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Abstract

The Value Iteration (VI) algorithm is an iterative procedure to compute the value function of
a Markov decision process, and is the basis of many reinforcement learning (RL) algorithms
as well. As the error convergence rate of VI as a function of iteration k is O(γk), it is slow
when the discount factor γ is close to 1. To accelerate the computation of the value function,
we propose Deflated Dynamics Value Iteration (DDVI). DDVI uses matrix splitting and
matrix deflation techniques to effectively remove (deflate) the top s dominant eigen-structure
of the transition matrix Pπ. We prove that this leads to a Õ(γk|λs+1|k) convergence rate,
where λs+1 is (s+ 1)-th largest eigenvalue of the dynamics matrix. We then extend DDVI
to the RL setting and present Deflated Dynamics Temporal Difference (DDTD) algorithm.
We empirically show the effectiveness of the proposed algorithms.

1 Introduction

Computing the value function V π for a policy π or the optimal value function V ⋆ is an integral step of
many planning and reinforcement learning (RL) algorithms. Value Iteration (VI) is a fundamental dynamic
programming algorithm for computing the value functions, and its approximate and sample-based variants,
such as Temporal Different Learning (Sutton, 1988), Fitted Value Iteration (Ernst et al., 2005; Munos &
Szepesvári, 2008), Deep Q-Network (Mnih et al., 2015), are the workhorses of modern RL algorithms (Bertsekas
& Tsitsiklis, 1996; Sutton & Barto, 2018; Szepesvári, 2010; Meyn, 2022).

The VI algorithm, however, can be slow for problems with long effective planning horizon problems, when the
agent has to look far into future in order to make good decisions. Within the discounted Markov Decision
Processes formalism, the discount factor γ determines the effective planning horizon, with γ closer to 1
corresponding to longer planning horizon. The error convergence rate of the conventional VI as a function of
the iteration k is O(γk), which is slow when γ is close to 1.

Recently, there has been a growing body of research that explores the application of acceleration techniques
of other areas of applied math to planning and RL: Geist & Scherrer (2018); Sun et al. (2021); Ermis & Yang
(2020); Park et al. (2022); Ermis et al. (2021); Shi et al. (2019) applies Anderson acceleration of fixed-point
iterations, Lee & Ryu (2023) applies Anchor acceleration of minimax optimization, Vieillard et al. (2020);
Goyal & Grand-Clément (2022); Grand-Clément (2021); Bowen et al. (2021); Akian et al. (2022) applies
Nesterov acceleration of convex optimization and Farahmand & Ghavamzadeh (2021) applies ideas inspired
by PID controllers in control theory.

We introduce a novel approach to accelerate VI based on modification of the eigenvalues of the transition
dynamics, which are closely related to the convergence of VI. To see this connection, consider the policy
evaluation problem where the goal is to find the value function V π for a given policy π. VI starts from an
arbitrary V 0 and iteratively sets V k+1 ← rπ + γPπV k, where rπ and Pπ are the reward vector and the
transition matrix of policy π, respectively. If V 0 = 0, the error vector at iteration k can be shown to be
V π − V k =

∑∞
i=k(γPπ)irπ. Let us take a closer look at this difference.

For simplicity, assume that Pπ is a diagonalizable matrix, so we can write Pπ = UDU−1 with U consisting of
the (right) eigenvectors of Pπ and D being the diagonal matrix diag(λ1, . . . , λn) with 1 = |λ1| ≥ · · · ≥ |λn|.
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Since (Pπ)i = UDiU−1, after some manipulations, we see that

V π − V k = U


(γλ1)k

1−γλ1
0 . . . 0

0 (γλ2)k

1−γλ2
· · · 0

... · · ·
. . . 0

0 · · · 0 (γλn)k

1−γλn

U−1rπ.

The diagonal terms are of the (γλi)k form, so they all converge to zero. The dominant term is (γλ1)k, which
corresponds to the largest eigenvalue. As the largest eigenvalue λ1 of the stochastic matrix Pπ is 1, this leads
to the dominant behaviour of O(γk), which we also get from the norm-based contraction mapping analysis.
The second dominant term behaves as O((γ|λ2|)k), and so on.

If we could somehow remove from Pπ the subspace corresponding to the top s eigen-structure with eigen-values
λ1, . . . , λs, the dominant behaviour of the new procedure would be O((γ|λs+1|)k), which can be much faster
than O(γk) of the conventional VI. Although this is perhaps too good to seem feasible, this is exactly what the
proposed Deflated Dynamics Value Iteration (DDVI) algorithm achieves. Even if Pπ is not a diagonalizable
matrix, DDVI works. DDVI is based on two main ideas.

The first idea is the deflation technique, well-studied in linear algebra (see Section 4.2 of Saad (2011)), that
allows us to remove large eigenvalues of Pπ. This is done by subtracting a matrix E from Pπ. This gives us
a “deflated dynamics” Pπ −E that does not have eigenvalues λ1, . . . , λs. The second idea is based on matrix
splitting (see Section 11.2 of Golub & Van Loan (2013)), which allows us to use the modified dynamics Pπ−E
to define a VI-like iterative procedure and still converge to the same solution V π to which the conventional
VI converges.

Deflation has been applied to various algorithms such as conjugate gradient algorithm (Saad et al., 2000),
principal component analysis (Mackey, 2008), generalized minimal residual method (Morgan, 1995), and
nonlinear fixed point iteration (Shroff & Keller, 1993) for improvement of convergence. While some prior
in accelerated planning can be considered as special cases of deflation (Bertsekas, 1995; White, 1963), to
the best of our knowledge, this is the first application of the deflation technique that eliminates multiple
eigenvalues in the context of RL. On the other hand, multiple planning algorithms have been introduced
based on the general idea of matrix splitting (Hastings, 1968; Kushner & Kleinman, 1968; 1971; Reetz, 1973;
Porteus, 1975; Rakhsha et al., 2022), though with a different splitting than this work.

After a review of relevant background in Section 2, we present DDVI and prove its convergence rate for
the Policy Evaluation (PE) problem in Section 3. Next, in Section 4, we discuss the practical computation
of the deflation matrix. In Section 5, we explain how DDVI can be extended to its sample-based variant
and introduce the Deflated Dynamics Temporal Difference (DDTD) algorithm. Finally, in Section 6, we
empirically evaluate the proposed methods and show their practical feasibility.

2 Background

We first briefly review basic definitions and concepts of Markov Decision Processes (MDP) and Reinforcement
Learning (RL) (Bertsekas & Tsitsiklis, 1996; Sutton & Barto, 2018; Szepesvári, 2010; Meyn, 2022). We then
describe the Power Iteration and QR Iterations, which can be used to compute the eigenvalues of a matrix.

For a generic set Ω, we denote M(Ω) as the space of probability distributions over set Ω. We use F(Ω) to
denote the space of bounded measurable real-valued functions over Ω. For a matrix A, we use spec(A) to
denote its spectrum (the set of eigenvalues), ρ(A) to denote its spectral radius (the maximum of the absolute
value of eigenvalues), and ∥ · ∥ to denote its l∞ norm.

Markov Decision Process. The discounted MDP is defined by the tuple (X ,A,P,R, γ), where X is the
state space, A is the action space, P : X ×A →M(X ) is the transition probability kernel, R : X ×A →M(R)
is the reward kernel, and γ ∈ [0, 1) is the discount factor. In this work, we assume that the MDP has a finite
number of states. We use r : X ×A → R to denote the expected reward at a given state-action pair. Denote
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π : X →M(A) for a policy. We define the reward function for a policy π as rπ(x) = Ea∼π(·|x) [r(x, a)]. The
transition kernel of following policy π is denoted by Pπ : X →M(X ) and is defined as

Pπ(x→ x′) = Prob(x→ x′ | a ∼ π(· | x), x′ ∼ P(· | x, a)).

The value function for a policy π is V π(x) = Eπ[
∑∞

t=0 γ
tr(Xk, at) | x0 = x] where Eπ denotes the expected

value over all trajectories (x0, a0, x1, a1, . . . ) induced by P and π. We say that V ⋆ is optimal value functions
if V ⋆ = supπ V

π. We say π⋆ is optimal policies if π⋆ = arg maxπ V
π.

The Bellman operator Tπ for policy π is defined as the mapping that takes V ∈ F(X ) and returns a new
function such that its value at state x is (TπV )(x) = Ea∼π(·|x),x′∼P(·|x,a) [r(x, a) + γV (x′)]. The Bellman
optimality operator T ⋆ is defined as T ⋆V (x) = supa∈A

{
r(x, a) + γEx′∼P(· | x,a) [V (x′)]

}
. The value functions

V π and V ⋆ are the fixed points of the Bellman operators, that is, V π = TπV π and V ⋆ = TπV ⋆.

Value Iteration. The Value Iteration algorithm is one of the main methods in dynamic programming
and planning for computing the value function V π of a policy, the Policy Evaluation (PE) problem, or the
optimal value function V ⋆, for the Control problem. It is iteratively defined as

V k+1 ←

{
TπV k (Policy Evaluation)
T ⋆V k (Control),

where V 0 is the initial function. For discounted MDPs where γ < 1, the Bellman operators are contractions,
so by the Banach fixed-point theorem (Banach, 1922; Hunter & Nachtergaele, 2001; Hillen, 2023), the VI
converges to the unique fixed points, which are V π or V ⋆, with the convergence rate of O(γk).

Let us now recall some concepts and methods from (numerical) linear algebra, see Golub & Van Loan (2013)
for more detail. For any A ∈ Rn×n (not necessarily symmetric nor diagonalizable) and for any matrix norm
∥ · ∥, Gelfand’s formula states that ρ(A) = limk→∞ ∥Ak∥1/k. Hence, ∥Ak∥ = O((ρ(A) + ϵ)k) for any ϵ > 0,
which we denote by ∥Ak∥ = Õ((ρ(A))k). Furthermore, if A is diagonalizable, then ∥Ak∥ = O(ρ(A)k).

Power Iteration. Powers of A can be used to compute eigenvalues of A. The Power Iteration starts with
an initial vector b0 ∈ Rn and for k = 0, 1, 2, . . . computes

bk+1 = Abk

∥Abk∥2
.

If λ1 is the eigenvalue such that |λ1| = ρ(A) and the other eigenvalues λ2, . . . , λn have strictly smaller
magnitude, then (bk)⊤Abk → λ1 for almost all starting points b0 (Section 7.3.1 of Golub & Van Loan (2013)).

QR iteration. The QR Iteration (or Orthogonal Iteration) algorithm (Golub & Van Loan, 2013, Sections
7.3 and 8.2) is a generalization of the Power Iteration that finds eigenvalues. For any A ∈ Cn×n, let U0 ∈ Cn×s

have orthonormal columns and perform

Zk+1 = AUk

Uk+1Rk+1 = Zk+1 (QR factorization)

for k = 0, 1, . . . . If |λs| > |λs+1|, the columns of Uk converge to an orthonormal basis for the dominant
s-dimensional invariant subspace associated with the eigenvalues λ1, . . . , λs and diagonal entries of (Us)⊤AUs

converge to λ1, . . . , λs for almost all starting U0 (Golub & Van Loan, 2013, Theorem 7.3.1). Each QR
iteration needs O(n2s) flops for matrix multiplication as the dominant and O(ns2) flops for QR factorization.

