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Abstract

In typical machine learning systems, an es-001
timate of the probability of the prediction is002
used to assess the system’s confidence in the003
prediction. This confidence measure is usu-004
ally uncalibrated; i.e. the system’s confidence005
in the prediction does not match the true prob-006
ability of the predicted output. In this pa-007
per, we present an investigation into calibrat-008
ing open setting machine reading systems such009
as open-domain question answering and claim010
verification systems. We show that calibrating011
such complex systems which contain discrete012
retrieval and deep reading components is chal-013
lenging and current calibration techniques fail014
to scale to these settings. We propose simple015
extensions to existing calibration approaches016
that allows us to adapt them to these settings.017
Our experimental results reveal that the ap-018
proach works well, and can be useful to selec-019
tively predict answers when question answer-020
ing systems are posed with unanswerable or021
out-of-the-training distribution questions.022

1 Introduction023

With recent advances in machine reading, there024

has been a surge of interest in practical appli-025

cations of the technology such as open-domain026

question answering (Karpukhin et al., 2020; Lee027

et al., 2019) and claim verification (Thorne et al.,028

2018b). Due to various scale limitations in practi-029

cal settings, these systems are seldom trained end-030

to-end. Such systems typically make use of a RE-031

TRIEVER alongside a READER – the evidence is032

first retrieved from a large corpus and is then used033

by a machine reading model to provide an answer.034

As these systems are increasingly being de-035

ployed in the real world, it is important that they036

are not only accurate but also trustworthy. A way037

to make these systems trustworthy is to indicate038

when they are likely to be incorrect by provid-039

ing a calibrated confidence measure in addi-040

tion to the prediction. A naive solution for this041

is to use the system’s output probability as the 042

confidence. However, this confidence score is of- 043

ten uncalibrated (Kuleshov and Liang, 2015; 044

Guo et al., 2017); i.e. it is not representative of the 045

true correctness likelihood.1 046

Previous work (Jiang et al., 2020; Jagannatha 047

and Yu, 2020; Desai and Durrett, 2020) has shown 048

that large language models especially suffer from 049

miscalibration. Thus, several methods have been 050

proposed to calibrate language models based on 051

gradient-based calibration methods such as tem- 052

perature scaling (Guo et al., 2017) and feature- 053

based forecasters (Kuleshov and Liang, 2015). 054

While gradient-based calibration is intuitive and 055

easy to implement, feature-based forecasters re- 056

quire manual feature engineering. 057

In this work, we contribute a simple method 058

to calibrate practical RETRIEVER - READER ma- 059

chine reading pipelines. These systems typically 060

include a hard retrieval step which makes gradient- 061

based calibration infeasible. Thus, we make use 062

of the Gumbel machinery (Jang et al., 2017; Mad- 063

dison et al., 2017); specifically the Gumbel top-K 064

procedure of Vieira (2014); Xie and Ermon (2019) 065

to obtain a differentiable sampling routine for the 066

retrieval step. This sampler can then be com- 067

bined with any gradient-based calibration tech- 068

nique such as Platt’s scaling. 069

We conduct experiments on three different 070

models – a generative and extractive open-domain 071

question answering model and a claim verification 072

model. We find that calibrating the RETRIEVER 073

and the READER jointly is better than calibrating 074

only the READER or the RETRIEVER . We also 075

show that our approach can produce calibrated 076

scores that can be used to selectively abstain from 077

answering questions that are contrived or ill-posed 078

or questions that are out-of-the-training distribu- 079

1For a perfectly calibrated system, given 100 answer pre-
dictions, each with a confidence of 0.7, we expect that 70
should be correct.
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Figure 1: General architecture of the two machine reading
systems considered in this paper. a) Claim verification (top
half) and b) Open-domain QA (bottom half). The systems
follow the same architecture and are composed of a retriever
and a reader. Given the query, the retriever retrieves a set of
K documents from the corpus along with scores for each of
them. The reader then takes these as input and produces the
output: a veracity label for claim verification and an answer
span for the QA model. This can be seen as a probabilistic
model with latent retrieval (Dk shown in red). The goal of
this paper is to calibrate the final output probabilities P(a|q).

