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Abstract

Annually, the organizers of the Metrics Shared001
Task at the Conference on Machine Transla-002
tion (WMT) conduct the meta-evaluation of003
Machine Translation (MT) metrics, ranking004
them according to their correlation with human005
judgments. Their results guide researchers to-006
ward enhancing the next generation of metrics007
and MT systems. With the recent introduc-008
tion of neural metrics, the field has witnessed009
notable advancements. Nevertheless, the inher-010
ent opacity of these metrics has posed substan-011
tial challenges to the meta-evaluation process.012
This work highlights two issues with the meta-013
evaluation framework currently employed in014
WMT, and assesses their impact on the metrics015
rankings. To do this, we introduce the concept016
of sentinel metrics, which are designed explic-017
itly to scrutinize the accuracy, robustness, and018
fairness of the meta-evaluation process. By em-019
ploying sentinel metrics, we aim to validate our020
findings, and shed light and monitor the poten-021
tial biases or inconsistencies in the rankings.022
We discover that the present meta-evaluation023
framework favors two categories of metrics: i)024
those explicitly trained to mimic human quality025
assessments, and ii) continuous metrics. Ulti-026
mately, we raise concerns regarding the eval-027
uation capabilities of state-of-the-art metrics,028
highlighting that they might be basing their029
assessments on spurious correlations found in030
their training data.031

1 Introduction032

Over the past few years, the Machine Translation033

(MT) field has witnessed significant advancements,034

largely driven by the advent of neural architectures,035

with the Transformer (Vaswani et al., 2017) be-036

ing the most notable. Modern MT systems now037

deliver translations that are mostly fluent and accu-038

rate, posing a challenge for their quality evaluation039

– even when conducted by human annotators, espe-040

cially those who lack professional training (Freitag041

et al., 2021a). Under these circumstances, shallow042

overlap-based metrics are gradually being replaced 043

by neural-based metrics, that demonstrate a better 044

correlation with human judgments (Freitag et al., 045

2022). However, a significant limitation is that 046

most neural metrics are black-box systems trained 047

to predict human judgments in the form of scalar 048

scores, and typically do not provide justifications 049

for their assessments. Besides rendering them chal- 050

lenging to interpret, such opacity also complicates 051

their meta-evaluation. In this respect, we found 052

that certain strategies for the assessment of MT 053

metrics’ capabilities – which have recently been 054

employed in the context of the Metrics Shared Task 055

at the Conference on Machine Translation (WMT)1 056

– favor specific metric categories and potentially 057

encourage undesirable metrics behavior. To demon- 058

strate these problems, we introduce the concept of 059

sentinel metrics, i.e., a suite of metrics serving as 060

a probe to identify pitfalls in the meta-evaluation 061

process. Sentinel metrics are either trained with 062

incomplete information – which makes them in- 063

herently unable to properly evaluate the quality of 064

machine-translated text – or consist of variations 065

of existing metrics – which have been devised to 066

expose specific issues in the meta-evaluation. 067

As an example, in Table 1, we present the 068

segment-level ranking of WMT23 with the in- 069

clusion of a sentinel metric. As can be 070

seen, SENTINELCAND ranks in the upper half. 071

SENTINELCAND is a sentinel metric designed to as- 072

sess the quality of a candidate translation solely 073

based on the translation itself, without accessing 074

its source sentence or any reference translation. Ar- 075

guably, such a metric should only be capable of 076

evaluating a translation’s fluency, but not its ad- 077

equacy in conveying the original message, and a 078

fair assessment should rank it at lower positions. 079

Notably, SENTINELCAND is above strong baselines 080

1With its first edition in 2006 (Koehn and Monz, 2006),
"WMT is the main event for machine translation and machine
translation research." (https://machinetranslate.org/wmt).
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Metric Avg. corr

XCOMET-Ensemble 1 0.697
MetricX-23 2 0.682
XCOMET-QE-Ensemble* 3 0.681
MetricX-23-QE* 4 0.681
mbr-metricx-qe* 5 0.652
GEMBA-MQM* 6 0.639
MaTESe 7 0.636
CometKiwi* 8 0.632
sescoreX 9 0.628
SENTINELCAND * 10 0.626
cometoid22-wmt22* 11 0.625
KG-BERTScore* 12 0.624
COMET 13 0.622
BLEURT-20 14 0.622
Calibri-COMET22-QE* 15 0.603
Calibri-COMET22 16 0.603
YiSi-1 17 0.600
docWMT22CometDA 18 0.598
docWMT22CometKiwiDA* 19 0.598
prismRef 20 0.593
MS-COMET-QE-22* 21 0.588
BERTscore 22 0.582
mre-score-labse-regular 23 0.558
XLsim 24 0.544
f200spBLEU 25 0.540
MEE4 26 0.539
tokengram_F 27 0.537
chrF 28 0.537
BLEU 29 0.533
prismSrc* 30 0.530
embed_llama 31 0.529
eBLEU 32 0.491
Random-sysname* 33 0.463