3 Deflated Dynamics Value Iteration

We present Deflated Dynamics Value Iteration (DDVI), after introducing its two key ingredients, matrix
deflation and matrix splitting.
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3.1 Matrix Deflation

Let Pπ be an n× n matrix with eigenvalues λ1, . . . , λn, sorted in decreasing order of magnitude with ties
broken arbitrarily. Let u⊤ denote the conjugate transpose of u ∈ Cn. We describe three ways of deflating
this matrix.
Fact 1 (Hotelling’s deflation, (Meirovitch, 1980, Section 5.6)). Assume s ≤ n linearly independent eigenvectors
corresponding to {λi}s

i=1 exist. Write {ui}s
i=1 and {vi}s

i=1 to denote the top s right and left eigenvectors
scaled to satisfy u⊤

i vi = 1 and u⊤
i vj = 0 for all 1 ≤ i ̸= j ≤ s. If Es =

∑s
i=1 λiuiv

⊤
i , then ρ(Pπ−Es) = |λs+1|.

Hotelling deflation makes ρ(Pπ − Es) small by eliminating the top s eigenvalues of Pπ, but requires both
right and left eigenvectors of Pπ. Wielandt’s deflation, in contrast, requires only right eigenvectors.
Fact 2 (Wielandt’s deflation, (Soto & Rojo, 2006, Theorem 5)). Assume s ≤ n linearly independent
eigenvectors corresponding to {λi}s

i=1 exist. Write {ui}s
i=1 to denote the top s linearly independent right

eigenvectors. Assume that vectors {vi}s
i=1, which are not necessarily the left eigenvectors, satisfy u⊤

i vi = 1
and u⊤

i vj = 0 for all 1 ≤ i ̸= j ≤ s. If Es =
∑s

i=1 λiuiv
⊤
i , then ρ(Pπ − Es) = |λs+1|.

Wielandt’s deflation, however, still requires right eigenvectors, which are sometimes numerically unstable to
compute. The Schur deflation, in contrast, only requires Schur vectors, which are stable to compute (Golub
& Van Loan, 2013, Sections 7.3). For any Pπ ∈ Rn×n, the Schur decomposition has the form Pπ = URU⊤,
where R is an upper triangular matrix with Rii = λi for i = 1, . . . , n, and U is a unitary matrix. We write ui

to denote the i-th column of U and call it the i-th Schur vector for i = 1, . . . , n. Specifically, the QR iteration
computes the top s eigenvalues and Schur vectors.
Fact 3 (Schur deflation, (Saad, 2011, Proposition 4.2)). Let s ≤ n. Write {ui}s

i=1 to denote the top s Schur
vectors. If Es =

∑s
i=1 λiuiu

⊤
i , then ρ(Pπ − Es) = |λs+1|.

If an Es satisfies the conditions of Facts 1, 2, or 3, we say it is a rank-s deflation matrix. Later, it will be
needed that for Es =

∑s
i=1 λiuiv

⊤
i ,

(I − αγEs)−1 = I +
s∑

i=1

αγλi

1− αγλi
uiv

⊤
i (1)

holds. Indeed, the conditions of Facts 1, 2, or 3 do imply equation 1.

3.2 Matrix Splitting: SOR

Consider the splitting of a matrix A ∈ Rn×n in the form of A = B + C +D. Let α ̸= 0. Then, z solves the
linear system Az = b if and only if

(D + αB)z = αb− (αC − (α− 1)D)z,

which, in turn, holds if and only if

z = (D + αB)−1(αb− (αC − (α− 1)D)z),

provided that D+ αB is invertible. Successive over-relaxation (SOR) attempts to find a solution through the
fixed-point iteration

zk+1 = (D + αB)−1(αb− (αC − (α− 1)D)zk).

Note that classical SOR uses a lower triangular B, upper triangular C, and diagonal D. Here, we generalize
the standard derivation of SOR to any splitting A = B + C +D.

Policy evaluation is the problem of finding a unique V π that satisfies the Bellman equation V π = TπV π, or
in an expanded form, V π = rπ + γPπV π. Notice that this is equivalent to

(I − γE − γ(Pπ − E))V π = rπ
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for any E ∈ Rn×n. The SOR iteration for PE is

V k+1 = (I − αγE)−1(αrπ + ((1− α)I + αγ(Pπ − E))V k).

As an example, notice that for α = 1 and E = 0, we recover the original VI. The convergence behaviour
of this procedure depends on the choice of α and E. Soon we propose particular choices that can lead to
acceleration.

3.3 Deflated Dynamics Value Iteration

We are now ready to introduce DDVI. Let Es =
∑s

i=1 λiuiv
⊤
i be a rank-s deflation matrix of Pπ satisfying

the conditions of Facts 1, 2, or 3. Using equation 1, we can express the SOR iteration for PE with deflation
matrix Es as

W k+1 = (1− α)V k + αrπ + αγ

(
Pπ −

s∑
i=1

λiuiv
⊤
i

)
V k

V k+1 =
(
I +

s∑
i=1

αγλi

1− αγλi
uiv

⊤
i

)
W k+1. (2)

We call this method Deflated Dynamics Value Iteration (DDVI). Theorem 3.1 and Corollary 3.2 describe the
rate of convergence of DDVI for PE.
Theorem 3.1. Let π be a policy and let λ1, . . . , λn be the eigenvalues of Pπ sorted in decreasing order of
magnitude with ties broken arbitrarily. Let s ≤ n. Let Es =

∑s
i=1 λiuiv

⊤
i be a rank-s deflation matrix of Pπ

satisfying the conditions of Facts 1, 2, or 3. For 0 < α ≤ 1, DDVI equation 2 exhibits the rate1

∥V k − V π∥ = Õ(|λ|k∥V 0 − V π∥)

as k →∞, where
λ = max

1≤i≤s,s+1≤j≤n

{ ∣∣∣∣ 1− α
1− αγλi

∣∣∣∣ , |1− α+ αγλj |
}
.

When α = 1, we can simplify DDVI equation 2 as follows.
Corollary 3.2. In the setting of Theorem 3.1, if α = 1, then DDVI equation 2 simplifies to

W k+1 = γ(Pπ − Es)V k + rπ, V k+1 =
(
I +

s∑
i=1

γλi

1− γλi
uiv

⊤
i

)
W k+1

and the the rate reduces to ∥V k − V π∥ = Õ(|γλs+1|k∥V 0 − V π∥) as k →∞.

Let us compare this convergence rate with the original VI’s. The rate for VI is O(γk), which is slow when
γ ≈ 1. By choosing Es to deflate the top s eigenvalues of Pπ, DDVI has the rate of O(|γλs+1|k) behaviour,
which is exponentially faster whenever λs+1 is smaller than 1. The exact behaviour depends on the spectrum
of the Markov chain (whether eigenvalues are close to 1 or far from them) and the number of eigenvalues we
decided to deflate by Es.

In Section 4, we discuss a practical implementation of DDVI based on the power iteration and QR iteration
and implement it in the experiments of Section 6. We find that smaller values of α lead to more stable
iterations when using approximate deflation matrices. We also show how we can use DDVI in the RL setting
in Section 5.

This version of DDVI equation 2 applies to the policy evaluation (PE) setup. The challenge in extending
DDVI to the Control setup is that Pπ changes throughout the iterations, and so should the deflation matrix
Es. However, when s = 1, the deflation matrix E1 can be kept constant, and we utilize this fact in Section 4.1.

1The precise meaning of the Õ notation is ∥V k − V π∥ = O(|λ + ϵ|k∥V 0 − V π∥) as k → ∞ for any ϵ > 0.
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4 Computing Deflation Matrix E

The application of DDVI requires practical means of computing the deflation matrix Es. In this section, we
provide three approaches as examples.

4.1 Rank-1 DDVI for PE and Control

Recall that for any stochastic n×n matrix, the vector 1 = [1, . . . , 1]⊤ ∈ Rn is a right eigenvector corresponding
to eigenvalue 1. This allows us to easily obtain a rank-1 deflation matrix E1 for Pπ for any policy π.

Let E1 = 1v⊤ with v ∈ Rn be a vector with non-negative entries satisfying v⊤1 = 1. This rank-1 Wielandt’s
deflation matrix can be used for DDVI (PE) as in Section 2, but we can also use it for the Control version of
DDVI.

We define the rank-1 DDVI for Control as

W k+1 = max
π
{rπ + γ(Pπ − E1)W k} = max

π
{rπ + γPπW k} − γ(v⊤W k)1. (3)

Here, we benefitted from the fact that E1 is not a function of π in order to take it out of the maxπ. Compare
with equation 2 of DDVI (PE), we set α = 1 for simplicity. We have the following guarantee for rank-1 DDVI
for Control.

Theorem 4.1. The DDVI for Control algorithm equation 3 exhibits the rate ∥V k − V ⋆∥ ≤ 2
1−γ γ

k∥V 0 − V ⋆∥,
for k = 0, 1, . . . where V k = (I + γ

1−γ 1v⊤)W k. Furthermore, if there exist a unique optimal policy π⋆, then
∥V k − V ⋆∥ = Õ(|γλ2|k∥V 0 − V ⋆∥) as k →∞, where λ2 is the second eigenvalue of Pπ⋆ (The Õ notation is
as defined in Theorem 3.1).

Discussion. Although rank-1 DDVI for Control does accelerate the convergence V k → V ⋆, a subtle point
to note is that the greedy policy πk obtained from V k is not affected by the rank-1 deflation. Briefly speaking,
this is because adding a uniform constant to V k through 1 has no effect on the arg max. Indeed, the maximizer
πk+1 in equation 3 is the same as arg maxπ{rπ + γPπV k}, produced by the (non-deflated) value iteration,
when W 0 = V 0. Having the term v⊤1W k in the update W k+1 = rπ + γ(Pπk+1 − v⊤1)W k adds the same
constant to all states, so it does not change the maximizer of the next policy.

4.2 DDVI with Automatic Power Iteration

Assume that the top s+ 1 eigenvalues of Pπ have distinct magnitude, i.e., 1 = λ1 > |λ2| > · · · > |λs+1|. Let
Es =

∑s
i=1 λiuiv

⊤
i be a rank-s deflation matrix of Pπ as in Fact 2.

Consider the DDVI algorithm equation 2 with α = 1 as in Corollary 3.2. If V 0 = 0, since (Pπ − Es) (I −
γEs)−1 = Pπ − Es (verified in Appendix B), we have W k =

∑k−1
i=0 γ

i (Pπ − Es)i
rπ. Therefore, 1

γk (W k+1 −
W k) = (Pπ − Es)k

rπ is the iterates of a power iteration for the matrix (Pπ −Es) starting from initial vector
rπ. As discussed in Fact 2, the top eigenvalue of (Pπ − Es) is λs+1. For large k, we expect W k+1−W k

∥W k+1−W k∥ ≈ w,
where w is the top eigenvector of (Pπ −Es). With w, we can recover the (s+ 1)-th right eigenvector of Pπ

through the formula ((Bru et al., 2012, Proposition 5)) us+1 = w −
∑s

i=1
λiv⊤

i w
λi−λs+1

ui.

