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Abstract

Existing research for image text retrieval001
mainly relies on sentence-level supervision to002
distinguish matched and mismatched sentences003
for a query image. However, semantic mis-004
match between an image and sentences usually005
happens in finer grain, i.e., phrase level. In006
this paper, we explore to introduce additional007
phrase-level supervision for the better identi-008
fication of mismatched units in the text. In009
practice, multi-grained semantic labels are auto-010
matically constructed for a query image in both011
sentence-level and phrase-level. We construct012
text scene graphs for the matched sentences013
and extract entities and triples as the phrase-014
level labels. In order to integrate both super-015
vision of sentence-level and phrase-level, we016
propose Semantic Structure Aware Multimodal017
Transformer (SSAMT) for multi-modal repre-018
sentation learning. Inside the SSAMT, we uti-019
lize different kinds of attention mechanisms020
to enforce interactions of multi-grain semantic021
units in both sides of vision and language. For022
the training, we propose multi-scale matching023
losses from both global and local perspectives,024
and penalize mismatched phrases. Experimen-025
tal results on MS-COCO and Flickr30K show026
the effectiveness of our approach compared to027
some state-of-the-art models.028

1 Introduction029

Vision and language are two important aspects of030

human intelligence to understand the world. To031

bridge vision and language, researchers pay increas-032

ing attention to multi-modal tasks. Image-text re-033

trieval (Frome et al., 2013b), one of the fundamen-034

tal topics, aims to retrieve the matching text (image)035

for the query image (text). Researchers (Frome036

et al., 2013b; Kiros et al., 2014; You et al., 2018)037

extract features from an image-text pair to compute038

a scalar matching score to measure the similarity.039

The model is optimized via a triplet loss that makes040

the representations of the positive image-text pair041

closer than negative ones. Existing research (Faghri042
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N1: the dog dumps over a man to catch a frisbee. 0.50
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N3: a brown and black dog jumps in the air to catch a frisbee. 0.53
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Figure 1: An example of a query image, a group of mis-
matched sentences, a group of matched sentences and
their corresponding text scene graph, and augmented
labels in phrase-level. Textual segments with underlines
stand for mismatching in phrase-level. The matching
scores are produced by VSE++ (Faghri et al., 2018).

et al., 2018; Lee et al., 2018; Liu et al., 2020; Wei 043

et al., 2020) usually relies on sentence-level super- 044

vision for cross-modality representation learning. 045

However, the semantic mismatch usually happens 046

in finer grain, i.e., phrase level. 047

We show an example in Figure 1, including a 048

query image, some matched sentences and mis- 049

matched ones. In terms of matching scores, the 050

model (Faghri et al., 2018) fails to distinguish pos- 051

itive and negative sentences. A closer look at the 052

example shows that mismatched sentences are usu- 053

ally partially irrelevant with phrases of inconsistent 054

semantics (two dogs, baseball filed, etc.). Inspired 055
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Figure 2: The overall framework of our proposed model Semantic Structure Aware Multimodal Transformer
(SSAMT). The blank circle in the mask matrix M means that the query node does not attend to the corresponding
node.

