Constructing Phrase-level Semantic Labels to Form Multi-Grained
Supervision for Image-Text Retrieval

Anonymous ACL submission

Abstract

Existing research for image text retrieval
mainly relies on sentence-level supervision to
distinguish matched and mismatched sentences
for a query image. However, semantic mis-
match between an image and sentences usually
happens in finer grain, i.e., phrase level. In
this paper, we explore to introduce additional
phrase-level supervision for the better identi-
fication of mismatched units in the text. In
practice, multi-grained semantic labels are auto-
matically constructed for a query image in both
sentence-level and phrase-level. We construct
text scene graphs for the matched sentences
and extract entities and triples as the phrase-
level labels. In order to integrate both super-
vision of sentence-level and phrase-level, we
propose Semantic Structure Aware Multimodal
Transformer (SSAMT) for multi-modal repre-
sentation learning. Inside the SSAMT, we uti-
lize different kinds of attention mechanisms
to enforce interactions of multi-grain semantic
units in both sides of vision and language. For
the training, we propose multi-scale matching
losses from both global and local perspectives,
and penalize mismatched phrases. Experimen-
tal results on MS-COCO and Flickr30K show
the effectiveness of our approach compared to
some state-of-the-art models.

1 Introduction

Vision and language are two important aspects of
human intelligence to understand the world. To
bridge vision and language, researchers pay increas-
ing attention to multi-modal tasks. Image-text re-
trieval (Frome et al., 2013b), one of the fundamen-
tal topics, aims to retrieve the matching text (image)
for the query image (text). Researchers (Frome
et al., 2013b; Kiros et al., 2014; You et al., 2018)
extract features from an image-text pair to compute
a scalar matching score to measure the similarity.
The model is optimized via a triplet loss that makes
the representations of the positive image-text pair
closer than negative ones. Existing research (Faghri
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NI: the dog dumps over a man to catch a frisbee. 0.50
N2: two dogs in a field playing with a frisbee. 0.40
Neiel:tive N3: a brown and black dog jumps in the air to catch a frisbee. 0.53
N4: a dog catching a frisbee on a baseball field. 0.49
NS5: a dog jumping up to catch a frisbee in a tree. 0.44
PI. a man wearing sunglasses plays frisbee with a dog. 0.46
P2: a black and white dog jumps up to grab a yellow frisbee. 0.51
P(;vet:iitve P3: the man is playing frisbee with his dog on the field. 0.48
P4: a boy playing catch with a frisbee in a field with a dog. 0.42
P5: a black and white dog is catching a frisbee in the air. 0.52
Text Scene
Graph
sunglasses air in  frisbee yellow
Object-Relation-Object Triplet: (dog play frisbee), (man wear sunglass),...
Pf’q:.,,;a,,’,ic ' Attribute-Object Puir: (black white dog)
Label
Object-Entity: man, dog, frisbee, sunglasses, ...

Figure 1: An example of a query image, a group of mis-
matched sentences, a group of matched sentences and
their corresponding text scene graph, and augmented
labels in phrase-level. Textual segments with underlines
stand for mismatching in phrase-level. The matching
scores are produced by VSE++ (Faghri et al., 2018).

et al., 2018; Lee et al., 2018; Liu et al., 2020; Wei
et al., 2020) usually relies on sentence-level super-
vision for cross-modality representation learning.
However, the semantic mismatch usually happens
in finer grain, i.e., phrase level.