Leveraging this observation, DDVI with Automatic Power Iteration (AutoPI) computes an approximate
rank-s deflation matrix Es while performing DDVI: Start with a rank-1 deflation matrix, using the first right
eigenvector u1 = 1, and carry out DDVI iterations. If a certain error criteria is satisfied, use W k+1 −W k to
approximate the second right eigenvector u2. Then, update the deflation matrix to be rank 2, and gradually
increase the deflation rank. We formalize this approach in Algorithm 4.
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Algorithm 1 DDVI with AutoPI
1: Initialize C = 10, ϵ = 10−4

2: function DDVI((s, V,K, {λi}s
i=1, {ui}s

i=1))
3: V 0 = V , c = 0, Es =

∑s
i=1 λiuiv

⊤
i as in Fact 2

4: for k = 0, . . . ,K − 1 do
5: if c ≥ C and

∣∣∣ wk+1

∥wk+1∥2
− wk

∥wk∥2

∣∣∣ < ϵ then

6: λs+1 = (wk)⊤wk+1/
(
γ∥wk∥2

2
)
, us+1 = wk+1 −

∑s
i=1

λiv⊤
i wk+1

λi−λs+1
ui

7: Return DDVI(s+1, V k,K−c, {λi}s+1
i=1,{ui}s+1

i=1)
8: else
9: W k+1 = γ(Pπ − Es)V k + rπ, V k+1 = (I − γEs)−1W k+1

10: wk+1 = W k+1 −W k, wk = W k −W k−1

11: c = c+ 1
12: Return V K

13: Initialize V 0 and u1 = 1, λ1 = 1
14: DDVI(1, V 0,K, λ1, u1)

4.3 Rank-s DDVI with the QR Iteration.

Recall that the QR iteration approximates top s Schur vectors. Algorithm 2 uses the QR Iteration to construct
the rank-s Schur deflation matrix and performs DDVI. Compared to the standard VI, rank-s DDVI requires
additional computation for the QR iteration.

Algorithm 2 Rank-s DDVI with QR Iteration
Initialize α, s, and V 0

{λi}s
i=1, {us}s

i=1 = QRiteration(Pπ, s)
for k = 0, . . . ,K − 1 do

W k+1 = αγ(Pπ −
∑s

i=1 λiuiu
⊤
i )V k + (1− α)V k + αrπ

V k+1 =
(
I +

∑s
i=1

αγλi

1−αγλi
uiu

⊤
i

)
W k+1

The QR iteration of Algorithm 2 can be carried out in an automated manner similar to AutoPI. We refer to
this as AutoQR and formally describe the algorithm in Appendix C.

5 Deflated Dynamics Temporal Difference Learning

Many practical RL algorithms such as Temporal Difference (TD) Learning (Sutton, 1988; Tsitsiklis & V. Roy,
1997), Q-Learning (Watkins, 1989), Fitted Value Iteration (Gordon, 1995), and DQN (Mnih et al., 2015) can
be viewed as sample-based variants of VI. Consequently, the slow convergence in the case of γ ≈ 1 has also
been observed for these algorithms by Szepesvári (1997); Even-Dar & Mansour (2003); Wainwright (2019)
for TD Learning and by Munos & Szepesvári (2008); Farahmand et al. (2010); Chen & Jiang (2019); Fan
et al. (2020) for Fitted VI and DQN. Here we introduce Deflated Dynamics Temporal Difference Learning
(DDTD) as a sample-based variant of DDVI. To start, recall that the tabular temporal difference (TD)
learning performs the updates

V k+1(Xk) = V k(Xk) + ηk[rπ(Xk) + γV k(X ′
k)− V k(Xk)],

where ηk is stepsize, (Xk, X
′
k) are random samples from the environment such that X ′

k is the subsequent
state following Xk, and rπ(Xk) is the expected 1-step reward obtained by following policy π from state Xk.
TD is a sample-based variant of VI for PE. Two key ingredients of TD learning are the random coordinate
updates and the temporal difference error rπ(X) + γV (X ′)− V (X) whose conditional expectation is equal to
(TπV − V )(X). Applying the same ingredients to DDVI, we obtain DDTD. The improved convergence rate
for DDVI compared to VI suggests that DDTD will also exhibit improved convergence rates.
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Specifically, we define DDTD as

W k+1(Xk) = W k(Xk) + ηk

[
(1− α)V k(Xk) + α

(
rπ(Xk) + γV (X ′

k)− γ(EsV
k)(Xk)

)
−W k(Xk)

]
V k+1 =

(
I +

s∑
i=1

αγλi

1− αγλi
uiv

⊤
i

)
W k+1, (4)

where Es =
∑s

i=1 λiuiv
⊤
i is a rank-s deflation matrix of Pπ and {Xk, X

′
k}k=0,1,... are i.i.d. random variables

such that X ′
k ∼ Pπ(· |Xk) and Xk ∼ Unif(X ). The W k+1-update notation means W k+1(x) = W k(x) for all

x ̸= Xk.

DDTD is the sample-based variant of DDVI performing asynchronous updates. The following result provides
almost sure convergence of DDTD.

Theorem 5.1. Let ηk = (
∑k

i=0 1Xi=x)−1 when Xk = x. For α = 1, DDTD equation 4 converges to V π

almost surely.

The following result describes the asymptotic convergence rate of DDTD.

Theorem 5.2. Let λ1, . . . , λn be the eigenvalues of Pπ sorted in decreasing order of magnitude with ties
broken arbitrarily. Let ηk = C/(k + 1) for C > n

2λDDTD
where λDDTD = minλ∈{λs+1,...,λn} Re(1 − γλ). For

α = 1, DDTD equation 4 exhibits the rate E[∥V k − V π∥2] = O(k−1).

We note that in Theorem 5.2, as the rank of DDTD increases, λDDTD also increases, and this implies that
higher rank DDTD has a larger range of convergent step size compared to the plain TD learning.

5.1 Implementation of DDTD

To implement DDTD practically, we take a hybrid of model-free and model-based approach for obtaining Es.
At each iteration, the agent uses the new samples to update an approximate model P̂π of the true dynamics.
This updated approximate model is used to compute Es. We update Es every K-th iterations since the
change in P̂π and consequently the resulting Es at each iteration is small. Whenever a new Es is computed,
we set W to be (I−αγEs)V . This step ensures that V smoothly converges to V π by updating all coordinates
of W at once based on new Es. Also, we use the random sample reward R in place of the expected reward
rπ(Xk). We formally state the algorithm as Algorithm 3.

Algorithm 3 Rank-s DDTD with QR iteration
1: Initialize α, s, W , V , Es, P̂π, and K
2: for k = 1, 2, . . . do
3: Choose Xk uniformly at random.
4: Sample (π(Xk), Rk, X

′
k) from environment

5: Update P̂ with (Xk, π(Xk), Rk, X
′
k)

6: if k mod K = 0 then
7: {λi}s

i=1, {us}s
i=1 = QRiteration(P̂π, s)

8: Update Es ←
∑
λiuiu

⊤
i

9: W ← (I − αγEs)V
10: W (Xk)←W (Xk) + ηk

[
αRk + αγV (X ′

k)− αγ(EsV )(Xk) + (1− α)V (Xk)−W (Xk)
]

11: V ←
(
I +

∑s
i=1

αγλi

1−αγλi
uiu

⊤
i

)
W

We note that DDTD simultaneously uses samples to learn the model and to update the value function,
making the DDTD framework more effective than model-free learning and more computationally efficient
than a purely model-based approach.
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Figure 1: Comparison of DDVI with different ranks, AutoPI, and AutoQR against VI in (left) Chain Walk
and (right) Maze. Rate of DDVI with AutoPI and AutoQR changes when Es is updated.
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Figure 2: Comparison of DDVI with other accelerated VIs. Normalized errors are shown against the iteration
number (top-left) and wall clock time (top-right). Runtimes to reach normalized error of 10−4 is shown
against the number of states (bottom-left) and horizon 1/(1 − γ) (bottom-right). Plots are average of 20
randomly generated Garnet MDPs with shaded areas showing the standard error.

6 Experiments

For our experiments, we use the following environments: Maze with 5× 5 states and 4 actions, Cliffwalk with
3× 7 states with 4 actions, Chain Walk with 50 states with 2 actions, and random Garnet MDPs (Bhatnagar
et al., 2009) with 200 states. The discount factor is set to γ = 0.99 for DDTD experiments and γ = 0.995
in other experiments. Appendix D provides full definitions of the environments and policies we used. All

9
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Figure 3: Comparison of DDTD with QR iteration, Dyna, and TD learning in (left) Chain Walk (right) Maze.

experiments were carried out on local CPUs. For comparisons, we use the normalized error of V k defined as
∥V k − V π∥1/∥V π∥1.

DDVI with AutoPI, AutoQR, different fixed ranks. In Figure 1, we compare rank-s DDVI for
multiple values of s and DDVI with AutoPI and AutoQR against the VI in Chain Walk and Maze. QR
iteration (Section 2) is used to calculate Es with Schur vectors. In almost all cases, DDVI exhibits a
significantly faster convergence rate compared to VI. Aligned with the theory, we observe that higher ranks
achieve better convergence rates. Also, as DDVI with AutoPI and AutoQR progress and update Es, their
convergence rate improves.

DDVI and other baselines. We perform an extensive comparison of DDVI against the prior accelerated
VI methods: Safe Accelerated VI (S-AVI)(Goyal & Grand-Clément, 2022), Anderson VI (Geist & Scherrer,
2018), PID VI (Farahmand & Ghavamzadeh, 2021), and Anchored VI (Lee & Ryu, 2023). In this experiment,
we use the Implicitly Restarted Arnoldi Method (Lehoucq et al., 1998) from SciPy package to calculate the
eigenvalues and eigenvectors for DDVI. Figure 2 (top-left) shows the convergence behaviour of the algorithms
by iteration count in 20 randomly generated Garnet environments, where our algorithms outperform all the
baselines. This comparison might not be fair as the amount of computation needed for each iteration of
algorithms is not the same. Therefore, in Figure 2 (top-right), we compare the algorithms by wall clock time.
It can be seen that rank-2 DDVI initially has to spend time to calculate Es before it starts to update the
value function, but after the slow start, it has the fastest rate. The fast rate can compensate for the initial
time if a high accuracy is needed. DDVI with AutoQR and rank-1 DDVI show a fast convergence from the
beginning.