by this observation, we explore to provide fine-056

grained supervision in phrase-level for better cross-057

modality representation learning. In practice, we058

construct multi-grained semantic labels for a query059

image of two levels, namely, sentence-level and060

phrase-level. In sentence-level, we use the whole061

sentence as the label. In phrase level, we construct062

the text scene graph of the sentence and extract en-063

tities and triples of multiple forms from the graph064

as labels. Based on these multi-grained semantic065

labels, we assume the matching model is able to066

identify fine-grained mismatched semantic units at067

the same time of distinguishing negative sentences.068

In order to utilize the supervision of both069

sentence-level and phrase-level for cross-modality070

representation learning, we propose the Seman-071

tic Structure Aware Multimodal Transformer072

(SSAMT) to model multi-grained semantics in vi-073

sion and language. In language side, we concate-074

nate the sentence and its phrases as input, while075

both image and its regions are used in vision side.076

Mask transformer is used to model semantic units077

of different granularity for both modalities, besides,078

novel attention mechanisms are presented for inter-079

actions of intra-modality and inter-modality. The080

model learns representations for both modalities of081

vision (image and regions) and language (sentence082

and phrases) in multiple scales (global and local). 083

For optimization, we utilize the global matching 084

and local matching for the similarity measurement 085

of image-text pairs, where global matching com- 086

putes the matching score of the global represen- 087

tations of the image and text, and local match- 088

ing measures the similarities from fine-grained 089

perspectives including region-to-text and phrase- 090

to-image. In addition, for the phrases extracted 091

from mismatched sentences, we propose phrase- 092

matching to teach the model to increase scores be- 093

tween the matched image-phrase pairs and decrease 094

those mismatched ones. Experiment results on MS- 095

COCO (Lin et al., 2014) and Flickr30K (Plummer 096

et al., 2015) show the effectiveness of our model 097

compared to some state-of-the-art approaches. Fur- 098

ther analysis reveals that SSAMT is able to pro- 099

vide better interpretability by locating mismatched 100

phrases of negative sentences. 101

2 Semantic Structure Aware Multimodal 102

Transformer (SSAMT) 103

The overall framework of Semantic Structure 104

Aware Multimodal Transformer is shown in Fig- 105

ure 2. It includes three major components, 106

namely, multi-grained semantic labels construc- 107

tion, cross-modality representation learning with 108
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multi-grained semantics and multi-scale matching109

