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Abstract

We study a class of decision-making problems with one-sided feedback, where1

outcomes are only observable for specific actions. A typical example is bank2

loans, where the repayment status is known only if a loan is approved and remains3

undefined if rejected. In such scenarios, conventional approaches to causal decision4

evaluation and learning from observational data are not directly applicable. In this5

paper, we introduce a novel value function to evaluate decision rules that addresses6

the issue of undefined counterfactual outcomes. Without assuming no unmeasured7

confounders, we establish the identification of the value function using shadow8

variables. Furthermore, leveraging semiparametric theory, we derive the efficiency9

bound for the proposed value function and develop efficient methods for decision10

evaluation and learning. Numerical experiments and a real-world data application11

demonstrate the empirical performance of our proposed methods.12

1 Introduction13

Binary decision-making problems are pervasive in the real world, encompassing domains such as14

bank loan approval (Pacchiano et al., 2021), job hiring (Raghavan et al., 2020), school admission15

(Baker & Hawn, 2022), and criminal recidivism prediction (Lakkaraju et al., 2017). Often, feedback16

in these scenarios is one-sided. Take bank loan approval as an example: a decision-maker is presented17

with covariates describing a loan applicant and decides whether to grant or deny the loan. If the18

loan is approved, feedback regarding the applicant’s repayment is subsequently received. However,19

if the loan is denied, no further information is obtained. There are two main objectives in these20

decision-making processes: (1) evaluating a decision rule that aims to approve loans for applicants21

likely to repay while denying loans to those unlikely to do so, based on the expected outcomes it22

achieves; and (2) deriving an optimal decision rule that maximizes the expected outcome.23

Decision-making with one-sided feedback can be viewed as a special contextual bandit problem with24

two actions, “approve” and “reject”, where the outcome is observable exclusively when an individual25

is approved. Significant challenges arise due to the inherent heterogeneity between the approved26

and rejected groups—specifically, the conditional distribution of the outcome given the covariates27

may differ between these two groups. As a result, using an outcome model trained on approved28

samples to predict outcomes for the rejected group is generally unfeasible. To address model bias, one29

category of approaches uses exploration strategies to gather additional information from new samples,30

gradually reducing the bias over time (e.g. Jiang et al., 2021; Pacchiano et al., 2021). However, most31

existing works are restricted to binary outcomes and specific outcome models, lacking robustness to32

model misspecification and unable to generalize to numerical outcomes. Moreover, in real-world33

applications, exploration can be costly, risky, or even unethical, such as in healthcare, finance, and34

education. This motivates us to develop practical approaches to decision evaluation and learning for35

different types of outcomes from observational data (Dudík et al., 2014; Munos et al., 2016; Wang36

et al., 2017; Fujimoto et al., 2019; Kallus & Uehara, 2020; Athey & Wager, 2021).37
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As mentioned above, disparities between approved and rejected groups often lead to variations in38

outcome measures due to unobserved differences in action selection, which also serve as predictors39

for the outcomes. This phenomenon violates a critical assumption in the causal inference literature40

for identifying and estimating the value function, known as the no unmeasured confounders (NUC)41

assumption (Rosenbaum & Rubin, 1983; Imbens, 2004; Imbens & Rubin, 2015), posits that actions are42

independent of potential outcomes given the covariates. Under this assumption, various approaches43

have been developed for estimating the value function, such as the inverse propensity weighting44

(IPW) method (Horvitz & Thompson, 1952) and the doubly robust (DR) method (Dudík et al., 2011;45

Zhang et al., 2012; Jiang & Li, 2016). The NUC assumption, however, can be often violated in46

many real-world scenarios. When the NUC assumption does not hold, the identifiability of the value47

function may be compromised, and existing estimators under this assumption may no longer be48

consistent for the value function.49

To deal with such violations, the utilization of instrumental variables (IVs) emerges as a well-50

established strategy in the literature (Angrist et al., 1996; Hernán & Robins, 2006; Wang & Tchet-51

gen Tchetgen, 2018). An IV is defined as a pretreatment variable that is independent of all unmeasured52

confounders, and does not have a direct causal effect on the outcome other than through the action.53

However, it is acknowledged that identifying suitable IVs poses a considerable challenge, given the54

potential existence of numerous unmeasured confounders and the difficulty in eliminating the possi-55

bility of an IV’s dependence on all of them. In contrast to IVs, we consider an alternative approach56

using a distinct type of variables known as shadow variables (SVs) (Wang et al., 2014; Shao & Wang,57

2016; Miao et al., 2016; Li et al., 2024). SVs are independent of the action after conditioning on fully58

observed covariates and the outcome itself. Meanwhile, SVs are related to the outcome, potentially59

through unmeasured confounders. For example, in fairness-oriented employment, sensitive attributes60

such the age of candidates should be independent of the decision. However, these attributes may be61

related to the performance of candidates, thereby qualifying them as SVs. With the utilization of SVs,62

we show that the proposed value function is identifiable.63

The contribution of this paper is multi-fold. First, we propose a novel value function for decision-64

making with one-sided feedback. Without assuming the NUC condition, we consider a model65

that involves both outcomes and covariates for the action assignment mechanism. We provide66

identification for the proposed value function under this model by leveraging SVs. Second, we67

derive the efficient influence function (EIF) and the semiparametric efficiency bound of the value68

function. Motivated by the EIF, we develop two different efficient estimators for the value function69

with binary and continuous outcomes, respectively. Our proposed estimation strategy does not require70

estimating the density when the outcome is continuous, thereby avoiding instability and distinguishing71

our methods from existing literature. Third, we establish theoretical properties for the proposed72

estimators. We show the estimators are consistent and achieve semiparametric efficiency bound under73

mild conditions of nuisance functions approximation. Fourth, we propose a classification-based74

framework for learning the optimal decision rule, which allows us to leverage a wide range of existing75

classification tools tailored to different classes of decision rules. Through numerical experiments,76

we demonstrate that the proposed method significantly outperforms conventional decision learning77

methods.78

2 Preliminaries79

We consider a binary action A ∈ {0, 1}, where action 1 denotes “approve” and action 0 denotes80

“reject”. Let X ∈ X ⊆ Rp denote a vector of covariates, and Y ∈ R denote the observed outcome of81

interest. We assume larger values of Y are preferred by convention. We study the problem under the82

counterfactual potential-outcome framework (Rubin, 2005). The potential outcomes Y (a), a = 0, 1,83

which are the outcomes that would be observed if a subject received action a = 0 or a = 1, both84

are well-defined in conventional decision-making problems. Under the Stable Unit Treatment Value85

Assumption (SUTVA) (Rubin, 2005), we have Y = AY (1) + (1 − A)Y (0). However, under the86

one-sided feedback setting, only Y (1) is defined, and the outcome Y is only observed if an individual87

is approved (A = 1). In this case, the observed outcome is always Y = Y (1). The observed data88

are then {Oi = (YiAi, Ai,Xi), i = 1, . . . , n} and we assume they are independent and identically89

distributed.90

A decision rule π : X → [0, 1] is a map from covariates to a probability, so that a decision maker,91

when presented with covariates X, will select action 1 with probability π(X). In conventional92

decision-making, where potential outcomes are defined for both actions, implementing a decision93
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rule π in a population would yield the population mean outcome, commonly referred to as the value94

function, defined as follows:95

V (π) = E [Y (1)π(X) + Y (0){1− π(X)}] . (1)

Under the one-sided feedback setting, since Y (0) is not defined, we can no longer use the definition96

of value function in (1). We define a new value function as97

V1(π) = E{Y (1)π(X)}. (2)

The interpretation of V1(π) is straightforward. Consider a practical example of bank loans and a98

deterministic decision rule π (where π(X) can only take on values 0 or 1). Let Y (1) denote the99

money earned by the bank if a loan is approved. For an applicant with covariates X, if π(X) = 1,100

indicating loan approval, then Y (1)π(X) = Y (1) represents the potential financial outcome for the101

bank. On the other hand, if π(X) = 0, indicating loan rejection, the bank neither earns nor loses102

any money. Therefore, the newly defined value function V1(π) quantifies the expected monetary103

outcome for the bank when implementing decision rule π for loan approvals. We define the optimal104

decision rule as the one that maximizes the defined value function: π∗ = argmaxπ∈Π V1(π).105

Our first goal is to evaluate a given decision rule π by estimating V1(π) using the historical data106

{Oi = (YiAi, Ai,Xi), i = 1, . . . , n}. Our second goal is to learn the optimal decision rule π∗.107

3 Identification, EIF, and Efficiency Bound108

In this section, we provide the identification of the value function V1(π), and establish the corre-109

sponding EIF and efficiency bound under semiparametric theory.110

Without assuming the NUC condition that Y (1)⊥⊥A | X, we consider a general action assignment111

mechanism that depends not only on covariates but also on the potential outcome:112

φ(x, y) ≡ P{A = 1 | X = x, Y (1) = y},

and we assume 0 < φ(x, y) < 1. Let f(x) denote the marginal density of X, and let f(y | x, 1)113

denote the conditional density of Y (1) given X = x and A = 1. Let w(x) ≡ P(A = 1 | X = x).114

We can show that the value function V1(π) has the following representation (details are given in115

Appendix C.1) :116

V1(π) = E{Y (1)π(X)} =

∫
f(x)w(x)

{∫
y
f(y | x, 1)
φ(x, y)

dy

}
π(x)dx. (3)

Therefore, we can identify V1(π) through identifying f(x), w(x), f(y | x, 1), and φ(x, y). The117

likelihood function for a single observation is118

f(x)w(x)a{1− w(x)}1−af(y | x, 1)a.

