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Fig. 1: Body Transformer (BoT) is an architecture that considers physical agents as graphs of sensors and actuators as nodes, and edges reflecting the
structure of the robot body. BoT leverages masked attention as a simple but flexible mechanism to provide a body-induced bias to the policy. The figure
presents the overall schematic of our architecture, exemplified on a Unitree A1 robot.

Abstract—In recent years, the transformer architecture has
become the de facto standard for machine learning algorithms ap-
plied to natural language processing and computer vision. Despite
notable evidence of successful deployment of this architecture in
the context of robot learning, we claim that vanilla transformers
do not fully exploit the structure of the robot learning problem.
Therefore, we propose Body Transformer (BoT), an architecture
that leverages the robot embodiment by providing an inductive
bias that guides the learning process. We represent the robot
body as a graph of sensors and actuators, and rely on masked
attention to pool information throughout the architecture. The
resulting architecture outperforms the vanilla transformer, as
well as the classical multilayer perceptron, in terms of task
completion, scaling properties, and computational efficiency when
representing either imitation or reinforcement learning policies.
Additional material is available at https://bodytransformer.site.

I. INTRODUCTION

For most of their correcting and stabilizing actions, physical
agents exhibit motor responses that are spatially correlated
with the location of the external stimuli they perceive [9].
This is the case of a surfer, where the lower body, i.e. feet and
ankles, is mostly responsible for counteracting the imbalance
induced by the wave under the board [23]. In fact, humans
present feedback loops at the level of the spinal cord’s neural
circuitry that are specifically responsible for the response of
single actuators [24].

Corrective localized actuation is a main factor for efficient
locomotion [5]. This is particularly important for robots too,
where however, learning architectures do not typically exploit
spatial interrelations between sensors and actuators. In fact,
robot policies have mostly been exploiting the same archi-

tectures developed for natural language or computer vision,
without effectively leveraging the structure of the robot body.

This work focuses on transformer policies, which show
promise to effectively deal with long sequence dependencies
and seamlessly absorb large amount of data. The transformer
architecture [27] has been developed for unstructured natural
language processing (NLP) tasks, e.g., language translations,
where the input sequences often map to reshuffled output
sequences. In contrast, we propose Body Transformer (BoT),
an architecture that augments the attention mechanism of
transformers by taking into account the spatial placement of
sensors and actuators across the robot body.

BoT models the robot body as a graph with sensors and
actuators at the graph’s nodes. Then, it applies a highly
sparse mask at the attention layers, preventing each node from
attending beyond its direct neighbors. Concatenating multiple
BoT layers with the same structure leads to information
being pooled throughout the graph, thus not compromising
the representation power of the architecture.

Our contributions are listed below:
• We propose the BoT architecture, which augments the

transformer architecture with a novel masking that lever-
ages the morphology of the robot body.

• We incorporate this novel architecture in an imitation
learning setting, showing that the inductive bias provided
by BoT leads to I) better steady-state performance and
generalization and II) stronger scaling properties.

• We show how BoT improves existing online reinforce-
ment learning (RL) algorithms, where BoT outperforms
MLP and vanilla transformer baselines.

https://bodytransformer.site


• We analyze the computational advantages of BoT, by
showing how reformulating the scaled dot product in the
computation of the attention operation leads to near-200%
runtime and floating point operations (FLOPs) reduction.

II. BODY TRANSFORMER

Robot learning policies that employ the vanilla transformer
architecture as a backbone typically neglect the useful infor-
mation provided by the embodiment structure. In contrast, here
we leverage this structure to provide a stronger inductive bias
to transformers, while retaining the representation power of the
original architecture. We propose Body Transformer (BoT),
which is based on masked attention (see Section B-C), where
at each layer in the resulting architecture, a node can only
attend to information from itself and its direct neighbors. As a
result, information flows according to the graph structure, with
the upstream layers reasoning according to local information
and the downstream layers pooling more global information
from the farther nodes.
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Fig. 2: Formulation of Embodiment Mask. The mask M is constructed
by adding a diagonal of 1s to the embodiment graph’s adjacency matrices.
Here, we visualize a simple example of a mask M for an arbitrary agent’s
embodiment where n = 10.