losses. The multi-grained semantic labels con-110

struction is to automatically collect semantic labels111

from annotated sentences of the query image, the112

cross-modality representation learning with multi-113

grained semantics is to capture the semantics of114

different granularity in both modalities, and multi-115

scale losses are utilized to measure the similarity116

between the pair of image and sentence. We take117

the image Ii and text Tj as an example to compute118

their matching score.119

2.1 Multi-Grained Semantic Labels120

Construction121

Each image in vision and language datasets has122

multiple annotated sentences, for example there123

are five in MS-COCO (Lin et al., 2014) and124

Flickr30K (Plummer et al., 2015). These sentences125

describe multi-grained semantics of the image in-126

cluding various objects, relations and scenes, and127

we propose to utilize them to automatically config-128

ure corresponding semantic labels.129

In practice, we adopt the scene graph parser130

of SPICE (Anderson et al., 2016) following131

SGAE1 (Yang et al., 2019b) to dig object-relation-132

object triplets, object-attribute pairs and object en-133

tities from upper descriptive sentences. For exam-134

ple in Figure 2, the retrieved phrases include “dog135

catching frisbee” and “yellow frisbee”. Moreover,136

tokens of each sentence are also collected as sup-137

plementary of the upper phrases. There phrases and138

tokens are regarded as semantic labels, Li, of the139

image Ii. Semantic labels provide an opportunity140

to determine the partially irrelevant components in141

the sentence Tj and we will introduce the details in142

§2.4.143

2.2 Model Input144

Text Embeddings For the sentence Tj , we obtain145

its tokens and phrases as described in §2.1. To ini-146

tialize each token, we map it to a dense vector using147

a standard embedding layer following Devlin et al.148

(2019) which is composed of token embeddings,149

position embeddings and segment embeddings. For150

each phrase, we use phrase segment embeddings151

of three categories, namely, object, attribute and152

relation as initialization, and think of it as a phrase153

node that connects to these tokens included in it.154

We concatenate them with tokens for simultaneous155

encoding. We do not add context-based embed-156

1https://github.com/yangxuntu/SGAE

dings for phrase initialization and introduce the 157

mask mechanism in §2.3 to encode its context as 158

compensation. At the same time, we set up a global 159

sentence node with dense vector CT as initializa- 160

tion to capture the sentence-level semantics. In 161

summary, our text embeddings have three parts, 162

word embeddings EW
j , phrase embeddings EP

j and 163

a global sentence embedding CT . 164

Image Vectors Initialization For the image Ii, 165

we employ a pre-trained object detector to extract 166

region features, where each oi,k ∈ Rdo is the mean- 167

pooled convolutional feature for the k-th region of 168

Ii and do is the hidden size of the detector. We fix 169

the pre-trained model during training. To fit the hid- 170

den size of our encoder, we add a fully-connected 171

layer to project each region feature into the same 172

size and get initial image vectors EI
j . Following 173

the setting of the global sentence node, we also set 174

up a global image node with CI as initialization to 175

capture the overall semantics of the image. 176

2.3 Cross-Modality Modeling with 177

Multi-Grained Semantics 178

To enforce the interaction of multi-grained seman- 179

tics from both two modalities, we employ inter- 180

modality and intra-modality relationships model- 181

ing at the same time, and present the mechanism of 182

mask attention inside the transformer cell to learn 183

the multi-grained semantics with the inherent struc- 184

ture. 185

Inter-Modality Relationship Modeling Inter- 186

modality relationship model aims to set up the in- 187

teractions across the two modalities. We use the 188

encoder of transformer (Vaswani et al., 2017) as 189

backbone. In the following equation, we concate- 190

nate text embeddings and image vectors in §2.2 as 191

model input. 192

H0 =
[
CT , EP

j , E
W
j ;CI , EI

i

]
193

In the original setting of transformer, there is 194

no different granularity or structure and each ele- 195

ment attends to others without constraints. In our 196

case, we have phrase node to capture the semantics 197

of words in the phrase, and modality-dependent 198

global nodes to model the overall semantics for im- 199

age and text, respectively. These nodes are utilized 200

for multi-grained semantic modeling and heavily 201

depends on the structure. To keep their meaning, 202

we argue to abandon original attention and employ 203

3
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mask attention. In implementation, a masking ma-204

trix M ∈ R|H0|×|H0| is initialized with all 0, and205

we reset values in specific positions with −∞ to206

meet these three requirements as following.207

(1) In the vision side, each region node is not visi-208

ble to the global sentence node.209

(2) In the language side, each phrase and token210

node is not visible to the global image node.211

(3) Each phrase node is not visible to any other212

words that not included in the phrase itself.213

We add M to the following attention function214

and utilize it to replace the original one in trans-215

former. We call the new one mask transformer.216

217

attention(Q,K, V,M) = softmax
(
M +

QTK√
dk

)
V218

After inter-modality relationship modeling, we219

get a sequence of outputs shown in the following220

equation.221

H =
[
hTj , H

T
j ;h

I
i , H

I
i

]
222

where hIi and hTj are global representations for223

image and text corresponding to global nodes CI224

and CT of image and sentence. HI
i are representa-225

tions for regions and HT
j are for phrases and words.226

They are local representations for the image and227

sentence, respectively.228

Intra-Modality Relationship Modeling Intra-229

modality relationship model (Wei et al., 2020; Yang230

et al., 2019a) is employed to separately encode231

image and text as a supplementary to the inter-232

modality relationship modeling, where inputs of233

image and text are
[
CI , EI

i

]
and

[
CT , EP

j , E
W
j

]
,234

respectively. We take the outputs of CI and CT as235

intra-modality global representations of the image236

and text, denoted as aIi and aTj .237

2.4 Multi-scale Matching Losses238

Supposing we have a positive image-text pair239

(Ii, Ti) with a negative image Ik and a negative240

sentence Tj . We use triplet loss TriLα to train241

our model. In TriLα(u, V,W ) as following, α is a242

scalar to control the distance between the cosine243

score of u and positive samples V and that of nega-244

tive samples W . The loss is to push v ∈ V closer245

to u and push w ∈ W away from u. Based on246

multi-grained semantic labels, We measure the sim-247

ilarity of these image-text pairs using three kinds248

of matching scores, including global, local, and 249

phrase matching. 250

TriLα

(
u, V,W

)
=max

(
α−

∑
v∈V

cos(u, v)

|V |
+

∑
w∈W

cos(u,w)

|W |
, 0

)
251

Global Matching Intra-modality and inter- 252

modality relationship modeling both produce rep- 253

resentations for global representations of image 254

and sentence, then we have cos(aIi , a
T
i ) and 255

cos(hIi , h
T
i ) to measure global similarity of the 256

positive image-text pair (Ii, Ti), and so is for the 257

negative pair (Ii, Tj). The corresponding loss is 258

shown below. 259

LG
0 = TriLα0(a

I
i , a

T
i , a

T
j ) + TriLα0(a

T
i , a

I
i , a

I
k)

LG
1 = TriLα1(h

I
i , h

T
i , h

T
j ) + TriLα1(h

T
i , h

I
i , h

I
k)

