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Abstract. The RDF Stream Processing (RSP) community has pro-
posed several models and languages for continuously querying and rea-
soning over RDF streams over the last decade. They each have their
semantics, making them hard to compare. The variety of approaches has
fostered both empirical and theoretical research and led to the design of
RSPQL, i.e., a unifying model for RSP. However, an RSP API for the
development under RSPQL semantics was still missing. RSP commu-
nity would benefit from an RSP API because it can foster comparable
and reproducible research by providing programming abstractions based
on RSPQL semantics. Moreover, it can encourage further development
and in-use research. Finally, it can stimulate practical activities such
as tutorials, lectures, and challenges, e.g., during the Stream Reasoning
Workshop.
In this paper, we present RSP4J, a flexible API for the development
of RSP engines and applications under RSPQL semantics. RSP4J offers
all the necessary abstractions required for fast-prototyping of RSP en-
gines under the proposed RSPQL semantics. Users can configure it to
reproduce the variety of RSP engine behaviors in a comparable software
environment. To promote systematic and comparative research, RSP4J
is open-source, provides canonical citation, permanent web identifiers,
and a comprehensive user guide for developers.

1 Introduction

The advent of the Internet of Things and social media has unveiled the streaming
nature of information [9]. Data analysis should not only consider huge amounts
of data from various complex domains, it should also be executed rapidly, before
the data are no longer valuable or representative. Stream Reasoning (SR) is the
research area that combines Stream Processing and Semantic Web technologies
to make sense, in real-time, of vast, heterogeneous and noisy data streams [13].

Since 2008, the SR community’s contributions include data models, query
languages, and algorithms, and benchmarks for RDF Stream Processing (RSP).
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As an extension of the Semantic Web stack, the value of RSP emerges in ap-
plication domains where Data Variety and Data Velocity appear together [10],
e.g., Smart Cities, e-Health and news analysis.

RSP approaches extend RDF and SPARQL to represent and process data
streams. The community rapidly reached consensus around the use of RDF
Streams as the data model. On the other hand, a variety of RSP languages
emerged over time, e.g., C-SPARQL, CQELS-QL, SPARQLstream, and Strider-
QL. Such languages are extensions of SPARQL that support some form of con-
tinuous semantics. RSP languages are usually paired with working prototypes
that helped proving the feasibility of the approach as well as studying its effi-
ciency. Such variety of languages and systems enriches the state-of-the-art, but
it may be hindering adoption and, thus, slow down the technological progress.
Indeed, the diversity in the literature often opposes the identification of a clear
winner, the establishment of best practices, and calls for comparative research.

Like other communities, e.g., OWL reasoning [20] and Big Data Systems [1],
comparative research on and benchmarking of RSP engines is extremely hard.
In fact, the semantics of different RSP languages do not completely overlap [12].
Moreover, the development of RSP engines, which are time-based systems, im-
plies a number of design decisions that are often hidden in the code [7]. Such
decisions, which fall into the notion of execution semantics1, hamper the per-
formance comparison, making it hard to reproduce the same behavior in two
different systems and, thus, generalise the conclusions.

In summary, the lack of standardization and shared design principles are ob-
structing the growth of the communities. Indeed, as prototyping efforts remain
isolated, the costs of development and maintenance of prototypes remain on the
shoulder of individual researchers. Nevertheless, the problem did not remain un-
noticed. The OWL reasoning community worked on shared APIs to standardise
the evaluation of OWL reasoners [16], fostering a number of initiative like the
OWL Reasoning Evaluation (ORE) challenges [20]. The Big Data Systems com-
munity witnessed the publication of a number of surveys and unification projects.
In particular, Apache Beam is an attempt to uniform the APIs for stream and
batch Big Data processing [17].

The RSP community is also working actively on solving this issue, focusing
on (i) designing best practices [27, 24] (ii) disseminating the approaches [15],
and (ii) developing benchmarks that take correctness and execution semantics
into account [3, 18]. A recent important result is RSPQL [14], a reference model
that unifies existing RSP dialects and the execution semantics of existing RSP
engines. Although RSPQL is a first step towards a community standard, existing
prototypes still do not follow shared design principles.

