 dataset splits (RANDOM, SCAFFOLD, SI1ZE) over the Graph-
MAE based PT model. AVG-R,AvG-R* denote the average rank and the rank based on the average
normalized performance over all the datasets for each evavluated method, respectively. Standard
deviations across five replicates are shown in parentheses. We bold and underline the best and

second-best performances in each scenario.

SPLIT METHODS EsoL Lipo MALARIA CEP AVG-R  AVG-R*
FULL-FT 0.901 £ 0.063 0.660 £ 0.013 1.067 4= 0.009 1.401 4+ 0.035 3.00 2
LP 1.374+0.011 1.067 £0.015 1.207 £ 0.004 1.999 4 0.003 8.00 8
SURGICAL-FT ~ 1.056 £ 0.028 0.724 £0.011 1.074 +0.010 1.547 4+ 0.011 6.00 6
RANDOM LP-FT 0.922 £ 0.023 0.654 £ 0.023 1.076 +0.014 1.365 4 0.029 3.25 3
WISE-FT 0.934 £0.061 0.662 £0.016 1.064 +0.007  1.460 4 0.042 3.75 5
L%-SP 0.884 +0.025 0.666 £ 0.014 1.087 4+ 0.011 1.385 4+ 0.031 3.75 4
FEATURE-MAP  1.018 +0.024 0.789 £ 0.018 1.106 £ 0.005 1.536 4 0.008 6.50 7
BSS 0.887 £0.030  0.641+0.014 1.070+0.016 1.351+£0.016 1.75 1
FULL-FT 1.360 = 0.049 0.752 £0.018 1.105 4+ 0.018 1.395 4+ 0.041 4.50 5
LP 1.608 £ 0.030 0.983 £ 0.006 1.133 4 0.002 2.009 £ 0.004 8.00 8
SURGICAL-FT  1.297 £0.044 0.765+0.013 1.105 4+ 0.013 1.518 £ 0.010 4.50 6
SCAFFOLD LP-FT 1.331 +£0.033 0.743 £0.017 1.107 £ 0.011 1.356 4+ 0.030 4.00 4
WISE-FT 1.347+0.036 0.7404+0.018 1.090 £0.015 1.505 4 0.045 3.00 2
L?-SP 1.300 +0.017 0.756 £ 0.017 1.106 & 0.005 1.347 4+ 0.020 3.75 3
FEATURE-MAP 1.383 £+ 0.008 0.824 £ 0.009 1.098 £ 0.004 1.518 +0.003 6.00 7
BSS 1.300 = 0.024 0.746 £ 0.010 1.0974+0.013  1.319 £0.023 2.25 1
FULL-FT 1.490 £ 0.153 0.711 £0.017  0.883 £+ 0.008 1.834 £ 0.038 3.25 2
LP 2.172 £ 0.065 0.935 £ 0.004 0.912 £ 0.004 2.402 £0.018 8.00 8
SURGICAL-FT  1.499 £ 0.093 0.769 £ 0.013 0.889 £ 0.014 1.998 4 0.020 5.25 6
SIZE LP-FT 1.401 £ 0.053 0.703 £ 0.012 0.897 £ 0.009 1.763 4+ 0.037 3.25 3
WISE-FT 1.583 £0.118 0.727 £0.018 0.889 £ 0.008 1.902 4 0.053 5.25 5
L?-sP 1.390+0.115 0.7254+0.019 0.896 £+ 0.007 1.786 4+ 0.022 3.25 4
FEATURE-MAP 1.458 £+ 0.045 0.849 £0.012 0.896 £+ 0.011 2.007 £0.018 6.00 7
BSS 1.408+0.100 0.700+0.020  0.887 £ 0.011 1.725 + 0.026 1.75 1

Table 16: Robust fine-tuning performance on 4 regression datasets (RMSE metrics) in the Few-
shot 50 setting, evaluated across 3 dataset splits (RANDOM, SCAFFOLD, SIZE) over the Graph-
MAE based PT model. AVG-R,AvG-R* denote the average rank and the rank based on the average
normalized performance over all the datasets for each evavluated method, respectively. Standard
deviations across five replicates are shown in parentheses. We bold and underline the best and

second-best performances in each scenario.