260

Local Matching We utilize local matching which 261

is based on inter-modality relationship modeling 262

to enhance the fine-grained cross-modal matching. 263

It has two parts. (1) Region-to-Sentence: The 264

matching between each region and the sentence. 265

(2) Phrase-to-Image: The similarity of each phrase 266

(token) and the image. We employ LL
2 to make 267

local matching scores of the positive image-text 268

pair larger than the negative one. 269

LL
2 = TriLα2(h

I
i , H

T
i , H

T
j ) + TriLα2(h

T
i , H

I
i , H

I
k) 270

Phrase Matching On the basis of phrase-to- 271

image matching, we employ semantic labels Li 272

to determine mismatched phrases in negative sen- 273

tences, and decrease the scores of the mismatched 274

ones and increase the scores of matched ones. In 275

detail, for each phrase or token in Tj , we determine 276

it as positive if it appears in semantic labels Li or 277

included in some label of Li, otherwise, it is nega- 278

tive. Through the method, we split the token and 279

phrase of Tj into positive ones HT
j+ and negative 280

ones HT
j−. We repeat the same process on the neg- 281

ative pair (Ik, Ti) and get HT
i+ and HT

i−. Consider 282

that positive parts are keys to separate mismatched 283

image text pair, we propose LP
3 to further push 284

away negative parts against positive ones in the 285

negative sentence. It also can be interpreted as the 286

penalty on mismatched parts, which is to guide the 287

matching model to make decisions more grounding 288

on them. 289

LP
3 = TriLα3(h

I
i , H

T
j+, H

T
j−) + TriLα3(h

I
k, H

T
i+, H

T
i−) 290
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MS-COCO 1K Flickr30K

Model
Image-to-Text Text-to-Image Image-to-Text Text-to-Image

R@1 R@5 R@10 R@1 R@5 R@10 RSum R@1 R@5 R@10 R@1 R@5 R@10 RSum

VSE++ 64.7 - 95.9 52.0 - 92.0 - 52.9 79.1 87.2 39.6 69.6 79.5 407.9
CAMP 72.3 94.8 98.3 58.5 87.9 95.0 506.8 68.1 89.7 95.2 51.5 77.1 85.3 466.9
SCAN 72.7 94.8 98.4 58.8 88.4 94.8 507.9 67.4 90.3 95.8 48.6 77.7 85.2 465.0
SGM 73.4 93.8 97.8 57.5 87.3 94.3 504.1 71.8 91.7 95.5 53.5 79.6 86.5 478.6
VSRN 74.0 94.3 97.8 60.8 88.4 94.1 509.4 70.4 89.2 93.7 53.0 77.9 85.7 469.9
BFAN 74.9 95.2 - 59.4 88.4 - - 68.1 91.4 - 50.8 78.4 - -
MMCA 74.8 95.6 97.7 61.6 89.8 95.2 514.7 74.2 92.8 96.4 54.8 81.4 87.8 487.4
GSMN 76.1 95.6 98.3 60.4 88.7 95.0 514.1 71.4 92.0 96.1 53.9 79.7 87.1 480.2

SSAMT 78.2 95.6 98.0 62.7 89.6 95.3 519.4 75.4 92.6 96.4 54.8 81.5 88.0 488.7

Table 1: Comparison results of the cross-modal retrieval on the MS-COCO 1K and Flickr30K in terms of Re-
call@K(R@K). The comparative models include VSE++ (Faghri et al., 2018), CAMP (Wang et al., 2019b),
SCAN (Lee et al., 2018), SGM (Wang et al., 2020), VSRN (Li et al., 2019), BFAN (Liu et al., 2019), MMCA (Wei
et al., 2020), GSMN (Liu et al., 2020).

Based on these three types of matching methods291

and corresponding losses, we get the overall loss292

with hyperparameters λ0, λ1, λ2 and λ3 to balance293

these losses.294

LS = λ0LG
0 + λ1LG

1 + λ2LL
2 + λ3LP

3295

Previous image-text retrieval models usually296

take the hardest image (text) from in-batch data as297

the negative image (text), which requires the match-298

ing score computation of all pairwise image-text299

combinations in batch. This is expensive in inter-300

modality relationship modeling, thus we sample301

negative instances through intra-modality match-302

ing scores to reduce the computation cost.303

Inference During inference, we utilize the fol-304

lowing score(Ii, Tj) for ranking.305

score(Ii, Tj) = cos(aIi , a
T
j ) + µ1cos(h

I
i , h

T
j )+∑

hT
j,k∈H

T
j

µ2cos(h
I
i , h

T
j,k)

|HT
i |

+
∑

hV
i,k∈H

I
i

µ2cos(h
T
j , h

I
i,k)

|HI
i |

306

where µ1 and µ2 are hyperparameters.307

3 Experiment308

3.1 Experimental Setup309

Datasets We evaluate our proposed model on310

MS-COCO (Lin et al., 2014) and Flickr30K (Plum-311

mer et al., 2015). Each image of MS-COCO is ac-312

companied with 5 human annotated captions. We313

split the dataset into training, validation and test314

sets respectively with 113, 287/5, 000/5, 000 im-315

ages following (Karpathy and Fei-Fei, 2015). For316

Model
Image-to-Text Text-to-Image

R@1 R@5 R@10 R@1 R@5 R@10

CAMP 50.1 82.1 89.7 39.0 68.9 80.2
SCAN 50.4 82.2 90.0 38.6 69.3 80.4
SGM 50.0 79.3 87.9 35.3 64.9 76.5
MMCA 54.0 82.5 90.7 38.7 69.7 80.8

SSAMT 57.7 84.2 90.8 40.8 70.5 80.5

Table 2: Comparison results of the cross-modal retrieval
on the MS-COCO in terms of Recall@K(R@K).