In line with the OWL APIs and Apache Beam initiative, an API based on
RSPQL would reduce the maintenance cost of existing engines, foster adoption
of RSP engines, open new research opportunities in Stream Reasoning.

In this paper, we present RSP4J, a configurable RSPQL API and engine, that
builds on the lessons learned by developing the existing prototypes, and bringing

1 also known as execution semantics
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RSP research to the next level. We believe RSP4J can foster fast-prototyping,
empirical and comparative research, as well as easing the dissemination of RSP
via teaching. To this extent, RSP4J includes (i) all the necessary abstractions
to develop RSP engines under the proposed RSPQL semantics and (ii) an im-
plementation, i.e. YASPER, based on Apache Commons RDF2, with the goal of
showcasing the API’s potential. Moreover, RSP4J can reproduce the variety of
RSP engines in a comparable software environment.

In summary, the goals of RSP4J are (i) fostering the design and develop-
ment of RSP engines under fixed RSPQL semantics, (ii) unifying the existing
prototypes and their results, (iii) providing a framework for fair comparison of
results and (iv) presenting a high-level API for easy adoption for RSP devel-
opers. RSP4J is open-source and is maintained on Github3. It has a canonical
citation and permanent URL4. Moreover, it comes with an actively maintained
documentation and a Ready2GoPack for increased availability to new members
of the RSP community. RSP4J was already used in a number of tutorials and
lectures, i.e. ISWC17, ICWE18, ESWC19, TheWebConf19, RW18/20.

The remainder of the paper is organized as follows: Section 2 discusses the
potential impact of RSP4J in terms of use-cases, and afterwards presents the
requirement analysis. Section 3 presents the background, concepts and definitions
used throughout the rest of the paper, while Section 4 outlines architecture of
RSP4J, its modules, and shows how it satisfies the requirements. In Section 5, we
presents the related work. Finally, Section 6 concludes the paper and summarizes
the most important contributions for RSP4J as a resource.

2 Impact: Use cases & Requirements for an RSPQL API

In this section, we discuss the potential impact of RSP4J as a resource. To this
extent, we present different use cases that concern state-of-the-art prototypes
for Stream Reasoning and RDF Stream Processing. We highlight the challenges
that such use cases unveil, and we elicit a set of requirements for RSP4J in order
to address such challenges. Table 1 summarizes the relationship between the
challenges (Ci) and requirements (Rj).

2.1 Use cases

Fast Prototyping. In 2008, the first Stream Reasoner prototype came out [31].
Since then, the SR community has designed a number of working prototypes [5,
19, 8, 23], with the intent of proving the feasibility of the vision. E-health, smart
cities, and financial transaction are examples of use cases where such proto-
types were successfully used. Nevertheless, the effort of designing and engineering
good prototypes is extremely high, and often their maintenance is unsustainable.
In fact, prototypes are often designed with a minimal set of requirements and
2 http://commons.apache.org/proper/commons-rdf/
3 https://github.com/streamreasoning/rsp4j
4 https://w3id.org/rsp4j
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without shared design principles. In such scenarios (C1) adding new operators,
(C2) new types of data sources to consume, or (C3) experimenting with new
optimisations techniques requires huge manual efforts or is almost impossible.
Comparable Research & Benchmarking.Aside developing proof-of-concepts,
the SR/RSP communities have focused a lot on Comparative Research (CR) [27,
24] and benchmarking [32, 22, 18, 3, 26]. CR studies the differences and similar-
ities across SR/RSP approaches. Stream Reasoners and RSP engines can only
be compared when they employ the same semantics. Thus, a fair comparison
demands a deep theoretical comprehension of the approaches, a proper formu-
lation of the task to solve, and an adequate experimentation environment [28].
Consequently, it is currently hard to (C4) reproduce the behavior of existing ap-
proaches in a comparable way. Moreover, experimentation is limited by (C5) the
lack of parametric solutions, i.e. the configurability of the operators allowing
to match engine behavior. On the other hand, research on benchmarking aims
at pushing the technological progress by guaranteeing a fair assessment. While
some of the challenges are shared with CR [27, 28], benchmarking is empirical re-
search. To this extent, (C6) monitoring both the execution of continuous queries,
as well as (C7) the engine behavior at run-time are of paramount importance.
Unfortunately, not all the existing prototypes provide such entry points, and only
black-box analysis is possible, e.g. it is impossible to measure the performance
of each of the engine’s internal operators.
Dissemination. Although SR research is at its infancy, a lot has been done
on the teaching side. As prototypes and approaches reach maturity, several tu-
torials and lectures were delivered at major venues, including ICWE, ESWC,
ISWC, RW, and TheWebConf [15, 10, 11]. These tutorials were often practical
and aimed at engaging with their audience using simple yet meaningful applica-
tions. Nevertheless, existing prototypes were not designed for teaching purposes.
Thus, they lack important features like the possibility to (C8) inspect the engine
behaviors and (C9) they are not designed to ease the understanding at various
levels of abstraction. Indeed, prototypes often (C10) neglect their full compli-
ance to the underlying theoretical framework for practical reasons. Although this
approach often benefits performance, it makes makes the learning curve more
steep.