Thus, f(x), w(x), and f(y | x, 1) can be identified from the observed data distribution. However, as119

noted in the literature (e.g. Wang et al., 2014; Miao et al., 2016), φ(x, y) is not identifiable without120

further assumption. We assume that covariates X can be partitioned into two subsets of variables U121

and Z, i.e. X = (UT ,ZT )T . U and Z are variables satisfying the following assumptions.122

Assumption 3.1 (i) Z⊥⊥A | U, Y (1) and Z ⊥̸⊥ Y (1) | U; (ii) For any function h(Y (1),U),123

E{h(Y (1),U) | X, A = 1} = 0 implies h(Y (1),U) = 0 almost surely.124

Assumption 3.1 (i) indicates Z are SVs and φ(x, y) = P{A = 1 | X = x, Y (1) = y} = P{A = 1 |125

U = u, Y (1) = y} = φ(u, y). SVs can be selected based on expert prior knowledge, or alternatively,126

representations that serve the role of shadow variables can be generated directly from observed127

covariates without the need for prior knowledge (Li et al., 2024). Assumption 3.1 (ii) is known as128

the conditional completeness assumption, which is widely used in identification problems (Newey129

& Powell, 2003; Miao et al., 2015; Yang et al., 2019). This condition guarantees the uniqueness130

of φ(u, y). When both Y (1) and Z are categorical variables with l and m levels, respectively,131

Assumption 3.1 (ii) holds if l < m. When Y (1) is continuous, Assumption 3.1 (ii) holds when132

f(y | x, 1) follows some common distributions, such as exponential families.133

Theorem 3.2 Under Assumption 3.1, f(x), w(x), f(y | x, 1), and φ(u, y) are identifiable, and thus134

V1(π) is identified.135
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The identification (3) motivates a rich class of estimators for the value function. However, to guide136

the construction of more principled estimators, we establish the EIF and the efficiency bound for137

the value function using semiparemetric theory (Bickel et al., 1993; Tsiatis, 2006) in this section.138

Semiparametric models are sets of probability distributions that indexed by both finite-dimensional139

parametric and infinite-dimensional nonparametric components. The semiparametric efficiency bound140

is defined as the supremum of the Cramer-Rao lower bounds for all parametric submodels. The141

EIF is the influence function of a semiparametric regular and asymptotically linear estimator that142

achieves the semiparametric efficiency bound. We assume a general model for the action assignment143

mechanism, denoted as φ(U, Y (1); η), which is represented by a parameter η. For the ease of144

exposition, we simplify φ(U, Y (1); η) as φ(η) and ∂φ(U, Y (1); η)/∂η as φ̇(η). The following two145

theorems present the efficient score for η, EIF and the semiparametric efficiency bound for the value146

function. Please refer to Appendix B for detailed derivations.147

Theorem 3.3 Under Assumption 3.1, the efficient score for η is Sη,eff = φ(η)−A
φ(η)

E
{

φ̇(η)

φ(η)2
|X,A=1

}
E
{

φ(η)−1

φ(η)2
|X,A=1

} .148

Theorem 3.4 Under Assumptions 3.1, the EIF for V1(π) is149

ϕeff(π) = π(X)

 A

φ(η)
Y +

{
1− A

φ(η)

} E
{

1−φ(η)
φ(η)2 Y | X, A = 1

}
E
{

1−φ(η)
φ(η)2 | X, A = 1

}
− V1(π) +DSη,eff , (4)

where D =

(
E

[
π(X)

E
{

1−φ(η)

φ(η)2
Y |X,A=1

}
E
{

1−φ(η)

φ(η)2
|X,A=1

} φ̇(η)
φ(η)

]
− E

[
π(X)E

{
φ̇(η)
φ(η)2Y | X, A = 1

}])T

{Var(Sη,eff)}−1.150

The semiparametric efficiency bound for V1(π) is Υ(π) = E{ϕ2eff(π)}.151

4 Efficient Decision Evaluation and Learning152

Based on the EIF (4), since D is a constant and Sη,eff is a score function with mean zero, we propose153

the following estimator for V1(π):154

V̂1(π) = Pn

π(x)
 a

φ(η̂)
y +

{
1− a

φ(η̂)

} Ê
{

1−φ(η)
φ(η)2 Y | x, 1

}
Ê
{

1−φ(η)
φ(η)2 | x, 1

}
 , (5)

where Pn[h(x)] =
1
n

∑n
i=1 h(xi) for any given function h(x), and quantities marked with hats are155

estimates of their unmarked counterparts. To obtain the value estimator, we first need to estimate η and156

two conditional expectations E
{

1−φ(η)
φ(η)2 Y | x, 1

}
and E

{
1−φ(η)
φ(η)2 | x, 1

}
. A general semiparametric157

estimator for η can be obtained by solving the following equation:158

Pn

[
φ(u, y; η)− a

φ(u, y; η)
g(x; η)

]
= 0, (6)

where g(x; η) is a calibration function with the same dimension as η. Although this estimator159

achieves consistency and asymptotic normality under certain regularity conditions, its efficiency is160

not guaranteed. To ensure minimum estimation variability introduced by η̂, we let g(x; η) = Sη,eff .161

The corresponding estimator of η is denoted as η̂eff . However, the closed forms of the two conditional162

expectations in Sη,eff are unknown and need to be approximated. We consider the following two163

scenarios.164

Scenario I: When the outcome Y is binary, say Y ∈ {0, 1}, we can specify a model for P(Y =165

1 | X, A = 1) and we denote its estimator as P̂(Y = 1 | X, A = 1). The conditional expectations166

in Sη,eff can be estimated by Ê
{

φ̇(η)
φ(η)2 | X, A = 1

}
= ∂φ(U,1;η)/∂η

φ(U,1;η)2 P̂(Y = 1 | X, A = 1) +167

∂φ(U,0;η)/∂η
φ(U,0;η)2 {1 − P̂(Y = 1 | X, A = 1)}, and Ê

{
φ(η)−1
φ(η)2 | X, A = 1

}
= φ(U,1;η)−1

φ(U,1;η)2 P̂(Y = 1 |168

X, A = 1)+ φ(U,0;η)−1
φ(U,0;η)2 {1− P̂(Y = 1 | X, A = 1)}. Thus we get the estimated efficient score Ŝη,eff .169

The efficient estimator η̂eff is then obtained by solving (6) with g(x; η) = Ŝη,eff . Next, the conditional170

expectations in (5) can be estimated by Ê
{

1−φ(η)
φ(η)2 Y | X, A = 1

}
= 1−φ(U,1;η̂eff )

φ(U,1;η̂eff )2
P̂(Y = 1 | X, A =171
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1), and Ê
{

1−φ(η)
φ(η)2 | X, A = 1

}
= 1−φ(U,1;η̂eff )

φ(U,1;η̂eff )2
P̂(Y = 1 | X, A = 1) + 1−φ(U,0;η̂eff )