We present below the various components of the BoT ar-
chitecture (see also Figure 1): (i) a tokenizer that projects the
sensory inputs into the corresponding node embedding, (ii) a
transformer encoder that processes the input embeddings and
generates output features of the same dimension, and (iii) a
detokenizer that decodes the features to actions (or values, for
RL critic’s training).

Tokenizer. We map the observation vector to a graph of
local observations. In practice, we assign global quantities to
the root element of the body, and local quantities to the nodes
representing the corresponding limbs, similarly to previous
GNN approaches [13, 14, 11, 12]. Then, a linear layer projects
the local state vector into an embedding vector. Each node’s
state is fed into its node-specific learnable linear projection,
resulting in a sequence of n embeddings, where n represents
the number of nodes (or sequence length). This is in contrast
to the existing works [14, 11, 12] that use a single shared
learnable linear projection to deal with varying number of
nodes in multi-task RL.

BoT Encoder. We use a standard transformer encoder [27]
with several layers as a backbone, and present two variants of
our architecture:

• BoT-Hard masks every layer with a binary mask M that
reflects the structure of the graph. Specifically, we con-
struct the mask as M = In +A, where In is the identity
matrix of dimension n, and A is the adjacency matrix
corresponding to the graph (see Figure 2 for an example).
Concretely, this allows each node to attend to itself and
its direct neighbors, and introduces considerable sparsity
in the problem, which is particularly appealing from a
computational perspective as highlighted in Section III-D.

• BoT-Mix interleaves layers with masked attention (con-
structed as in BoT-Hard) with layers with unmasked
attention. This is similar to the concurrent work in
Buterez et al. [3], with the distinctions that, I) we find
it more effective in our experimental setting to have a
masked attention layer as the first layer, II) our mask
M is not equivalent to the adjacency matrix, allowing a
node to additionally attend to itself at every layer of the
architecture.

Detokenizer. The output features from the transformer
encoder are fed into linear layers that project them to the
actions associated with the node’s limb, which are assigned
based on the proximity of the corresponding actuator with the
limb. Once again, these learnable linear projection layers are
separate for each of the nodes. When BoT is employed as a
critic architecture in reinforcement learning settings, as in the
experiments presented in Section III-B, the detokenizer would
output values rather than actions, which are then averaged
across body parts.

III. EXPERIMENTS

We assess the performance of BoT across imitation learn-
ing and reinforcement learning settings. We keep the same
structure as in Figure 1 and only replace the BoT encoder
with the various baseline architectures to single out the effect
of the encoder. Particularly, across the various experiments
listed in this section, we present the following baselines and
variations: (i) an MLP that stacks all embedding vectors as its
input, (ii) a vanilla unmasked transformer encoder, (iii) BoT-
Hard that only uses masked self-attention layers, (iv) BoT-Mix
that alternates between masked and unmasked self-attention
layers. All comparisons are made across models with a similar
number of trainable parameters.

With the following experiments, we aim to answer the
following questions:

• Does masked attention benefit imitation learning in terms
of performance and generalization?

• Does BoT exhibit a positive scaling trend compared to a
vanilla transformer architecture?

• Is BoT compatible with the RL framework, and what are
sensible design choices to maximize performance?

• Can BoT policies be applied to a real-world robotics task?
• What are the computational advantages of masked atten-

tion?

A. Imitation Learning Experiments

We evaluate the imitation learning performance of the
BoT architecture in a body-tracking task defined through



normalized episode return normalized episode length
train val train val

MLP 0.821 / 0.586 0.739 / 0.540 0.957 / 0.765 0.915 / 0.726
Transformer 0.909 / 0.673 0.806 / 0.587 0.995 / 0.855 0.952 / 0.776

BoT-Hard (ours) 0.908 / 0.703 0.890 / 0.648 1.000 / 0.876 1.000 / 0.841
Multi-Clip [29] - / 0.654 - / - - / 0.855 - / -

(a) Training and Validation Performance Across Architectures. Statistics of the
various architecture-criterion combinations are shown with two values, the leftside being
the maximum mean value recorded throughout all evaluation epochs across three seeds,
the rightside being the mean of all evaluation scores recorded in last 15 evaluation
epochs across all three seeds.
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(b) Training and Validation Performance Across Number of Train-
able Parameters. Each datapoint representing a parameter count-
architecture combination is the mean of its throughout the last 15
evaluation epochs across three seeds. We use the 17.5M models for
the other imitation learning experiments in this paper.