We show an example in Figure 1, including a
query image, some matched sentences and mis-
matched ones. In terms of matching scores, the
model (Faghri et al., 2018) fails to distinguish pos-
itive and negative sentences. A closer look at the
example shows that mismatched sentences are usu-
ally partially irrelevant with phrases of inconsistent
semantics (two dogs, baseball filed, etc.). Inspired
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Figure 2: The overall framework of our proposed model Semantic Structure Aware Multimodal Transformer
(SSAMT). The blank circle in the mask matrix M means that the query node does not attend to the corresponding

node.

by this observation, we explore to provide fine-
grained supervision in phrase-level for better cross-
modality representation learning. In practice, we
construct multi-grained semantic labels for a query
image of two levels, namely, sentence-level and
phrase-level. In sentence-level, we use the whole
sentence as the label. In phrase level, we construct
the text scene graph of the sentence and extract en-
tities and triples of multiple forms from the graph
as labels. Based on these multi-grained semantic
labels, we assume the matching model is able to
identify fine-grained mismatched semantic units at
the same time of distinguishing negative sentences.

In order to utilize the supervision of both
sentence-level and phrase-level for cross-modality
representation learning, we propose the Seman-
tic Structure Aware Multimodal Transformer
(SSAMT) to model multi-grained semantics in vi-
sion and language. In language side, we concate-
nate the sentence and its phrases as input, while
both image and its regions are used in vision side.
Mask transformer is used to model semantic units
of different granularity for both modalities, besides,
novel attention mechanisms are presented for inter-
actions of intra-modality and inter-modality. The
model learns representations for both modalities of
vision (image and regions) and language (sentence

and phrases) in multiple scales (global and local).
For optimization, we utilize the global matching
and local matching for the similarity measurement
of image-text pairs, where global matching com-
putes the matching score of the global represen-
tations of the image and text, and local match-
ing measures the similarities from fine-grained
perspectives including region-to-text and phrase-
to-image. In addition, for the phrases extracted
from mismatched sentences, we propose phrase-
matching to teach the model to increase scores be-
tween the matched image-phrase pairs and decrease
those mismatched ones. Experiment results on MS-
COCO (Lin et al., 2014) and Flickr30K (Plummer
et al., 2015) show the effectiveness of our model
compared to some state-of-the-art approaches. Fur-
ther analysis reveals that SSAMT is able to pro-
vide better interpretability by locating mismatched
phrases of negative sentences.

2 Semantic Structure Aware Multimodal
Transformer (SSAMT)

The overall framework of Semantic Structure
Aware Multimodal Transformer is shown in Fig-
ure 2. It includes three major components,
namely, multi-grained semantic labels construc-
tion, cross-modality representation learning with



multi-grained semantics and multi-scale matching
losses. The multi-grained semantic labels con-
struction is to automatically collect semantic labels
from annotated sentences of the query image, the
cross-modality representation learning with multi-
grained semantics is to capture the semantics of
different granularity in both modalities, and multi-
scale losses are utilized to measure the similarity
between the pair of image and sentence. We take
the image I; and text T} as an example to compute
their matching score.

2.1 Multi-Grained Semantic Labels
Construction

Each image in vision and language datasets has
multiple annotated sentences, for example there
are five in MS-COCO (Lin et al., 2014) and
Flickr30K (Plummer et al., 2015). These sentences
describe multi-grained semantics of the image in-
cluding various objects, relations and scenes, and
we propose to utilize them to automatically config-
ure corresponding semantic labels.

In practice, we adopt the scene graph parser
of SPICE (Anderson et al., 2016) following
SGAE' (Yang et al., 2019b) to dig object-relation-
object triplets, object-attribute pairs and object en-
tities from upper descriptive sentences. For exam-
ple in Figure 2, the retrieved phrases include “dog
catching frisbee” and “yellow frisbee”. Moreover,
tokens of each sentence are also collected as sup-
plementary of the upper phrases. There phrases and
tokens are regarded as semantic labels, L;, of the
image I;. Semantic labels provide an opportunity
to determine the partially irrelevant components in
the sentence 7); and we will introduce the details in
§2.4.