tion. Finally, we also demonstrate how the calibra-080

tion of such a system works – the calibration tech-081

niques lower the confidence of the predicted an-082

swer when the question is unanswerable or when083

the retriever is not able to retrieve any relevant ev-084

idence for answering the question.085

2 Preliminaries086

2.1 Machine Reading at Scale087

Practical real-world machine reading systems088

such as open-domain question answering systems089

(Chen et al., 2017) (Karpukhin et al., 2020) (Izac-090

ard and Grave, 2020b) or claim verification sys-091

tems (Hanselowski et al., 2018) rely on an in-092

formation retrieval (IR) component called a RE-093

TRIEVER to reduce the search space over a large094

corpus of documents. This smaller set of docu-095

ments is then passed to a READER model that rea-096

sons over the text and produces an answer. This097

setting, where the READER is not given labeled098

documents is referred to, in the literature, as an099

open-domain setting.100

We now proceed to define the pipeline formally101

for a machine reading system in the open-domain102

setting.103

Let D = {d1, . . . ,dN} denote the given corpus104

of documents. Let q denote the user query (a ques-105

tion or a claim). We denote the answer to the ques-106

tion or the veracity label of the claim as a. The107

retreiver model takes in q and scores all the docu-108

ments d ∈D to produce a set of scores:109

RETRIEVER(d1, . . . ,dN |q)−→ Sd1 , . . . ,SdN (1)110

This formulation of the RETRIEVER is generic. 111

This allows our method to work with any IR model 112

such as the traditional BM25 model (Wikipedia 113

contributors, 2004) to more modern methods such 114

as Dense Passage Retrieval (DPR) by Karpukhin 115

et al. (2020). 116

The documents are then sorted based on the 117

scores and the k top-scoring documents are cho- 118

sen. We call this set of top-K documents Dk. Dk is 119

then given to a READER model which extracts the 120

answer or predicts a veracity label for the claim, a. 121

The READER can vary depending on the task. For 122

extractive QA, the READER produces a score for 123

each span (si) in the documents provided to it. 124

READER (q,Dk)−→ SRead(si),si ∈ Dk (2) 125

In claim verification, the READER produces a 126

score for each veracity label: SUPPORTED, RE- 127

FUTED or NOT ENOUGH INFO, which indi- 128

cate whether the claim can be verified by the given 129

set of documents. 130

READER (Dk,q)−→SSUPPORTED, 131

SREFUTED, 132

SNOT ENOUGH INFO, 133

2.2 Calibration 134

We summarize below the calibration framework 135

by Kuleshov and Liang (2015) in the context of 136

machine reading. Given a query q, true output a, 137

model output â, and probability P(â|q) calculated 138

over this output, a perfectly calibrated model sat- 139

isfies the following condition: 140

P(â = a|P(â|q) = p) = p ∀p ∈ [0,1] (3) 141

In simple words, for the confidence estimate 142

P(â|q) to be calibrated, we require that P(â|q) fol- 143

lows the unknown true probability distribution P. 144

In a multi/binary class setting, a calibrator can 145

be learned to map the output distribution to a cal- 146

ibrated confidence score. However, in a machine 147

reading setting, the space of possible documents 148

retrieved and answers contained in them is usu- 149

ally very large. Thus, we only focus on a specific 150

event set I(q) of interest. The event set I(q) can be 151

defined using the outputs relevant to the deploy- 152

ment requirements of the machine reading model. 153

In our work, we consider all answer candidates in 154

the retrieved set of documents Dk: I(q) = {a|a ∈ 155

argmax
Dk

P(â|Dk,q)} 156
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2.3 Measuring Calibrated-ness157

Calibration can be measured by computing the dif-158

ference in expectation between confidence scores159

and accuracies.160

EP(â|q)