Table 1: Segment-level ranking of the primary submis-
sions to the WMT 2023 Metrics Shared Task, with the
inclusion of sentinel metrics. The values in the column
’Avg. corr’ are obtained by averaging the correlations
of the 6 segment-level tasks of WMT 2023. Starred
metrics are reference-free, underlined metrics are base-
lines, and highlighted metrics are sentinels. Ranks rep-
resent clusters of statistical significance and are com-
puted following Freitag et al. (2023), which leverage the
PERM-BOTH hypothesis test introduced by Deutsch
et al. (2021). In Table 3 in the Appendix, we report the
metrics performance in terms of rank and correlation
in all the 6 tasks that contribute to this ranking. All the
rankings present in this work have been computed with
the official shared task library (https://github.com/
google-research/mt-metrics-eval).

such as COMET (Rei et al., 2020) and BLEURT-081

20 (Sellam et al., 2020), suggesting that there082

might be some issues with the segment-level meta-083

evaluation methods used in WMT23.084

In this work, we: i) illustrate the issues that af-085

fect the segment-level evaluation measures used in086

WMT23, experimentally demonstrating their im-087

pact with the help of sentinel metrics; ii) propose088

solutions to address them; iii) raise concerns re-089

garding the reliability of state-of-the-art MT met- 090

rics. We publish the code2 to reproduce our work 091

and create novel sentinel metrics. 092

2 The Meta-evaluation of MT Metrics 093

Yearly, the WMT Metrics Shared Task organizes 094

a competition among various metrics, including 095

participants’ submissions and baselines, with the 096

goal of identifying the metric that most closely 097

aligns with human judgments. Historically, the or- 098

ganizers have employed correlation with human 099

judgment as a meta-evaluation strategy. Recently, 100

significant efforts have been made to refine the 101

meta-evaluation process, encompassing the adop- 102

tion of new measures, such as those proposed by 103

Kocmi et al. (2021) and Deutsch et al. (2023), and 104

the introduction of the challenge sets sub-task (Fre- 105

itag et al., 2021b, 2022), among other initiatives. 106

In this section, we provide an overview of WMT’s 107

official meta-evaluation setting. 108

First, multiple MT systems are employed to 109

translate source segments found in one or more 110

test datasets.3 Consequently, test datasets contain 111

several translations of the same source sentence. 112

Second, a manual evaluation campaign is carried 113

out to assess the quality of all translations. Ulti- 114

mately, metrics’ capabilities are assessed based on 115

their alignment with human judgments assigned 116

to translations in the form of scalar scores. Such 117

alignment is typically estimated using correlation 118

and accuracy measures. Specifically, metrics are 119

evaluated at two granularity levels: 120

• at the segment level, metrics assign a score to 121

every translation of each source segment, and 122

they are ranked according to their ability to 123

discern which translation is superior; 124

• at the system level, metrics assign a score to 125

each MT system,4 and they are ranked accord- 126

ing to their ability to discern which system 127

performs better. 128

At both granularity levels, metrics can be evalu- 129

ated using several statistical methods, such as the 130

Kendall τ and Pearson ρ correlation coefficients, 131

2omitted.link
3A segment typically refers to a single sentence, but can

also include multiple sentences. For instance, at WMT23, the
meta-evaluation of translations from English to German was
conducted at the paragraph level rather than at the sentence
level.

4Typically, the score of a system is calculated as the mean
of the scores given to its translations.
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which have traditionally been applied at the seg-132