2.2 Requirements

Req C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
R1 X X X X X
R2 X X X
R3 X X X
R4 X X X
R5 X X X X X

Table 1: Challenges vs Requirements

Now we present the re-
quirements that an RSPQL
API should satisfy. We elicit
the requirements from the
challenges presented above.
Although the requirements
could be generalized for any
RSP engine and Stream Rea-
soner, we restrict our focus to
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Window-based RDF Stream Processing Engines, i.e., those covered by the
RSPQL specification.

R1 Extensible Architecture. An RSP API should allow the easy addition
of data sources (C2) and operators (C1), and the design of optimization
techniques (C3). Moreover, An RSP API should allow experimentation by
allowing the addition of execution parameters (C5), and should ease the
extension of engine capabilities (C7).

R2 Declarative Access. An RSP API should be accessible in a declarative
and configurable manner (C4). It should allow querying according to a formal
semantics, e.g., RSPQL (C10), and should allow controlling the engine and
the query lifecycles (C8).

R3 Programming Abstractions. An RSP API should provide programming
abstractions that allow interacting with the engine at various levels of ab-
stractions (C9), abstractions that are based on a theoretical framework (C10),
and that provide a blueprint to make sense of the engine behavior (C8).

R4 Experimentation. An RSP API should be suitable for experimentation
and, thus, should foster comparative research. To this extent, it should al-
low experimentation with optimizations techniques (C3), enabling to exe-
cute experiments using alternative configurations (C5). Last but not least,
the reproducibility of state-of-the-art solutions should be a priority to enable
replication studies (C4).

R5 Observability. An RSP API should be observable by design, enabling the
collection of metrics at different levels, i.e., stream level, operator level, query
level (C6), and engine level (C7). Observability should be independent from
architectural changes (C1 and C2), and ease study of optimizations (C3).

3 Background

In this section, we summarize the knowledge necessary to understand the main
concepts of RSP4J. RSP4J is based on RSPQL, which in turn relies on the
Continuous Query Language (CQL) [4] for its operation structure, SPARQL 1.1
semantics for RDF querying, and the SECRET model [7] for its operational se-
mantics. Notably, we assume some knowledge on RDF and SPARQL semantics5.

Definition 1. A data stream S is an infinite sequence of tuples 〈di, te, tp〉 where,
di is a data item, and te/tp are respectively the event time and the processing
time timestamps. An RDF Stream is a stream where the data item di is an
RDF object and te/tp are timestamps indicating event time and processing time,
respectively.

In the literature, there are many definitions of data stream, with a general
agreement on considering them as unbounded sequences of time-ordered data.
Different notions of time are relevant for different applications. The most impor-
tant ones are the time at which a data item reaches the data system (processing
5 For a comprehensive analysis we suggest [21].
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time), and the time at which a data item was produced (event time) [2]. In RSP,
streams are represented as RDF objects, as stated by Definition 1 [14].

Fig. 1: The CQL query model, i.e., the
S2R, R2R, and R2S operators.