[
P(â = a|P(â|q) = p)− p

]
(4)161

This is known as expected calibration error (ECE)162

(Naeini et al., 2015). Practically, ECE is estimated163

by partitioning the predictions in M equally spaced164

bins (B1 . . .BM) and taking the weighted average165

of the difference between the average accuracy166

and average confidence of the bins.167

ECE =
M

∑
m=1

|Bm|
n
|acc(Bm)− conf(Bm)| (5)168

Reliability Diagrams169

Another common tool to visualize model calibra-170

tion is a reliability diagram. A reliability diagram171

plots sample accuracy as a function of confidence172

for each bin. If a model is perfectly calibrated, the173

confidence and accuracy bars should be identical.174

2.4 Calibration methods175

The general algorithm used for calibrating clas-176

sification models involves transforming the logits177

produced by the model. The parameters for this178

transformation are trained on a held-out calibra-179

tion set C = {(qi,ai)}N
i=1. This method has been180

shown to improve the model’s ECE without a sig-181

nificant loss in accuracy. In our work, we use neg-182

ative log-likelihood (NLL) to tune a model Pθ (a|q)183

to be a good probability estimate of the output an-184

swers:185

Lθ =−
N

∑
i=1

log(Pθ (ai|qi)) (6)186

ML theory guarantees that NLL is minimized187

if and only if Pθ (ai|qi) recovers the ground-truth188

conditional distribution P(a|q). In the following189

part of this section, we describe some of these key190

methods.191

Temperature Scaling192

Temperature scaling (Guo et al., 2017) is one of193

the simplest methods for calibration and has been194

shown to be very effective. Temperature scaling195

allows the logits of the system’s output (Z) to be196

scaled by a single temperature value τ . This scal-197

ing is done before the computation of the softmax.198

Y = softmax(Z/τ) (7)199

We optimize τ by maximizing Lθ on the dev set.200

Temperature prediction 201

The temperature prediction approach (Kumar and 202

Sarawagi, 2019) extends temperature scaling to 203

a gradient-based approach. The output logits of 204

the classifier are featurized and passed through an 205

MLP which predicts a temperature value. This 206

temperature value is used to scale the logits. In 207

contrast to temperature scaling which learns one 208

temperature parameter for each example, in this 209

approach, a new temperature value can be learned 210

for each example. 211

1
τ
= σ(MLP(Z)) 212

Y = softmax(Z/τ) 213

Forecasters 214

Forecasters were introduced to calibrate structured 215

prediction models (Kuleshov and Liang, 2015; Ja- 216

gannatha and Yu, 2020). The forecaster approach 217

introduces a feature-rich calibration model that 218

uses various features of the model such as its logits 219

and various uncertainties estimated to predict the 220

confidence score. This approach generally only 221

produces a calibrated score over a smaller set of 222

candidate predictions referred to as the interest set 223

I(x) Previous work has successfully used gradient 224

boosted decision trees (XGB) as forecasters. 225

3 Calibration of Machine Reading 226

Systems 227

Previous work has looked at calibration in the 228

aspect of machine reading (Jagannatha and Yu, 229

2020; Jiang et al., 2020). However, they do not 230

consider the open setting in which the evidence 231

document for each query is not provided. We are 232

interested in determining the calibrated probabil- 233

ity distribution of the system, P(a|q). In the first 234

set of methods, we do this by calibrating the con- 235

fidence of the model P(â = a|q). For a machine 236

reading system, 237

P(â = a|q) = P(Dk|q)︸ ︷︷ ︸
conf of RETRIEVER

×P(â = a|q,Dk)︸ ︷︷ ︸
conf of READER

(8) 238

We discuss three possible ways to calibrate 239

P(â = a|q) 240

ONLY READER One way to calibrate P(â = 241

a|q) is to assume that the RETRIEVER is perfectly 242

accurate and perfectly calibrated. We refer to his 243

approach in our results as ONLY READER. In this 244
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approach, we only calibrate P(â = a|q,Dk). We245

can use all the previously mentioned calibration246

approaches for this task. For extractive QA, the247

output logits lie over all the possible text spans,248

while for fact verification we have a single logit249

per class. In our experiments, we show that this250

leads to subpar calibration.251

INDIVIDUALLY CALIBRATED We explore an-252

other possible approach where we calibrate253

P(Dk|q) and P(â = a|q,Dk) indivdually using the254

objectives of the RETRIEVER and READER indi-255

vidually. We refer to this approach as INDIVIDU-256

ALLY CALIBRATED.257

The READER is calibrated as discussed in the258

previous section. For the RETRIEVER we use the259

scores as the logits to compute the probability and260

thus can apply the discussed calibration methods261

again. This method is impractical, as often in262

an open-domain setting gold labels for the RE-263

TRIEVER are not readily available. To overcome264

this we make use of the less accurate distance su-265

pervision objective used to train the RETRIEVER266

Ẇe show that owing to this mismatch, this ap-267

proach also results in an uncalibrated system.268

JOINTLY CALIBRATED Finally, we discuss our269

approach to calibrate the entire system using the270

final objective of the system. We refer to this271

approach as JOINTLY CALIBRATED. In this ap-272

proach, we treat the documents retrieved by the273

retriever as a latent variable Dk.274

We rewrite our objective in eqn. 6 as275

Lθ = ∑
Dk∈D

P(Dk|q)P(â = a|q,Dk) (9)276

Clearly, it is infeasible to marginalize over all pos-277

sible Dk (subsets of the corpus of size k). Thus, we278

propose a diffentiable sampler for Dk:279

Lθ = ∑
Dk∼Pθ (Dk|q)