We further investigate how the algorithms scale with the size of MDP and the discount factor. Figure 2
(bottom-left) shows the runtime to reach a normalized error of 10−4 against the number of states. DDVI
with AutoQR and rank-1 DDVI show the best scaling. Note that even rank-2 calculates a non-trivial Es also
scales competitively. Figure 2 (bottom-right) show the scaling behaviour with horizon of the MDP, which is
1/(1− γ). We measure the runtime to reach a normalized error of 10−4 for the horizon ranging from 100 to
1000 which corresponds to γ ranging from 0.99 to 0.999. Remarkably, DDVI algorithms have a low constant
runtime even with long horizon tasks with γ ≈ 1. This is aligned with our theoretical result, as the rate
γ|λs+1| remains small as γ approaches 1.

Rank-s DDTD with QR iteration. We compare DDTD with TD Learning and Dyna (Sutton, 1990;
Peng & Williams, 1993) which simultaneously use samples to learn the model and to update the value
function. For the sake of making the setting more realistic, we consider the case where the approximate
model P̂ cannot exactly learn the true dynamics. Figure 3 shows that DDTD with large enough rank, can
outperform TD. Note that unlike Dyna, DDTD does not suffer from model error, which shows that DDTD
only uses the model for acceleration and is not a pure model-based algorithm.

10
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7 Conclusion

In this work, we propose a framework for accelerating VI through matrix deflation. We theoretically analyzed
our proposed methods DDVI and DDTD, and presented experimental results showing speedups in various
setups.

The positive experimental results demonstrate matrix deflation to be a promising technique that may be
applicable to a broader range of RL algorithms. One direction of future work is to extend the theoretical
analysis DDVI for Control using a general rank-s deflation matrix. Theoretically analyzing other RL methods
combined with matrix deflation is another interesting direction.
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Matrix deflation. Deflation techniques were first developed for eigenvalue computation (Meirovitch, 1980;
Saad, 2011; Golub & Van Loan, 2013). Matrix deflation, eliminating top eigenvalues of a given matrix with
leaving the rest of the eigenvalues untouched, has been applied to various algorithms such as conjugate
gradient algorithm (Saad et al., 2000), principal component analysis (Mackey, 2008), generalized minimal
residual method (Morgan, 1995), and nonlinear fixed point iteration (Shroff & Keller, 1993) for improvement
of convergence.

Some prior work in RL has explored subtracting constants from the iterates of VI, resulting in methods that
resemble our rank-1 DDVI. For discounted MDP, Devraj & Meyn (2021) propose relative Q-learning, which
can roughly be seen as the Q-learning version of rank-1 DDVI for Control, and Bertsekas (1995) proposes an
extrapolation method for VI, which can be seen as rank-1 DDVI with shur deflation matrix for PE. White
(1963) introduced relative value iteration in the context of undiscounted MDP with average reward, and
several variants were proposed (Gupta et al., 2015; Sharma et al., 2020).

Matrix splitting of value iteration. Matrix splitting has been studied in the RL literature to obtain an
acceleration. Hastings (1968) and Kushner & Kleinman (1968) first suggested Gausss-Seidel iteration for
computing value function. Kushner & Kleinman (1971) and Reetz (1973) applied Successive Over-Relaxation
to VI and generalized Jacobi and Gauss-Seidel iteration. Porteus (1975) proposed several transformations of
MDP that can be seen as a Gauss–Seidel variant of VI. Rakhsha et al. (2022) used matrix splitting with the
approximate dynamics of the environment and extended to nonlinear operator splitting. Bacon & Precup
(2016); Bacon (2018) analyzed planning with options through the matrix splitting perspective.

Convergence analysis of TD learning Jaakkola et al. (1993) first proved the convergence of TD learning
using the stochastic approximation (SA) technique. Borkar & Meyn (2000); Borkar (1998) suggested ODE-
based framework to provide asymptotic convergence of SA including TD learning with an asynchronous
update. Lakshminarayanan & Szepesvari (2018) study linear SA under i.i.d noise with respect to mean square
error and Chen et al. (2020) study asymptotic convergence rate of linear SA under Markovian noise. Finite
time analysis of TD learning first provided by Dalal et al. (2018) and extended to Markovian noise setting by
Bhandari et al. (2018). Leveraging Lyapunov theory, Chen et al. (2023) establishes finite time analysis of
Markovian SA with an explicit bound.

B Proof of Theoretical Results

B.1 Proof of Theorem 3.1

By definition of DDVI equation 2 and fixed point V π, we have

V k − V π

= (I − αγEs)−1((1− α)I + αγ(Pπ − Es))(V k−1 − V π)
= (I − αγEs)−1((1− α)(I − αγEs)−1 + αγ(Pπ − Es)(I − αγEs)−1)((1− α)I + αγ(Pπ − Es))(V k−2 − V π)
= (I − αγEs)−1((1− α)(I − αγEs)−1 + αγ(Pπ − Es)(I − αγEs)−1)k−1((1− α)I + αγ(Pπ − Es))(V 0 − V π),

where Es is a rank-s deflation matrix of Pπ satisfying the conditions of Facts 1, 2, or 3. This implies that

∥V k − V π∥ ≤ C
∥∥((1− α)(I − αγE)−1 + αγ(Pπ − E)(I − αγE)−1)k−1∥∥ ∥V 0 − V π∥

for some constant C ∈ R.

First, suppose Es satisfies Facts 1 or 2. Let Us = [u1, . . . , us] and Vs = [v1, . . . , vs]. Define Ds,f(λi) =
diag(f(λ1), . . . , f(λs)) for some function f . Then Us, Vs, Ds,f(λi) are n × s matrices and Es = UsDs,λiV

⊤
s .

By Jordan decomposition, Pπ = UJU−1 where J is Jordan matrix with Jii = λi for i = 1, . . . , n. Let
Js be s × s submatrix of J satisfying (Js)ij = Jij for 1 ≤ i, j ≤ s. Then, by condition of Theorem 3.1,
Js = diag(λ1, . . . , λs) = Ds,λi

and i-th column of U is ui for 1 ≤ i ≤ s. By simple calculation, we get
PπUs = UsJs = UsDs,λi

and (I − αγEs)−1 = I + UsDs,
γαλi

1−γαλi

V ⊤
s .
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Since

(Pπ − UsDs,λi
V ⊤

s )(UsDs,
γαλi

1−γαλi

V ⊤
s ) = UsDs,λi

D
s,

γαλi
1−γαλi

V ⊤
s − UsDs,λi

D
s,

γαλi
1−γαλi

V ⊤
s

= 0,

we get

(Pπ − Es)(I − αγEs)−1 = Pπ − Es.

Then,

(1− α)(I − αγEs)−1 + αγ(Pπ − Es)(I − αγEs)−1

= (1− α)
(
I + UsDs,

γαλi
1−γαλi

V ⊤
s

)
+ αγ

(
UJU−1 − UsDs,λi

V ⊤
s

)
= (1− α)I + αγUJU−1 + UsD

s,
(λiγ−1)γα2λi

1−γαλi

V ⊤
s

= U

(
(1− α)I + αγJ + e1:sD

s,
(λiγ−1)γα2λi

1−γαλi

V ⊤
s U

)
U−1,

where ei ∈ Rn is i-th unit vector and e1:s = [e1, . . . , es], and (1 − α)I + αγJ + e1:sD
s,

(λiγ−1)γα2λi
1−γαλi

V ⊤
s U is

upper traingular matrix with diagonal entries (1−α)
1−αγλ1

, . . . , (1−α)
1−αγλs

, (1− α) + αγλs+1, . . . , (1− α) + αγλn.

Now suppose Es =
∑s

i=1 λiuiu
⊤
i satisfies Fact 3. Similarly, let Us = [u1, . . . , us]. Then, Es = UsDs,λiU

⊤
s .

By Schur decomposition, Pπ = URU⊤ where R is an upper triangular matrix with Rii = λi for i = 1, . . . , n,
and U is a unitary matrix. By simple calculation, we have PπUs = UsRs where Rs is s× s submatrix of R
such that (Rs)ij = Rij for 1 ≤ i, j ≤ s and (I − αγEs)−1 = I + UsDs,

γαλi
1−γαλi

U⊤
s .

Since

(Pπ − UsDs,λiU
⊤
s )(UsDs,

γαλi
1−γαλi

U⊤
s ) = UsRsDs,

γαλi
1−γαλi

U⊤
s − UsDs,λiDs,

γαλi
1−γαλi

U⊤
s

= Us(Rs −Ds,λi)Ds,
γαλi

1−γαλi

U⊤
s ,

we get

(Pπ − Es)(I − αγEs)−1 = (Pπ − UsDs,λi
U⊤

s )(I + UsDs,
γαλi

1−γαλi

U⊤
s )

= (Pπ − UsDs,λi
U⊤

s ) + Us(Rs −Ds,λi
)D

s,
γαλi

1−γαλi

U⊤
s .

Then,

(1− α)(I − αγEs)−1 + αγ(Pπ − Es)(I − αγEs)−1

= (1− α)I + (1− α)UsDs,
γαλi

1−γαλi

U⊤
s + αγURU⊤ − αγUsDs,λiU

⊤
s + αγUs(Rs −Ds,λi)Ds,

γαλi
1−γαλi

U⊤
s

= (1− α)I + αγURU⊤ + Us

(
D

s,
(1−α)γαλi

1−γαλi

−Ds,αγλi
+ αγ(Rs −Ds,λi

)D
s,

γαλi
1−γαλi

)
U⊤

s

= (1− α)I + αγURU⊤ + Us

(
D (λiγ−1)γα2λi

1−γαλi

+ αγ(Rs −Dλi
)D γαλi

1−γαλi

)
U⊤

s

= (1− α)I + αγURU⊤ + UsR
s,

(λiγ−1)γα2λi
1−γαλi

U⊤
s

= U

(
(1− α)I + αγR+ e1:sR

s,
(λiγ−1)γα2λi

1−γαλi

e⊤
1:s

)
U⊤

where R
s,

(λiγ−1)γα2λi
1−γαλi

is s × s upper triangular matrix with digonal entries (λ1γ−1)γα2λ1
1−γαλ1

, . . . , (λsγ−1)γα2λs

1−γαλs
,

satisfyingR
s,

(λiγ−1)γα2λi
1−γαλi

= D
s,

(λiγ−1)γα2λi
1−γαλi

+αγ(Rs−Ds,λi
)D

s,
γαλi

1−γαλi

. By simple calculation, we know that (1−
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α)I+αγR+e1:sR (αλiγ−α)γαλi
1−γαλi

e⊤
1:s is n×n upper triangular matrix with digonal entries (1−α)

1−αγλ1
, . . . , (1−α)

1−αγλs
, (1−

α) + αγλs+1, . . . , (1− α) + αγλn.

Therefore, by spectral analysis, we conclude that

∥V k − V π∥ = Õ(|λ|k∥V 0 − V π∥)

as k →∞, where

λ = max
1≤i≤s,s+1≤j≤n

{ ∣∣∣∣ 1− α
1− αγλi

∣∣∣∣ , |1− α+ αγλj |
}
.

B.2 Proof of Collorary 3.2

Putting α = 1 in Theorem 3.1, we conclude Corollary 3.2.