SPLIT METHODS EsoL Liro MALARIA CEP AVG-R  AVG-R”
FULL-FT 2.128 £0.072 1.247 £0.031 1.310£0.025  3.433 £0.226 5.00 6
LP 2.971 £ 0.017 1.638 £0.014 1.309 £0.012  3.519 4 0.052 6.75 8
SURGICAL-FT ~ 2.315 £ 0.081 1.327£0.017  1.317+£0.024  3.2724+0.199 6.50 7
RANDOM LP-FT 1.600 £ 0.129 1.181 4+ 0.030 1.356 £0.011 2.358 £0.037 4.25 4
WISE-FT 2.13540.072 1.261 £0.035 1.298 £0.023  3.576 £0.235 5.50 5
L*-SP 1.472£0.036 1.165+0.037 1.297+0.006 2.304 £ 0.055 1.50 1
FEATURE-MAP  1.632 £0.028 1.257 4 0.025 1.301 £0.009  2.398 £0.037 4.00 3
BSS 1.450£0.057 1.1714+0.021 1.314£0.018  2.244+0.036  2.50 2
FULL-FT 2.790 £ 0.116 1.434 £0.072 1.195+£0.025  3.395+0.191 5.75 6
LP 3.538 £0.075 1.755 £ 0.021 1.206 £0.012  3.870 £0.038 7.75 8
SURGICAL-FT ~ 3.018 £ 0.118 1.491 £ 0.085 1.191£0.004  3.304 £0.347 5.75 7
SCAFFOLD LP-FT 1.636 £ 0.021 1.181 £0.029 1.263 £0.009  2.294 £0.024 4.00 4
WISE-FT 2.762 £ 0.091 1.405+£0.067 1.181+0.008  3.496 +0.199 4.50 5
L*-SP 1.654 £ 0.086 1.178 £0.022 1.185+0.008 2.255+£0.026  2.25 2
FEATURE-MAP  1.783 £0.034 1.252 £0.012 1.1954+0.008  2.401 £0.028 4.50 3
BSS 1.632+0.048 1.173+0.022 1.18240.016  2.287 £ 0.028 1.50 1
FULL-FT 3.457 £ 0.086 1.407 £ 0.088 1.064 £0.067  3.311 £0.158 6.25 7
LP 3.758 £0.010 1.773£0.025  0.990 £0.056  4.114 4 0.042 6.75 8
SURGICAL-FT  3.429 4 0.139 1.54340.083  0.990£0.054  3.195 £ 0.306 5.25 6
SI1ZE LP-FT 2.035+0.080 1.208+0.078 1.102£0.018  2.500 £ 0.045 4.00 4
WISE-FT 3.527 +0.112 1.3924+0.062 0.983 £0.053  3.386 £0.142 5.00 5
L*-SP 2.111 4 0.091 1.159£0.037  0.988+£0.032  2.421 4 0.045 2.00 1
FEATURE-MAP  2.331 £ 0.050 1.225 £ 0.049 1.000+0.034  2.439 £ 0.024 4.00 3
BSS 2.1974+£0.084 1.106+0.027 1.019+£0.033 2.4194+0.045 2.75 2
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Table 17: Robust fine-tuning performance on 4 regression datasets (RMSE metrics) in the Few-
shot 100 setting, evaluated across 3 dataset splits (RANDOM, SCAFFOLD, S1ZE) over the Graph-
MAE based PT model. AVG-R,AvG-R* denote the average rank and the rank based on the average
normalized performance over all the datasets for each evavluated method, respectively. Standard
deviations across five replicates are shown in parentheses. We bold and underline the best and

second-best performances in each scenario.

SPLIT METHODS EsoL Lipo MALARIA CEP AVG-R  AVG-R*
FULL-FT 1.842 +0.208 1.205 £ 0.059 1.289 4 0.032 2.784 £0.110 5.75 6
LP 2.391 £0.044 1.623 +£0.011 1.279 4 0.007 3.176 £ 0.093 7.00 8
SURGICAL-FT  1.650 £ 0.063 1.301 4 0.037 1.2774+0.012 2.777 £ 0.181 5.00 4
RANDOM LP-FT 1.540+0.123 1.234 4+ 0.030 1.350 4+ 0.016 2.203 £ 0.030 4.50 7
WISE-FT 1.790 &+ 0.147 1.207 £ 0.058 1.282 4+ 0.017 2.842 £ 0.123 5.50 5
L%-SP 1.486+0.105 1.190+0.038 1.267 £0.007 2.207 £ 0.046 1.75 1
FEATURE-MAP  1.557 +0.034 1.252 4+ 0.007 1.269 +0.002  2.130 £+ 0.020 3.25 2
BSS 1.543+0.044 1.190+0.031 1.285+0.011 2.170 £ 0.028 3.25 3
FULL-FT 2.036 £0.119 1.108 £ 0.017 1.205 £ 0.050 2.942 £ 0.208 5.75 6
LP 2.906 £ 0.093 1.389 £ 0.008 1.180 £ 0.017 3.635 £ 0.051 6.75 8
SURGICAL-FT ~ 1.956 £0.170 1.190 £ 0.027 1.183 +£0.016 2.848 £0.120 5.50 5
SCAFFOLD LP-FT 1.775 £ 0.178 1.103 4 0.024 1.288 +0.012 2.310 £ 0.034 4.75 7
WISE-FT 2.052 £0.082 1.112+£0.023 1.188 4 0.027 3.049 £ 0.246 6.25 4
L?-SP 1.559+0.047 1.069+0.044 1.166 £ 0.004 2.227 £ 0.036 1.75 1
FEATURE-MAP 1.576 4 0.028 1.123 4 0.009 1.181 4 0.005 2.216 £ 0.014 3.50 3
BSS 1.680 = 0.098 1.081+£0.019 1.1634+0.004 2.212+0.018 1.75 2
FULL-FT 2.527 £ 0.152 1.113 £ 0.054 1.022 4 0.046 2.587 £0.100 6.25 7
LP 3.020 £ 0.061 1.492 £ 0.039 0.951 £0.011 3.408 £0.041 6.75 8
SURGICAL-FT ~ 2.435 £0.119 1.119+0.037 0.970 £ 0.020 2.607 £ 0.040 6.25 6
SIZE LP-FT 1.937+£0.120  1.050 £+ 0.052 1.045 4+ 0.012 2.506 £ 0.042 4.25 5
WISE-FT 2.580 £ 0.096 1.086 4 0.051 0.962 £ 0.043 2.556 £ 0.089 5.00 4
L*-sP 1.860+0.183 1.063+0.006 0.931+0.007  2.436 £ 0.043 1.75 1
FEATURE-MAP 1.921 £ 0.086 1.098 £ 0.036 0.936 £0.009 2.374+0.011 2.75 2
BSS 1.854+0.109 1.075 £+ 0.032 0.962 £ 0.017 2.444 £0.014 3.00 3