P(â = a|q,Dk) (10)280

To make our calibrator differentiable, we apply281

the Gumbel–softmax trick (Maddison et al., 2017)282

and, in particular, its extension to top-K subset se-283

lection (Vieira, 2014; Xie and Ermon, 2019). In284

order to sample a subset of size K according to the285

categorical distribution given by (10), we use the286

well-known two-step process to massage categor-287

ical sampling into a differentiable sampling pro-288

cedure which includes: 1) reparameterization of289

the categorical using Gumbels and 2) softening the290

argmax into a softmax.291

The Gumbel-top-K trick further generalizes this 292

idea and repeats the Gumbel trick K times until 293

we have a set of the desired size. Xie and Ermon 294

(2019) have shown that this procedure is a reason- 295

able relaxation of the Gumbel-top-K. We refer the 296

interested reader to their paper for more details. 297

4 Experimental Details 298

Open Domain Question Answering 299

Extractive We test the described calibration 300

techniques on the open domain QA, using the pre- 301

trained models from (Karpukhin et al., 2020). We 302

perform our experiments on the Natural Questions 303

(NQ) dataset (Kwiatkowski et al., 2019). We ran- 304

domly split our validation set into two equal parts 305

which we will call calib and valid. We use 306

these splits for training and tuning our calibration 307

models respectively. We use the test set of NQ as 308

our test set (test). During inference, we use the 309

RETRIEVER to retrieve top 10 documents which 310

are passed to the READER to extract the answer. 311

Generative We use the FiD model proposed by 312

(Izacard and Grave, 2020b) for our calibration ex- 313

periments. As generative models don’t produce a 314

confidence over multiple answers, we use the trick 315

described by (Jiang et al., 2020) to generate an in- 316

terest set. First we calculate the probabilities of the 317

first generated tokens. We mask out any tokens not 318

in the retrieved passages. Next we, select the top 319

R tokens we find their location in the passages and 320

calculate the probability of all continuing spans up 321

to a certain length (of 10 tokens). We then keep the 322

top-10 scoring spans in our candidate set. 323

Claim Verification 324

For the claim verification task, we experiment on 325

the FEVER dataset (Thorne et al., 2018a). We use 326

a recently published state-of-the-art model, (Liu 327

et al., 2020), in our calibration experiments. For 328

every test example, we retrieve 5 sentences that 329

are provided to the claim verification model to as- 330

certain the veracity of the claim. 331

Temperature based methods 332

For the READER -RETRIEVER setup we require 333

two temperature parameters t1 and t2 for the 334

RETRIEVER and READER respectively. We use 335

gradient descent to optimize t1 and t2 by max- 336

imizing Lθ on the valid set. For temperature 337

prediction we add a 2-layer MLP that predicts t1 338

and t2 for each example. Once again, the opti- 339

mization is performed on valid. 340
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Hourglass is the fourteenth studio 
album of 2017.

An hourglass is a device used to measure the 
passage of time 

(retr conf = 12%)

It comprises two glass bulbs … 
(retr conf = 11%)

Factors affecting the time interval measured include
(retr conf = 10%)

2017 has been designated as the International Year 
of Sustainable Tourism 

(retr conf = 9%)

Reader

Claim

Retrieved evidence
REFUTES
conf=82%

Figure 2: The READER is highly confident about its predic-
tion, but when we incorporate the confidence of the evidence
from the RETRIEVER which can identify that the sentences
are irrelevant to the claim, the confidence of the prediction
can be better calibrated.