Operationally, stream processing
requires a special class of queries
that run under continuous semantics
(vid. Definition 2). In practice, con-
tinuous queries consume one or more
infinite inputs and produces an infi-
nite output [25]. Arasu et al. [4] pro-
posed a query model for processing re-
lational streams based on three fam-
ilies of operators, as depicted in Fig-
ure 1. RSPQL extends these operators families to work on RDF Streams.

Definition 2. Under continuous semantics, the result of a query is the set of
results that would be returned if the query were executed at every instant in time.

Stream-to-Relation (S2R) (vid. Figure 1 a), i.e., is a family of operators that
bridges the world of streams with the world of relational data processing. These
operators chunk the streams into finite portions. A typical operator of this kind
is a Time Window operator. In RSPQL, a time-based window operator is defined
as in Definition 3.

Definition 3. The time-based window operator W is a triple (α, β, t0) that de-
fines a series of windows of width (α) and that slide of (β) starting at t0.

Relation-to-Relation (R2R) (Figure 1 b), i.e., is a family of operators that
can be executed over the finite stream portions. In the context of RSPQL, R2R
operators are SPARQL 1.1 operators evaluated under continuous semantics.

To clarify this intuition, Dell’Aglio et al. introduce the notion of a Time-
Varying Graph and RSPQL dataset [14]. A Time-Varying Graph is the result
of applying a window operator W to an RDF Stream S (vid. Definition 4),
while the RSPQL dataset (SDS) is a an extension of the SPARQL dataset for
continuous querying (vid. Definition 5).

Definition 4. A Time-Varying Graph is a function that takes a time instant
as input and produces as output an RDF Graph, which is called instantaneous.

Given a window operator W and an RDF Stream S, the Time-Varying Graph
TVGW,S is defined where the W is defined.

In practice, for any given time instant t,W identified a subportion of the RDF
Stream S containing various RDF Graphs. The Time-Varying Graph function
returns the union (coalescing) of all the RDF Graphs in the current window6.

Definition 5. An RSPQL dataset SDS extends the SPARQL dataset7 as
follows: an optional default graph A0, n (n ≥ 0) named Time-Varying Graphs,
and m (m ≥ 0) named sliding windows over k (k ≤ m) data streams.
6 The current window identified by W with the oldest closing time instant at t
7 https://www.w3.org/TR/rdf-sparql-query/#specifyingDataset
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An RSPQL query is continuously evaluated against an SDS by an RSP en-
gine. The evaluation of a RSPQL query outputs an instantaneous multiset of
solution mappings for each evaluation time instant. The RSP engine’s opera-
tional semantics determines the set ET of evaluation time instants.

Finally, Relation-to-Stream (R2S) is a family of operators that returns to the
world a set of infinite data from the finite ones, i.e., Figure 1 (c). RSPQL includes
three R2S operators: (i) theRStream that emits the current solution mappings;
(ii) the IStream that emits the difference between the current solution mappings
and previous ones, and; (iii) the DStream that emits the difference between the
previous solution mappings and the current ones.

When developing Stream Processing Engines to evaluate continuous queries
there are a number of design decisions that might impact the query correctness.
Such decisions, which are usually hidden in the query engine implementation,
define the so called operational semantics (also known as execution semantics).
Botan et al. [7], with their SECRET model, identified a set of four primitives
that formalise the operational semantics of window-based stream processing en-
gines. RSPQL incorporates these primitive and applied them on existing RSPQL
engines: (i) Scope is a function that maps an event-time instant te to the tempo-
ral interval where the computation occurs. (ii) Content is a function that maps
a processing-time instant tp to the subset of stream elements included in the
interval identified by the scope function. (iii) Report is a dimension that charac-
terizes under which conditions the stream processors emit the window content.
SECRET defines four reporting dimensions: (CC) Content Change: the engine
reports when the content of the current window changes. (WC) Window Close:
the engine reports when the current window closes. (NC) Non-empty Content :
the engine reports when the the current window is not empty. (P) Periodic the
engine reports periodically. (iv) Tick is a dimension that explains what triggers
the report evaluations. Possible Ticks are: time-driven, tuple-driven, or batch-
driven.