Fig. 3: BoT Performance on Imitation Learning.

the MoCapAct dataset [29], which comprises action-labeled
humanoid state trajectories with over 5M transitions, spanning
a total of 835 tracking clips. For each architecture, we train
a deterministic behavioral cloning (BC) policy. We evaluate
mean returns normalized by the length of a clip, in addition
to the normalized length of an episode, which terminates
when the tracking error goes beyond a threshold. We run the
evaluations both on the training and the (unseen) validation
clips.

We report results in the table shown in Figure 3a, where
BoT consistently outperforms the MLP and transformer base-
lines. Remarkably, the gap with these architectures further
increases on the unseen validation clips, demonstrating the
generalization capabilities provided by the embodiment-aware
inductive bias. We also report the performance on the training
set obtained by a tailored multi-clip policy presented in
Wagener et al. [29] with the MoCapAct dataset. While the
multi-clip policy is competitive with the vanilla transformer
baseline, it is strongly outperformed by our architecture. This
is a particularly remarkable result, as the comparison presents
conditions more favorable to the baseline, which features a
more flexible stochastic policy, was optimized in a recurrent
fashion tailored to the tracking task, and was trained on a
larger set of rollouts.

As shown in Figure 3b, we also find that BoT-Hard exhibits
strong scaling capabilities, as its performance keeps improving
with the number of trainable parameters compared to the
transformer baseline, both on the training and validation clips.
This further indicates a tendency for BoT-Hard to not overfit
to the training data, which is induced by the embodiment
bias. Additional experiments and comparisons are reported in
Section F.

B. Reinforcement Learning Experiments

We evaluate the RL performance of BoT and baselines
using PPO [22] on 4 robotic control tasks in Isaac Gym [15]:
Humanoid-Mod, Humanoid-Board, Humanoid-Hill, and A1-
Walk.

All humanoid environments are built on top of the classical
Humanoid environment in Isaac Gym, where we modify the
observation space to increase the number of distributed sensory
information (see details in Section C) and include contact
forces at all limbs. Humanoid-Mod features the classical run-

ning task on flat ground, while in Humanoid-Hill we replaced
the flat ground with an irregular hilly terrain. Humanoid-
Board is a newly designed task, where the task is for the
humanoid to keep balancing on a board placed on top of a
cylinder. Finally, we adapt the A1-Walk environment, which
is part of the legged_gym repository [20], where the task
is for a Unitree A1 quadruped robot to follow a fixed velocity
command.

Figure 4 presents the average episode return of evaluation
rollouts during training for MLP, Transformer, and BoT (Hard
and Mix). The solid curve corresponds to the mean, and the
shaded area to the standard error over three seeds. The result
shows that BoT-Mix consistently outperforms both the MLP
and vanilla transformer baselines in terms of sample effi-
ciency and asymptotic performance, highlighting the efficacy
of integrating body-induced biases into the policy network
architecture. Meanwhile, BoT-Hard performs better than the
vanilla transformer on simpler tasks (A1-Walk and Humanoid-
Mod), but shows relatively inferior results in hard-exploration
tasks (Humanoid-Board and Humanoid-Hill). Given that the
masked attention bottlenecks information propagation from
distant body parts, BoT-Hard’s strong constraints on infor-
mation communication may hinder efficient RL exploration:
In Humanoid-Board and Humanoid-Hill, it may be useful for
information about sudden changes in ground conditions to be
transmitted from the toes to the fingertips in the upstream
layers. For such tasks, BoT-Mix strikes a good balance be-
tween funneling information through the embodiment graph
and enabling global pooling at intermediate layers to ensure
efficient exploration. In contrast, in A1-Walk or Humanoid-
Mod, the environment’s state changes more regularly, thus
the strong body-induced bias can effectively reduce the search
space, enabling faster learning with BoT-Hard.