B.3 Proof of Theorem 4.1

By definition of DDVI for Control equation 3,

V k − V ⋆ =
(
I + γ

1− γE1

)(
W k − (I − γE1)V ⋆

)
where E1 = 1v⊤. Let W ⋆ = (I − γE1)V ⋆. Note that

max
π
{rπ + γ(Pπ − E1)W ⋆} = max

π
{rπ + γ(Pπ − E1)V ⋆}

= max
π
{rπ + γPπV ⋆} − γE1V

⋆

= W ⋆.

Thus,

W k −W ⋆ = γ (Pπg − E1)W k−1 + rπg − γ
(
Pπ⋆

− E1

)
W ⋆ − rπ⋆

where πg = arg maxπ{rπ + γ(Pπ − E1)W k−1} and π⋆ is optimal policy. This implies that

W k −W ⋆ ≤ γ (Pπg − E1) (W k−1 −W ⋆),

W k −W ⋆ ≥ γ
(
Pπ⋆

− E1

)
(W k−1 −W ⋆),

and

γPπ⋆

(W k−1 −W ⋆) ≤W k −W ⋆ + γE1(W k−1 −W ⋆) ≤ γPπg (W k−1 −W ⋆).

Then, there exist 0 ≤ ti ≤ 1 such that

ti

(
γPπ⋆

(W k−1 −W ⋆)
)

i
+ (1− ti)

(
γPπg (W k−1 −W ⋆)

)
i

=
(
W k −W ⋆ + γE1(W k−1 −W ⋆)

)
i

for 1 ≤ i ≤ n. Define πk(a | i) = tiπ
⋆(a | i) + (1− ti)πg(a | i) for all a ∈ A and 1 ≤ i ≤ n. Then πk satisfies

W k −W ⋆ = γ (Pπk − E1) (W k−1 −W ⋆).

Thus, we get

W k −W ⋆ = γk
k∏

i=1
(Pπi − E1) (W 0 −W ⋆)

= γk
k∏

i=1
(Pπi − E1) (I − γE1)(V 0 − V ⋆)

= γk (Pπk − E1)
k−1∏
i=1
Pπi(V 0 − V ⋆),
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and this implies that

V k − V ⋆ = γk

(
I + γ

1− γE1

)
(Pπk − E1)

k−1∏
i=1
Pπi(V 0 − V ⋆)

= γk

(
Pπk + γ

1− γE1Pπk − 1
1− γ 1v⊤

) k−1∏
i=1
Pπi(V 0 − V ⋆).

Then, we have
∥V k − V ⋆∥ ≤ 2

1− γ γ
k∥V 0 − V ⋆∥

since E1Pπk is stochastic matrix with ∥E1Pπk∥ = 1.

Suppose there exist unique optimal policy π⋆. Then, if (non-deflated) VI generates V k for k = 0, 1, . . . , there
exist K such that arg maxπ T

πV k = π⋆ for k > K. Since DDVI for Control generates same policy with VI
for Control, DDVI for Control also generates greedy policy π⋆ for k > K iterations. Therefore, we get

∥V k − V ⋆∥ =

∥∥∥∥∥γk

(
I + γ

1− γ 1v⊤
)(
Pπ⋆

− E1

)k−K K∏
i=1

(Pπi − E1) (V 0 − V ⋆)

∥∥∥∥∥
= Cγk

∥∥∥∥(Pπ⋆

− E1

)k−K
∥∥∥∥ ∥V 0 − V ⋆∥

= Õ(|γλ2|k∥V 0 − V ⋆∥)

for k > K and some constant C ∈ R.

B.4 Proof of Theorem 5.1

Consider following stochastic approximation algorithm

Y k+1 = Y k + ηkf(Y k, ζk) (5)

for k = 0, 1, . . . , where Y k ∈ Rn, ηk ∈ R+, f(·, z) : Rn → Rn is uniformly Lipschitz, and {ζk}k=0,1,... are
i.i.d random variables. Let F (y) = E[f(y, ζk)], F∞(y) = limr→∞ F (ry)/r, Mk+1 = f(Y k, ζk)− F (Y t), and
Fk = σ(Y i,M i, 1 ≤ i ≤ t). Then following proposition holds.
Proposition B.1. (Borkar & Meyn, 2000, Theorem 2.2 and 2.5) If (i) ηk = (k+1)−1, (ii) {Mk,Fk}k=0,1,...,

are martingale difference sequence , (iii) E[Mk+1 | Fk] ≤ K(1 + ∥Y k∥2) for some constant K, (iv)
ẏ(t) = F∞(y(t)) has asymptotically stable equilibrium origin, and (v) ẏ(t) = F (y(t)) has a unique glob-
ally asymtotically stable equilibrium y⋆, then {Y t}k=0,1,... of equation 5 converges to y⋆ almost surely, and
furthermore, {Y t}k=0,1,... of

Y k+1(ik) = Y k(ik) + ηνik,tf(Y k, ζk)(ik) (6)

for k = 0, 1, . . . where ik is random variable taking a value in {1, 2, · · · , n}, νi,t =
∑k

k=0 1{i=ik} satisfying
lim inf νi,t/t > c for some constant c > 0, also converge to y⋆ almost surely.

In equation 6, Y k(ik) and f(Y k, ζk)(ik) are i-th coordinate of Y k and f(Y k, ζk), respectively. equation 6 can
be interpreted as asynchronous version of equation 5, and we note that Proposition B.1 is a simplified version
with stronger conditions of Theorem 2.2 and 2.5 of Borkar & Meyn (2000).

Recall that DDTD equation 4 with α = 1 is

W k+1(Xk) = W k(Xk) + ηνi,t

[
rπ(Xk) + γV k(X ′

k)− γ(EsV
k)(Xk)−W k(Xk)

]
V k+1 = (I − γEs)−1

W k+1. (7)
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We will first show that W k → (I − γEs)V π and this directly implies that V k → V π. For applying
Proposition B.1, consider

W k+1 = W k + ηkf(W k, Zt)

where ηk = (k + 1)−1, Zt ∈ Rn such that Zt(x) ∼ Pπ(· |x) and {Zt}k=0,1,... are i.i.d random variables,
and f(W k, Zt)(x) = rπ(x) + γ((I − γEs)−1

W k)(Zt(x))− γEs (I − γEs)−1
W k(x)−W k(x). Then, F (W ) =

E[f(W,Zt)] = [γ(Pπ − Es)(I − γEs)−1 − I]W + rπ, Mk+1 = f(W k, Zt)− F (W k), and Fk = σ(W i,M i, 1 ≤
i ≤ t).

We now check the conditions. First, since f(W, z)(x) − f(W ′, z)(x) = (I − γEs)−1 (W −
W ′)(z(x)) − (I + γEs (I − γEs)−1)(W −W ′)(x) implies ∥f(W, z) − f(W ′, z)∥ ≤ (∥ (I − γEs)−1 ∥ + ∥(I +
γEs (I − γEs)−1)∥)∥W −W ′∥, f(·, z) is uniformly Lipschitz.

E[Mk+1(x) | Ft]
= E[γ((I − γEs)−1

W k)(Zt(x))− γ(Es (I − γEs)−1
W k)(x)− γ((Pπ − Es))(I − γEs)−1W k)(x) | Fk]

= γPπ (I − γEs)−1
W k)(x)− γPπ(I − γEs)−1W k(x)

= 0

for all x ∈ X . This implies that Mk+1 is martingale difference sequence. Also, E[∥Mk+1∥2 | Fk] ≤
(∥γ (I − γEs)−1 ∥ + ∥γPπ(I − γEs)−1∥)2∥W k∥2 ≤ K(1 + ∥W k∥2) for constant K = (∥γ (I − γEs)−1 ∥ +
∥γPπ(I − γEs)−1∥)2.

By definition, F∞(y) = limr→∞ F (ry)/r = γ(Pπ −Es))(I − γEs)−1 − I]y. In Section B.1, we showed that
spec(F∞ + I) = {γλs+1, . . . , γλn, 0}. Hence, spec(F∞) = {γλs+1 − 1, . . . , γλ1 − 1,−1}. Since |λi| ≤ 1 for
all s + 1 ≤ i ≤ n, real parts of all eigenvalues F∞ are negative. This implies that ẏ(t) = F∞(y(t)), has
an asymtotically stable equilibrium origin and ẏ(t) = F (y(t)) has a unique globally asymtotically stable
equilibrium Wπ = [I − (γ(Pπ − Es))(I − γEs)−1]−1rπ.

Lastly, since Xk ∼ Unif(X ) and {Xk}k=0,1,... are i.i.d random variables, νi,t/t converges to 1
n almost suerly

by law of large numbers. Since ηνXk,t
= (
∑k

i=0 1Xk=Xi
)−1, Therefore, by Proposition B.1, {W k}k=0,1,... of

equation 7 converge to Wπ almost surely, and this implies that V k → (I−γEs)−1Wπ = (I−γPπ)−1rπ = V π

almost surely.

B.5 Proof of Theorem 5.2

Consider following linear stochastic approximation algorithm

Y k+1 = Y k + ηk(A(ζk)Y t + b(ζk)) (8)

for k = 0, 1, . . . , where Y k ∈ Rn, {ζk}k=0,1,..., are random variables, b(ζk) ∈ Rn, A(ζk) ∈ Rn × Rn, and
∥Ai,j∥, ∥bk∥ <∞, for 1 ≤ i, j ≤ n and 1 ≤ k ≤ n. Then, following Proposition holds.
Proposition B.2. (Chen et al., 2020, Theorem 2.5 and 2.7) If (i) ηk = g(k+1)−1 for g > 0, (ii) {ζk}k=0,1,...

is ergodic (aperiodic and irreducible) Markov process with unique invariant measure µ, (iii) Eµ[At] = A and
Eµ[Bt] = b, (iv) A is Hurwitz, (v) Re(λ) < −1/2 for all λ ∈ spec(gA), then E[∥Y t − Y ⋆∥2] = O(k−1) where
Y ⋆ = −A−1b.

We note that Proposition B.1 is also a simplified version with stronger conditions of Theorem 2.5 and 2.7 of
Chen et al. (2020).

Define ψ(Xk) ∈ Rn as ψ(Xk)(x) = 1{Xk=x}. Then, DDTD equation 4 with α = 1 is equivalent to

W k+1 = W k + ηk(A(Xk, X
′
k)W k + b(Xk, X

′
k)),

where A(X,X ′) = ψ(X)(ψ(X ′)⊤γ (I − γEs)−1 − ψ(X)⊤γEs (I − γEs)−1 − ψ(X)⊤) and b(X,X ′) =
ψ(X)rπ(X). Hence ∥Ai,j∥, ∥bk∥ <∞, for 1 ≤ i, j ≤ n and 1 ≤ k ≤ n.
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Since {Xk, X
′
k}k=0,1,... are i.i.d random variables, {Xk, X

′
k}k=0,1,... are Markov process. Let µ ∼ {Xk, X

′
k} and

P(x1, x
′
1 |x2, x

′
2) be transition matrix of {Xk, X

′
k}k=0,1,.... Then P(x1, x

′
1 |x2, x

′
2) = µ(x1, x

′
1) = 1

nP
π(x′

1 |x1).
Since (µ′)⊤P(·, · | ·, ·) = µ for any distribution µ′, µ is unique invarinat measure. Hence, {Xk, X

′
k}k=0,1,... is

irreducible and aperiodic.