ment and system levels, respectively. After collect-133

ing results from various statistics, a final ranking134

of metrics is derived by aggregating them. For ex-135

ample, at WMT23, the final ranking was computed136

from the following three statistics:137

1. System-level pairwise ranking accuracy138

(Kocmi et al., 2021), which evaluates metrics139

based on their ability to rank systems in the140

same order as human judgments.141

2. System- and segment-level Pearson correla-142

tion, which measures the degree to which met-143

ric scores and human scores are linearly cor-144

related.145

3. Segment-level pairwise ranking accuracy with146

tie calibration (Deutsch et al., 2023), which147

evaluates metrics based on their ability to rank148

segments in the same order as human judg-149

ments, or their ability to correctly predict ties.150

In this work, we identify two critical issues related151

to the second and third statistics, and provide the152

following recommendations to address them:153

• Translations should be grouped by their154

source segment before calculating a met-155

ric’s segment-level correlation with human156

judgments (Section 3).157

• Tie calibration should not be conducted on158

the test set (Section 4).159

In the following two sections, we provide an160

overview of the aforementioned statistics, illustrate161

their flaws, and demonstrate their impact by lever-162

aging our sentinel metrics.163

3 To Group or Not to Group?164

At early editions of the WMT Metrics Shared Task165

(Macháček and Bojar, 2013, 2014; Stanojević et al.,166

2015; Bojar et al., 2016), human gold scores were167

collected in the form of Relative Rankings (RR).168

Specifically, the annotators were tasked to rank up169

to 5 translations of the same source sentence, pro-170

duced by different MT systems. From each rank-171

ing, up to 10 pairwise comparisons were extracted.172

Despite metrics assessments being scalar scores –173

which theoretically enable the comparison of all174

pairs of translated segments – correlation was mea-175

sured only on those pairs of translations for which176

RRs were available. Therefore, only translations of177

the same source sentence were compared. Later on, 178

at more recent editions of WMT, new techniques 179

for human evaluation were adopted: first Direct 180

Assessments (Graham et al., 2013, DA) – where 181

annotators rate individual translations on a scale 182

from 1 to 100 – then Multidimensional Quality 183

Metrics (Lommel et al., 2014, MQM) – where an- 184

notators tag the spans of a translation that contain 185

errors, specifying their category and severity. With 186

both the new annotation schemas, each translated 187

segment is assigned a scalar quality score inde- 188

pendently of the other segments,5 which made it 189

possible to compare all translations, not only those 190

of the same source sentence. This new possibility 191

raised some doubts regarding which is the best way 192

to compute the correlation between metrics and 193

human assessments. Indeed, although both human 194

and metrics assessments can now be represented by 195

matrices – with segments on the x-axis and systems 196

on the y-axis – correlations are applied to vectors, 197

not matrices. Therefore, it was necessary to decide 198

whether to compute the correlation on the flattened 199

matrices – No Grouping – or to first compute the 200

correlations of the rows or columns of the matrices, 201

i.e., group translations based on either their source 202

segment – Segment Grouping – or the system that 203

produced them – System Grouping – respectively, 204

and return the average correlation. 205

At the WMT21 Metrics Shared Task, Freitag 206

et al. (2021b) chose the No Grouping strategy, ar- 207

guing that the other options would provide only a 208

partial view of the overall picture. At WMT22, all 209

three grouping strategies were used (Freitag et al., 210

2022), and later at WMT23, Freitag et al. (2023) 211

chose No Grouping again. Although No Grouping 212

is the only strategy that assesses the MT metrics’ 213

ability to discern between higher and lower quality 214

translations in absolute terms, irrespective of the 215

source segment or translation system, we show that 216

both No Grouping and System Grouping may intro- 217

duce unfairness and favor trained metrics over the 218

rest. 219

3.1 The Relation Between Spurious 220

Correlations and Grouping Strategies 221

Most neural-based metrics are trained with a regres- 222

sion objective to approximate human judgments. 223

They are expected to infer by pattern-matching 224

the relation between human judgments and various 225

5In MQM, a final score is obtained by applying a specific
weighting to each combination of the detected spans’ category
and severity.
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phenomena, such as omissions, additions, or other226