φ(U,0;η̂eff )2
{1 − P̂(Y =172

1 | X, A = 1)}. By plugging the estimated conditional expectations and η̂eff into (5), we obtain the173

value estimator and denote it as V̂eff(π).174

Scenario II: When the outcome Y is continuous, one can still first model the conditional density175

f(y | x, 1). However, the density estimation often requires large sample sizes and complex al-176

gorithms to achieve accurate estimates. This can be computationally intensive and prone to high177

variance, particularly in high-dimensional spaces. Instead, we propose a two-step estimation strat-178

egy. In step 1, we find a root-n consistent estimator η̂(1). For example, we can choose a simple179

calibration function g(x; η) and solve the equation (6). In step 2, we construct pseudo-outcomes180

φ̇(η̂(1))
φ2(η̂(1))

and φ(η̂(1))−1
φ2(η̂(1))

and the estimators of the conditional expectations, Ê
{

φ̇(η)
φ(η)2 | X, A = 1

}
and181

Ê
{

φ(η)−1
φ(η)2 | X, A = 1

}
can then be obtained using regression with these pseudo-outcomes. Thus182

we can get the estimated efficient score Ŝη,eff . The efficient estimator η̂eff is then obtained by solving183

(6) with g(x; η) = Ŝη,eff . Similarly, we can construct pseudo-outcomes 1−φ(η̂eff )
φ(η̂eff )2

Y and 1−φ(η̂eff )
φ(η̂eff )2

.184

The estimators Ê
{

1−φ(η)
φ(η)2 Y | X, A = 1

}
, and Ê

{
1−φ(η)
φ(η)2 | X, A = 1

}
can be obtained using re-185

gression with these pseudo-outcomes. By plugging the estimators η̂eff , Ê
{

1−φ(η)
φ(η)2 Y | X, A = 1

}
,186

and Ê
{

1−φ(η)
φ(η)2 | X, A = 1

}
into (5), we obtain the value estimator and denote it as V̂eff(π).187

We now establish the theoretical results for the proposed value estimator. We first make the following188

assumptions for the nuisance functions and their approximations.189

Assumption 4.1 For all x ∈ X , (i) {|k1(x)|, |k̂1(x)|} > 0, where k1(x) = Ê
{

φ(η)−1
φ(η)2 | x, 1

}
;190

(ii) for any k2(x) ∈
{
E
{

φ̇(η)
φ(η)2 | x, 1

}
,E
{

1−φ(η)
φ(η)2 Y | x, 1

}}
, {|k2(x)|, |k̂2(x)|} < ∞. (iii) for191

any k3(x) ∈
{
E
{

φ(η)−1
φ(η)2 | x, 1

}
,E
{

1−φ(η)
φ(η)2 Y | x, 1

}
,E
{

φ̇(η)
φ(η)2 | x, 1

}}
, k̂3(x)

p−→ k3(x).192

Assumption 4.1 (i) and (ii) require that the conditional expectations and their estimations are bounded.193

Assumption 4.1 (iii) requires that the conditional expectations are consistently estimated. In the194

case of a binary outcome, the estimation of P(Y = 1 | X, A = 1) is required to be consistent.195

For continuous outcomes, given the root-n consistency of η̂(1), we only require that the regression196

with constructed pseudo-outcomes is consistent. This can be achieved by various machine and deep197

learning models (e.g. Kennedy, 2016; Farrell et al., 2021).198

Theorem 4.2 Under Assumptions 3.1 and 4.1 (i) (ii), V̂eff(π) is a consistent estimator for V1(π). If199

further Assumption 4.1 (iii) holds, V̂eff(π) achieves the semiparametric efficiency bound Υ(π).200

Next, we propose a method based on the efficient estimator V̂eff(π) to learn the optimal decision201

rule, π∗ = argmaxπ∈Π V1(π). A natural estimator for the optimal decision rule π∗ would be202

π̂ = argmaxπ∈Π V̂eff(π). However, this direct search poses a significant challenge as it typically203

involves non-convex and non-smooth optimization problems and can be computationally expensive.204

We have the following proposition to transform it into a weighted classification problem.205

Proposition 4.3 Maximizing the value estimator V̂eff(π) is equivalent to a weighted classification206

problem of minimizing the following loss function over π ∈ Π,207

n−1
n∑

i=1

I{I{ψ̂(xi, yi, ai) > 0} ≠ π(xi)}|ψ̂(xi, yi, ai)|, (7)

where ψ̂(xi, yi, ai) =
ai

φi(η̂eff )
yi +

{
1− ai

φi(η̂eff )

} Ê
{

1−φ(η)

φ(η)2
Y |xi,1

}
Ê
{

1−φ(η)

φ(η)2
|xi,1

} , for 1 ≤ i ≤ n.208

With Proposition 4.3, we have transformed the optimal decision rule learning into a weighted209

classification problem (7) where for subject i with features xi , the true label is I{ψ̂(xi, yi, ai) > 0}210

and the sample weight is |ψ̂(xi, yi, ai)|. The choice of classification approach dictates the restricted211
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class Π. Compared to a direct search, a classification-based optimizer facilitates handling more212

complex functional classes and allows for the use of off-the-shelf machine learning and deep learning213

software packages.214

5 Experiments215

We have carried out extensive simulation studies and a real data application to evaluate the perfor-216

mance of the proposed methods.217

5.1 Synthetic Scenarios218

In this section, we focus on decision learning. The experiments for decision evaluation can be found219

in Appendix D.1. We compare the proposed method with three alternative methods. One consistent220

but not efficient estimator for η is the solution to the estimation equation (6) with a simple choice221

g(x; η). We denote this estimator as η̂naive. The first estimator for the value function is the IPW222

estimator with η̂naive: V̂IPW−naive(π) = Pn

[
a

φ(η̂naive)
yπ(x)

]
. The second estimator is also an IPW223

estimator but with η̂eff : V̂IPW−eff(π) = Pn

[
a

φ(η̂eff )
yπ(x)

]
. The third estimator is the DR estimator224

(Zhang et al., 2012; Dudík et al., 2014): V̂DR(π) = Pn

(
π(x)

[
a

ŵ(x)

{
y − Ê(y | x)

}
+ Ê(y | x)

])
.225

We first generate covariates X = (X1, X2, X3)
T ∼ N((1,−1, 0)T ,Σ), where Σ =226 (

1 −0.25 −0.25
−0.25 1 −0.25
−0.25 −0.25 1

)
. The potential outcome is generated by Y (1) = 8X1−6X2

1−4X2+2X2
3+227

ϵ, where ϵ is generated from a normal distribution with mean 0 and standard deviation 0.25. The228

action A is generated from A ∼ Bernoulliφ(X, Y (1)) = 1/[1 + exp{0.5−X1 −X2 − 0.15Y (1)}].229

Thus, X3 is the shadow variable.230

We consider a correctly specified logistic regression model for φ(η). We obtain η̂naive using g(x; η) =231

(1, x1, x2, x3)
T . We obtain the efficient estimators η̂eff and V̂eff(π) using the approach introduced232

in Section 4. Specifically, all the regressions with pseudo-outcomes are using random forest (RF)233

models. For the DR estimator, we estimate w(x) using a generalized additive model (GAM) and234

estimate E(y | x) using a RF model. We use a tree-based algorithm introduced in Zhou et al. (2023)235

for weighted classification. To evaluate and compare the performance of estimated optimal decision236

rules obtained by different methods, we compute the corresponding value functions and percentages237

of making correct decisions (PCD). We generate a large sample {Xi, Yi(1)}Ni=1 with size N = 105.238

Figure 1: The values and PCDs of estimated optimal decision
rules.