2.2 Model Input

Text Embeddings For the sentence 7, we obtain
its tokens and phrases as described in §2.1. To ini-
tialize each token, we map it to a dense vector using
a standard embedding layer following Devlin et al.
(2019) which is composed of token embeddings,
position embeddings and segment embeddings. For
each phrase, we use phrase segment embeddings
of three categories, namely, object, attribute and
relation as initialization, and think of it as a phrase
node that connects to these tokens included in it.
We concatenate them with tokens for simultaneous
encoding. We do not add context-based embed-

'https://github.com/yangxuntu/SGAE

dings for phrase initialization and introduce the
mask mechanism in §2.3 to encode its context as
compensation. At the same time, we set up a global
sentence node with dense vector C as initializa-
tion to capture the sentence-level semantics. In
summary, our text embeddings have three parts,
word embeddings E]W, phrase embeddings EJP and

a global sentence embedding C7'.

Image Vectors Initialization For the image I;,
we employ a pre-trained object detector to extract
region features, where each o; ;, € R% is the mean-
pooled convolutional feature for the k-th region of
I; and d,, is the hidden size of the detector. We fix
the pre-trained model during training. To fit the hid-
den size of our encoder, we add a fully-connected
layer to project each region feature into the same
size and get initial image vectors EJI . Following
the setting of the global sentence node, we also set
up a global image node with C! as initialization to
capture the overall semantics of the image.

2.3 Cross-Modality Modeling with
Multi-Grained Semantics

To enforce the interaction of multi-grained seman-
tics from both two modalities, we employ inter-
modality and intra-modality relationships model-
ing at the same time, and present the mechanism of
mask attention inside the transformer cell to learn
the multi-grained semantics with the inherent struc-
ture.

Inter-Modality Relationship Modeling Inter-
modality relationship model aims to set up the in-
teractions across the two modalities. We use the
encoder of transformer (Vaswani et al., 2017) as
backbone. In the following equation, we concate-
nate text embeddings and image vectors in §2.2 as
model input.

H = [Cc" Ef,E}Y;C", E]]

In the original setting of transformer, there is
no different granularity or structure and each ele-
ment attends to others without constraints. In our
case, we have phrase node to capture the semantics
of words in the phrase, and modality-dependent
global nodes to model the overall semantics for im-
age and text, respectively. These nodes are utilized
for multi-grained semantic modeling and heavily
depends on the structure. To keep their meaning,
we argue to abandon original attention and employ
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mask attention. In implementation, a masking ma-
trix M € R’ ¥IH°] s initialized with all 0, and
we reset values in specific positions with —oo to
meet these three requirements as following.

(1) In the vision side, each region node is not visi-
ble to the global sentence node.

(2) In the language side, each phrase and token
node is not visible to the global image node.

(3) Each phrase node is not visible to any other
words that not included in the phrase itself.

We add M to the following attention function
and utilize it to replace the original one in trans-
former. We call the new one mask transformer.

ttention(Q, K, V, M) ft (M+QTK>V
attention(Q), K, V, = softmax
Vdy
After inter-modality relationship modeling, we
get a sequence of outputs shown in the following
equation.

H = [n], H;hf, H]]

where h{ and h;‘-F are global representations for
image and text corresponding to global nodes C!
and CT' of image and sentence. H. ZI are representa-
tions for regions and H]T are for phrases and words.
They are local representations for the image and
sentence, respectively.

Intra-Modality Relationship Modeling Intra-
modality relationship model (Wei et al., 2020; Yang
et al., 2019a) is employed to separately encode
image and text as a supplementary to the inter-
modality relationship modeling, where inputs of
image and text are [C', Ef] and [CT, EF, E}"],
respectively. We take the outputs of C7 and C7 as
intra-modality global representations of the image
and text, denoted as af and a]T.
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Supposing we have a positive image-text pair
(I;, T;) with a negative image [;, and a negative
sentence 1. We use triplet loss TriL,, to train
our model. In TriL, (u, V, W) as following, « is a
scalar to control the distance between the cosine
score of u and positive samples V' and that of nega-
tive samples W. The loss is to push v € V closer
to v and push w € W away from u. Based on
multi-grained semantic labels, We measure the sim-
ilarity of these image-text pairs using three kinds

Multi-scale Matching Losses

of matching scores, including global, local, and
phrase matching.