Eµ[A(Xk, X
′
k)] = Eµ[ψ(Xk)(ψ(X ′

k)⊤γ (I − γEs)−1 − ψ(Xt)⊤γEs (I − γEs)−1 − ψ(Xk)⊤) |Xk]
= Eµ[ψ(Xk)(ψ(Xk)⊤Pπ (I − γEs)−1 − ψ(Xt)⊤γEs (I − γEs)−1 − ψ(Xk)⊤)]
= Eµ[ψ(Xk)ψ(Xk)⊤(Pπ (I − γEs)−1 − γEs (I − γEs)−1 − I)]
= n−1((Pπ − γEs) (I − γEs)−1 − I)

and Eµ[b(Xk, X
′
k)] = n−1rπ. Then, Y ⋆ = −A−1b = [I − (γ(Pπ − Es))(I − γEs)−1]−1rπ = Wπ.

As we discussed in Section B.4, spec(A) = {γλs+1−1, . . . , γλn−1,−1}. Let λDDTD = minλ∈{λs+1,...,λn} Re(1−
γλ). Then, if g > n

2λDDTD
, Re(λ) < −1/2 for all λ ∈ spec(gA). Therefore, by Proposition B.2, E[∥W k −

Wπ∥2] = O(k−1) and this implies that E[∥V k − V π∥2] ≤ E[∥(I − γEs)−1∥2∥W k −W ⋆∥2] = O(k−1).

B.6 Non-asymptotic convergence analysis of DDTD

Consider following the stochastic approximation algorithm

Y k+1 = Y k + ηk(f(Y k, ζk)− Y k + Zk) (9)

for k = 0, 1, . . . , where Y k ∈ Rn, ηk ∈ R+, {ζk}k=0,1,... are Markov chain with unique distribution µ and
transition matrix P . Let F (y) = E[f(y, ζk)] and Fk = σ(Y i,M i, Zi, ηi1 ≤ i ≤ t). Define mixing time as
tδ = {min k ≥ 0, : maxy ∥P k(·, y)− µ(·)∥TV < δ} where ∥ · ∥TV stands for the total variation distance. Let
Y ⋆ be fixed point of F (y). Then following proposition holds.
Proposition B.3. (Chen et al., 2023, Theorem 1) Let (i) {ζk}k=0,1,... is aperiodic and irreducible Markov
chain, (ii) F is β-contraction respect to some ∥ · ∥c, (iii) f(·, z) : Rn → Rn is A1-uniformly Lipschitz with
respect to ∥ · ∥c and ∥f(0, y)∥c ≤ B1 for any y, (iv) {Mk,Fk}k=0,1,..., are martingale difference sequence, and
(v) E[Zk+1 | Fk] ≤ A2 +B2∥Y k∥2 for some A2, B2 > 0. Then, if ηk = η,

E[∥Y k − Y ⋆∥2
c ] ≤ c1d1(1− d2η)k−tα + d3

d2
ηtα

for all k ≥ K, and if ηk = 1
d2(k+h) ,

E[∥Y k − Y ⋆∥2
c ] ≤ c1d1

K + h

k + h
+ 8η2d3c2tklog(k + h)

k + h

for all k ≥ K, where {ηk}k=0,1,... is nonincreasing sequence satisfying
∑k−1

i=k−tk
αi ≤ min

{
d2

d3A2 ,
1

4A

}
for all

k ≥ tk, K = min{k ≥ 0 : k ≥ tk}, A = A1 +A2 + 1, B = B1 +B2, c1 = (∥Y 0 − Y ⋆∥c + ∥Y 0∥c +A/B)2, c2 =
(A∥Y ⋆∥c + B)2, lcs∥ · ∥s ≤ ∥ · ∥c ≤ ucs∥ · ∥s for chosen norm ∥ · ∥s such that 1

2∥ · ∥
2
s is L-smooth function

with respect to ∥ · ∥s, d1 = 1+θu2
cs

1+θl2
cs

, d2 = 1 − βd1/2
1 , and d3 = 114L(1+θu2

cs)
θl2

cs
such that θ is chosen satisfying

β2 ≤ (d1)−1.

DDTD equation 4 with α = 1 is equivalent to

W k+1 = W k + ηk(f(W k, Xk, X
′
k)−W k + Zk)

where Zk = 0, and f(W k, X,X ′)(x) = 1{X=x}(rπ(x) + γ((I − γEs)−1
W k)(X ′)− γEs (I − γEs)−1

W k(x)−
W k(x)) +W k(x). As we showed in Section B.5, {Xk, X

′
k}k=0,1,... is irreducible and aperiodic Markov chain
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with a invariant measure µ. Furthermore, mixing time of {Xk, X
′
k}k=0,1,... is 1.

F (W ) = Eµ∼{X,X′}[1{X=x}(rπ(x) + γ((I − γEs)−1
W )(X ′)− γEs (I − γEs)−1

W (x)−W (x)) +W (x)]
= Eµ∼{X,X′}[1{X=x}(rπ(x) + γ((I − γEs)−1

W )(X ′)− γEs (I − γEs)−1
W (x)−W (x)) +W (x)∥X]

= Eµ∼{X,X′}[1{X=x}(rπ(x) + Pπγ((I − γEs)−1
W )(X)− γEs (I − γEs)−1

W (x)−W (x)) +W (x)]

= 1
n

(rπ(x) + γ(Pπ − Es) (I − γEs)−1
W (x)) + (1− 1

n
)W (x).

Let λ1, . . . , λn be the eigenvalues of Pπ sorted in decreasing order of magnitude with ties broken arbitrarily.
Let ADDTD = γ(Pπ −Es) (I − γEs)−1. Since spectral radius is the infimum of matrix norm, for any ϵ > 0,
there exist ∥ · ∥ϵ such that ρ( 1

nADDTD + (1− 1
n )I) ≤ ∥ 1

nADDTD + (1− 1
n )I∥ϵ ≤ ρ( 1

nADDTD + (1− 1
n )I) + ϵ

where ρ( 1
nADDTD + (1− 1

n )I) = maxλ∈{λs+1,...,λn}{|1− 1
n + γ

nλ|}.

∥f(0, X,X ′)∥ϵ = ∥1x=Xr
π(x)∥ϵ ≤ ∥rπ∥ϵ = Bϵ, and f(W,X,X ′)(x) − f(W ′, X,X ′)(x) =

1{X=x}(γ (I − γEs)−1 (W − W ′)(X ′) − (γEs (I − γEs)−1 (W − W ′))(x)) implies that ∥f(W,X,X ′) −
f(W ′, X,X ′)∥ϵ′ ≤ (∥(γ (I − γEs)−1 ∥ϵ + ∥(γEs (I − γEs)−1 ∥ϵ)∥W −W ′∥ϵ ≤ Aϵ∥W −W ′∥ϵ.

F (W ) = Eµ∼{X,X′}[f(W,X,X ′)] = 1
n (rπ + γ(Pπ − Es) (I − γEs)−1

W ) + (1− 1
n )W . ∥F (W1)− F (W2)∥ϵ =

∥( 1
nADDTD + (1− 1

n )I)(W1 −W2)∥ϵ ≤ ( 1
nρ+ ϵ+ (1− 1

n ))∥W1 −W2∥ϵ and F (W ) has fixed point Wπ since
1
nADDTD + (1− 1

n )I and ADDTD share same fixed point.

Thus, by Theorem B.3 and E[∥V k−V π∥2
ϵ ] ≤ ∥(I−γEs)−1∥2

ϵE[∥W k−W ⋆∥2
ϵ ], we have following non-asymptotic

convergence result of DDTD.
Theorem B.4 (DDTD with constant stepsize). Let λ1, . . . , λn be the eigenvalues of Pπ sorted in decreasing
order of magnitude with ties broken arbitrarily. Let ηk = η. For any ϵ > 0, there exist aϵ, bϵ, cϵ, dϵ > 0 and
∥ · ∥ϵ such that for α = 1 and 0 < η < dϵ, DDTD exhibits the rate

E[∥V k − V π∥2
ϵ ] ≤ aϵ(1− η + ρbϵη)k−1 + cϵη

for all k ≥ 1 where ρ = 1− 1
n + γ

n max{|λs+1|, . . . , |λn|}+ ϵ.

We note that aϵ, bϵ, cϵ, dϵ of Theorem B.4 can be obtained by plugging A1 = Aϵ, A2 = 0, B1 = Bϵ, B2 = 0 in
Proposition B.3.
Theorem B.5 (DDTD with diminishing stepsize). Let λ1, . . . , λn be the eigenvalues of Pπ sorted in decreasing
order of magnitude with ties broken arbitrarily. For any ϵ > 0, there exist aϵ, bϵ, cϵ, dϵ > 0 and ∥ · ∥ϵ such that
for α = 1 and ηk = 1

(k+bϵ)(1−cϵρ) , DDTD exhibits the rate

E[∥V k − V π∥2] ≤ aϵ

k + bϵ
+
(

1
1− cϵρ

)2
dϵ

k + bϵ

for all k ≥ 1 where ρ = 1− 1
n + γ

n max{|λs+1|, . . . , |λn|}+ ϵ.

Again, we note that a, b, c, of Theorem B.5 can be obtained by plugging A1 = Aϵ, A2 = 0, B1 = Bϵ, B2 = 0 in
Proposition B.3.

C DDVI with QR Iteration, AutoPI and AutoQR

C.1 DDVI with AutoPI and AutoQR

We first introduce DDVI with AutoPI for 0 < α ≤ 1. If W 0 = 0, we have

W k =
k−1∑
i=0

((1− α)(I − αγEs)−1 + αγ(Pπ − Es)(I − αγEs)−1)iαrπ
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by equation 2, and

(W k+1 −W k) = ((1− α)(I − αγEs)−1 + αγ(Pπ − Es)(I − αγEs)−1)kαrπ

is the iterates of a power iteration with respect to (1 − α)(I − αγEs)−1 + αγ(Pπ − Es)(I − αγEs)−1. In
Section B.1, we show that

(1− α)(I − αγEs)−1 + αγ(Pπ − Es)(I − αγEs)−1 = (1− α)I + αγPπ + UsD
s,

(λiγ−1)γα2λi
1−γαλi

V ⊤
s .

For α ≈ 1, we expect that spectral radius of matrix is 1−α+γαλs+1 and (1−α)I+αγPπ+UsD
s,

(λiγ−1)γα2λi
1−γαλi

V ⊤
s

and Pπ + UsDs,
(λiγ−1)αλi

1−γαλi

V ⊤
s have same top eigenvector. With same argument in Section 4.2, we can recover

the s+ 1-th eigenvector of Pπ by (Bru et al., 2012, Proposition 5). Leveraging this observation, we formalize
this approach in Algorithm 4.