For a fixed decision rule π, its239

value function is computed using240

the empirical version of V (π) =241

E[Y (1)π(X)]. We then maximize242

the value function and obtain the243

oracle optimal decision rule within244

the same class of rules, denoted as245

π∗. For each estimated optimal de-246

cision rule π̂, its associated value247

function is computed using the gen-248

erated large sample and the PCD is249

computed byN−1
∑N

i=1 |π̂(Xi)−250

π∗(Xi)|. We report the value and251

PCD results for the decision rules252

obtained by different methods in Figure 1. We observe that the decision rule obtained by our proposed253

method has best performance compared with other methods, in terms of values and PCDs. For our254

proposed method, as the sample size increases, the means of values become larger, PCDs get close to255

1, and the standard deviations of values and PCDs become smaller.256

5.2 Real Data Application257

We applied our method to a loan application dataset from a fintech company, where the lender aims258

to provide short-term credit to young salaried professionals by leveraging their mobile and social259

footprints to assess creditworthiness. Further details can be found in the Appendix D.2.260
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A Related Work367

Contextual Bandits, Off-policy Evaluation and Learning As formally described in Section 2,368

decision-making with one-sided feedback can be formulated as a special type of contextual bandits369

problem (Chu et al., 2011; Agrawal & Goyal, 2013; Zhou et al., 2020). There are a limited number370

of works focusing on one-sided feedback, with two notable related works in this setting. Jiang et al.371

(2021) considered binary outcomes and estimated outcome functions using generalized linear models,372

proposing an adaptive online learning approach that integrates uncertainty into outcome estimation.373

Pacchiano et al. (2021) studied the same problem setting with binary outcomes, approximating the374

outcome function using deep neural networks and proposing an online algorithm to train an optimistic375

decision-making model. However, their methods cannot be generalized to numerical outcomes376

and focus on the online learning setting. In contrast, the primary focus of our work is on decision377

evaluation and learning using observational data, commonly referred to as off-policy evaluation and378

learning in the context of contextual bandits. Off-policy methods have attracted significant interest,379

particularly in fields such as finance, medicine, and education, where experimentation and exploration380

can be risky, costly, or even unethical (Dudík et al., 2011; Zhang et al., 2012; Wang et al., 2017;381

Athey & Wager, 2021).382

Selective/Non-Random-Missing Labels Although we study the problem under the contextual383

bandits setting, it is intrinsically related to the selective/non-random-missing labels problems in384

semi-supervised learning (Misra et al., 2016; Kleinberg et al., 2018; Sohn et al., 2020; Coston et al.,385

2021). In these problems, only a subset of instances receive labels, determined by the choices of386

decision-makers. This issue is further complicated by unmeasured confounders that influence both387

human decisions and the resulting outcomes. Lakkaraju et al. (2017) proposed a model evaluation388

method based on the assumption that the decisions in the historical dataset are made by different389

decision-makers with varying thresholds for their yes-no decisions. Sportisse et al. (2023) studied the390

problem in semi-supervised learning, adopting the assumption that the label-missing mechanism is391

independent of covariates given the label itself, implying that all covariates are SVs. Based on this392

assumption, they constructed consistent estimators for the loss function by modeling the label-missing393

mechanism. Hu et al. (2022) adopted the same assumption but proposed estimators without modeling394

the missing mechanism. The significant difference in our work is that we do not require all covariates395

to be SVs; instead, we allow the missing mechanism to depend on both the covariates and the outcome.396

More importantly, we develop the most efficient estimator by utilizing semiparametric theory.397

B Derivations of the EIF and Semiparametric Efficiency Bound398

Consider the Hilbert space T of all measurable functions of the observed data with mean zero399

and finite variance, equipped with covariance inner product ⟨h1, h2⟩ = E{h1(·)Th2(·)}, where400

h1, h2 ∈ T . We first derive the nuisance tangent space and its orthogonal complement, where the401

nuisance tangent space is defined as the mean squared closure of all parametric submodel nuisance402

tangent spaces.403
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Theorem B.1 The Hilbert space T can be decomposed as404

T = Λ1 ⊕ Λ2 ⊕ Λ⊥,

where405

Λ1 = [h1(X) : E{h1(X) = 0}] ,

Λ2 =

[
Ah2(X, Y (1)) +

w(X)−A

1− w(X)
E{h2(X, Y (1)) | X} : E{h2(X, Y (1)) | X, A = 1} = 0

]
,

Λ⊥ =

{
φ(η)−A

φ(η)
g(X)

}
,

g(X) is a function with the same dimension as η, and the notation ⊕ denotes the direct sum of two406

spaces that are orthogonal to each other.407

The proof is given in C.2. Based on Theorem B.1, the EIF for V1(π) has the following form408

ϕeff =h∗1(X)︸ ︷︷ ︸
∈Λ1

+Ah∗2(X) +
w(X)−A

1− w(X)
E{h∗2(X, Y (1)) | X}︸ ︷︷ ︸

∈Λ2

+DTSη,eff︸ ︷︷ ︸
∈Λ⊥

,

where E{h∗1(X) = 0},E{h∗2(X, Y (1)) | X, A = 1} = 0, Sη,eff is the efficient score for η, and D is409

a vector with the same dimension as η. The efficient score Sη,eff can be obtained by projecting the410

score function of η onto Λ⊥. The projection procedure is shown in Appendix C.3.411

By projecting the value function identification (3) onto Λ1,Λ2, and Λ⊥, we can derive h∗1(X), h∗2(X),412

and D. The projection procedure is shown in Appendix C.4413

C Technical Proofs414

C.1 Proof of Theorem 3.2415

Proof.416

E{Y (1) | X = x}
=E{Y (1) | X = x,A = 1}w(x) + E{Y (1) | X = x,A = 0}{1− w(x)}

=w(x)

{∫
yf(y | x, 1)dy

}
+ {1− w(x)}

{∫
yf(y | x, 0)dy

}
=w(x)

{∫
yf(y | x, 1)dy

}
+

{∫
y{1− w(x)}f(y | x, 0)dy

}
=w(x)

{∫
yf(y | x, 1)dy

}
+

{∫
yf(y | x, 1)

[
f(y | x, 0){1− w(x)}

f(y | x, 1)

]
dy

}
=w(x)

{∫
yf(y | x, 1)dy

}
+

{∫
yf(y | x, 1)

[
w(x)

{
1

φ(x, y)
− 1

}]
dy

}
=w(x)

{∫
yf(y | x, 1)dy

}
+ w(x)

{∫
yf(y | x, 1)

[{
1

φ(x, y)
− 1

}]
dy

}
=w(x)

∫
y
f(y | x, 1)
φ(x, y)

dy.

Therefore,417

V1(π) = E{Y (1)π(X)}
=E (E[{Y (1)π(X)} | X])

=

∫
f(x)π(x)E{Y (1) | X = x}dx

=

∫
f(x)w(x)

{∫
y
f(y | x, 1)
φ(x, y)

dy

}
π(x)dx.
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To identify V (π), we need to identify f(x), w(x), f(y|x, 1), and φ(x, y). The likelihood function418

for a single observation is419

f(x)w(x)a{1− w(x)}1−af(y | x, 1)a.

A key observation is that

w(x)
−1

=

∫
f(y|x, 1)
φ(x, y)

dy.

Under Assumption 3.1(i), φ(x, y) = P{A = 1 | X = x, Y (1) = y} = P{A = 1 | U = u, Y (1) =420

y} = φ(u, y), and the likelihood function becomes421

f(x)

{∫
f(y|x, 1)
φ(u, y)

dy

}−a
[
1−

{∫
f(y|x, 1)
φ(u, y)

dy

}−1
]1−a

f(y|x, 1)a.

Assume we have two different sets of models f(x), f(y | x, 1), φ(u, y), and f̃(x), f̃(y | x, 1),422

φ̃(u, y), such that423

f(x)

{∫
f(y|x, 1)
φ(u, y)

dy

}−a
[
1−

{∫
f(y|x, 1)
φ(u, y)

dy

}−1
]1−a

f(y|x, 1)a

=f̃(x)

{∫
f̃(y|x, 1)
φ̃(u, y)

dy

}−a
1−{∫ f̃(y|x, 1)

φ̃(u, y)
dy

}−1
1−a

f̃(y|x, 1)a. (8)

Taking a = 0 in (8), we have424

f(x)

[
1−

{∫
f(y|x, 1)
φ(u, y)

dy

}−1
]
= f̃(x)

1−{∫ f̃(y|x, 1)
φ̃(u, y)

dy

}−1
 . (9)

Taking a = 1 and taking integration with respect to Y (1) on both sides of the above equation, we425

have426

f(x)

{∫
f(y|x, 1)
φ(u, y)

dy

}−1

= f̃(x)

{∫
f̃(y|x, 1)
φ̃(u, y)

dy

}−1

. (10)

By Equations (9) and (10), we have427

f(x) = f̃(x) and
∫
f(y|x, 1)
φ(u, y)

dy =

∫
f̃(y|x, 1)
φ̃(u, y)

dy.

Taking a = 1 in (8), we have428

f(x)

{∫
f(y|x, 1)
φ(u, y)

dy

}−1

f(y|x, 1) = f̃(x)

{∫
f̃(y|x, 1)
φ̃(u, y)

dy

}−1

f̃(y|x, 1).

Thus, we have
f(y|x, 1) = f̃(y|x, 1).

Finally, from429 ∫
f(y|x, 1)
φ(u, y)

dy =

∫
f(y|x, 1)
φ̃(u, y)

dy,

and Assumption 3.1 (ii), we have430

φ(u, y) = φ̃(u, y).