Forecaster341

For our forecaster, we use gradient boosted deci-342

sion trees. We train the model to perform binary343

classification with the model’s accuracy as the ob-344

jective, i.e., if the model’s prediction was correct,345

we assign a positive label to the example. We346

do not experiment extensively with various fea-347

tures as previous work has done and instead just348

use the raw logit scores. Similar to Jagannatha349

and Yu (2020), we create the interest set of the350

forecaster by choosing the top-3 predictions of the351

model, i.e., we choose the top-3K choices of the352

RETRIEVER over which we evaluate our READER353

and choose the top-3 choices.354

Gumbel top-K355

For the Gumbel top-K approach required to train356

the vector scaling and temperature prediction357

models, we start out with a high temperature value358

T0 which we linearly decrease to T∞. We treat359

these parameters as hyperparameters.360

5 Results361

We now present the results of the various calibra-362

tion techniques in table 1. We also plot the relia-363

bility diagrams in Figure 3. We compare all the de-364

scribed calibration algorithms in the three settings365

discussed. As can be seen, in all the cases there366

is a benefit to JOINTLY calibrate the RETRIEVER367

and READER . We give some reasons for why this368

setting works best in the discussion section below.369

5.1 Discussion370

Calibrating only the READER371

In all our experiments we show that calibrating the372

READER alone performs worse. We believe that373

this is because, at train time, the READER is only374

trained on positive documents. This makes the 375

READER overconfident on documents that don’t 376

have the answer. This phenomenon has been also 377

been discussed in Clark and Gardner (2017). We 378

show an example in Fig 2. We also notice that 379

adding the RETRIEVER helps more in the QA task 380

than for claim verification. We posit that this is 381

because in the open-domain setting, the QA pas- 382

sage RETRIEVER has a lower accuracy than the 383

sentence RETRIEVER for claim verification.2 384

Calibrating INDIVIDUALLY 385

Our experimental results show that in almost all 386

cases, it is detrimental to individually calibrate the 387

READER and RETRIEVER . We believe that this 388

is due to the RETRIEVER ’s accuracy being mis- 389

aligned with the final objective. In several cases, 390

such as in QA, supervision for the RETRIEVER is 391

not provided, and instead a distant supervision ob- 392

jective is used where the document is marked as 393

positive when it contains the answer string. We 394

show an example in Figure 1 where, for the ques- 395

tion "Who won the women’s worldcup in 2017", 396

a document saying "world cup to be held in Eng- 397

land" would be assigned a positive label as it con- 398

tains the answer string "England". This mismatch 399

in accuracy for the RETRIEVER can result in an 400

incorrectly calibrated system. This problem has 401

been well discussed in the literature and more re- 402

cently by Izacard and Grave (2020a) 403

Reliability plots As can be seen from Figure 3, 404

miscalibration results from the model being over- 405

confident. This is evident with the blue bars being 406

lower than the red – model accuracy is less than 407

model confidence for several bins. We also notice 408

that all calibration techniques address this over- 409

confidence by rescaling the output distribution. 410

6 Analysis 411

Next, we attempt to verify the following claims: 412

C1: The existing approach for calibrating only the 413

reader doesn’t result in a good calibration of the 414

overall system. Jointly calibrating the reader and 415

the retriever model is better. 416

C2: Calibrated ODQA systems do better selective 417

prediction when they are allowed to not provide 418

answers to some questions. 419

C3: Calibrated ODQA systems are better at hand- 420

ing domain shifts in questions at test time. 421

2QA, hits@10:0.77, CV, hits@5:0.94
We use top-10 passages for QA and top-5 sentences for claim
verification.
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Figure 3: Reliability plots for uncalibrated versus INDIVIDUALLY calibrated versus JOINTLY calibrated on the GENERATIVE
QA task using Temperature Scaling. Blue bars denote bin accuracy, red bars denote bin confidence, difference indicates
miscalibration.

Task Setting Uncalibrated Temp scaling Temp predictor Forecaster

GENERATIVE QA

GENERATOR 47.31 45.22 5.40
INDIVIDUALLY 55.1 33.47 35.31 11.35
JOINTLY 3.75 3.56 4.21

EXTRACTIVE QA

SPAN EXTRACTOR 8.56 8.11 4.68
INDIVIDUALLY 37.1 10.32 7.42 12.74
JOINTLY 2.94 2.38 2.96

CLAIM VERIFICATION

CLAIM VERIFIER 1.42 1.64 1.66
INDIVIDUALLY 7.02 16.35 23.6 26.73
JOINTLY 1.15 1.30 0.98

Table 1: Values in % ECE, (↓ is better). INDIVIDUALLY denotes the retriever and reader have been calibrated separately, while
JOINTLY indiciates that calibration on a joint objective.