C. Real World Experiments

The Isaac Gym simulated locomotion environments are
widely popular for sim-to-real transfer of RL policies without
requiring adaptation in the real-world [20]. To verify that
our architecture is suitable for real-world applications, e.g.,
running in real time, we deploy one of the BoT policies trained
above to a real-world Unitree A1 robot, adapting the codebases
in Zhuang et al. [37] and Wu et al. [31]. This is showcased
in the video at https://bodytransformer.site, demonstrating the

https://bodytransformer.site
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(a) Performance on various tasks across evaluated architectures.

Fig. 4: Reinforcement Learning Performance on Robotic Control Tasks.

feasibility of our architecture for real-world deployment. We
note that for simplicity we did not make use of teacher-
student training or memory mechanisms [16] as common in
the locomotion literature, which are both known to further
improve the transfer by resulting in more natural gaits.

D. Computational Analysis
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Fig. 5: Computational analysis of the custom masked attention implemen-
tation. Across 10,000 randomly sampled masks, we found that our custom
implementation provides a 200% speed-up in runtime at sequence lengths up
to 128 nodes and scales better in number of FLOPs.

Connections between body parts of a physical agent are
often sparse, and so are the pre-computable masks M for
embodiment graphs in BoT. Masked attention mechanisms can
benefit from this sparsity, as their computational cost can be
reduced by ignoring unnecessary computations of those matrix
elements that will eventually be masked out. Large-purpose
deep learning libraries such as PyTorch feature largely
optimized matrix multiplication and attention routines (e.g.,
FlashAttention [6]), but do not leverage possible sparsity in
the masked attention mechanism, ascribed by Buterez et al. [3]
to missing use cases so far. For a fair computational compar-
ison, we re-implement the scaled dot product in Equation (1)
using CPU-based NumPy and evaluate on a single sample and
attention head, being their batched and multi-head versions
further parallelizable on GPUs.

Our custom implementation comprises two major changes
in the computation of the masked attention mechanism from
its vanilla implementation in PyTorch. First of all, we only
perform the dot product computation for elements that will not
be masked, resulting in fewer matrix multiplication-induced
FLOPs from the computation of 1√

dk
QKT . Secondly, we only

use unmasked values to compute the softmax in Equation (1),
also resulting in reduced FLOPs.

We measure the average runtime of each implementation
of the attention mechanism across 10,000 set of randomly

generated Q, K, V , and M . For each randomization, the
generated masks M have a diagonal of 1s and sparsity equal
to that used in the MoCapAct experiments (β = 0.908) 1.

In Figure 5a, we present scaling results of our implementa-
tion against vanilla attention across sequence lengths (number
of nodes) {4, 8, 16, 32, 48, 64, 96, 128}. We observe potential
speed-ups of up to 206% for 128 nodes (e.g., in the order
of humanoids with dexterous hands [26]). Overall, this shows
that the body-induced bias in our BoT architecture not only
enhances the overall performance of physical agents but also
benefits from the naturally sparse masks that the architecture
imposes. With adequate parallelization, this approach may
significantly reduce the training time of learning algorithms
as shown above.

A depiction of the amount of FLOPs required across differ-
ent sequence lengths is also presented in Figure 5b. Further
details and derivation about these experiments can be found
in Section I.

IV. CONCLUSION

In this work, we presented a novel graph-based policy
architecture, Body Transformer, which exploits the robot body
structure as an inductive bias. Our experiments show how
masked attention, which is at the core of BoT, benefits both
imitation and reinforcement learning algorithms. Additionally,
the architecture exhibits favorable scaling and computational
properties, making it appealing for applications on high-
dimensional systems.

Here, we used transformers to process sequences of dis-
tributed sensory information from the same timestep. However,
transformers have been shown to excel at processing informa-
tion across time too. We leave the extension of BoT to the
temporal dimension as future work, as it promises to further
improve real world deployment of robot policies, such as the
one demonstrated on the Unitree A1 robot.

A limitation of our approach is the fact that its computa-
tional advantages are currently not fully exploited by modern
deep learning libraries, and we hope that this work may
stimulate future developments in this direction. In addition, our
architecture requires a minimum amount of transformer layers
to make sure that the architecture does not lose representa-
tion power in modeling long-range relations, which generally
increases the amount of required trainable parameters.