Trilo (u, V, W)

=max <a— Zcos‘iful,v)_i_
veV

D

weWw

cos(u,w)
——, 0
wi >

Global Matching Intra-modality and inter-
modality relationship modeling both produce rep-
resentations for global representations of image

and sentence, then we have cos(al,al) and

1
cos(h!, hT) to measure global similarity of the
positive image-text pair (I;, T;), and so is for the
negative pair (/;,7}). The corresponding loss is

shown below.

LG = Trila, (al,al, aT) + TriLy, (o, al, al)

177 10
LY =TriLq, (h{, b}, b} ) + TriLq, (h] , h{, hy,)

Local Matching We utilize local matching which
is based on inter-modality relationship modeling
to enhance the fine-grained cross-modal matching.
It has two parts. (1) Region-to-Sentence: The
matching between each region and the sentence.
(2) Phrase-to-Image: The similarity of each phrase
(token) and the image. We employ Eé to make
local matching scores of the positive image-text
pair larger than the negative one.

L5 = Trila, (h{, H, H]) + TriLa, (b} , H] , HY)

Phrase Matching On the basis of phrase-to-
image matching, we employ semantic labels L;
to determine mismatched phrases in negative sen-
tences, and decrease the scores of the mismatched
ones and increase the scores of matched ones. In
detail, for each phrase or token in 7T}, we determine
it as positive if it appears in semantic labels L; or
included in some label of L;, otherwise, it is nega-
tive. Through the method, we split the token and
phrase of T into positive ones H]-TJr and negative
ones HjT_. We repeat the same process on the neg-
ative pair (I, T;) and get H], and H . Consider
that positive parts are keys to separate mismatched
image text pair, we propose 55 to further push
away negative parts against positive ones in the
negative sentence. It also can be interpreted as the
penalty on mismatched parts, which is to guide the
matching model to make decisions more grounding
on them.

L = Trilay (hf, H,, H) + TriLo, (hf, HY, , HE)

J+2 50y



MS-COCO 1K Flickr30K
Model Image-to-Text Text-to-Image Image-to-Text Text-to-Image

°“ |Rel R@5 R@I0|R@! R@5 R@I0|RSum |R@I R@5 R@10|R@l R@5 R@I0 | RSum
VSE++ | 647 - 959 | 520 - 920 - | 529 791 872 | 396 696 795 | 4079
CAMP | 723 948 983 | 585 879 950 | 5068 | 68.1 897 952 | 51.5 77.1 853 | 466.9
SCAN | 727 948 984 | 588 884 948 | 5079 | 674 903 958 | 486 777 852 | 465.0
SGM | 734 938 978 | 575 873 943 | 5041 | 718 917 955 | 535 79.6 865 | 4786
VSRN | 740 943 978 | 60.8 884 941 | 5094 | 704 892 937 | 530 779 857 | 469.9
BFAN | 749 952 - | 594 884 - 68.1 914 - | 508 784 - -
MMCA | 748 956 977 | 61.6 898 952 | 5147 | 742 928 964 | 548 814 878 | 4874
GSMN | 76.1 956 983 | 60.4 887 950 | 5141 | 714 920 961 | 539 797 87.1 | 480.2
SSAMT | 782 95.6 980 | 627 896 953 | 5194 | 754 926 964 | 548 815 88.0 | 4887

Table 1: Comparison results of the cross-modal retrieval on the MS-COCO 1K and Flickr30K in terms of Re-
call@K(R@K). The comparative models include VSE++ (Faghri et al., 2018), CAMP (Wang et al., 2019b),
SCAN (Lee et al., 2018), SGM (Wang et al., 2020), VSRN (Li et al., 2019), BFAN (Liu et al., 2019), MMCA (Wei

et al., 2020), GSMN (Liu et al., 2020).