C4: Calibrated ODQA systems are better at han-422

dling unanswerable questions at test time.423

6.1 Temperature prediction424

To try to understand the effectiveness of the tem-425

perature predictor model, we probed the temper-426

ature predictor model and analyzed the predicted427

temperature values. We used the model where428

only the READER is calibrated so as to make the429

model as simple as possible. The major reason430

why most of these models remain uncalibrated is431

that they are overconfident about their prediction432

thus requiring a τ > 1 for calibration. Our initial433

assumptions were that the temperature predictor434

could identify if the model’s output scores were435

peaky or flat and could correct each by predicting436

an appropriate temperature. To test this, we cal-437

culated the correlation between the entropy of the438

span scores versus τ . Surprisingly, we were able439

to only find a weak correlation of 0.18. We leave440

further investigations on how the temperature pre-441

dictor learns to predict an individual temperature442

to future work.443

6.2 Selective Prediction for Machine Reading 444

One key use of confidence estimation is selec- 445

tive prediction. The selective prediction setting al- 446

lows the model to decide whether it wants to make 447

a prediction or abstain on each given test point. 448

Selective prediction has been a long-standing re- 449

search area in machine learning (Chow, 1957; El- 450

Yaniv et al., 2010). 451

We investigate how different calibration meth- 452

ods perform on the task of selective prediction. 453

There have been some recent efforts to understand 454

selective prediction for QA models with regard to 455

domain shift; Kamath et al. (2020) investigate how 456

forecasters can be effectively used as calibrators 457

to predict when a model should abstain from pro- 458

viding an answer. We further this investigation in 459

the open-domain setting to see if different calibra- 460

tion techniques can improve the model’s perfor- 461

mance on the selective prediction task. The evalu- 462

ation metric used to judge a model’s effectiveness 463

in learning to abstain is the area under the risk- 464

coverage curve. 465

Given an input q, the model’s prediction â along 466

with the confidence of the prediction P(â = a|q) 467

and a threshold τ , our model predicts the the an- 468
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Task Setting AURC

EXTRACTIVE QA

UNCALIBRATED 47.39
FORECASTER 44.21
TEMP SCALING 43.68
TEMP PREDICTION 42.64
BEST POSSIBLE 26.71

GENERATIVE QA

UNCALIBRATED 53.57
FORECASTER 39.10
TEMP SCALING 44.85
TEMP PREDICTION 43.21
BEST POSSIBLE 22.25

CLAIM VERIFICATION
UNCALIBRATED 11.04
FORECASTER 3.53
TEMP SCALING 10.96
TEMP PREDICTION 9.99
BEST POSSIBLE 2.76

Table 2: Area under Risk-Coverage curve. ↓ is better

swer â if P(â = a|q) ≥ τ . For the test set and a469

value of τ there is an associated risk: the fraction470

of the test set that the model answers incorrectly,471

and coverage: the fraction of the test set the model472

makes a prediction on. As τ increases, so do the473

risk and coverage. We plot risk vs coverage as τ474

varies and report the area under the risk-coverage475

curve (AURC). Our results are shown in table 2.476

We can infer from the results that all calibration477

methods help reduce the AUCR to some extent478

however the Temperature predictor is able to per-479

form the best on extractive QA while the fore-480

caster is the best on claim verification and gener-481

ative QA indicating that improving model calibra-482

tion can also help for the task of selective predic-483

tion in the setting of machine reading.484

Domain Adaptation With the increasing use of485

machine reading systems in the wild, a common486

problem encountered by them is that they are not487

resilient to inputs that do not come from the distri-488

bution of the data they were trained on. A method489

of selective prediction is often employed, where490

the model the model can abstain from answering491

the question. (Kamath et al., 2020) show that492

training a seperate model to distinguish between493

in- and out-of- domain helps in doing selective494

prediction. We show that a well calibrated model495

is able to perform better on the selective prediction496

setting even when the calibration step has no ac-497

cess to an out of distribution dataset. In our exper-498

iments, we calibrate a trained on NQ FiD model499

on the FiD dev set. We then evaluate the per-500

formance on different splits which contain vary-501

ing percentages of out-of-distribution data (Trivi-502

aQA) (Joshi et al., 2017). We plot the AURC with503

0 25 50 75 100
% of OOD data

42

44

46

48

50

52

54

56

AU
RC

Uncalibrated
Temp Scaling
Temp predictor
XGB

Figure 4: Area under risk coverage curves using different cal-
ibration techniques