1A mask with sparsity β has βn2 zero elements. When β = 1 − 1
n

, the
mask reduces to the identity In. In practice, the maximum degree of a vertex
(i.e. node) in robots will be approximately constant, making the computational
complexity of masked attention grow linearly with the number of nodes.
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[28] Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph
attention networks. arXiv preprint arXiv:1710.10903,
2017.

[29] Nolan Wagener, Andrey Kolobov, Felipe Vieira Fru-
jeri, Ricky Loynd, Ching-An Cheng, and Matthew
Hausknecht. Mocapact: A multi-task dataset for simu-
lated humanoid control, 2023.

[30] Tingwu Wang, Renjie Liao, Jimmy Ba, and Sanja Fidler.
Nervenet: Learning structured policy with graph neural
networks. In International conference on learning rep-
resentations, 2018.

[31] Philipp Wu, Alejandro Escontrela, Danijar Hafner, Pieter
Abbeel, and Ken Goldberg. Daydreamer: World models
for physical robot learning. In Conference on Robot
Learning, pages 2226–2240. PMLR, 2023.

[32] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong
Long, Chengqi Zhang, and S Yu Philip. A comprehensive
survey on graph neural networks. IEEE transactions on
neural networks and learning systems, 32(1):4–24, 2020.

[33] Jeyoon Yeom, Taero Kim, Rakwoo Chang, and Kyung-
woo Song. Structural and positional ensembled encoding
for graph transformer. Pattern Recognition Letters, 2024.

[34] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin
Zheng, Guolin Ke, Di He, Yanming Shen, and Tie-
Yan Liu. Do transformers really perform badly for
graph representation? Advances in neural information
processing systems, 34:28877–28888, 2021.

[35] Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea
Finn. Learning fine-grained bimanual manipulation with
low-cost hardware. arXiv preprint arXiv:2304.13705,
2023.

[36] Qinqing Zheng, Amy Zhang, and Aditya Grover. Online
decision transformer. In international conference on
machine learning, pages 27042–27059. PMLR, 2022.

[37] Ziwen Zhuang, Zipeng Fu, Jianren Wang, Christo-
pher Atkeson, Soeren Schwertfeger, Chelsea Finn, and
Hang Zhao. Robot parkour learning. arXiv preprint
arXiv:2309.05665, 2023.

APPENDIX A
RELATED WORK

Transformers in robotics. Originally developed for NLP
applications [27], transformers have been successfully applied
across domains, for example in computer vision [8] and audio
processing [7]. Several works have shown applications of
transformers as a means to represent robot policies [35, 4, 36],
demonstrating its core advantages in this setting, i.e., variable
context length, handling long sequences [19] and multiple
modalities [18, 25]. However, these approaches use transform-
ers as originally developed for unstructured or grid-like inputs,
such as language or images, respectively. In this work, we
leverage the robot embodiment by appropriately adapting the
transformer attention mechanism.

Graph Neural Networks (GNNs). GNNs [32] are a class of
learning architectures that can process inputs in the form of a
graph [21]. While early versions of these architectures featured

explicit message-passing schemes along the graph [2, 10],
more recent architectures mostly feature attention-based ap-
proaches. In fact, the vanilla transformer, with its variable
context length, inherently supports fully connected graphs.
However, state-of-the-art performance on graph interpretation
benchmarks is only achieved via modifications of the original
transformer architecture, for example by means of learned
graph encodings and attention biases [34]. A contemporaneous
work, Buterez et al. [3], following a similar idea as in the
work from Veličković et al. [28], utilizes masked attention
layers, where each node only attends to its neighbors, and
interleaves such layers with unmasked attention layers. In this
work, we exploit masked attention in a policy learning setting,
by additionally proposing an architecture that only comprises
layers where each can attend to itself and its direct neighbors,
resulting in naturally growing context over layers, i.e., the
outputs of the first layers are computed using more local
information compared to those of the last layers.

Exploiting body structure for policy learning. Graph
neural networks have been explored by several works as a way
to obtain multi-task RL policies that are effective across dif-
ferent robot morphologies. Earlier works focused on message
passing algorithms [30, 13], and were later outperformed by
vanilla transformers [14, 11] and transformer-based GNNs that
make use of learned encoding and attention biases [12]. All
these approaches were only demonstrated in simulated bench-
marking scenarios and not applied to a real-world robotics
setting. Compared to previous work, we additionally show that
introducing bottlenecks in the attention mask fully exploits
the embodiment structure and benefits policy learning also for
tasks achieved by a single agent, leading to better performance
and more favorable scaling.