Based on these three types of matching methods
and corresponding losses, we get the overall loss
with hyperparameters A\g, A1, A2 and A3 to balance
these losses.

L5 =NLG + MLY + oLl 4+ N3Lf

Previous image-text retrieval models usually
take the hardest image (text) from in-batch data as
the negative image (text), which requires the match-
ing score computation of all pairwise image-text
combinations in batch. This is expensive in inter-
modality relationship modeling, thus we sample
negative instances through intra-modality match-
ing scores to reduce the computation cost.

Inference During inference, we utilize the fol-
lowing score(/;, T;) for ranking.

) + pycos(hf, hT)

Jk+z

hV €H]

score(I;, Tj) = cos(a!

>

T T
hj€H;

pacos(ht
|H] !HI

where 11 and po are hyperparameters.

3 Experiment

3.1 Experimental Setup

Datasets We evaluate our proposed model on
MS-COCO (Lin et al., 2014) and Flickr30K (Plum-
mer et al., 2015). Each image of MS-COCO is ac-
companied with 5 human annotated captions. We
split the dataset into training, validation and test
sets respectively with 113, 287/5,000/5, 000 im-
ages following (Karpathy and Fei-Fei, 2015). For

k)

pacos( h h

Model Image-to-Text Text-to-Image

© R@] R@5 R@10 | R@]l R@5 R@I0
CAMP | 50.1 82.1 89.7 | 39.0 689 80.2
SCAN 504 822 90.0 | 386 693 804
SGM 500 793 879 | 353 649 765
MMCA | 540 825 90.7 | 387 69.7 80.8
SSAMT | 577 842 908 | 408 705 805

Table 2: Comparison results of the cross-modal retrieval
on the MS-COCO in terms of Recall@K(R@K).

MS-COCO 1K, the testing set is further divided
into 5 splits and the performance reported are the
average over the 5 folds of 1K test images (Faghri
et al., 2018). Flickr30K (Plummer et al., 2015)
consists of 31000 images collected from the Flickr
website. Each image contains 5 descriptive sen-
tences. We take the same splits for training, vali-
dation and testing sets as in Karpathy and Fei-Fei
(2015), 1000 images for validation and 1000 im-
ages for testing, while the rest for training.

Evaluation Metric The performance of image
text retrieval is evaluated by the standard recall at K
(R@K), K =1,5,10. It is defined as the fraction
of queries for which the correct item belongs to the
top- K retried items. In image text retrieval, we can
take image or text as query to retrieve matched texts
or images, corresponding to the settings of image-
to-text and text-to-image. We also take RSum
which is the sum of R@1+R@5+R@10 in both
image-to-text and text-to-image as an overall met-
ric.



3.2 Implementation Details

For the image, we employ Faster-RCNN (Ren
et al., 2015) pre-trained on Visual Genome (Kr-
ishna et al., 2017) to extract region features follow-
ing BUTD? (Anderson et al., 2018). We prune the
vocabulary by dropping words that appear less than
five times. Both of our intra-relationship model
and inter-relationship model has 2 layers, the hid-
den dimension is 1024, the head of attention is 16
and the inner dimension of feed-forward network
is 2,048. The number of parameters in our model
is 64.7M. More details are in appendix.

3.3 Overall Performance

We compare our model with some classic and state-
of-the-art approaches, including VSE++ (Faghri
et al, 2018), CAMP (Wang et al., 2019b),
SCAN (Lee et al., 2018), SGM (Wang et al., 2020),
VSRN (Li et al., 2019), BFAN (Liu et al., 2019),
MMCA (Wei et al., 2020), GSMN (Liu et al., 2020).
The results on MS-COCO 1K and Flickr30K are
presented in Table 1, and that on MS-COCO is
shown in Table 2. We can see that our proposed
SSAMT outperforms all existing methods, with the
best R@ 1= 78.2% for image-to-text retrieval and
R@1= 62.7% for text-to-image retrieval on MS-
COCO 1K. For MS-COCO, the proposed approach
maintains the superiority with an improvement of
more than 3% on the R@1 of image-to-text re-
trieval. In Flickr30K, our model achieves the best
performance with image-to-text R@1 of 75.4%.