different splits containing different percentages of 504

OOD questions in figure 4. We notice that an 505

uncalibrated model gets significantly worse when 506

the amount of OOD samples are added. How- 507

ever our calibation techniques are able to mitigate 508

this and apart from maintaining a steady AURC 509

with increasing OOD samples, they are also result 510

in much lower AURC with the Forecaster (XGB) 511

performing the best. 512

Unanswerable Questions Another challenge 513

that a user facing QA system can encouter is mal- 514

formed questions. These include questions that 515

were not probably questions, for example a user 516

query containing a named entity which is a ques- 517

tion or a question that cannot be answered because 518

it contains a false premise. To investigate if a cali- 519

brated model can be used to abstain from answer- 520

ing such questions, we evaluate our approaches 521

on the set of unanswerable questions proposed by 522

(Asai and Choi, 2020). We plot Risk-Coverage 523

curves for different calibration techniques in Fig- 524

ure 5. We find all calibration techniques help in 525

performing selective prediction when compared to 526

an uncalibrated model. However, the Forecaster 527

outperforms all other methods. To exemplify how 528

calibration techniques can help the model abstain 529

we provide two examples in table 3. It can be seen 530

that all calibration techniques are able to lower the 531

confidence of the predicted answer in cases when 532

the question is unasnwerable. 533

RETRIEVER mistakes Another common seen 534

scenario in an open domain setting is when the 535

RETRIEVER is not able to provide any relevant 536

passages. In such cases because the READER is 537

generally trained on only correct passages, it still 538

produces a high confidence for the incorrect an- 539

swer. We show that calibration especially methods 540
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Question Retrieved Passage titles Model confidences (READER × RE-
TRIEVER )

who do you think you are book pdf Book of Ryan
Ectaco jetBook
Comparison of e-book formats

Uncalibrated: 0.97×0.40 = 0.39
Temp Scaling:0.78×0.22 = 0.17
Temp Prediction:0.63×0.17 = 0.10
Forecaster: 0.11

zombies are a particular challenge for which of
the following theories of mind

David Chalmers
Theory of mind
Philosophy of mind

Uncalibrated:0.99×0.84 = 0.84
Temp Scaling: 0.98×0.40 = 0.40
Temp Prediction: 0.94×0.33 = 0.31
Forecaster: 0.34

Table 3: Examples of unanswerable questions. We show how each calibration approach is able to lower the confidence of the
incorrect answer

Question and Passage Model confidences
how many episodes of corrie has there been
Clarkson (TV series):. . . The series ran for ten episodes, during
a weekly airing schedule . . .

Uncalibrated: 0.99×0.49 = 0.49
Temp Scaling:0.99×0.23 = 0.22
Temp Prediction:0.90×0.18 = 0.16
Forecaster: 0.06

what is in a pat o brien hurricane
Sucker hole: . . . Sucker hole is a colloquial term referring to a
short spate of good weather . . .

Uncalibrated: 0.99×0.49 = 0.49
Temp Scaling:0.99×0.24 = 0.23
Temp Prediction:0.95×0.21 = 0.20
Forecaster: 0.07

Table 4: Examples of questions where the RETRIEVER fetches the wrong passages

10 25 50 75 90
Percent Coverage
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Ri
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Figure 5: Risk coverage curve for unanswerable questions

that take into account the RETRIEVER confidences541

can mitigate this by lowering the confidence of the542

answer. We provide two such examples in table 4543

7 Related Work544

Obtaining calibrated confidence scores for NLP545

tasks has recently gained attention. Jagannatha546

and Yu (2020) and Jiang et al. (2020) study how547

forecasters can be used and what features can be548

useful to calibrate the confidence of QA models.549

Kamath et al. (2020) study calibration in the con-550

text of selective answering, i.e., learning when QA551

models should abstain from answering questions.552

They show that training a forecaster to predict the553

model’s confidence can perform well when fac-554

ing a distributional shift. Su et al. (2019) also in-555

vestigate selective answering using a probe in the556

model to determine the model’s confidence. 557

Also related to our work is uncertainity es- 558

timation (Gal and Ghahramani, 2016; Lakshmi- 559

narayanan et al., 2017) as model uncertainities can 560

be seen as confidence scores. In NLP, Xiao and 561

Wang (2019) propose an approach to character- 562

ize model and data uncertainties for various NLP 563

problems. Wang et al. (2019) use uncertainty es- 564

timation for confidence estimation in MT. Dong 565

et al. (2018) study confidence estimation for se- 566

mantic parsing. We are the first to study calibra- 567

tion of open-domain machine reading systems. 568

8 Discussion and Conclusion 569

In this paper, we analyzed how various calibration 570

techniques can be adopted to open-domain ma- 571

chine reading systems which are now being used 572

in user-facing scenarios. We showed that in such 573

systems that include a retriever, calibrating the 574

system’s confidence is not trivial and we proposed 575

a technique that allows calibration of the system 576

jointly. Finally, we also provide an analysis on 577

how the calibration techniques can help the model 578

abstain from answering a question especially in 579

settings where the model’s prediction can be incor- 580

rect due to malformed or out-of-domain questions. 581

While we do not find evidence to prove that one 582

calibration method (e.g. a gradient-based method) 583

is better that the other (e.g. a forecaster approach), 584

it would be important to investigate these ques- 585

tions with more nuanced human studies. 586
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9 Ethical Considerations587