Fig. 2: RSP4J’s Modules: (a) Querying (b) Streams, (c) Operators, (d) the SDS,
and (e) Engine and Execution Semantics
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4 RSP4J

In this section, we present RSP4J’s s architecture, its components, and we show it
satisfies the requirements (cf Section 2). Figure 2 shows RSP4J core modules, i.e.,
(a) Querying, (b) Streams, (c) Operators, (d) the SDS, and (e) the Engine with
Execution Semantics. To provide concrete examples of RSP4J, we will use Yet
Another Stream Processing Engine for RDF (YASPER). YASPER is a strawman
proposal8 designed for teaching purposes in the context of [15].

4.1 Querying

PREFIX : <http://example.org#>
REGISTER RSTREAM <output> AS
SELECT AVG(?v) as ?avgTemp
FROM NAMED WINDOW :w1 ON STREAM :stream1 [RANGE PT5S STEP PT2S]
WHERE {

WINDOW :w1 { ?sensor :value ?v ; :measurement: ?m }
FILTER (?m == ’temperature’)

}

Listing 1.1: An example of RSPQL Query.

The query module contains the elements for writing RSPQL programs in a
declarative way (R2). The syntax is based on the proposal by the RSP commu-
nity. At this stage of development, RSP4J accepts SELECT and CONSTRUCT
queries written in RSPQL syntax (e.g. Listing 1.1)9. Although RSPQL [14] does
not discuss how to handle multi-streams, RSP4J does, allowing its users to fully
replicate the behavior of existing systems (cf R4).

Moreover, RSP4J includes the ContinuousQuery interface that aims at
making the syntax extensible (cf R1). Indeed, RSP4J users can bypass the syntax
module and programmatically define extensions in the query language.

4.2 Streams

Fig. 3: Streams Interface.

The Streams module allows providing your
own implementation of a data stream. It con-
sists of two interfaces inspired by VoCaLS [30]:
the WebStream and WebDataStream. Web-
Stream, represents the stream as a Web re-
source, while WebDataStream, represents the
stream as a data source. Figure 3 provides
an overview of the relationships across these
classes and interfaces. The WebStream does
not include any particular logic. It is identi-
fied by an HTTP URI so it can be de-referenced and then consumed through
8 https://en.wikipedia.org/wiki/Straw_man_proposal
9 The RSP W3C Community group has started working towards a common syntax
and semantics for RSP (https://github.com/streamreasoning/RSP-QL).
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an available endpoint [30]. Listings 1.11 shows the implementation of the Web-
DataStream interface, which exposes two methods: put and addConsumer.
The former allows injection of timestamped data items of type E by producers;
the latter connects the stream to interested consumers, e.g., window operators,
or super-streams. The interface is generic, and it allows RSP4J’s users to uti-
lize multiple RDF Stream representation, i.e., either RDF Graphs or Triples,
or even non-RDF Web Streams. A WebDataStream might also include some
metadata relevant for the processing, i.e., links to ontologies, SHACL schemas,
or alternative endpoints.

RDFStream implements WebDataStream<Graph> {
protected List<Consumer<Graph>> cs = new ArrayList<>();
@Override
public void addConsumer(Consumer<Graph> consumer) {

cs.add(consumer);}
@Override
public void put(Graph g,long ts) {

cs.forEach(c -> c.notify(g, ts)); }
}

Listing 1.2: YASPER’s WebDataStream implementation.

4.3 Operators

RSP4J core includes separate interfaces for all the RSPQL families of operators:
StreamToRelation, RelationToRelation, and RelationToStream. These abstrac-
tions act both as lower level APIs for RSP4J’s users (cf R3) as well as a suitable
entrypoint for extensions and optimizations (cf R1). Moreover, each operator
lifecycle could be monitored independently (cf R5).

Fig. 4: UML class diagram for the S2R Package as used by C-SPARQL.