3.4 Ablation Study

We perform ablation study on MS-COCO 1K to
explore the effectiveness of phrase-level labels and
different matching scores. We compare two groups
of settings by controlling the usage of phrase-level
labels, namely, mask transformer w/o phrases and
w/ phrases. Under each group of settings, we take
mask transformer (MT) with global matching loss
(GM) as baseline. On top of it, we add local match-
ing loss (LM) and phrase matching loss (PM) in
sequence to justify their influences. Experiment
results are shown in Table 3. We can see that per-
formance increases as components are gradually
added. Moreover, these models based on mask
transformer w/ phrases perform better than their
count-parts without phrases. These facts demon-
strate the effectiveness of different components of

https://github.com/peteanderson80/
bottom-up-attention

Image-to-Text
R@l

Text-to-Image
R@5 R@10 R@1 R@5 R@I10

mask transformer w/o phrases

MT+GM | 739 937 975 577 87.0 94.1
+LM 755 943 977 598 879 945
+PM 763 947 98.0 612 888 948

‘ mask transformer w/ phrases

MT+GM | 745 94.1 973 582 877 944
+LM 76.8 950 979 614 887 94.6
+PM 782 956 98.0 62.7 89.6 953

Table 3: Ablation study for SSAMT on MS-COCO IK.
There are two groups of settings, namely, mask trans-
former w/o phrases and mask transformer w/ phrases.
In each group, we take mask transformer with global
matching loss as baseline. Components are added on
top of the previous setting one by one from the first row
to the bottom one.

SSAMT.

4 Further Analysis

In this section, we dive into SSAMT to further
analyze the characteristics of semantic labels.

4.1 Influence of Phrase-level Labels on
Inference Power of Various Matching
Scores

Multi-grained semantic labels are used in comput-
ing the multi-scale scores for a given image text
pair as £, L% and £F. Experiments have shown
their effectiveness on improving the overall per-
formance in image-text retrieval. We would like
to further explore contributions of different match-
ing scores in the inference process. In addition to
the full version of SSAMT, we also train SSAMT
without phrase matching loss (denoted as SSAMT
w/o PM) as comparison. SSAMT w/o PM has the
same architecture as SSAMT and is able to com-
pute phrase matching score during inference. In
the experiment of image-to-text (i2t) setting, for
each positive image text pair in the test set of MS-
COCO (Lin et al., 2014), we sample another sen-
tence to form a negative pair. So is text-to-image
(t2i). We compute the mean of classification accu-
racy across the test set.

Experiment results are presented in Table 4. We
use one of three matching scores (global, local
and phrase) to make the decision of classification.
Two findings standout. (1) The performance of
SSAMT w/o PM drops significantly when it com-
putes phrase matching to determine the irrelevant
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Figure 3: Two examples of SSAMT. Red words in negative text mean they are negative that does not appear in
semantic labels. Score on the right of each phrase or word is the corresponding phrase-to-image local matching
score. Color of scores from blue to red denotes that phrases or words are more and more irrelevant to the image.

Matching Type |  SSAMT  SSAMT w/o PM
global (i2t) 76.9% 75.2%
global (t2i) 83.9% 82.6%

local (i2t) 77.2% 75.4%
local (t2i) 84.2% 82.6%
phrase (i2t) 97.1% 30.0%
phrase (t2i) 97.2% 28.4%

Table 4: Accuracy of global matching, local match-
ing and phrase matching with respect to SSAMT and
SSAMT w/o PM. i2t and t2i mean image-to-text and
text-to-image, respectively.

parts of the negative sentence. This indicates that if
there is no explicit supervision to guide the model
to be grounding on the truly irrelevant parts during
training, it hardly unsupervised learns the ground-
ing. (2) SSAMT outperforms SSAMT w/o PM in
all six metrics. This demonstrates that, through
guiding the model to be more grounding on the
truly irrelevant parts, phrase-level labels contribute
to all three matching during the inference.