MS-COCO 1K, the testing set is further divided 317

into 5 splits and the performance reported are the 318

average over the 5 folds of 1K test images (Faghri 319

et al., 2018). Flickr30K (Plummer et al., 2015) 320

consists of 31000 images collected from the Flickr 321

website. Each image contains 5 descriptive sen- 322

tences. We take the same splits for training, vali- 323

dation and testing sets as in Karpathy and Fei-Fei 324

(2015), 1000 images for validation and 1000 im- 325

ages for testing, while the rest for training. 326

Evaluation Metric The performance of image 327

text retrieval is evaluated by the standard recall at K 328

(R@K), K = 1, 5, 10. It is defined as the fraction 329

of queries for which the correct item belongs to the 330

top-K retried items. In image text retrieval, we can 331

take image or text as query to retrieve matched texts 332

or images, corresponding to the settings of image- 333

to-text and text-to-image. We also take RSum 334

which is the sum of R@1+R@5+R@10 in both 335

image-to-text and text-to-image as an overall met- 336

ric. 337
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3.2 Implementation Details338

For the image, we employ Faster-RCNN (Ren339

et al., 2015) pre-trained on Visual Genome (Kr-340

ishna et al., 2017) to extract region features follow-341

ing BUTD2 (Anderson et al., 2018). We prune the342

vocabulary by dropping words that appear less than343

five times. Both of our intra-relationship model344

and inter-relationship model has 2 layers, the hid-345

den dimension is 1024, the head of attention is 16346

and the inner dimension of feed-forward network347

is 2, 048. The number of parameters in our model348

is 64.7M. More details are in appendix.349

3.3 Overall Performance350

We compare our model with some classic and state-351

of-the-art approaches, including VSE++ (Faghri352

et al., 2018), CAMP (Wang et al., 2019b),353

SCAN (Lee et al., 2018), SGM (Wang et al., 2020),354

VSRN (Li et al., 2019), BFAN (Liu et al., 2019),355

MMCA (Wei et al., 2020), GSMN (Liu et al., 2020).356

The results on MS-COCO 1K and Flickr30K are357

presented in Table 1, and that on MS-COCO is358

shown in Table 2. We can see that our proposed359

SSAMT outperforms all existing methods, with the360

best R@1= 78.2% for image-to-text retrieval and361

R@1= 62.7% for text-to-image retrieval on MS-362

COCO 1K. For MS-COCO, the proposed approach363

maintains the superiority with an improvement of364

more than 3% on the R@1 of image-to-text re-365

trieval. In Flickr30K, our model achieves the best366

performance with image-to-text R@1 of 75.4%.367

3.4 Ablation Study368

We perform ablation study on MS-COCO 1K to369

explore the effectiveness of phrase-level labels and370

different matching scores. We compare two groups371

of settings by controlling the usage of phrase-level372

labels, namely, mask transformer w/o phrases and373

w/ phrases. Under each group of settings, we take374

mask transformer (MT) with global matching loss375

(GM) as baseline. On top of it, we add local match-376

ing loss (LM) and phrase matching loss (PM) in377

sequence to justify their influences. Experiment378

results are shown in Table 3. We can see that per-379

formance increases as components are gradually380

added. Moreover, these models based on mask381

transformer w/ phrases perform better than their382

count-parts without phrases. These facts demon-383

strate the effectiveness of different components of384

2https://github.com/peteanderson80/
bottom-up-attention

Image-to-Text Text-to-Image
R@1 R@5 R@10 R@1 R@5 R@10

mask transformer w/o phrases

MT+GM 73.9 93.7 97.5 57.7 87.0 94.1
+LM 75.5 94.3 97.7 59.8 87.9 94.5
+PM 76.3 94.7 98.0 61.2 88.8 94.8

mask transformer w/ phrases

MT+GM 74.5 94.1 97.3 58.2 87.7 94.4
+LM 76.8 95.0 97.9 61.4 88.7 94.6
+PM 78.2 95.6 98.0 62.7 89.6 95.3

Table 3: Ablation study for SSAMT on MS-COCO 1K.
There are two groups of settings, namely, mask trans-
former w/o phrases and mask transformer w/ phrases.
In each group, we take mask transformer with global
matching loss as baseline. Components are added on
top of the previous setting one by one from the first row
to the bottom one.