Algorithm 4 DDVI with AutoPI (Detailed)
1: Initialize C = 10, ϵ = 10−4

2: function DDVI((s, V,K, {λi}s
i=1, {ui}s

i=1, αs ))
3: V 0 = V , c = 0
4: Es =

∑s
i=1 λiuiv

⊤
i as in Fact 2

5: for k = 0, . . . ,K − 1 do
6: if c ≥ C and

∣∣∣ wk+1

∥wk+1∥2
− wk

∥wk∥2

∣∣∣ < ϵ then
7: λ′

s+1 = (wk)⊤wk+1/∥wk∥2
2

8: λs+1 = (λ′
s+1 − 1 + αs)/(αsγ)

9: us+1 = wk+1 −
∑s

i=1
αλi(1−γλi)

1−αsγλi

v⊤
i wk+1

λi−λs+1
ui

10: Return
DDVI(s+1, V k,K−c, {λi}s+1

i=1, {ui}s+1
i=1, αs+1)

11: else
12: W k+1 = (1− αs)V k + αsγ(Pπ − αsEs)V k + αsr

π

13: V k+1 = (I − αsγEs)−1W k+1

14: c = c+1
15: wk+1 = W k+1 −W k

16: wk = W k −W k−1

17: Return V K

18: Initialize V 0 and u1 = 1, λ1 = 1
19: DDVI(1, V 0,K, λ1, u1, 1)

Now, we introduce DDVI with AutoQR for 0 < α ≤ 1.

Assume the top s+ 1 eigenvalues of Pπ are distinct, i.e., 1 = λ1 > |λ2| > · · · > |λs+1|. Let Es =
∑s

i=1 λiuiu
⊤
i

be a rank-s deflation matrix of Pπ as in Fact 3. If W 0 = 0, we again have

W k =
k−1∑
i=0

((1− α)(I − αγEs)−1 + αγ(Pπ − Es)(I − αγEs)−1)iαrπ,

W k+1 −W k = ((1− α)(I − αγEs)−1 + αγ(Pπ − Es)(I − αγEs)−1)kαrπ,

and
(W k+1 −W k) = ((1− α)(I − αγEs)−1 + αγ(Pπ − Es)(I − αγEs)−1)kαrπ

is the iterates of a power iteration with respect to (1 − α)(I − αγEs)−1 + αγ(Pπ − Es)(I − αγEs)−1. In
Section B.1, we show that

(1− α)(I − αγEs)−1 + αγ(Pπ − Es)(I − αγEs)−1 = (1− α)I + αγPπ + UsR
s,

(λiγ−1)γα2λi
1−γαλi

U⊤
s .
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Algorithm 5 DDVI with AutoQR
1: Initialize C = 10, ✏ = 10�4

2: function DDVI((s, V, K, {�i}s
i=1, {ui}s

i=1,↵s))
3: V 0 = V , c = 0,
4: Es =

Ps
i=1 �iuiu

>
i as in Fact 3

5: for k = 0, . . . , K � 1 do
6: if c � C and

��� wk+1

kwk+1k2
� wk

kwkk2

��� < ✏ then
7: �0s+1 = (wk)>wk+1/kwkk22
8: �s+1 = (�0s+1 � 1 + ↵s)/(↵s�)

9: u0
s+1 = wk+1 �Ps

i=1 u>
i wk+1ui

10: us+1 = 1p
(u0

s+1)
>u0

s+1

u0
s+1

11: Return
DDVI(s+1, V k, K�c, {�i}s+1

i=1, {ui}s+1
i=1,↵s)

12: else
13: W k+1 = (1� ↵s)V

k + ↵s�(P⇡ � ↵sEs)V
k + ↵sr

⇡

14: V k+1 = (I � ↵s�Es)
�1W k+1

15: c = c+1
16: wk+1 = W k+1 �W k

17: wk = W k �W k�1

18: Return V K

19: Initialize V 0 and u1 = 1, �1 = 1
20: DDVI(1, V 0, K,�1, u1, 1)

Figure 4: Maze environment. The dark shaded region is the goal state with positive reward. Arrows
show optimal policy.

D Environments667

We introduce four environments and polices used in experiments.668

Cliffwalk The Cliffwalk is a 3⇥ 7 grid world. The top-left corner is initial state, top-right corner is669

goal state with reward of 10, and other states in first row are terminal states with reward of�10. There670

is a penalty of �1 in all other states. The agent has four actions: UP(0), RIGHT(1), DOWN(2), and671

Figure 5: Chain walk environment. Dark Shaded region is goal state with a positive reward and grey
shaded region is state with a negative reward. Arrows show optimal policy.
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Figure 4: Maze environment. The dark shaded region is the goal state with positive reward. Arrows show
optimal policy.

For α ≈ 1, we expect that spectral radius of matrix is 1−α+γαλs+1 and (1−α)I+αγPπ+UsR
s,

(λiγ−1)γα2λi
1−γαλi

V ⊤
s

and Pπ + UsRs,
(λiγ−1)αλi

1−γαλi

U⊤
s have same top eigenvector. With same argument in Section 4.2, for large k, we

expect W k+1−W k

∥W k+1−W k∥ ≈ w, where w is the top eigenvector of Pπ−UsRs,
(λiγ−1)αλi

1−γαλi

U⊤
s . Thus, by orthornormalizing

w against u1, . . . , us, we can obtain top s+ 1-th Schur vector of Pπ Saad (2011, Section 4.2.4). Leveraging
this observation, we propose DDVI with Automatic QR Iteration (AutoQR) and formalize this in Algorithm 5.

Algorithm 5 DDVI with AutoQR
1: Initialize C = 10, ϵ = 10−4

2: function DDVI((s, V,K, {λi}s
i=1, {ui}s

i=1, αs))
3: V 0 = V , c = 0,
4: Es =

∑s
i=1 λiuiu

⊤
i as in Fact 3

5: for k = 0, . . . ,K − 1 do
6: if c ≥ C and

∣∣∣ wk+1

∥wk+1∥2
− wk

∥wk∥2

∣∣∣ < ϵ then
7: λ′

s+1 = (wk)⊤wk+1/∥wk∥2
2

8: λs+1 = (λ′
s+1 − 1 + αs)/(αsγ)

9: u′
s+1 = wk+1 −

∑s
i=1 u

⊤
i w

k+1ui

10: us+1 = 1√
(u′

s+1)⊤u′
s+1

u′
s+1

11: Return
DDVI(s+1, V k,K−c, {λi}s+1

i=1, {ui}s+1
i=1, αs)

12: else
13: W k+1 = (1− αs)V k + αsγ(Pπ − αsEs)V k + αsr

π

14: V k+1 = (I − αsγEs)−1W k+1

15: c = c+1
16: wk+1 = W k+1 −W k

17: wk = W k −W k−1

18: Return V K

19: Initialize V 0 and u1 = 1, λ1 = 1
20: DDVI(1, V 0,K, λ1, u1, 1)

D Environments

We introduce four environments and polices used in experiments.
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Algorithm 5 DDVI with AutoQR
1: Initialize C = 10, ✏ = 10�4

2: function DDVI((s, V, K, {�i}s
i=1, {ui}s

i=1,↵s))
3: V 0 = V , c = 0,
4: Es =

Ps
i=1 �iuiu

>
i as in Fact 3

5: for k = 0, . . . , K � 1 do
6: if c � C and

��� wk+1

kwk+1k2
� wk

kwkk2

��� < ✏ then
7: �0s+1 = (wk)>wk+1/kwkk22
8: �s+1 = (�0s+1 � 1 + ↵s)/(↵s�)

9: u0
s+1 = wk+1 �Ps

i=1 u>
i wk+1ui

10: us+1 = 1p
(u0

s+1)
>u0

s+1

u0
s+1

11: Return
DDVI(s+1, V k, K�c, {�i}s+1

i=1, {ui}s+1
i=1,↵s)

12: else
13: W k+1 = (1� ↵s)V

k + ↵s�(P⇡ � ↵sEs)V
k + ↵sr

⇡

14: V k+1 = (I � ↵s�Es)
�1W k+1

15: c = c+1
16: wk+1 = W k+1 �W k

17: wk = W k �W k�1

18: Return V K

19: Initialize V 0 and u1 = 1, �1 = 1
20: DDVI(1, V 0, K,�1, u1, 1)

Figure 4: Maze environment. The dark shaded region is the goal state with positive reward. Arrows
show optimal policy.

D Environments667

We introduce four environments and polices used in experiments.668

Cliffwalk The Cliffwalk is a 3⇥ 7 grid world. The top-left corner is initial state, top-right corner is669

goal state with reward of 10, and other states in first row are terminal states with reward of�10. There670

is a penalty of �1 in all other states. The agent has four actions: UP(0), RIGHT(1), DOWN(2), and671

Figure 5: Chain walk environment. Dark Shaded region is goal state with a positive reward and grey
shaded region is state with a negative reward. Arrows show optimal policy.
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Figure 5: Chain walk environment. Dark Shaded region is goal state with a positive reward and grey shaded
region is state with a negative reward. Arrows show optimal policy.

Figure 6: Cliffwalk environment. Dark shaded region is goal state with a positive reward. Gray
shaded regions are terminal states with negative reward. Arrows show optimal policy.

LEFT(3). Each action has 90% chance to successfully move, but with probability of 10% one of the672

other three directions is randomly chosen and the agent moves in that direction. If the agent attempts673

to get out of the boundary, it will stay in place. Optimal and non optimal poilcies of Cliffwalk used in674

experiments are as follows:675

Optimal policy: [2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 1, 0, 1, 1, 1, 1, 1, 1, 0]676

Non optimal policy: [0, 0, 2, 1, 2, 1, 2, 1, 0, 2, 0, 3, 2, 0, 3, 1, 0, 1, 1, 1, 3]677

Maze The Maze is a 5⇥ 5 grid world with 16 walls. The top-left corner is the initial state, and the678

bottom-left corner is the goal state with reward of 10. Similar to the Clifffwalk, there is a penalty of679

�1 in all other states, and the agent has four actions: UP(0), RIGHT(1), DOWN(2), and LEFT(3).680

Each action has 90% chance to successfully move but with probability of 10% one of the other three681

directions is randomly chosen and the agent moves in that direction. If the agent attempts to get out682

of the boundary or hits a wall, it will stay in place. Optimal and non optimal poilcies of Maze used in683

experiments are as follows:684

Optimal policy: [2, 1, 1, 1, 2, 2, 0, 2, 3, 2, 2, 0, 2, 0, 3, 1, 0, 1, 1, 2, 0, 3, 3, 3, 3]685

Non optimal policy: [2, 2, 3, 0, 3, 0, 2, 1, 3, 2, 2, 2, 3, 3, 1, 0, 3, 0, 3, 3, 3, 3, 1, 1, 0]686

Chain Walk We use the Chain Walk environment, as described by ?, which is similar to the687

formulation by Lagoudakis and Parr [2003]. Chain Walk is parametrized by the tuple (|X |, |A|, bp, br).688

It is circular chain, where the state 1 and 50 are connected. The reward is state-dependent. State689

3 is goal state with reward 1, state 50 gives reward �1, and all other states give reward 0. Agent690

has two actions: RIGHT(0) and LEFT(1). Each action has 80% chance to successfully move but691

with probability of 40/3% agent will stay in place, and with probability of 20/3% agent will move692

opposite direction. Optimal poilcy of Chain Walk used in experiments is as follows:693

Optimal policy: [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,694

0, 0, 0, 0, 0, 0]695

Non optimal policy: [1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0,696

0, 1, 1, 0, 0, 1, 0], [0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0,697

1, 0, 1, 0, 1, 1]698

Garnet We use the Garnet environment as described by ?Rakhsha et al. [2022], which is based699

on Bhatnagar et al. [2009]. Garnet is parameterized by the tuple (|X |, |A|, bp, br). |X | and |A| are the700

number of states and actions, and bp is the branching factor of the environment, which is the number701

of possible next states for each state-action pair. We randomly select bp states without replacement702

and then, transition distribution is generated randomly. We select br states without replacement, and703

for each selected x, we assign state-dependent reward a uniformly sampled value in (0, 1). In the704

experiment, we used optimal policies for 100 randomly generated problem instances, respectively.705
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Figure 6: Cliffwalk environment. Dark shaded region is goal state with a positive reward. Gray shaded
regions are terminal states with negative reward. Arrows show optimal policy.