4.2 Influence of Phrase-level Labels on the
Improvement of Training Datab Efficiency

In the application of semantic labels, we exploit
more supervision signals for each query image
in phrase level. We would like to see the in-
fluence of these phrase-level labels on the train-
ing efficiency. We compare three versions of

Model ‘ 100% 75% 50%  25%
SSAMT w/o PM&LM | 483.3 4624 4365 3725
SSAMT w/o PM 485.1 464.6 4377 3734
SSAMT 488.7 4712 4464 383.8

Table 5: RSum of different models with different sizes
of training data.

SSAMT, namely, SSAMT, SSAMT w/o PM and
SSAMT w/o PM&LM, with different sets of
matching losses respectively. In practice, we ran-
domly pick out 75%, 50% and 25% data from
Flickr30K (Plummer et al., 2015), which respec-
tively contain 21, 750, 14,500 and 7, 250 images
and 108, 750, 72, 500 and 36, 250 image-text pairs.
We present RSum score of three models on test set
of Flickr30K for evaluation.

Experiment results are shown in Table 5. We
find that RSum of all three models decreases as
dataset size decreases from 100% to 25%. The per-
formance gain of SSAMT w/o PM over SSAMT
w/o PM&LM gets smaller as the dataset size de-
creases, which ranges from 1.8 to 0.9. However, the
gain of SSAMT over SSAMT w/o PM gets larger,
which ranges from 3.6 to 10.4. This demonstrates
that phrase-level labels can improve the training
efficiency, and the improvement is more significant
with a small dataset scale.

When the size of training dataset reduces from
29, 000 (100%) to 7, 250 (25%), the size of vocab-
ulary changes from 9, 568 to 8, 608, of which the



reduction is smaller than the dataset. It has less
impact on phrase matching. This means that the
supervision of phrase matching does not decrease
that rapidly. Thus, semantic labels are more benefi-
cial for image-text retrieval under the condition of
small data amount.

4.3 Case Study

We show two examples in Figure 3. For each im-
age, we show its annotated sentences on top of it.
Based on these sentences, we follow the instruc-
tion in §2.1 to automatically construct correspond-
ing multi-grained semantic labels, and list them
on the right of these image annotated sentences.
We show two texts that one is positive (matched)
and the other is negative(mismatched) on the right
of each image. Each of these texts is separated
into words (left) and phrases (right), and they are
accompanied with corresponding phrase-to-image
local matching scores. We use blue and red to
highlight positive and negative scores respectively,
the darker the higher (lower in negative). We ob-
serve that phrase scores of the positive sentence
are large, and those of negative one are relatively
small, especially those mismatched parts, such as
“white umbrella”, “man in white” and “man work-
ing in kitchen”. These facts verify that SSAMT can
produce more faithful results.

5 Related Work

Most works in image-text retrieval focus on cap-
turing the cross-modal semantic association by bet-
ter feature extraction and cross-modality interac-
tion. Nam et al. (2017), Fan et al. (2018), Ji et al.
(2019) and Fan et al. (2019) represent the image
by semantics gathered from block-based attention,
or by region-level. Lee et al. (2018), Wang et al.
(2019b), Wang et al. (2019a), Li et al. (2019), Wang
et al. (2020) and Wei et al. (2020) detect objects
in images by pre-trained Faster R-CNN (Ren et al.,
2015) following the bottom-up manner proposed by
Anderson et al. (2018). For text processing, Klein
et al. (2015) explore to use Fisher Vectors as dis-
criminative representations. Language models like
Skip-Gram are employed to extract word represen-
tations (Frome et al., 2013a), and text segments
are generally encoded by recurrent neural network
(RNN) (Kiros et al., 2014; Faghri et al., 2018;
Chen and Luo, 2020). To emphasize local struc-
ture of visual (text), VSRN (Li et al., 2019) uses
the region relationship modeling for vision local-