SSAMT. 385

4 Further Analysis 386

In this section, we dive into SSAMT to further 387

analyze the characteristics of semantic labels. 388

4.1 Influence of Phrase-level Labels on 389

Inference Power of Various Matching 390

Scores 391

Multi-grained semantic labels are used in comput- 392

ing the multi-scale scores for a given image text 393

pair as LG
1 , LL

2 and LP
3 . Experiments have shown 394

their effectiveness on improving the overall per- 395

formance in image-text retrieval. We would like 396

to further explore contributions of different match- 397

ing scores in the inference process. In addition to 398

the full version of SSAMT, we also train SSAMT 399

without phrase matching loss (denoted as SSAMT 400

w/o PM) as comparison. SSAMT w/o PM has the 401

same architecture as SSAMT and is able to com- 402

pute phrase matching score during inference. In 403

the experiment of image-to-text (i2t) setting, for 404

each positive image text pair in the test set of MS- 405

COCO (Lin et al., 2014), we sample another sen- 406

tence to form a negative pair. So is text-to-image 407

(t2i). We compute the mean of classification accu- 408

racy across the test set. 409

Experiment results are presented in Table 4. We 410

use one of three matching scores (global, local 411

and phrase) to make the decision of classification. 412

Two findings standout. (1) The performance of 413

SSAMT w/o PM drops significantly when it com- 414

putes phrase matching to determine the irrelevant 415
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Image Annotated Sentences

1. a man is sitting on a wood 
stool in a home.

2. a man sits in a wooden kitchen 
at a table. 

3. a man sits on a stool in a 
kitchen. 

4. the man is sitting in the small 
kitchen on a stool. 

5. the man is sitting on a bench in 
his kitchen. 

Semantic Labels

Phrase-level Semantic Labels
Object-Relation-Object: : man sitting on stool, man in home,
stool in home, man sits in kitchen, man sitting on bench,
bench in kitchen
Attribute-Object Pair: wood stool, small kitchen
Object Entities: man, stool, home, kitchen, table, bench

Sentence-level Semantic Labels
1. a man is sitting on ... 2. a man sits... 3. ... 4. …

Image Annotated Sentences

1. a young professional woman is 
standing in the rain. 

2. a girl standing on the sidewalk 
holding a blue umbrella. 

3. a woman stands on a sidewalk 
holding a blue umbrella. 

4. a woman holding a blue 
umbrella next to a field. 

5. the woman smiles while 
standing with a blue umbrella. 

Semantic Labels

Phrase-level Semantic Labels
Object-Relation-Object: woman standing in the rain, girl 
standing on sidewalk, girl holding a umbrella, woman next to 
field, woman standing with umbrella
Attribute-Object Pair: young professional woman, blue 
umbrella
Object Entities: woman, girl, sidewalk, umbrella, field, rain

Sentence-level Semantic Labels
1. a man wearing ... 2. a girl ... 3. a woman ... 4. …

Image
a 0.97

girl 0.98

standing 0.99

on 0.35

the 0.87

sidewalk 0.88

holding 0.98

a 0.99

blue 0.99

umbrella 0.84

Positive Text

girl
standing on

sidewalk
0.99

girl holding
umbrella

1.00

blue
umbrella

0.96

girl 0.98

umbrella 0.99

sidewalk 0.94

Words Phrases

Negative Text

Words Phrases Image

table at
kitchen

0.99

man sits in
kitchen

0.99

wooden
kitchen

0.95

table 0.87

man 0.91

kitchen 0.85

a 0.99

man 0.91

sits 0.99

in 0.48

a 0.78

wooden 0.80

kitchen 0.97

at 0.97

a 0.93

table 0.45

Positive Text

Words Phrases

Negative Text

Words Phrases
woman
holding
umbrella

0.98

pretty
young
woman

0.60

white
umbrella

-0.20

woman 0.92

umbrella 0.47

a 0.65

pretty 0.42

young 0.99

woman 0.94

holding 0.89

a -0.65

white -0.98

umbrella 0.47

man in
white

0.70

man
working in

kitchen
0.61

man 0.99

kitchen 0.84

white -0.15

a 0.99

man 0.99

in 0.35

white -0.55

is -0.30

working -0.35

in 0.72

a 0.71

kitchen 0.70

Figure 3: Two examples of SSAMT. Red words in negative text mean they are negative that does not appear in
semantic labels. Score on the right of each phrase or word is the corresponding phrase-to-image local matching
score. Color of scores from blue to red denotes that phrases or words are more and more irrelevant to the image.