APPENDIX B
BACKGROUND

A. Attention Mechanisms in Transformers

Transformer, a foundational architecture in modern machine
learning applications as well as in our work, is powered by
the self-attention mechanism [27]. Self-attention weighs the
values corresponding to each element of the sequence with a
score that is computed from pairs of keys and queries extracted
from the same sequence. Thus, it is able to identify relevant
pairs of sequence elements in the model output.

Concretely, the self-attention output vector is computed
through the following matrix operation:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V,

where Q, K, V (respectively query, key, and value matrices)
are learnable linear projections of the sequence elements’
embedding vectors, and dk is the dimension of the embedding
space. As embedding pairs with higher correspondence will
have a higher score (from the computation of QKT ), the
corresponding value vector of an embedding’s associated key
will receive a higher weight in the attention mechanism output.



B. Transformer-based GNNs

In this work, we model the agent embodiment as a graph
whose nodes are sensors and actuators, and their connecting
edges reflect the body morphology. While message-passing
GNNs are suitable inductive biases for this formulation, they
tend to suffer from oversmoothing and oversquashing of rep-
resentations, preventing effective long-range interactions and
discouraging network depth [1].

More recently, self-attention was proposed as an alternative
to message-passing [34, 14]. While the standard self-attention
mechanism amounts to modeling a fully connected graph,
a popular transformer-based GNN, Graphormer [34], injects
node-edges information through graph-based positional encod-
ings [17, 33, 34, 12] and by biasing the scaled dot-product,
i.e.,

Attention(Q,K, V ) = softmax

(
QKT

√
dk

+B

)
V, (1)

where B is a learnable matrix that depends on graph features,
e.g., shortest path or adjacency matrix, and can effectively
encode the graph structure in a flexible manner.

C. Masked Attention

The attention mechanism can be altered [27] with a binary
mask M ∈ {0, 1}n×n (where n is the sequence length), which
is equivalent to replacing the elements of B in (1):

Bi,j =

{
0 Mi,j = 1

−∞ Mi,j = 0
,

where i and j denote row and column indices. This operation
effectively results in zeroing out the contribution of the pairs
indicated with zeros in the mask M to the computation of the
attention.

APPENDIX C
DETAILS ON RL ENVIRONMENTS

We adapt the IsaacGym humanoid environment for the three
humanoid-related tasks, by modifying the observation space to
include the vertical position of the torso, root coordinates and
angular velocity, joint positions and velocities, and per-limb
contact forces. We leave the reward for the Humanoid-Mod
and Humanoid-Hill unchanged, while we adapt the reward
for Humanoid-Bob by forcing the forward target velocity to
zero, and appropriately adjusting the target and termination
heights to take the balancing board into account. For the A1-
Walk task, we adapt the codebase in Zhuang et al. [37] and
train the policies using proprioception only for the actor, and
additional simulation parameters for the critic. We define the
task to mantain a target velocity of 0.5 m/s on an irregular
terrain.

APPENDIX D
POSITIONAL ENCODINGS

For the reinforcement learning experiments presented in
Section III-B, we found that the use of positional encodings
improves the performance of BoT architectures. Specifically,
we compute positional encodings through an embedding layer

(a) Unitree A1-Walk (b) Humanoid-Mod

(c) Humanoid-Board (d) Humanoid-Hill

Fig. 6: Snapshots of successful rollouts of BoT policies.

that maps indices – up to n – to encoding vectors, which are
then added to the tokenizers’ outputs. While this is beneficial
for the reinforcement learning setting, we did not report a
considerable improvement in the imitation learning setting,
which we present without the use of positional encodings. In
fact, these are not strictly necessary, as in the BoT architecture
tokenizers do not share weights across body parts, and may
in principle replace the role of positional encodings.

APPENDIX E
REAL-WORLD DEPLOYMENT

Fig. 7: Real-World Deployment. Frame overlay demonstrating the deploy-
ment of the BoT walking policy to a Unitree A1 quadruped robot.