Table 18: Robust fine-tuning performance on 4 regression datasets (RMSE metrics) in the Few-
shot 500 setting, evaluated across 3 dataset splits (RANDOM, SCAFFOLD, SIZE) over the Graph-
MAE based PT model. AVG-R,AvG-R* denote the average rank and the rank based on the average
normalized performance over all the datasets for each evavluated method, respectively. Standard
deviations across five replicates are shown in parentheses. We bold and underline the best and

second-best performances in each scenario.

SPLIT METHODS EsoL Liro MALARIA CEP AVG-R  AVG-R”
FULL-FT 1.093 £+ 0.085 0.834 £0.014 1.245 4+ 0.018 1.874 4+ 0.042 5.00 6
LP 1.542 +0.011 1.136 + 0.006 1.253 4+ 0.003 2.435 £ 0.019 8.00 8
SURGICAL-FT  1.177 £ 0.043 0.888 £+ 0.010 1.233 £ 0.009 1.948 4+ 0.005 6.00 7
RANDOM LP-FT 1.001 4+ 0.020 0.838 £ 0.020 1.244 4+ 0.011 1.850 + 0.019 4.00 5
WISE-FT 1.076 £ 0.074 0.833 £ 0.007 1.236 +0.012 1.898 +0.051 4.25 4
L2-SP 0.992 £ 0.034 0.838 £ 0.009 1.225 + 0.005 1.839 4+ 0.024 2.75 1
FEATURE-MAP  1.070 + 0.020 0.948 £0.010 1.216 +£0.002  1.904 + 0.003 4.50 3
BSS 0.990 +0.046 0.829+0.018 1.231+0.009 1.835+0.023 1.50 2
FULL-FT 1.434 4+ 0.044 0.885 £+ 0.028 1.186 +0.017 1.910 4+ 0.022 5.00 6
LP 2.047 £ 0.020 1.026 4+ 0.003 1.168 4+ 0.005 2.572 +0.018 7.25 8
SURGICAL-FT  1.323 £ 0.053  0.940 £+ 0.016 1.159 4+ 0.014 1.920 +0.010 4.50 5
SCAFFOLD LP-FT 1.394 4+ 0.025 0.888 +0.017 1.204 +0.015 1.876 + 0.024 5.00 7
WISE-FT 1.423 +0.032 0.885 £+ 0.023 1.170 +0.014 1.926 + 0.035 5.50 4
L2-SP 1.375+0.030 0.879+0.008 1.1394+0.001 1.870 4 0.032 1.75 1
FEATURE-MAP  1.453 +0.028 0.903 + 0.004 1.154 + 0.003 1.913 +£0.016 5.25 3
BSS 1.367 £ 0.043 0.881 £ 0.024 1.150 £0.020 1.866 + 0.018 1.75 2
FULL-FT 1.797 + 0.088 0.793 £ 0.019 0.997 £ 0.019 2.353 £ 0.033 5.50 7
LP 2.581 £ 0.049 1.030 4 0.004 0.943 £+ 0.005 2.990 £ 0.030 6.75 8
SURGICAL-FT  1.540 +£0.078  0.846 £+ 0.011 0.944 + 0.010 2.403 £ 0.038 4.50 4
SI1ZE LP-FT 1.717 £ 0.077 0.809 £ 0.004 0.956 £ 0.014 2.287 £ 0.043 4.50 5
WISE-FT 1.874 +0.084 0.805 £ 0.012 0.955 £ 0.019 2.363 £+ 0.035 5.50 6
L2-SP 1.592 +0.089 0.788 £ 0.014 0.930 £ 0.008 2.297 £0.014 2.75 1
FEATURE-MAP  1.580 + 0.070 0.873+£0.016 0.921 +£0.002 2.286 + 0.036 2.75 2
BSS 1.617+0.117 0.783 £0.018  0.957 £ 0.007 2.295 £+ 0.038 3.75 3
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