Matching Type SSAMT SSAMT w/o PM

global (i2t) 76.9% 75.2%
global (t2i) 83.9% 82.6%

local (i2t) 77.2% 75.4%
local (t2i) 84.2% 82.6%

phrase (i2t) 97.1% 30.0%
phrase (t2i) 97.2% 28.4%

Table 4: Accuracy of global matching, local match-
ing and phrase matching with respect to SSAMT and
SSAMT w/o PM. i2t and t2i mean image-to-text and
text-to-image, respectively.

parts of the negative sentence. This indicates that if416

there is no explicit supervision to guide the model417

to be grounding on the truly irrelevant parts during418

training, it hardly unsupervised learns the ground-419

ing. (2) SSAMT outperforms SSAMT w/o PM in420

all six metrics. This demonstrates that, through421

guiding the model to be more grounding on the422

truly irrelevant parts, phrase-level labels contribute423

to all three matching during the inference.424

4.2 Influence of Phrase-level Labels on the425

Improvement of Training Datab Efficiency426

In the application of semantic labels, we exploit427

more supervision signals for each query image428

in phrase level. We would like to see the in-429

fluence of these phrase-level labels on the train-430

ing efficiency. We compare three versions of431

Model 100% 75% 50% 25%

SSAMT w/o PM&LM 483.3 462.4 436.5 372.5
SSAMT w/o PM 485.1 464.6 437.7 373.4
SSAMT 488.7 471.2 446.4 383.8

Table 5: RSum of different models with different sizes
of training data.

SSAMT, namely, SSAMT, SSAMT w/o PM and 432

SSAMT w/o PM&LM, with different sets of 433

matching losses respectively. In practice, we ran- 434

domly pick out 75%, 50% and 25% data from 435

Flickr30K (Plummer et al., 2015), which respec- 436

tively contain 21, 750, 14, 500 and 7, 250 images 437

and 108, 750, 72, 500 and 36, 250 image-text pairs. 438

We present RSum score of three models on test set 439

of Flickr30K for evaluation. 440

Experiment results are shown in Table 5. We 441

find that RSum of all three models decreases as 442

dataset size decreases from 100% to 25%. The per- 443

formance gain of SSAMT w/o PM over SSAMT 444

w/o PM&LM gets smaller as the dataset size de- 445

creases, which ranges from 1.8 to 0.9. However, the 446

gain of SSAMT over SSAMT w/o PM gets larger, 447

which ranges from 3.6 to 10.4. This demonstrates 448

that phrase-level labels can improve the training 449

efficiency, and the improvement is more significant 450

with a small dataset scale. 451

When the size of training dataset reduces from 452

29, 000 (100%) to 7, 250 (25%), the size of vocab- 453

ulary changes from 9, 568 to 8, 608, of which the 454
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reduction is smaller than the dataset. It has less455