The Stream To Relation operator family bridges the world of RDF Streams
to the world of finite RDF Data. RSPQL defines a Time-Based Sliding Win-
dow operators for processing RDF Streams. When applied to an RDF stream,
RSPQL’s S2R operator returns a function called Time-Varying Graph, that given
a time instant t, materializes an Instantaneous (finite) RDF Graph.
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public interface StreamToRelationOperator<I,O> extends Consumer<I> {
String iri();
Report report();
Tick tick();
Content<I, O> materialise(long now);
List<Content<I, O>> materialise(long now);
TimeVarying<O> addConsumer(SDS<O> content);
Content<I, O> compute(long t_e, Window w);

}

Listing 1.3: RSP4J S2R Operator Interface.

public interface StreamToRelationOperatorFactory<I,O> {
String iri();
TimeVarying<O> apply(WebDataStream<I> stream);
default boolean named() { return iri() != null;}

}

Listing 1.4: RSP4J S2R Operator Factory Interface.

To represent such behavior, RSP4J includes two interfaces, i.e., the Stream-
ToRelationFactory interface and the StreamToRelation (S2R) operator.
The former, exemplified in Listing 1.4, is used to instantiate the latter. It ex-
poses the apply method that takes a generic WebDataStream<I> as input, and
returns a Time-Varying object TimeVarying<O>, decoupling the Type of the
input stream content from the output Time-Varying Object. Listing 1.5 shows
part of an implementation of the StreamToRelationOperatorFactory that
instantiates C-SPARQL’s Time-Based Sliding Window.

public class CSPARQLS2RFactory implements S2R<Graph,Graph> {
private final long a, b, t0;
private final ContinuousQueryExecution context;
@Override
public TimeVarying<Graph> apply(WebDataStream<Graph> s) {
CSPARQLS2ROp op = new CSPARQLS2ROp(iri,a,b,scope,tick,report);
s.addConsumer(op);
return op.set(context);
}

}

Listing 1.5: The CSPARQL’s Time-Based Window Operator in YASPER.

The StreamToRelation operator is responsible for applying the window-
ing algorithm. In RSP4J, it is a special kind of Consumer that receives the
data from the streams, cf Listing 1.3. Listing 1.5 shows that the factory instan-
tiates a CSPARQLS2ROp, which is a StreamToRelationOperator, and reg-
isters it as stream consumer. Then, it obtains a TimeVarying<Graph> from
the ContinuousQueryExecution context. We explain the details about the
TimeVarying<O> when discussing the RSPQL Dataset SDS.

Figure 4 shows the UML class diagram of the S2R package. CSPARQLWin-
dowOperator is a StreamToRelation operator, which creates a TimeVary-
ing<Graph> if applied to a WebDataStream<Graph>.
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In RSPQL, the Relation To Relation operator family corresponds to
SPARQL 1.1 algebraic expressions evaluated over a given time instant. The eval-
uation of the Basic Graph Pattern produces a time-varying sequence of solution
mappings, which can be consumed by SPARQL 1.1 operators.

public interface RelationToRelationOperator<T> {
Collection<SolutionMapping<T>> eval(long ts);

}

Listing 1.6: RSP4J R2R Operator Interface.

Listings 1.6 shows the RSP4J interface that covers this functionality. Similarly
to the S2R operators, the interface is generic to let the RSP4J’s users decide the
internal representation of the query solution, .e.g., the bindings.

The RelationToStream operator family allows going back from the world
of Solution Mappings to RDF Streams. According to RSPQL the evaluation of
an R2S operator takes as input a sequence of time-varying solution mappings. In
RSP4J, we generalized this idea as shown in Listing 1.7, i.e., we allow the user to
also provide the solution mapping incrementally as soon as they are produced.

public interface RelationToStreamOperator<T> {
T eval(SolutionMapping<T> sm, long ts);
default Collection<T>
eval(Collection<SolutionMapping<T>> s, long t){
return s.stream().map(sm -> eval(sm, t)).collect(Collectors.toList());
}

}

Listing 1.7: RSP4J R2S Operator Interface.

4.4 SDS and Time-Varying Graphs

Like in SPARQL, the query specification and the SDS creation are closely related.
An RSPQL dataset SDS is an extension of the SPARQL dataset to support the
continuous semantics. As indicated in Section 3, the SDS is time-dependent as it
contains Time-Varying Graphs. RSP4J includes both the abstractions, i.e., the
SDS and the TimeVarying Graphs (cf R3).