ness modeling and GRU (Cho et al., 2014) for vi-
sual global semantic modeling. SGM (Wang et al.,
2020) employs GCN (Defferrard et al., 2016) to
model visual and textual scene graph, then com-
putes the similarity between two graphs. Besides,
GSMN (Liu et al., 2020) fuses neighborhood as-
sociations for graph structure matching. Different
from these GCN based methods, our model pro-
cess token and phrases in parallel to jointly model
in localness and globalness, which is simpler and
more efficient. MMCA (Wei et al., 2020) utilizes
transformer for cross-modality relationship encod-
ing, which is widely applied in vision-language
pre-trained models, such as UNITER (Chen et al.,
2020), Unicoder-VL (Li et al., 2020) and ERINE-
ViL (Yu et al., 2020). They take token and region
as transformer input, but do not explicitly intro-
duce phrases. Compare with them, we introduce
more fine-grained supervision to find out irrelevant
phrases, and build mask transformer with phrase
nodes for better local semantic modeling. More-
over, we show that our model can produce explain-
able outputs.

6 Conclusion

In this paper, to make full use of negative sentences
in both phrase-level and sentence-level, we explore
to build multi-grained semantic labels, in which
phrase-level ones are automatically constructed
through extracting phrases of object entities, object-
attribute pairs and object-relation-object triplets
from images annotated sentences. We concatenate
the sentence and its phrases in language side, while
image and its regions in vision side, then present
mask transformer for jointly cross-modality model-
ing with multi-grained semantics. We have multi-
scale matching losses to capture the image-to-text
matching and region-to-sentence/phrase-to-image
matching. Based on the phrase-to-image match-
ing, we utilize the semantic labels to determine
the non-correspondence between phrases and im-
age, and adjust scores between the image-phrase
pairs. Experiment results show the effectiveness of
our model on MS-COCO and Flickr30K. Further
analysis reveals that semantic labels improve the
efficiency of data exploitation and guide the model
to discriminate mismatching sentences with more
grounding on mismatched parts.
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A Implementation Details

Our training has two phases. For all experiments,
the dropout rate is 0.3 and the Adam (Kingma
and Ba, 2015) with (3; 0.9, B = 0.999
is taken as the optimizer of our model. The
linear-decay learning rate scheduler is employed
with 10K update steps, 1K warm-up steps. In
MS-COCO, we first train the intra-r model with
ag = 0.1, the maximum instance (#region+#token)
per batch is 32,768, the accumulation step is 1
and the peak learning rate is 2e-4. Then, we fix
the intra-modality relationship model to train the
inter-modality relationship model with oi; = 0.1,
Qg = 0.2, Qs 0.2 and /\1 = 1.0, )\2 1.0,
A3 = 0.1. The maximum instance per batch is
8,192, the accumulation step is 16 and the peak
learning rate is 6e-4. During testing, u; = 0.2
and pg = 0.1. In Flickr30K, we first train the
intra-modality relationship model with ap = 0.05,
the maximum instance per batch is 32, 768, the ac-
cumulation step is 1, and the peak learning rate
is le-4. Then, we fix the intra-modality relation-
ship model to train the inter-modality one with
a1 = 0.05, ag = 0.05, g = 0.1 and A\ 1.0,
A2 = 0.1 A3 = 0.1. The maximum instance per
batch is 8,192, the accumulation step is 4 and the
peak learning rate is 8e-4. During testing, 11 = 0.3
and po = 0.1.