impact on phrase matching. This means that the456

supervision of phrase matching does not decrease457

that rapidly. Thus, semantic labels are more benefi-458

cial for image-text retrieval under the condition of459

small data amount.460

4.3 Case Study461

We show two examples in Figure 3. For each im-462

age, we show its annotated sentences on top of it.463

Based on these sentences, we follow the instruc-464

tion in §2.1 to automatically construct correspond-465

ing multi-grained semantic labels, and list them466

on the right of these image annotated sentences.467

We show two texts that one is positive (matched)468

and the other is negative(mismatched) on the right469

of each image. Each of these texts is separated470

into words (left) and phrases (right), and they are471

accompanied with corresponding phrase-to-image472

local matching scores. We use blue and red to473

highlight positive and negative scores respectively,474

the darker the higher (lower in negative). We ob-475

serve that phrase scores of the positive sentence476

are large, and those of negative one are relatively477

small, especially those mismatched parts, such as478

“white umbrella”, “man in white” and “man work-479

ing in kitchen”. These facts verify that SSAMT can480

produce more faithful results.481

5 Related Work482

Most works in image-text retrieval focus on cap-483

turing the cross-modal semantic association by bet-484

ter feature extraction and cross-modality interac-485

tion. Nam et al. (2017), Fan et al. (2018), Ji et al.486

(2019) and Fan et al. (2019) represent the image487

by semantics gathered from block-based attention,488

or by region-level. Lee et al. (2018), Wang et al.489

(2019b), Wang et al. (2019a), Li et al. (2019), Wang490

et al. (2020) and Wei et al. (2020) detect objects491

in images by pre-trained Faster R-CNN (Ren et al.,492

2015) following the bottom-up manner proposed by493

Anderson et al. (2018). For text processing, Klein494

et al. (2015) explore to use Fisher Vectors as dis-495

criminative representations. Language models like496

Skip-Gram are employed to extract word represen-497

tations (Frome et al., 2013a), and text segments498

are generally encoded by recurrent neural network499

(RNN) (Kiros et al., 2014; Faghri et al., 2018;500

Chen and Luo, 2020). To emphasize local struc-501

ture of visual (text), VSRN (Li et al., 2019) uses502

the region relationship modeling for vision local-503

ness modeling and GRU (Cho et al., 2014) for vi- 504

sual global semantic modeling. SGM (Wang et al., 505

2020) employs GCN (Defferrard et al., 2016) to 506

model visual and textual scene graph, then com- 507

putes the similarity between two graphs. Besides, 508

GSMN (Liu et al., 2020) fuses neighborhood as- 509

sociations for graph structure matching. Different 510

from these GCN based methods, our model pro- 511

cess token and phrases in parallel to jointly model 512

in localness and globalness, which is simpler and 513

more efficient. MMCA (Wei et al., 2020) utilizes 514

transformer for cross-modality relationship encod- 515

ing, which is widely applied in vision-language 516

pre-trained models, such as UNITER (Chen et al., 517

2020), Unicoder-VL (Li et al., 2020) and ERINE- 518

ViL (Yu et al., 2020). They take token and region 519

as transformer input, but do not explicitly intro- 520

duce phrases. Compare with them, we introduce 521

more fine-grained supervision to find out irrelevant 522

phrases, and build mask transformer with phrase 523

nodes for better local semantic modeling. More- 524

over, we show that our model can produce explain- 525

able outputs. 526

6 Conclusion 527

In this paper, to make full use of negative sentences 528

in both phrase-level and sentence-level, we explore 529

to build multi-grained semantic labels, in which 530

phrase-level ones are automatically constructed 531

through extracting phrases of object entities, object- 532

attribute pairs and object-relation-object triplets 533

from images annotated sentences. We concatenate 534

the sentence and its phrases in language side, while 535

image and its regions in vision side, then present 536

mask transformer for jointly cross-modality model- 537

ing with multi-grained semantics. We have multi- 538

scale matching losses to capture the image-to-text 539

matching and region-to-sentence/phrase-to-image 540

matching. Based on the phrase-to-image match- 541

ing, we utilize the semantic labels to determine 542

the non-correspondence between phrases and im- 543

age, and adjust scores between the image-phrase 544

pairs. Experiment results show the effectiveness of 545

our model on MS-COCO and Flickr30K. Further 546

analysis reveals that semantic labels improve the 547

efficiency of data exploitation and guide the model 548

to discriminate mismatching sentences with more 549

grounding on mismatched parts. 550
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A Implementation Details 719

Our training has two phases. For all experiments, 720

the dropout rate is 0.3 and the Adam (Kingma 721

and Ba, 2015) with β1 = 0.9, β2 = 0.999 722

is taken as the optimizer of our model. The 723

linear-decay learning rate scheduler is employed 724

with 10K update steps, 1K warm-up steps. In 725

MS-COCO, we first train the intra-r model with 726

α0 = 0.1, the maximum instance (#region+#token) 727

per batch is 32, 768, the accumulation step is 1 728

and the peak learning rate is 2e-4. Then, we fix 729

the intra-modality relationship model to train the 730

inter-modality relationship model with α1 = 0.1, 731

α2 = 0.2, α3 = 0.2 and λ1 = 1.0, λ2 = 1.0, 732

λ3 = 0.1. The maximum instance per batch is 733

8, 192, the accumulation step is 16 and the peak 734

learning rate is 6e-4. During testing, µ1 = 0.2 735

and µ2 = 0.1. In Flickr30K, we first train the 736

intra-modality relationship model with α0 = 0.05, 737

the maximum instance per batch is 32, 768, the ac- 738

cumulation step is 1, and the peak learning rate 739

is 1e-4. Then, we fix the intra-modality relation- 740

ship model to train the inter-modality one with 741

α1 = 0.05, α2 = 0.05, α3 = 0.1 and λ1 = 1.0, 742

λ2 = 0.1 λ3 = 0.1. The maximum instance per 743

batch is 8, 192, the accumulation step is 4 and the 744

peak learning rate is 8e-4. During testing, µ1 = 0.3 745

and µ2 = 0.1. 746
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