Listing 1.8 shows RSP4J’s SDS interface. The generic parameter is inher-
ited by the generic nature of RSP4J’s Time-Varying objects. The consolidate
method consolidates the SDS content by recursively consolidating every Time-
Varying Object it contains.

public interface SDS<E> {
default void consolidate(long t) {

asTimeVaryingEs().forEach(tvg -> tvg.consolidate(ts));
} ...

}

Listing 1.8: RSP4J’s SDS Interface.

Listing 1.9 shows a Time-Varying Graph that is the result of the application
of the Window Operator to an RDF Streams. The method materialize con-
solidates the content at a given time instant ts. To this extent, it exploits the
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StreamToRelationOperator interfaces, freezing and polling the active win-
dow content. The coalesce method ensure only one graph, among those selected
during the windowing operation, is returned. According to RSPQL such graph
corresponds to the union of the RDF graphs in the window.

public class TimeVaryingGraph implements TimeVarying<Graph> {
private IRI name;
private StreamToRelationOperator<Graph, Graph> op;
@Override
public void materialize(long ts) {

graph = op.getContent(ts).coalesce(); }...
}

Listing 1.9: YASPER’s Time Varying Graph Implementation.

As time progresses, the SDS is reactively consolidated into a set of (named)
Instantaneous Graphs10 at the time t at which a Time-Varying Graph is updated.

Therefore, RSP4J includes the SDSManager and SDSConfiguration inter-
faces. The former controls the creations, detection, and the interactions with
the SDS; ideally this represents a starting point for federated query answering
and/or multi-query optimisation. The latter makes the execution parametric
e.g., for enabling different approaches for window management, or alternative
output serializations, e.g., JSON-LD or Turtle.

4.5 Engine, Query Execution, and Execution Semantics

This module includes the abstractions to control and monitor the engine and
the query lifecycle (cf R4 and R5). Moreover, we explain RSP4J’s parametric
execution semantics (R4).

The Engine interface allows controlling RSP4J’s capabilities, e.g., query
registration and cancellation. It is based on the VoCaLS service feature idea [30].
Each engine can implement different interfaces, each of which correspond to a
particular feature. By querying the implemented interfaces it is possible to list
all the features exposed by the engine of choice, e.g., stream registration, RSPQL
support, or formatting the results in JSON-LD format.

RSP4J can reproduce the execution semantics of common RSP engines by
configuring SECRET’s primitives: Tick is represented as an enumeration, i.e.,
tuple-based, time-based, and batch. Scope is a parameter accessible through the
Time interface. Time controls the time progress w.r.t. the stream consumption.
It is initialized with the system initial timestamp at configuration time. It keeps
track of the evaluation timestamps ET , and exposes the time-progress to the user
both for event-time and processing-time11. Report is represented as a collection
10 Slowly evolving RDF graph are represented as a (named) Time-Varying Graph too.
11 RSPQL determines the evaluation time instant set ET wrt the reporting policy and

the input data. Instead, RSP4J serves time as it receives data, i.e., by consuming
the streams. Thus, RSP4J’s ET is built progressively. While the RSPQL’s ET is
deterministic, RSP4J ET might not be deterministic in case of distributed compu-
tations.
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of ReportingStrategies. RSP4J core includes RSPQL’s reporting policies,
i.e., On-Content-Change, Non-Empty-Content, Periodic, and On-Window-Close.
Last but not least, the Content interface represents the data items in the active
window. It is generic and exposes the coalesce allows alternative implementations
of the Time-Varying Graph functions.

public interface Time {
long getScope();
long getAppTime();
void setAppTime(long now);
ET getEvaluationTimeInstants();
void addEvaluationTimeInstants(TimeInstant i);
default long getSystemTime() {

return System.currentTimeMillis();}
}

Listing 1.10: RSP4J’s Time Interface.