Thus, f(x),w(x), f(y|x, 1), and φ(x, y) are all identified. The value function V1(π) is then identified.431

□432

11



C.2 Proof of Theorem B.1433

Proof. Let O = {AY,A,X} summarize the vector of observed variables with the likelihood434

factorized as435

f(O) = f(X)w(X)A{1− w(X)}1−Af(Y | X,A = 1)A.

We consider a one-dimensional parametric submodel fθ1(X) for f(X), and a one-dimensional436

parametric submodel fθ2(Y | X,A = 1) for f(Y | X,A = 1), respectively. The submodel fθ1(X)437

contains the true model f(X) at θ1 = 0, i.e., fθ1(X) |θ1=0= f(X). Similarly, the submodel438

fθ2(Y | X,A = 1) contains the true model f(Y | X,A = 1) at θ2 = 0, i.e., fθ2(Y | X,A =439

1) |θ2=0= f(Y | X,A = 1). The submodel for the likelihood can be represented as440

fθ1,θ2(O) = fθ1(X)wθ2(X)A{1− wθ2(X)}1−Afθ2(Y | X,A = 1)A.
441

∂ log fθ1,θ2(O)

∂θ1
=
∂ log fθ1(X)

∂θ1
,

∂ log fθ1,θ2(O)

∂θ2
= A

∂ log fθ2(Y | X,A = 1)

∂θ2
+
wθ2(X)−A

1− wθ2(X)
E
{
∂ log fθ2(Y | X,A = 1)

∂θ2
| X
}
.

By the semiparametric theory (Bickel et al., 1993; Tsiatis, 2006), we have the nuisance tangent spaces442

Λ1 = [h1(X) : E{h1(X) = 0}] ,

Λ2 =

[
Ah2(X,Y (1)) +

w(X)−A

1− w(X)
E{h2(X,Y (1)) | X} : E{h2(X,Y (1)) | X,A = 1} = 0

]
.

It is easy to verify that Λ1 ⊥ Λ2. Consider a generic mean zero element in Λ⊥, Ag1(X,Y (1)) +443

(1−A)g2(X). Since Λ1 ⊥ Λ⊥, for any measurable mean zero function h1(X), we have444

E[{Ag1(X,Y (1)) + (1−A)g2(X)}h1(X)]

=E(E[{Ag1(X,Y (1)) + (1−A)g2(X)}h1(X) | X])

=E([w(X)E{g1(X,Y (1)) | X,A = 1}+ {1− w(X)}g2(X)]h1(X))

=0.

Therefore, w(X)E{g1(X,Y (1)) | X,A = 1}+ {1− w(X)}g2(X) is a constant and we denote it445

as c. Since Ag1(X,Y (1)) + (1−A)g2(X) is mean zero, we have446

E{Ag1(X,Y (1)) + (1−A)g2(X)}
=E[w(X)E{g1(X,Y (1)) | X,A = 1}+ {1− w(X)}g2(X)]

=E(c) = 0.

Therefore, we have447

w(X)E{g1(X,Y (1)) | X,A = 1}+ {1− w(X)}g2(X) = 0. (11)

Since Λ2 ⊥ Λ⊥, we have448

E
(
{Ag1(X,Y (1)) + (1−A)g2(X)}

[
Ah2(X,Y (1)) +

w(X)−A

1− w(X)
E{h2(X,Y (1)) | X}

])
=E [w(X)E{g1(X,Y (1))h2(X,Y (1)) | X,A = 1}+ g2(X)E{h2(X,Y (1)) | X}]

=E
[
w(X)E{g1(X,Y (1))h2(X,Y (1)) | X,A = 1}+ w(X)g2(X)E

{
h2(X,Y (1))

φ(η)
| X,A = 1

}]
=E

(
E
[
w(X)

{
g1(X,Y (1)) +

g2(X)

φ(η)

}
h2(X,Y (1)) | X,A = 1

])
=0.

Therefore, g1(X,Y (1)) + g2(X)
φ(η) is a function of X and we denote it as k(X):449

k(X) = g1(X,Y (1)) +
g2(X)

φ(η)
.
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Taking the conditional expectation on both sides, and by (11), we have450

k(X) = E{g1(X,Y (1)) | X,A = 1}+ g2(X)

w(X)
= g2(X).

Therefore, we have451

g2(X) = g1(X,Y (1)) +
g2(X)

φ(η)
.

Thus,452

Ag1(X,Y (1)) + (1−A)g2(X) =
φ(η)−A

φ(η)
g1(X),

and Λ⊥ =
{

φ(η)−A
φ(η) g1(X)

}
. This completes the proof. □453

C.3 Proof of Theorem 3.3454

Proof. The score function for η is455

Sη =
A− w(X)

1− w(X)
E
{
φ̇(η)

φ(η)
| X
}
.

The efficient score for η is the projection of the score function Sη onto the space Λ⊥. Notice that456

Sη ⊥ Λ1. Therefore, we can write457

A− w(X)

1− w(X)
E
{
φ̇(η)

φ(η)
| X
}

= Ab(X,Y (1)) +
w(X)−A

1− w(X)
E{b(X,Y (1)) | X}︸ ︷︷ ︸

∈Λ2

+
φ(η)−A

φ(η)
c(X)︸ ︷︷ ︸

Λ⊥

,

(12)

where E{b(X,Y (1)) | X,A = 1} = 0. Let A = 1 in (12), we have458

E
{
φ̇(η)

φ(η)
| X
}

= b(X,Y (1))− E{b(X,Y (1)) | X}+ φ(η)− 1

φ(η)
c(X).

By taking E(· | X) on both sides, we have459

c(X) =
E
{

φ̇(η)
φ(η) | X

}
1− E

{
1

φ(η) | X
} =

E
{

φ̇(η)
φ(η)2 | X,A = 1

}
E
{

φ(η)−1
φ(η)2 | X,A = 1

} .
Therefore,460

Sη,eff =
φ(η)−A

φ(η)

E
{

φ̇(η)
φ(η)2 | X,A = 1

}
E
{

φ(η)−1
φ(η)2 | X,A = 1

} .
Let A = 0 in (12), we can further derive that461

b(X,Y (1)) =

{
1

φ(η)
− 1

w(X)

}
c(X).

□462

C.4 Proof of Theorem 3.4463

Proof. We consider a one-dimensional parametric submodel fα(X) for f(X), and a one-dimensional464

parametric submodel fβ(Y | X,A = 1) for f(Y | X,A = 1), respectively. The submodel465

fα(X) contains the true model f(X) at α = α0, i.e., fα0(X) = f(X). Similarly, the submodel466

fβ(Y | X,A = 1) contains the true model f(Y | X,A = 1) at β = β0, i.e., fβ0
(Y | X,A = 1) =467

f(Y | X,A = 1). Let θ = (α, β). The submodel for the likelihood can be represented as468

fθ,η(O) = fα(X){wβ,η(X)}Afβ(Y |X,A = 1){1− wβ,η(X)}1−A,
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which contains the true model at θ0 = (α0, β0). For the ease of exposition, we write V1(π) as V (π).469

We use θ in the subscript to denote the quantity with respect to the submodel, e.g., Vθ(π) is the value470

of V (π) in the submodel.471

Let472

Sα0 =
∂ log fθ(O)

∂α

∣∣∣∣
θ=θ0

=
∂ log fα(X)

∂α

∣∣∣∣
α=α0

,

Sβ0
=
∂ log fθ(O)

∂β

∣∣∣∣
θ=θ0

= A
∂ log fβ(Y |X,A = 1)

∂β

∣∣∣∣
β=β0

+
w(X)−A

1− w(X)
E

{
∂ log fβ(Y |X,A = 1)

∂β

∣∣∣∣
β=β0

| X

}
,

Sη =
∂ log fθ(O)

∂η

∣∣∣∣
θ=θ0

=
A− w(X)

1− w(X)
E
{
∂ logφ(η)

∂η
| X
}
.