translation errors. However, this mechanism might227

inadvertently lead to the detection of patterns that228

are not in a causal relation with the concept of trans-229

lation quality but are instead spurious correlations,230

e.g., the number of named entities in the source seg-231

ment, among others. Arguably, the meta-evaluation232

should not reward metrics for basing their assess-233

ments on spurious correlations between the features234

of the source, translation, or reference, and the hu-235

man judgments. However, our intuition is that No236

Grouping and System Grouping strategies might be237

doing so by allowing the comparison of translations238

of different sources. To simplify, consider a met-239

ric that unfairly penalizes a translation solely if it240

contains many named entities. Using No Grouping241

or System Grouping, such a metric might have a242

non-negative correlation with human judgments if,243

on average, translating sentences containing many244

named entities is more difficult than translating245

other sentences, because MT systems would be246

making more mistakes translating them. Therefore,247

exploiting such a pattern might be beneficial even248

though it is not causally related to the quality of a249

translation. In contrast, using Segment Grouping250

such a pattern would be useless, as translations of251

the same source sentence should contain the same252

amount of named entities. More in general, we253

expect Segment Grouping to lessen the impact of254

most spurious correlations derived from features255

shared by a source sentence and its translations.256

To assess the extent of this issue in the present257

evaluation framework, we incorporate three sen-258

tinel metrics in the evaluation and re-compute the259

metrics’ rankings using all grouping strategies.260

Crucially, we find that the impact of spurious cor-261

relations when No Grouping and System Grouping262

strategies are employed is substantial – favoring263

trained metrics over the rest6 – and is significantly264

reduced with Segment Grouping.265

3.2 The Sentinel Metrics266

This section describes the three sentinel metrics267

used to measure the impact of the aforementioned268

issue on the meta-evaluation process:269

1. SENTINELCAND, which assesses the quality of270

a translation without comparing it to its source271

6Indeed, overlap-based metrics such as BLEU (Papineni
et al., 2002) and chrF (Popović, 2015), or LLM-based metrics
such as GEMBA-MQM (Kocmi and Federmann, 2023), were
not trained to mimic human assessments and should not be
able to leverage spurious correlations.

or any reference. 272

2. SENTINELSRC, which predicts the quality of a 273

translation solely based on its source. 274

3. SENTINELREF, which predicts the quality of a 275

translation solely based on its reference. 276

Having no information regarding the translation to 277

evaluate, SENTINELSRC and SENTINELREF can only 278

learn spurious correlations between the features of 279

the source and reference sentences, respectively, 280

and the human judgments. SENTINELCAND, instead, 281

is a metric with partial information. Indeed, it 282

is possible to evaluate a translation’s fluency or 283

grammatical correctness without comparing it with 284

a reference, but not its adequacy. Nonetheless, we 285

expect SENTINELCAND to base its assessments also 286

on spurious correlations. 287

3.3 Experimental Setup 288

Sentinel metrics employ XLM-RoBERTa large 289

(Conneau et al., 2020) as their backbone model, 290

with a multi-layer fully-connected neural network 291

on top of the [CLS] token, which is used to output 292

predictions in the form of scalar scores. Such sen- 293

tinel metrics are trained by minimizing the Mean 294

Squared Error (MSE) between their predicted qual- 295

ity scores and human judgments. Our dataset com- 296

prises a selection of data from WMT spanning 2017 297

to 2022, incorporating human judgments repre- 298

sented through Direct Assessments (DA) and Mul- 299

tidimensional Quality Metrics (MQM) scores. In- 300

spired by the approach of Rei et al. (2022a), we 301

train sentinel metrics for a single epoch using DA 302

from 2017 to 2020, and then fine-tune them for 303

a further epoch using MQM data. Further details 304

regarding the training process are reported in Ap- 305

pendix B. 306

3.4 Results 307

In Table 2, we report the ranking derived from 308

the segment-level Pearson correlation of the pri- 309

mary submissions to the Metrics Shared Task of 310

WMT23, with the inclusion of sentinel metrics, 311

in the language direction ZH → EN, and with 312

all three grouping strategies. We report in Ap- 313

pendix C the rankings alongside the correlation 314

values for all the other official translation direc- 315

tions of the Metrics Shared Task of WMT23, i.e., 316

ZH → EN, EN → DE and HE → EN. As can be 317

seen, SENTINELSRC ranks fourth and third when the 318

grouping strategies are No Grouping and System 319
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Grouping, respectively, surpassing strong baselines320