We deployed the RL policy trained for A1-Walk task to



a real-world Unitree A1 Robot. Computation was runned
offboard on CPU and commands were sent via WiFi or
Ethernet connection. The video at https://bodytransformer.site
demonstrates the real-world deployment. A frame overlay
representing the robot motion are also shown in Figure 7.

APPENDIX F
ADDITIONAL IMITATION LEARNING ABLATIONS

In this section we provide several ablations in addition to
those presented in Section III-A. Specifically, we compare
(i) BoT-Hard, (ii) BoT-Mix, (iii) BoT-Soft, which – similarly
to [12] – learns the matrix B in (1) as a function of the
graph’s shortest path matrix, and (iv) BoT-Hard/Random with
a randomly sampled mask, i.e. having ones on its diagonal
and the same sparsity as the mask M used for the correct
implementation of BoT-Hard.

The table in Figure 8 shows the result of this compari-
son, with BoT-Hard outperforming all baselines on most of
of the metrics. The bottlenecks introduced by the masked
attention result in better performance compared both to a
mixed approach (BoT-Mix) and an approach that also accounts
for structure but does not prevent long-range communication
(BoT-Soft). As expected, simply sampling a random mask
without properly accounting for the embodiment structure
deteriorates performance.

APPENDIX G
ADDITIONAL REINFORCEMENT LEARNING ABLATIONS

A. Effect of Body-Induced Masking in BoT
BoT relies on masked attention with its mask determined

by the embodiment structure. We conduct an additional ex-
periment in the RL setting to further demonstrate the effect
of the body-induced masking in this setting. We compare
with BoT-Hard/Random and BoT-Mix/Random, where the
attention mask M is given by a randomly sampled symmetric
binary matrix with the same degree of sparsity (β ≈ 0.82
for the IsaacGym humanoid). The results are presented in
Figure 9. Overall, BoT with random masking (dotted lines)
underperforms BoT with body-induced masking (solid lines)
in both a simpler task (Humanoid-Mod) and a hard-exploration
task (Humanoid-Board), which highlights that the use of body-
induced masking is crucial for the performance of BoT.

B. Effect of Per-Limb Tokenizer vs. Shared Tokenizer
The existing works using Transformer-based policies [14,

11, 12] for multi-task RL adopt shared linear projections for
tokenizers and detokenizers to deal with the varying number
of limbs, i.e., per-limb observation features are projected into
embedding vectors by the single shared tokenizer network,
and the per-limb hidden vectors are transformed to per-limb
actions via the single shared detokenizer network. In contrast,
our BoT is designed for tasks with a single morphology, thus
we adopt per-node linear projections for tokenizer and detok-
enizer. We conduct an additional experiment to investigate the
effect of this design choice, and the results are demonstrated
in Figure 10.

In Figure 10, the solid lines denote the results of using per-
node tokenizers/detokenizers, and the dotted lines present the

results of using a shared tokenizer/detokenizer (which can be
understood as representatives of the existing methods [14, 11,
12]). Overall, Transformer/BoT with per-node (de)tokenizers
significantly outperform their shared (de)tokenizer counter-
parts in both a simpler task (Humanoid-Mod) and a hard-
exploration task (Humanoid-Board). This shows that the use of
tokenizers shared across different limbs for Transformer-based
policies hinders efficient learning.

APPENDIX H
TRAINING DETAILS

The training parameters of the experiments detailed in
Section III-A and Section III-B are as summarized in Tables
11a and 11b. We run ten evaluation rollouts for both training
and validation sets after each training epoch.

APPENDIX I
FLOP DERIVATION FOR CUSTOM MASKED ATTENTION

IMPLEMENTATION

Below, we comparatively analyze an asymptotic bound for
the amount of floating-point operations required in one scaled
dot product (see Equation (1)) call between the vanilla and
the masked approach. From hereon, let n denote the sequence
length and dk the input and output dimension of our attention
mechanism.

Computing QKT

√
dk

. Considering Q ∈ Rn×dk (and similarly
for K), the computation of QKT will generally require dk
multiplications and dk−1 additions for all of n2 pairs. Division
by

√
dk results in n2 divisions and one constant factor c1

of FLOPs for computing
√
dk. The total amount of flops is

2n2dk + c1.
Masked computation of QKT

√
dk

. Exploiting sparsity, we
ignore all inner product computations for zero entries in M ,
computing only βn2 pairs of multiplications. This results in a
reduction to 2βn2dk + c1 FLOPs.