In recent years, deep learning approaches have588

been the main models of choice for practical ma-589

chine reading systems. However, these systems590

are often overconfident in their predictions. A cal-591

ibrated confidence score would help system users592

better understand the system’s decision making.593

Our work introduces a simple and general way for594

calibrating these systems. While our models are595

not tuned for any specific application domain, our596

methods could be used in sensitive contexts such597

as legal or healthcare settings, and it is also es-598

sential that any work using our method undertake599

additional quality assurance and robustness testing600

before using it in their setting. The datasets used in601

our work do not contain any sensitive information602

to the best of our knowledge.603

References604

Akari Asai and Eunsol Choi. 2020. Challenges605
in information seeking qa: Unanswerable ques-606
tions and paragraph retrieval. arXiv preprint607
arXiv:2010.11915.608

Danqi Chen, Adam Fisch, Jason Weston, and An-609
toine Bordes. 2017. Reading wikipedia to an-610
swer open-domain questions. arXiv preprint611
arXiv:1704.00051.612

Chi-Keung Chow. 1957. An optimum character recog-613
nition system using decision functions. IRE Trans-614
actions on Electronic Computers, (4):247–254.615

Christopher Clark and Matt Gardner. 2017. Simple616
and effective multi-paragraph reading comprehen-617
sion. arXiv preprint arXiv:1710.10723.618

Shrey Desai and Greg Durrett. 2020. Calibra-619
tion of pre-trained transformers. arXiv preprint620
arXiv:2003.07892.621

Li Dong, Chris Quirk, and Mirella Lapata. 2018. Con-622
fidence modeling for neural semantic parsing. In623
Proceedings of the 56th Annual Meeting of the As-624
sociation for Computational Linguistics (Volume 1:625
Long Papers), pages 743–753, Melbourne, Aus-626
tralia. Association for Computational Linguistics.627

Ran El-Yaniv et al. 2010. On the foundations of noise-628
free selective classification. Journal of Machine629
Learning Research, 11(5).630

Yarin Gal and Zoubin Ghahramani. 2016. Dropout as631
a bayesian approximation: Representing model un-632
certainty in deep learning. In Proceedings of The633
33rd International Conference on Machine Learn-634
ing, volume 48 of Proceedings of Machine Learning635
Research, pages 1050–1059, New York, New York,636
USA. PMLR.637

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Wein- 638
berger. 2017. On calibration of modern neural net- 639
works. arXiv preprint arXiv:1706.04599. 640

Andreas Hanselowski, Hao Zhang, Zile Li, Daniil 641
Sorokin, Benjamin Schiller, Claudia Schulz, and 642
Iryna Gurevych. 2018. Ukp-athene: Multi-sentence 643
textual entailment for claim verification. arXiv 644
preprint arXiv:1809.01479. 645

Gautier Izacard and Edouard Grave. 2020a. Distilling 646
knowledge from reader to retriever for question an- 647
swering. arXiv preprint arXiv:2012.04584. 648

Gautier Izacard and Edouard Grave. 2020b. Lever- 649
aging passage retrieval with generative models for 650
open domain question answering. arXiv preprint 651
arXiv:2007.01282. 652

Abhyuday Jagannatha and Hong Yu. 2020. Calibrat- 653
ing structured output predictors for natural language 654
processing. arXiv preprint arXiv:2004.04361. 655

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Cate- 656
gorical reparameterization with gumbel-softmax. 657

Zhengbao Jiang, Frank F Xu, Jun Araki, and Graham 658
Neubig. 2020. How can we know when language 659
models know? Transactions of the Association for 660
Computational Linguistics, 8:423–438. 661

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke 662
Zettlemoyer. 2017. Triviaqa: A large scale distantly 663
supervised challenge dataset for reading comprehen- 664
sion. arXiv preprint arXiv:1705.03551. 665

Amita Kamath, Robin Jia, and Percy Liang. 2020. 666
Selective question answering under domain shift. 667
arXiv preprint arXiv:2006.09462. 668

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick 669
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