like COMET or BLEURT-20, and even state-of-the-321

art metrics like GEMBA-MQM. The only metrics322

that are not surpassed are strong regressors such as323

XCOMET-Ensemble (Guerreiro et al., 2023) and324

MetricX-23 (Juraska et al., 2023), which might325

have learned at least the same spurious correlations326

leveraged by the sentinel metrics (§3.4.1). Con-327

versely, when grouping by segment, SENTINELSRC328

and SENTINELREF are correctly positioned at the329

bottom of the ranking,7 and SENTINELCAND ranks330

11th, compared to 3rd and 2nd with No Grouping331

and System Grouping. A notable difference be-332

tween the grouping strategies is the positioning of333

GEMBA-MQM, which is ranked 7th and 9th with334

No Grouping and System Grouping, respectively,335

and becomes first with Segment Grouping. We336

hypothesize that this is due to GEMBA-MQM be-337

ing based on GPT-4, which has not been explicitly338

fine-tuned on human assessments and most likely339

does not leverage spurious correlations such those340

that described in Section 3.1. Interestingly, with341

grouping strategies other than Segment Grouping,342

GEMBA-MQM is surpassed by all the sentinel343

metrics.344

SENTINELCAND is the only sentinel metric that345

does not rank at the very bottom with Segment346

Grouping, outperforming prismSrc (Thompson and347

Post, 2020) and embed_llama (Dreano et al., 2023),348

and positioning within the same cluster of statistical349

significance as BLEU. This suggests that focusing350

solely on the candidate translation – specifically,351

its fluency and grammatical correctness – may be352

sufficient to exceed the performance of some less353

effective metrics, at least in terms of Pearson cor-354

relation with human judgments. Furthermore, we355

highlight that our results may provide an answer356

to the open question left at WMT23 regarding the357

inconsistency of segment-level and system-level358

correlations for prismSrc. Freitag et al. (2023) no-359

ticed that, despite displaying a moderate correlation360

at the segment level, prismSrc was showing neg-361

ative correlation values at the system level. As362

can be seen from Table 2, prismSrc ranks 15th out363

of 24 with No Grouping but 13th out of 14 with364

Segment Grouping (i.e., it is in the second to last365

significance cluster, close to the sentinel metrics).366

This result is consistent with prismSrc’s negative367

correlation at the system level.368

7This had to be expected, given that both these metrics
return the same assessment for all translations of the same
source segment.

Grouping
Metric No Seg Sys

XCOMET-Ensemble 1 2 1
MetricX-23-QE* 1 4 1
XCOMET-QE-Ensemble* 1 3 1
MetricX-23 2 3 2
SENTINELCAND * 3 11 2
SENTINELSRC * 4 14 3
sescoreX 4 7 5
MaTESe 5 6 6
SENTINELREF 5 14 4
mbr-metricx-qe* 6 1 7
cometoid22-wmt22* 6 4 6
GEMBA-MQM* 7 1 9
Calibri-COMET22-QE* 7 5 8
CometKiwi* 7 3 9
KG-BERTScore* 8 4 10
COMET 9 4 12
Calibri-COMET22 9 7 11
docWMT22CometKiwiDA* 10 6 13
BLEURT-20 10 4 13
MS-COMET-QE-22* 11 7 14
docWMT22CometDA 12 6 15
YiSi-1 13 6 16
BERTscore 14 7 17
prismSrc* 15 13 16
prismRef 16 6 18
embed_llama 17 12 18
mre-score-labse-regular 18 8 19
BLEU 19 11 20
XLsim 19 10 21
f200spBLEU 20 10 21
MEE4 20 9 21
chrF 21 8 22
tokengram_F 22 8 23
Random-sysname* 23 14 23
eBLEU 24 10 24

Table 2: Rankings obtained from the segment-level Pear-
son correlation for the primary submissions to the WMT
2023 Metrics Shared Task, with sentinel metrics. The
language direction is ZH → EN. Ranks represent clus-
ters of statistical significance. Additional information
can be found in Appendix C.

In Appendix C, we also report the rankings and 369

correlations obtained using the Kendall τ correla- 370

tion coefficient for each grouping strategy, to show 371

that our findings are independent of the correlation 372

measure, at least among those typically employed 373

at WMT, i.e., Pearson and Kendall τ . 374

3.4.1 Are MT metrics learning spurious 375

correlations? 376

We hypothesize that some of the trained metrics 377

may be basing their assessments on the same spu- 378

rious correlations leveraged by the sentinel met- 379

rics. To delve deeper into this, we measure their 380

segment-level Pearson correlation with the sen- 381

tinel metrics using No Grouping. Surprisingly, 382

XCOMET-Ensemble, XCOMET-QE-Ensemble, 383
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MetricX-23, and MetricX-23-QE, which are the384