Cliffwalk The Cliffwalk is a 3× 7 grid world. The top-left corner is initial state, top-right corner is goal
state with reward of 10, and other states in first row are terminal states with reward of −10. There is a
penalty of −1 in all other states. The agent has four actions: UP(0), RIGHT(1), DOWN(2), and LEFT(3).
Each action has 90% chance to successfully move, but with probability of 10% one of the other three directions
is randomly chosen and the agent moves in that direction. If the agent attempts to get out of the boundary,
it will stay in place. Optimal and non optimal poilcies of Cliffwalk used in experiments are as follows:

Optimal policy: [2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 1, 0, 1, 1, 1, 1, 1, 1, 0]

Non optimal policy: [0, 0, 2, 1, 2, 1, 2, 1, 0, 2, 0, 3, 2, 0, 3, 1, 0, 1, 1, 1, 3]

Maze The Maze is a 5 × 5 grid world with 16 walls. The top-left corner is the initial state, and the
bottom-left corner is the goal state with reward of 10. Similar to the Clifffwalk, there is a penalty of −1 in all
other states, and the agent has four actions: UP(0), RIGHT(1), DOWN(2), and LEFT(3). Each action has
90% chance to successfully move but with probability of 10% one of the other three directions is randomly
chosen and the agent moves in that direction. If the agent attempts to get out of the boundary or hits a wall,
it will stay in place. Optimal and non optimal poilcies of Maze used in experiments are as follows:

Optimal policy: [2, 1, 1, 1, 2, 2, 0, 2, 3, 2, 2, 0, 2, 0, 3, 1, 0, 1, 1, 2, 0, 3, 3, 3, 3]

Non optimal policy: [2, 2, 3, 0, 3, 0, 2, 1, 3, 2, 2, 2, 3, 3, 1, 0, 3, 0, 3, 3, 3, 3, 1, 1, 0]

Chain Walk We use the Chain Walk environment, as described by Farahmand & Ghavamzadeh (2021),
which is similar to the formulation by Lagoudakis & Parr (2003). Chain Walk is parametrized by the tuple
(|X |, |A|, bp, br). It is circular chain, where the state 1 and 50 are connected. The reward is state-dependent.
State 3 is goal state with reward 1, state 50 gives reward −1, and all other states give reward 0. Agent has
two actions: RIGHT(0) and LEFT(1). Each action has 80% chance to successfully move but with probability
of 40/3% agent will stay in place, and with probability of 20/3% agent will move opposite direction. Optimal
poilcy of Chain Walk used in experiments is as follows:

Optimal policy: [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Non optimal policy: [1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1,

0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0], [0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1]
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Garnet We use the Garnet environment as described by Farahmand & Ghavamzadeh (2021); Rakhsha et al.
(2022), which is based on Bhatnagar et al. (2009). Garnet is parameterized by the tuple (|X |, |A|, bp, br). |X |
and |A| are the number of states and actions, and bp is the branching factor of the environment, which is the
number of possible next states for each state-action pair. We randomly select bp states without replacement
and then, transition distribution is generated randomly. We select br states without replacement, and for
each selected x, we assign state-dependent reward a uniformly sampled value in (0, 1).

E Rank-1 DDVI for Control Experiments
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(a) Rank-1 DDVI for control in Chain Walk
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(b) Rank-1 DDVI for control in Garnet

Figure 7: Comparison of rank-1 DDVI for control and VI in (left) Chain Walk and (right) Garnet.

In this experiment, we consider Chain Walk and Garnet. We use Garnet with 100 states, 8 actions, a branching
factor of 6, and 10 non-zero rewards throughout the state space. We use normalized errors ∥V k−V π∥1/∥V ⋆∥1,
γ = 0.995, and E1 = 1

n 11⊤, where n is the number of states. For Garnet, we plot average values on the 100
Garnet instances and denote one standard error with the shaded area. Figure 7(a) and 7(b) show that rank-1
DDVI for Control does indeed provide an acceleration.

F Additional DDVI Experiments and Details

In all experiments, we set DDVI’s α = 0.99. In experiments for Figure 1, the QR iteration is run for 600
iterations. For PID VI, we set η = 0.05 and ϵ = 10−10. In Anderson VI, we have m = 5. In Figure 2, we use
20 Garnet mdps with branching factor bp = 3, and br = 0.1 ∗ |X |.

We perform further comparison of convergence in Figures 8, 9, 10, 11. Figure 8 is run with Garnet environment
with 50 states and 40 branching factor that matches the setting in (Goyal & Grand-Clément, 2022).

G DDTD Experiments

A key part of our experimental setup is the model P̂. To show the robustness of DDTD to model error
and also its advantage over Dyna, we consider the scenario that P̂ has some non-diminishing error. We
achieve this with the same technique as (Rakhsha et al., 2022). Assume that each iteration t, the empirical
distribution of the next state from x, a is PMLE(·|x, a), which is going to be updated with every sample. For
some hyperparameter θ ∈ [0, 1], we set the approximate dynamics P̂(·|x, a) as

P̂(·|x, a) = (1− θ) · PMLE(·|x, a) + θ · U({x′|PMLE(x′|x, a) > 0}) (10)

where U(S) for S ⊆ X is the uniform distribution over S. The hyperparameter θ controls the amount of error
introduced in P̂. If θ = 0, we have P̂ = PMLE which becomes arbitrarily accurate with more samples. With
larger θ, P̂(·|x, a) will be smoothed towards the uniform distribution more, which leads to a larger model
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Figure 8: Comparison of DDVI with other accelerated VIs. Normalized errors are shown against the iteration
number (left) and wall clock time (right). Plots are average of 20 randomly generated Garnet MDPs with 50
states and branching factor of 40 with shaded areas showing the standard error.

0 500 1000 1500 2000
Iterations (k)

10 10

10 8

10 6

10 4

10 2

100

 N
or

m
al

ize
d 

||V
k

V
|| 1

0 20 40 60 80 100
Wall Clock (ms)

10 10

10 8

10 6

10 4

10 2

100

 N
or

m
al

ize
d 

||V
k

V
|| 1

200 400 600 800 1000
Number of States

0

200

400

600

800

1000

W
al

l C
lo

ck
 (m

s)

200 400 600 800 1000
Horizon (1/(1 ))

0

50

100

150

200

250

W
al

l C
lo

ck
 (m

s)

VI
Anderson VI
S-AVI
PID VI
Anc VI
DDVI (AutoQR)
DDVI (rank-1)
DDVI (rank-2)

Figure 9: Comparison of DDVI with other accelerated VIs. Normalized errors are shown against the iteration
number (left) and wall clock time (right) in Maze.

error. In Dyna, we keep the empirical average of past rewards for each x, a in r̂ : X ×A → R and perform
planning with P̂, r̂ at each iteration to calculate the value function, that is V = (I − γP̂π)−1r̂π. In Figure 3,
we have shown the result for θ = 0.3. In Figure 12 and Figure 13 we show the results for θ = 0.1, 0.3, 0.5 in
both Maze and Chain Walk environments.

As we see in Figure 12 and Figure 13, DDTD shows a faster convergence than the conventional TD. In Maze,
this is only achieved with higher rank versions of DDTD but in Chain Walk, even rank-1 DDTD is able
to significantly accelerate the learning. Also note that unlike Dyna, DDTD is converging to the true value
function despite the model error. We observe that the impact of model error on DDTD is very mild. In some
cases such as rank-3 DDTD in Maze, between θ = 0.3 and θ = 0.5, we observe slightly slower convergence
with higher model error. The hyperparamaters of TD Learning and DDTD are given in Table 1 and 2.

Table 1: Hyperparamters for the Maze environment. Cells with multiple values provide the value of the
hyperparameter for θ = 0.1, θ = 0.3, and θ = 0.5, respectively.

rank-1 DDTD rank-2 DDTD rank-3 DDTD rank-4 DDTD TD
η (learning rate) 0.3, 0.3, 0.3 0.3, 0.3, 0.3 0.07, 0.07, 0.07 0.07, 0.07, 0.07 0.3
α 0.8, 0.8, 0.8 0.7, 0.8, 0.8 0.9, 0.9, 0.9 0.9, 0.9, 0.9 -
K 10 10 10 10 -
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Figure 10: Comparison of DDVI with other accelerated VIs. Normalized errors are shown against the iteration
number (left) and wall clock time (right) in Chain Walkk.
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Figure 11: Comparison of DDVI with other accelerated VIs. Normalized errors are shown against the iteration
number (left) and wall clock time (right) in Cliffwalk.
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Figure 12: Comparison of DDTD with TD Learning and Dyna in Maze. Left: low model error with θ = 0.1.
Middle: medium model error with θ = 0.3. Right: high model error with θ = 0.5. Each curve is average of 20
runs. Shaded area shows one standard error.
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Figure 13: Comparison of DDTD with TD Learning and Dyna in Chainwalk. Left: low model error with
θ = 0.1. Middle: medium model error with θ = 0.3. Right: high model error with θ = 0.5. Each curve is
average of 20 runs. Shaded area shows one standard error.

Table 2: Hyperparamters for the Chainwalk environment. Cells with multiple values provide the value of the
hyperparameter for θ = 0.1, θ = 0.3, and θ = 0.5, respectively.

rank-1 DDTD rank-2 DDTD rank-3 DDTD rank-4 DDTD TD
learning rate (η) 1 1 1 1 1

α 0.9, 0.9, 0.9 0.9, 0.8, 0.8 0.9, 0.8, 0.8 0.9, 0.8, 0.8 -
K 10 10 10 10 -
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