Let sβ0
=

∂ log fβ(Y |X,A=1)
∂β

∣∣∣∣
β=β0

and sη = ∂ logφ(η)
∂η .473

By the semiparametric theory, the EIF for V (π) must have the form474

ϕeff =h∗1(X)︸ ︷︷ ︸
∈Λ1

+Ah∗2(X) +
w(X)−A

1− w(X)
E{h∗2(X,Y (1)) | X}︸ ︷︷ ︸

∈Λ2

+DTSη,eff︸ ︷︷ ︸
∈Λ⊥

,

where E{h∗1(X) = 0},E{h∗2(X,Y (1)) | X,A = 1} = 0, and D is a vector with the same dimension475

as η. The EIF ϕeff for V (π) must satisfy476

∂Vθ(π)/∂α|θ=θ0 = E(ϕeffSα0
),

∂Vθ(π)/∂β|θ=θ0 = E(ϕeffSβ0
),

∂Vθ(π)/∂η|θ=θ0 = E(ϕeffSη).

(I)477

∂Vθ(π)/∂α |θ=θ0 = E
[
π(X)w(X)E

{
Y

φ(η)
| X,A = 1

}
Sα0

]
,

E(ϕeffSα0
) = E{h∗1(X)Sα0

}.
We have478

h∗1(X) = π(X)w(X)E
{

Y

φ(η)
| X,A = 1

}
− V (π).

(II)479

∂Vθ(π)/∂β |θ=θ0= E [π(X){Y (1)− E(Y (1)|X)}sβ0
] ,

E(ϕeffSβ0
) = E

([
φ(η)h∗2(X,Y (1)) +

w(X)

1− w(X)
E{h∗2(X,Y (1)) | X}

]
sβ0

)
.

480

∂Vθ(π)/∂β |θ=θ0 −E(ϕeffSβ0
)

=E
([
φ(η)h∗2(X,Y (1)) +

w(X)

1− w(X)
E{h∗2(X,Y (1)) | X} − π(X){Y (1)− E{Y (1)|X}

]
sβ0

)
=E

{
E
([
h∗2(X,Y (1)) +

w(X)

1− w(X)

E{h∗2(X,Y (1))} | X}
φ(η)

− π(X)
Y (1)− E{Y (1)|X}

φ(η)

]
φ(η)sβ0

)
| X
}
.

Since E{φ(η)sβ0
| X} = 0, h∗2(X,Y (1))+ w(X)

1−w(X)
E{h∗

2(X,Y (1))}|X}
φ(η) −π(X)Y (1)−E{Y (1)|X}

φ(η) must481

be a function of X and we denote it as m(X):482

m(X) = h∗2(X,Y (1)) +
w(X)

1− w(X)

E{h∗2(X,Y (1))} | X}
φ(η)

− π(X)
Y (1)− E{Y (1)|X}

φ(η)
. (13)

Taking the conditional expectation on both sides, we have483

m(X) =
E{h∗2(X,Y (1)) | X}

1− w(X)
.
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Therefore, we have484

E{h∗2(X,Y (1)) | X}
1− w(X)

= h∗2(X,Y (1))+
w(X)

1− w(X)

E{h∗2(X,Y (1))} | X}
φ(η)

−π(X)
Y (1)− E{Y (1)|X}

φ(η)
.

Taking E(· | X) on both sides,485

E{h∗2(X,Y (1)) | X}
1− w(X)

=E{h∗2(X,Y (1)) | X}+ w(X)

1− w(X)
E{h∗2(X,Y (1)) | X}E{1/φ(η) | X}

− π(X) [E{Y (1)/φ(η) | X} − E{Y (1) | X}E{1/φ(η) | X}] .

We have486

E{h∗2(X,Y (1)) | X} = π(X)
1− w(X)

w(X)

E {Y (1)/φ(η) | X} − E{Y (1) | X}E{1/φ(η) | X}
E{1/φ(η) | X} − 1

.

(14)

By Equations (13) and (14),487

h∗2(X,Y (1)) = π(X)

{ 1

w(X)
− 1

φ(η)

} E
{

Y (1)
φ(η) | X

}
− E{Y (1) | X}E

{
1

φ(η) | X
}

E{1/φ(η) | X} − 1
+
Y (1)− E{Y (1) | X}

φ(η)

 .
(III)488

∂Vθ(π)/∂η|θ=θ0 = E

π(X)
E
{
Y (1) 1−φ(η)

φ(η) | X
}

E
{

1−φ(η)
φ(η) | X

} φ̇(η)

φ(η)

− E
{
π(X)Y (1)

φ̇(η)

φ(η)

}
.

489

E(ϕeffSη) = DTE{Seff(η)Seff(η)
T }.

By ∂Vθ(π)/∂η|θ=θ0 = E(ϕeffSη),490

D =

E

π(X)
E
{

1−φ(η)
φ(η)2 Y | X,A = 1

}
E
{

1−φ(η)
φ(η)2 | X,A = 1

} φ̇(η)

φ(η)

− E
[
π(X)E

{
φ̇(η)

φ(η)2
Y | X,A = 1

}]T

{Var(Sη,eff)}−1.

By (I),(II), and (III), we complete the proof. □491

C.5 Proof of Theorem 4.2492

Proof.493

E

π(X)

 A

φ(η)
Y +

{
1− A

φ(η)

} E
{

1−φ(η)
φ(η)2 Y | x, 1

}
E
{

1−φ(η)
φ(η)2 | x, 1

}


=E
{
π(X)

A

φ(η)
Y

}
=E

{
π(X)

A

φ(η)
AY (1)

}
=E

[
E
{
π(X)

A

φ(η)
Y (1) | X,Y (1)

}]
=E

[
π(X)

Y (1)

φ(η)
E {A | X,Y (1)}

]
=E {π(X)Y (1)} = V1(π).
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Since a solution to Equation (6) is a root-n estimator of η, by the strong law of large numbers and494

uniform consistency, we have V̂eff(π) = V1(π) + op(1).495

By Assumption 4.1 and the empirical process theory, we have496

Pn

φ(η̂eff)− a

φ(η̂eff)

Ê
{

φ̇(η)
φ(η)2 | x, 1

}
Ê
{

φ(η)−1
φ(η)2 | x, 1

}
− Pn

φ(η̂eff)− a

φ(η̂eff)

E
{

φ̇(η)
φ(η)2 | x, 1

}
E
{

φ(η)−1
φ(η)2 | x, 1

}


=P

φ(η̂eff)− a

φ(η̂eff)

Ê
{

φ̇(η)
φ(η)2 | x, 1

}
Ê
{

φ(η)−1
φ(η)2 | x, 1

}
− P

φ(η̂eff)− a

φ(η̂eff)

E
{

φ̇(η)
φ(η)2 | x, 1

}
E
{

φ(η)−1
φ(η)2 | x, 1

}
+ op(n

−1/2). (15)

For the ease of exposition, let E1 = E
{

φ̇(η)
φ(η)2 | x, 1

}
and E2 = E

{
φ(η)−1
φ(η)2 | x, 1

}
. By Assumptions497

4.1, for some constant l1 > 0, we have498 ∣∣∣∣∣P
{
φ(η̂eff)− a

φ(η̂eff)

Ê1

Ê2

}
− P

{
φ(η̂eff)− a

φ(η̂eff)

E1

E2

}∣∣∣∣∣
=

∣∣∣∣∣P
[
φ(η̂eff)− a

φ(η̂eff)

{
Ê1

Ê2

− E1

E2

}]∣∣∣∣∣
=

∣∣∣∣∣P
[
φ(η̂eff)− a

φ(η̂eff)

{
Ê1

Ê2

− E1

Ê2

+
E1

Ê2

− E1

E2

}]∣∣∣∣∣
=

∣∣∣∣∣P
[
φ(η̂eff)− a

φ(η̂eff)

{
Ê1 − E1

Ê2

+
E1(E2 − Ê2)

E2Ê2

}]∣∣∣∣∣
≤Op(n

−1/2)× op(1)

=op(n
−1/2). (16)

By Equations (15) and (16), we have

Pn

φ(η̂eff)− a

φ(η̂eff)

Ê
{

φ̇(η)
φ(η)2 | x, 1

}
Ê
{

φ(η)−1
φ(η)2 | x, 1

}
 = Pn

φ(η̂eff)− a

φ(η̂eff)

E
{

φ̇(η)
φ(η)2 | x, 1

}
E
{

φ(η)−1
φ(η)2 | x, 1

}
+ op(n

−1/2).