only metrics that surpass the sentinels in Table 2,385

display a high correlation with all sentinel metrics.386

Interestingly, their correlation with SENTINELSRC387

is 0.750, 0.736, 0.690, and 0.712 (Figure 2), re-388

spectively, while their correlation with human judg-389

ment is 0.650, 0.647, 0.625, and 0.647, respec-390

tively (Table 5). We recognize that these met-391

rics share many similarities with our sentinels, as392

both are neural transformer-based systems and both393

were trained with the same regression-based objec-394

tive, using largely the same data. This similarity395

likely contributes to the high correlation values ob-396

served. However, with access limited to only the397

source segment, SENTINELSRC relies exclusively398

on spurious correlations to conduct the evaluation.399

For this reason, we argue that these results raise400

concerns about the reliability of state-of-the-art MT401

metrics, which may be learning to exploit spurious402

correlations to minimize the Mean Squared Error403

with human judgments during training. We leave404

the investigation of this phenomenon to future work405

and direct readers to Appendix D, where we report406

the pairwise correlation between most of the con-407

sidered metrics, for further details.408

4 The Evaluation of Ties409

In this Section, we focus on the third statistic410

among those described in Section 2, i.e., the411

segment-level pairwise ranking accuracy with tie412

calibration, dubbed acceq by Deutsch et al. (2023).413

Before WMT23, the organizers of the Metrics414

Shared Task used to employ the Kendall τ coef-415

ficient – which is a statistic used to estimate the416

rank-based agreement between two sets of mea-417

surements (Kendall, 1945) – to measure the corre-418

lation between metrics and human judgments at the419

segment level. Deutsch et al. (2023) pointed out420

that the Kendall τ coefficient does not account for421

metrics correctly predicting ties,8 and introduced422

acceq to address this issue. Unfortunately, our anal-423

ysis indicates that acceq inadvertently compromises424

evaluation fairness to accommodate ties, ultimately425

biasing the results in favor of continuous metrics9426

8Given a pair of translations whose quality has been as-
sessed by human annotators, the pair is tied if both translations
were assigned with the same score.

9By continuous, we refer to those metrics whose assess-
ments can take on any value within a given range, as opposed
to discrete metrics, which can take on a limited set of values.
Metrics from the COMET family such as COMET, XCOMET-
Ensemble, and CometKiwi (Rei et al., 2022b) are continuous,
whereas GEMBA-MQM (Kocmi and Federmann, 2023) and

over discrete ones. 427

4.1 The Kendall τ 428

In this section, we define the Kendall τ coeffi- 429

cient as employed by the organizers of the Met- 430

rics Shared Task of WMT21 and WMT22.10 Let 431

m,h be the vectors of metric and human assess- 432

ments, respectively. Concordant pairs are the pairs 433

of metric assessments that have been ranked in the 434

same order by humans; discordant pairs are those 435

ranked in a different order. We define C and D 436

as the number of concordant and discordant pairs, 437

respectively. We also define Th as the number of 438

pairs only tied in the gold scores, Tm as the number 439

of pairs only tied in the metric scores, and Thm as 440

the number of pairs tied both in gold and metric 441

scores, i.e., the number of correctly predicted ties. 442

The Kendall τ correlation coefficient is defined as 443

follows (Kendall, 1945): 444

τ =
C −D√

(C +D + Th)(C +D + Tm)
. (1) 445

In Appendix E, we provide a numerical example of 446

the computation of Kendall τ from the vectors m 447

and h. 448

4.2 The acceq 449

As noted by Deutsch et al. (2023), Kendall τ penal- 450

izes the prediction of ties, but never rewards them, 451

as Tm and Th are in the denominator, and Thm is 452

not used. This issue was not prominent in the ear- 453

liest editions of the Metrics Shared Task, where 454

ties in human scores were disregarded, and older 455

metrics rarely produced ties. Currently, instead, it 456

is essential to consider the prediction of ties, es- 457

pecially since human MQM annotations contain a 458

lot of ties,11 and some recently-proposed metrics 459

are designed to output evaluation assessments that 460

resemble MQM (Perrella et al., 2022; Kocmi and 461

Federmann, 2023). For this reason, Deutsch et al. 462

(2023) proposed a measure that mimics the τ coef- 463

ficient in the way it is computed, but also accounts 464

for correctly predicting ties: 465

acceq =
C + Thm

C +D + Th + Tm + Thm
. (2) 466

MaTESe (Perrella et al., 2022) are examples of discrete met-
rics.

10This is τb in Deutsch et al. (2023).
11This is also related to the increasing quality of automatic

translation, as perfect translations are assigned the same maxi-
mum score.
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Differently from Kendall τ , acceq includes Thm in467