Computing Softmax(S). A softmax for one vector of
dimension n requires n exponentiations, n− 1 additions, and
n divisions, performed for n rows. Let exponentiations require
c2 FLOPs per element, then a total of (2 + c2)n

2 − n FLOPs
is performed.

Masked computation of Softmax(S). As a result of
sparsity, there is instead a total of βn2 exponentiations βn2

divisions, and βn2 − n additions to compute, reducing our
demand to (2 + c2)βn

2 − n FLOPs.
Computing the multiplication Softmax(S)V . A total

of ndk pairs are multiplied, where each pair requires 2n − 1
operations to complete. The total amount of FLOPs is 2n2dk−
ndk. Following a similar reasoning with previous writing, a
total of 2n2dk − ndk FLOPs are performed.

Assuming that our physical agent provides a graph-induced
mask M ∈ {0, 1}n×n of sparsity β ∈ [ 1n , 1] (such that there
are βn2 > n nonzero entries), then the amount of FLOPs
required by a vanilla masked self-attention implementation is
4n2dk + (2 + c2)n

2 − ndk − n + c1, while that of a custom
masked implementation is (2β+2)n2dk+(2+c2)βn

2−ndk−
n + c1. Therefore, the performance gap between the vanilla
and masked implementations is determined by the sparsity

https://bodytransformer.site


Return Normed Length Normed
train test train test

BoT-Hard (ours) 0.908 / 0.703 0.890 / 0.648 1.000 / 0.876 1.000 / 0.841
BoT-Mix (ours) 0.943 / 0.679 0.844 / 0.604 0.982 / 0.853 0.964 / 0.785

BoT-Soft 0.900 / 0.678 0.843 / 0.598 0.993 / 0.859 0.962 / 0.789
BoT-Hard/Random 0.850 / 0.661 0.835 / 0.600 0.995 / 0.845 0.962 / 0.782

Fig. 8: Additional Imitation Learning Ablations. Statistics of the various architecture-criterion combinations are shown with two values, the leftside being
the maximum mean value recorded throughout all evaluation epochs across three seeds, the rightside being the mean of all evaluation scores recorded in last
15 evaluation epochs across all three seeds.
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Fig. 9: Additional RL Experimental Results on the Effect of Body-induced
Masking.
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Fig. 10: Additional RL Experimental Results on the Effect of Per-Node
(De)Tokenizers.

coefficient β, that is, the number of FLOPs that a vanilla
approach requires will be c(n) times the number of FLOPs
a custom masked approach requires:

lim
n→∞

# FLOPs in vanilla approach
# FLOPs in masked implementation

= lim
n→∞

4n2dk + (2 + c2)n
2 − ndk − n+ c1

(2β + 2)n2dk + (2 + c2)βn2 − ndk − n+ c1

=
4dmodel + 2 + c2

(2β + 2)dmodel + 2β + βc2
≥ 1

Therefore, even though these implementations share the same
asymptotic bound O(n2dk), the custom masked implementa-
tion’s amount of FLOPs scales better than the vanilla imple-
mentation.

Note that it is possible to further optimize our implemen-
tation by sparsifying the multiplication Softmax(S)V ; this is
left as a direction of future work, and requires the use of sparse
array libraries, which was not in the scope of this analysis.

Parameter Values
MLP Transformers

Batch Size 256 256
# Epochs 100 100

# Encoder Layers 3 16
Embedding Input Size 320 320

Feedforward Size 2500 1024
# Attention Heads N/A 5

Learning Rate 1e-4 1e-4
# Parameters 16,696,656 17,544,120

(a) Training Parameters Used for Imitation Learning Experiments.

Parameter Values
MLP Transformers

Num Envs 2048 2048
Batch Size 8192 8192

# Encoder Layers 3 10
# Attention Heads N/A 2

Embedding Input Size N/A 64
Feedforward Size 150 128

# Parameters 699,467 688,762

(b) Training Parameters Used for Reinforcement Learning Experiments.

Fig. 11: Training Parameters Used for Experiments in Section III.
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