By taking Taylor expansion, we have499

Pn

φ(η̂eff)− a

φ(η̂eff)

E
{

φ̇(η)
φ(η)2 | x, 1

}
E
{

φ(η)−1
φ(η)2 | x, 1

}


=Pn(Sη,eff) + P

aφ̇(η)
φ2(η)

E
{

φ̇(η)
φ(η)2 | x, 1

}
E
{

φ(η)−1
φ(η)2 | x, 1

}
T

(η̂ − η) + op(n
−1/2)

=Pn(Sη,eff)− Var(Sη,eff)(η̂ − η) + op(n
−1/2). (17)

By Assumption 4.1 and the empirical process theory, we have500

V̂eff(π) =Pn

π(x)
 a

φ(η̂eff)
y +

{
1− a

φ(η̂eff)

} E
{

1−φ(η)
φ(η)2 Y | x, 1

}
E
{

1−φ(η)
φ(η)2 | x, 1

}


+ P

{1− a

φ(η̂eff)

} Ê
{

1−φ(η)
φ(η)2 Y | x, 1

}
Ê
{

1−φ(η)
φ(η)2 | x, 1

}
− P

{1− a

φ(η̂eff)

} E
{

1−φ(η)
φ(η)2 Y | x, 1

}
E
{

1−φ(η)
φ(η)2 | x, 1

}
+ op(n

−1/2).

(18)
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For the ease of exposition, let E3 = E
{

1−φ(η)Y
φ(η)2 | x, 1

}
. By Assumptions 4.1, for some constant501

l2 > 0, we have502 ∣∣∣∣∣P
{
−φ(η̂eff)− a

φ(η̂eff)

Ê3

Ê2

}
+ P

{
φ(η̂eff)− a

φ(η̂eff)

E3

E2

}∣∣∣∣∣
=

∣∣∣∣∣P
[
φ(η̂eff)− a

φ(η̂eff)

{
− Ê3

Ê2

+
E3

E2

}]∣∣∣∣∣
=

∣∣∣∣∣P
[
φ(η̂eff)− a

φ(η̂eff)

{
− Ê3

Ê2

+
E3

Ê2

− E3

Ê2

+
E3

E2

}]∣∣∣∣∣
=

∣∣∣∣∣P
[
φ(η̂eff)− a

φ(η̂eff)

{
E3 − Ê3

Ê2

+
E3(Ê2 − E2)

E2Ê2

}]∣∣∣∣∣
≤Op(n

−1/2)× op(1)

=op(n
−1/2). (19)

By Equations (18) and (19), we have503

V̂eff(π) = Pn

π(x)
 a

φ(η̂eff)
y +

{
1− a

φ(η̂eff)

} E
{

1−φ(η)
φ(η)2 Y | x, 1

}
E
{

1−φ(η)
φ(η)2 | x, 1

}
+ op(n

−1/2).

By taking Taylor expansion, we have504

V̂eff(π) =Pn

π(x)
 a

φ(η)
y +

{
1− a

φ(η)

} E
{

1−φ(η)
φ(η)2 Y | x, 1

}
E
{

1−φ(η)
φ(η)2 | x, 1

}


+ P

π(x)
−aφ̇(η)

φ2(η)
y +

aφ̇(η)

φ2(η)

E
{

1−φ(η)
φ(η)2 Y | x, 1

}
E
{

1−φ(η)
φ(η)2 | x, 1

}
T

(η̂ − η) + op(n
−1/2). (20)

By Equations (17) and (20), we have505

V̂eff(π)− V1(π)

=Pn

π(x)
 a

φ(η)
y +

{
1− a

φ(η)

} E
{

1−φ(η)
φ(η)2 Y | x, 1

}
E
{

1−φ(η)
φ(η)2 | x, 1

}


+ P

π(x)
−aφ̇(η)

φ2(η)
y +

aφ̇(η)

φ2(η)

E
{

1−φ(η)
φ(η)2 Y | x, 1

}
E
{

1−φ(η)
φ(η)2 | x, 1

}
T

{Var(Sη,eff)}−1Pn(Sη,eff)− V1(π) + op(n
−1/2)

=Pn

π(x)
 a

φ(η)
y +

{
1− a

φ(η)

} E
{

1−φ(η)
φ(η)2 Y | x, 1

}
E
{

1−φ(η)
φ(η)2 | x, 1

}
+DPn(Sη,eff)− V1(π) + op(n

−1/2)

=Pn

π(x)
 a

φ(η)
y +

{
1− a

φ(η)

} E
{

1−φ(η)
φ(η)2 Y | x, 1

}
E
{

1−φ(η)
φ(η)2 | x, 1

}
+DSη,eff − V1(π)

+ op(n
−1/2)

=Pn {ϕeff(π)}+ op(n
−1/2).

This completes the proof. □506
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C.6 Proof of Proposition 4.3507

argmax
π∈Π

V̂eff(π)

= argmax
π∈Π

n∑
i=1

π(xi)ψ̂(xi, yi, ai)

= argmax
π∈Π

n∑
i=1

π(xi)|ψ̂(xi, yi, ai)|[I{ψ̂(xi, yi, ai) > 0} − I{ψ̂(xi, yi, ai) ≤ 0}]

= argmax
π∈Π

n∑
i=1

|ψ̂(xi, yi, ai)|I{ψ̂(xi, yi, ai) > 0}

− |ψ̂(xi, yi, ai)|[{1− π(xi)}I{ψ̂(xi, yi, ai) > 0}+ π(xi)I{ψ̂(xi, yi, ai) ≤ 0}]

= argmax
π∈Π

n∑
i=1

|ψ̂(xi, yi, ai)|I{ψ̂(xi, yi, ai) > 0}

− |ψ̂(xi, yi, ai)|[π(xi) + I{ψ̂(xi, yi, ai) > 0} − 2π(xi)I{ψ̂(xi, yi, ai) > 0}]

= argmax
π∈Π

n∑
i=1

|ψ̂(xi, yi, ai)|I{ψ̂(xi, yi, ai) > 0}

− |ψ̂(xi, yi, ai)|[π2(x) + I2{ψ̂(xi, yi, ai) > 0} − 2π(xi)I{ψ̂(xi, yi, ai) > 0}]

= argmax
π∈Π

n∑
i=1

|ψ̂(xi, yi, ai)|I{ψ̂(xi, yi, ai) > 0} − |ψ̂(xi, yi, ai)|[π(xi)− I{ψ̂(xi, yi, ai) > 0}]2

=argmax
π∈Π

n∑
i=1

−|ψ̂(xi, yi, ai)|[π(xi)− I{ψ̂(xi, yi, ai) > 0}]2

=argmin
π∈Π

n∑
i=1

|ψ̂(xi, yi, ai)|[π(xi)− I{ψ̂(xi, yi, ai) > 0}]2

=argmin
π∈Π

n∑
i=1

|ψ̂(xi, yi, ai)|I[π(xi) ̸= I{ψ̂(xi, yi, ai) > 0}].

Therefore, the OPL is equivalent to a weighted classification problem, where for subject i with508

features xi, the true label is I{ψ̂(xi, yi, ai) > 0} and the sample weight is |ψ̂(xi, yi, ai)|. □509

D Additional Experiment Results510

D.1 Decision Evaluation - Synthetic Scenarios511

We first generate covariates X = (X1, X2, X3)
T ∼ N((1,−1, 0)T ,Σ), where Σ =512 (

1 −0.25 −0.25
−0.25 1 −0.25
−0.25 −0.25 1

)
. We consider two types of potential outcome, continuous and bi-513

nary.514

Case 1: The potential outcome Y (1) is generated by Y (1) = 8X1 − 4X2
1 − 4X2 + 4X2

3 + ϵ,515

where ϵ is generated from a normal distribution with mean 0 and standard deviation 0.5. The action516

A is generated from A ∼ Bernoulli{φ(X, Y (1))}, and logit{φ(X, Y (1))} = 1/[1 + exp{0.5 −517

X1 −X2 − 0.1Y (1)}]. Thus, X3 is the shadow variable. We construct three different evaluation518

decision rules as mixtures of a deterministic decision rule πd(X) = I(2X1 −X2
1 −X2 +X2

3 > 0)519

and the uniform random decision rule πu(X) by changing a mixture parameter α, i.e., π(X) =520

απd(X) + (1− α)πu(X). The candidates of the mixture parameter α are {0.6, 0.3, 0.0}.521

Case 2: The potential outcome Y (1) follows a Bernoulli distribution with probability of success522

1/{1 + exp(X1 +X2 +X3)}. The action A is generated from A ∼ Bernoulli{φ(X, Y (1))}, and523

logit{φ(X, Y (1))} = 1/[1 + exp{−X1 + 0.5X2 − 0.7Y (1)}]. Thus, X3 is the shadow variable.524
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We construct three different evaluation decision rules as mixtures of a deterministic decision rule525