the numerator, and the denominator encompasses468

the total number of pairs. Notably, discordant pairs469

are not subtracted from the numerator, rendering470

this metric a measure of accuracy, with scores rang-471

ing between 0 and 1.472

This measure, as it stands, would unfairly disad-473

vantage most neural metrics, and, in general, con-474

tinuous metrics. Indeed, it is extremely infrequent475

for them to assign the same score to two different476

translations, meaning that they never predict ties.477

This places them at a disadvantage when human478

ties are considered in the evaluation. To address479

this issue, Deutsch et al. (2023) propose the tie480

calibration algorithm. In the following section, we481

briefly illustrate such an algorithm and explain why482

it should not be conducted on the same test set used483

for the meta-evaluation.484

4.3 Tie Calibration485

The tie calibration algorithm determines, for each486

metric, a threshold ϵ such that, given two metric487

assessments m1 and m2, they are tied if |m1 −488

m2| ≤ ϵ. Deutsch et al. (2023) propose to select489

the ϵ that maximizes acceq on the same test set used490

for the metrics meta-evaluation, enabling metrics491

to output the number of tied scores that best fits492

the distribution of human ties in the considered test493

set. This distribution is not stable across test sets494

(Table 11), and Deutsch et al. (2023) show that495

ϵ values are not stable either. Nonetheless, they496

argue that this would not impact the fairness of497

the evaluation. Unfortunately, our analysis shows498

that this is not the case. Specifically, despite all499

metrics’ ϵ values being selected on the same test500

data, we demonstrate that continuous metrics are501

more flexible to best fit the underlying distribution502

of human ties, compared to discrete ones, leading503

to higher acceq values.504

4.4 Two New Sentinel Metrics505

To demonstrate the impact of this phenomenon,506

we introduce two additional sentinel metrics, i.e.,507

SENTINELGEMBA and SENTINELMATESE. GEMBA-508

MQM (Kocmi and Federmann, 2023) and MaTESe509

(Perrella et al., 2022) are MT metrics that out-510

put discrete scores in the form of MQM qual-511

ity assessments and participated in WMT23.512

SENTINELGEMBA and SENTINELMATESE are per-513

turbed versions of GEMBA-MQM and MaTESe,514

respectively, obtained by adding Gaussian noise515

– N (0, 0.01) – to their predictions. Our objective516

is to make their output continuous in the neigh- 517

borhood of discrete values while preventing two 518

different discrete assessments from inverting their 519

ordering. That is, if two GEMBA-MQM’s assess- 520

ments m1,m2 are such that m1 > m2, this relation 521

is preserved by SENTINELGEMBA. In this way, we 522

create two sentinel metrics that try to partially fill 523

the gap between discrete and continuous metrics, to 524

use them in our analysis. Nonetheless, we wish to 525

remark that this solution is sub-optimal, and is not 526

comparable to metrics that are continuous by de- 527

sign. Indeed, Gaussian noise randomizes the order- 528

ing of all SENTINELGEMBA and SENTINELMATESE’s 529

assessments that are in the neighborhood of dis- 530

crete values. 531

To demonstrate that SENTINELGEMBA and 532

SENTINELMATESE can better fit the distribution of 533

human ties compared to their discrete counterparts, 534

we modify such distribution in the test data. Specif- 535

ically, we repeatedly sub-sample the test data, such 536

that for each pair of tied human assessments we 537

remove that pair from the test data with a certain 538

probability pt, and do the same for non-tied pairs, 539

which are removed with probability pn. We extract 540

13 samples by assigning various values to pt and 541

pn and report the chosen values in Table 12 in the 542

Appendix. As a consequence, each pair (pt, pn) 543

represents a different sub-sample of test data, with 544

a different percentage of tied human pairs. Then, 545

for each metric, we select the best ϵ and compute 546

acceq on each of these samples. 547

4.5 Results 548

In Figure 1a, we present the acceq results for 549

a subset of continuous metrics, together with 550

GEMBA-MQM, MaTESe, SENTINELGEMBA, and 551

SENTINELMATESE. We discuss our results on the 552

WMT23 ZH → EN test set, and report results 553

concerning the other language directions, i.e., 554

EN → DE and HE → EN, in Appendix F. At 555

first glance, it is evident that discrete metrics ex- 556

hibit a distinct acceq pattern compared to con- 557

tinuous and sentinel metrics. Notably, at lower 558

percentages of tied human pairs, SENTINELGEMBA 559

and SENTINELMATESE significantly outperform 560

GEMBA-MQM and MaTESe.12 This discrepancy 561

arises because the tie calibration algorithm selects 562

12It is important to highlight that the range of human tie
percentages explored in our analysis is similar to that found
in the WMT test sets. Indeed, as shown in Table 11, such
percentages range from a minimum of 15.14% to a maximum
of 53.35%, observed in the WMT22 EN → DE test set.
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Figure 1: acceq (a) and optimal ϵ (b) of the considered metrics for varying percentages of human ties in the test
dataset (0.24 is the percentage of human ties in the entire dataset, obtained when pt and pn are both 0). ϵ values
have been scaled using min-max scaling. Specifically, for each metric, the minimum ϵ is the optimal ϵ at 0% of
human ties, and the maximum is the optimal ϵ at 100%. The language direction is ZH → EN. Results concerning all
language directions can be found in Appendix F. For each percentage of human ties, we use 5 different seeds to
sub-sample the test data. Therefore, the shown acceq and ϵ, for each metric and percentage of ties, are averaged
across 5 different runs. Best seen in color.