TheContinuousQueryExecution interface represents the ever-lasting com-
putation required by continuous queries. It allows monitoring and controlling the
query life-cycle. Moreover, in order to make observable (R5) the SDS and the
operators involved in querying, the interface includes getters.

public interface ContinuousQueryExecution<I, E1, E2> {
<O> WebDataStream<O> outstream();
ContinuousQuery getContinuousQuery();
SDS<E1> sds();
StreamToRelationOperator<I, E1>[] getS2R();
RelationToRelationOperator<E2> getR2R();
RelationToStreamOperator<E2> getR2S();...

}

Listing 1.11: An example of RSP-QL Query.

5 Related Work

In this section, we present the work related to RSP4J. We present the most popu-
lar RSP engines, and how they differ in terms of RSPQL semantics, complicating
fair comparison.

The C-SPARQL Engine [5] is an RSP engine that adopts a black box ap-
proach by pipelining a DSMS system with a SPARQL enige. The DSMS is used
to execute the S2R operators and the execution semantics, while the SPARQL
engine performs the evaluation of the queries implemented as the R2R opera-
tor. C-SPARQL supports the Window Close and Non-empty content reporting
policies while employing RStreams as R2S operators.

The CQELS Engine [19] takes a white box approach, such that it has access
to all the available operators, allowing it to optimize query evaluation. Compared
to C-SPARQL, it supports the Content Change reporting strategy. Furthermore,
CQELS supports the IStream R2S operator instead of the RStream.

Morphstream [8] focuses on querying virtual RDF streams with SPARQLstream.
Thus, compared to C-SPARQL and CQELS, it uses Ontology Based Data Access
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to virtually map raw data to RDF data. Similar to C-SPARQL it supports the
Window Close and Non-empty content reporting policies. Morphstream is the
only engine that supports all R2S operators.

Strider [23] is a hybrid adaptive distributed RSP engine that optimizes the
logical query plan according to the state of the data streams. It is built upon
Spark Streaming and borrows most of its operators directly from Spark. Strider
translates Strider-SQL queries to Spark Streaming’s internal operators. It inher-
its the Window Close reporting policy from Spark Streaming, and supports the
RStream as R2S operator.

In addition to the rigid yet explicit characteristics that each engine has,
they also have inherent subtle differences. For example, none of them allows
to define the starting timestamp t0 as part of the time-based sliding window
operators definition. This means that the starting time is supplied by the engine
itself and in case of processing time engines are bound to produce different
results. Differences like the t0 make impossible to correctly compare the results
produced by the various engines. RSP4J allows to customize the inner wiring
of the engines, in order to align their semantics and allowing them to produce
comparable results.

6 Conclusion, Discussion, and Roadmap

In this paper, we presented RSP4J, a flexible API for RSP development, ad-
hering to the semantics of RSPQL, and YASPER, i.e., a strawman RSP engine
implementation designed for teaching purposes in the context of RW [15].

RSP4J aims at solving three use case: fast prototyping, benchmarking com-
parative research, and dissemination via teaching. Thus, we designed it to fulfill,
i.e., a set of requirements: (I) an extensible architecture, (II) declarative access
through a uniform query language according to the RSPQL semantics; (III)
the necessary programming abstractions; (IV) enable experimentation and fair
comparison and (V) observability by design. In Section 4, we explained how each
RSP4J module solves a subset of requirements. Differently than the state-of-the-
art RSP prototypes which only solve requirement R2 by providing a declarative
access, RSP4J fulfills all the set requirements (cf Section 4). Moreover, two RSP
engines already bind to RSP4J: (i) YASPER12, which is a strawman implemen-
tation based on Apache RDF Commons2, and C-SPARQL 2.013 a new version
of the C-SPARQL engine [5].
Roadmap. RSP4J’s future work includes a number of initiatives. We plan to
bind even more engines, i.e., Morphstream and CQELS and run a reproducibil-
ity challenge in the context of the upcoming stream reasoning workshop. In the
mid term, we would like to abstract RSP4J specification and provide access in
other languages, e.g., Python. In the long-term, we would like to include abstrac-
tion to control the stream publication lifecycle [29]. Moreover, we would like to
investigate how to combine RSP4J with other stream reasoning framework [6].
12 https://github.com/streamreasoning/rsp4j/tree/master/yasper
13 https://github.com/streamreasoning/csparql2
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