πd(X) = I(X1+X2+X3 < 0) and the uniform random decision rule πu(X) by changing a mixture526

parameter α, i.e., π(X) = απd(X) + (1− α)πu(X). The candidates of the mixture parameter α are527

{0.7, 0.4, 0.0}.528

For both cases, the true value function for each evaluation decision rule is obtained by generating529

a large sample {Xi, Yi(1)}Ni=1 with size N = 105 and applying the empirical version of V (π) =530

E[Y (1)π(X)]. We consider a correctly specified logistic regression model for φ(η). We obtain531

η̂naive using g(x; η) = (1, x1, x2, x3)
T . We obtain the efficient estimators η̂eff and V̂eff(π) using the532

approach introduced in Section 4. Specifically, in case 1, all the regressions with pseudo-outcomes are533

using random forest (RF) models. In case 2, we estimate P(Y = 1 | X, A = 1) using a generalized534

additive model (GAM). For the DR estimator, we estimate w(x) using GAM in both cases. We535

estimate E(y | x) using RF in case 1 and using GAM in case 2.536

We consider samples with size n = 1000, 2000. For each case, we conduct 500 replications. The537

root-mean-square error (RMSE), the standard deviation (SD), and the bias results for cases 1 and 2538

are reported in Table 1 and Table 2.539

Table 1: Simulation results for case 1: (a) 0.0πd + 1.0πu, (b) 0.3πd + 0.7πu, (c) 0.6πd + 0.4πu.

(a) (b) (c)
RMSE SD Bias RMSE SD Bias RMSE SD Bias

n = 1000

V̂eff 0.3512 0.3480 0.0468 0.5509 0.5483 0.0530 0.7999 0.7977 0.0591
V̂IPW−naive 0.7893 0.7890 -0.0229 0.8279 0.8278 -0.0127 0.8740 0.8740 -0.0024
V̂IPW−eff 0.6172 0.6119 0.0807 0.8426 0.8387 0.0809 1.0852 1.0822 0.0810
V̂DR 0.4421 0.1559 0.4138 0.4371 0.1842 0.3964 0.4364 0.2162 0.3790

n = 2000

V̂eff 0.2003 0.1985 0.0274 0.2016 0.2005 0.0209 0.2169 0.2165 0.0143
V̂IPW−naive 0.7057 0.7026 -0.0662 0.7363 0.7341 -0.0575 0.7733 0.7718 -0.0489
V̂IPW−eff 0.2563 0.2539 0.0353 0.2771 0.2761 0.0228 0.3121 0.3119 0.0103
V̂DR 0.3647 0.1077 0.3485 0.3538 0.1245 0.3312 0.3455 0.1444 0.3139

Table 2: Simulation results for case 2. (a) 0.0πd + 1.0πu, (b) 0.4πd + 0.6πu, (c) 0.7πd + 0.3πu.

(a) (b) (c)
RMSE SD Bias RMSE SD Bias RMSE SD Bias

n = 1000

V̂eff 0.0172 0.0172 -0.0005 0.0207 0.0207 -0.0008 0.0239 0.0239 -0.0011
V̂nv1 0.0204 0.0204 -0.0001 0.0246 0.0246 -0.0003 0.0282 0.0282 -0.0005
V̂nv2 0.0179 0.0179 -0.0006 0.0219 0.0219 -0.0009 0.0254 0.0253 -0.0012
V̂nv3 0.0196 0.0097 0.0170 0.0223 0.0124 0.0185 0.0248 0.0152 0.0196

n = 2000

V̂eff 0.0119 0.0119 -0.0005 0.0142 0.0142 -0.0009 0.0163 0.0163 -0.0013
V̂nv1 0.0141 0.0141 -0.0003 0.0167 0.0167 -0.0006 0.0190 0.0190 -0.0009
V̂nv2 0.0122 0.0122 -0.0004 0.0148 0.0147 -0.0007 0.0171 0.0170 -0.0009
V̂nv3 0.0179 0.0069 0.0166 0.0198 0.0087 0.0178 0.0215 0.0106 0.0187

We have the following observations. V̂eff , V̂IPW−naive, and V̂IPW−eff are nearly unbiased with540

sample size n = 1000, 2000. However, V̂DR has a significantly larger bias when compared to other541

estimators. This is because the NUC assumption is violated in this setting. Among three consistent542

estimators V̂eff ,V̂IPW−naive, and V̂IPW−eff , V̂eff has the smallest standard deviation and RMSE, which543

is expected. One interesting observation is that for case 1, when sample size n = 1000, the standard544

deviations of V̂IPW−naive with decision rules (b) and (c) are smaller than those of V̂IPW−eff . One545

possible reason is that when the sample size is small, the performance of nonparametric regressions546

with pseudo-outcomes may have larger variation. As the sample size increases, the standard deviations547

and RMSEs of three consistent estimators V̂eff ,V̂IPW−naive, and V̂IPW−eff become smaller.548

D.2 Real Data Application549

We applied our method to a loan application dataset from a fintech company. A simulated dataset550

based on the real data is available upon request. The fintech lender aims to provide short-term credit551
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to young salaried professionals by using their mobile and social footprints to determine their credit-552

worthiness. To get a loan, a customer needs to download the lending app, submit all the requisite553

details and documentation, and give permission to the lender to gather additional information from554

the smartphone, such as the number of apps and SMSs. We obtained data from the lending firm for555

all loans granted from February 2016 to November 2018. There are 42,777 customers in total. We556

select 8 covariates and they are applicants’ age, salary, loan amount, CIBIL credit score, number of557

apps, number of SMSs, number of contacts, and number of social connections. The action A are558

whether or not the lender approves the loan applications. The outcome Y is defined as 1 if the loan is559

repaid, and -1 if the applicant defaults on the loan. We conduct hypothesis testing, and our analysis560

reveals no significant evidence suggesting that the number of social connections violates Assumption561

3.1. Therefore, we consider it as a SV.562

We randomly sample the training data with a size 3000 and 5000. We compare the four estimators563

introduced in Section 5.1. Since Y is binary, we estimate E(Y | X) for DR and P(Y | X, A = 1) for564

the proposed method using GAM. For DR method, we estimatew(X) using GAM as well. We use the565

same classification algorithm as in the synthetic scenarios to estimate the optimal decision rule. The566

proposed efficient estimator over the entire dataset is used as the testing value. The training-testing567

procedure is repeated 100 times. We report the results of testing values in Figure 2. We observe that568

the average value of proposed method is much larger than those of other three methods, while the569

variability of proposed method is smaller. This implies the proposed method has better performance570

than other three methods.571

Figure 2: The boxplots of testing values under estimated optimal decision rules by different methods.

D.3 Additional Decision Learning Results572

When the decision rule class Π has a finite Vapnik-Chervonenkis dimension and is countable, we573

provide additional theoretical results.574

Assumption D.1 There exist some constants γ, λ > 0 such that P[0 < |E{Y (1) | X}| ≤ ξ] =575

O(ξλ), where the big-O term is uniform in 0 < ξ ≤ λ.576

Assumption D.1 is known as the margin condition, which is often adopted to derive a sharp conver-577

gence rate for the value function under the estimated optimal policy Luedtke & Van Der Laan (2016);578

Kitagawa & Tetenov (2018).579

Theorem D.2 Under Assumptions 3.1, 4.1, and D.1, if the decision rule class Π has a finite Vapnik-580

Chervonenkis dimension and is countable, we have
√
n
{
V̂eff(π̂)− V (π∗)

}
d−→ N (0,Υ(π∗)).581

We study the inference results of V̂eff(π̂) for the decision learning experiment in Section 5. The582

standard errors (SE) are obtained by estimating the EIF. The conditional expectations in EIF are583

estimated through a similar nonparametric regression technique, employing pseudo-outcome, as584
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utilized in value estimation. We report the mean and standard deviation of V̂eff(π̂), the mean of585

estimated standard errors, and the empirical coverage probability (CP) of 95% Wald-type confidence586

intervals for the oracle optimal value function V (π∗) = 4.49. The results are summarized in Table587

3. We can see that the mean of estimated standard errors is close to the standard deviation of the588

estimators, and the empirical CP of 95% confidence intervals is close to the nominal level.589

Table 3: Inference results of V̂eff(π̂).

n Mean SD SE CP
1000 4.63 0.33 0.36 97.0
2000 4.63 0.28 0.26 95.7
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