very small ϵ values, close to 0 for every metric, al-563

lowing the number of ties predicted by continuous564

metrics to potentially drop to 0. Conversely, met-565

rics that yield discrete scores inherently produce566

a certain number of ties, placing them at a disad-567

vantage, and thus ranking conceptually identical568

metrics like SENTINELGEMBA and GEMBA-MQM569

at significantly different positions. Interestingly, in570

the hypothetical scenario in which there are no tied571

human pairs in the dataset, SENTINELGEMBA would572

rank second (despite lots of its assessments hav-573

ing a random ordering), whereas GEMBA-MQM574

would be second to last. At increasing percentages575

of gold ties, instead, the acceq values obtained by576

SENTINELGEMBA and SENTINELMATESE converge to577

those of their discrete counterparts. However, this578

is a limitation of these sentinels’ design and does579

not imply that the evaluation is fair at higher per-580

centages of human ties. We delve deeper into this581

matter in Figure 1b, which shows how the optimal582

ϵ changes at varying percentages of human ties. As583

can be seen from the figure, continuous metrics’ ϵ584

is dynamically adjusted with heightened sensitiv-585

ity, contrary to what happens for discrete and sen-586

tinel metrics. Specifically, their ϵ is exactly 0 until587

39% of human ties. Additionally, for MaTESe, it588

remains constant between 44% and 56%, and be- 589

tween 61% and 68%, and the same happens for 590

GEMBA-MQM between 47% and 51% and be- 591

tween 56% and 68%. In contrast, the values change 592

for all the other metrics in the same intervals. 593

5 Conclusion 594

In this work, we identified two issues with the cur- 595

rent meta-evaluation of Machine Translation met- 596

rics, as conducted at the Metrics Shared Task of the 597

Conference on Machine Translation. We proposed 598

a suite of sentinel metrics designed to highlight 599

these issues and demonstrate their impact on the 600

metrics rankings, revealing that the current meta- 601

evaluation process tends to favor certain metric 602

categories. Specifically, the None Grouping and 603

System Grouping strategies prefer trained metrics 604

over overlap- and LLM-based ones, and the algo- 605

rithm of tie optimization, if conducted on the same 606

test set used for the meta-evaluation, favors con- 607

tinuous metrics over discrete ones. Furthermore, 608

we observed a notably high correlation between 609

sentinel metrics and state-of-the-art metrics, rais- 610

ing concerns about their reliability and suggesting 611

that their assessments might be based on spurious 612

correlations present in the training data. 613

8



Limitations614

We recognize that the Segment Grouping approach615

does not evaluate the ability of metrics to distin-616

guish between higher and lower quality translations617

in absolute terms, that is, independently of their618

source sentence. This aspect should indeed play a619

role in the meta-evaluation process. However, our620

analysis suggests that the rankings derived from621

the No Grouping and System Grouping methods622

favor certain metric categories, and potentially re-623

ward metrics for leveraging spurious correlations.624

Nonetheless, we believe that there is a need to de-625

velop fairer methods to fill this gap in the meta-626

evaluation.627

Regarding the optimization of ϵ in acceq, our628

analysis does not definitively specify the optimal629

selection process for ϵ values. Although we demon-630

strated that continuous metrics are favored by se-631

lecting the optimal ϵ on the same test set used for632

the meta-evaluation, this does not necessarily mean633

that using a held-out dataset ensures a fair meta-634

evaluation. The distribution of human ties in the635

held-out dataset could either advantage or disadvan-636

tage continuous metrics, due to their greater adapt-637

ability in fitting such distribution, compared to dis-638

crete metrics. In this respect, Appendix F presents639

the acceq score of MT metrics, calculated after ap-640

plying the tie calibration algorithm to a sub-sample641

of the test set and then computing acceq across the642

entire test set, rather than just the sub-sample as dis-643

cussed in Section 4.5. We observe that continuous644

metrics are at a disadvantage when the proportion645

of ties in the sample used to estimate ϵ significantly646

deviates from the proportion in the entire test set. In647

this context, the flexibility of continuous metrics to648

adapt to the underlying distribution of human ties649

acts as a drawback, rather than a benefit. In general,650

we believe that a promising approach might involve651

estimating statistically significant score deltas for652

continuous metrics, treating as tied all assessments653

within these deltas (akin to the work of Kocmi et al.654

(2024) regarding system-level assessments). This655

approach would also enhance the interpretability656

of MT metrics.657
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A Overall ranking847

In Table 3, we report the official segment-level848

ranking of WMT23 Metrics Shared Task, including849

sentinel metrics.850

B Training the sentinel metrics851

The input for the sentinel metrics consists of ei-852

ther source text (SENTINELSRC), candidate trans-853

lation (SENTINELCAND), or reference translation854

(SENTINELREF). This text is first tokenized, and855

then passed to the XLM-RoBERTa large model,856

serving as the backbone for feature extraction.857

From this, the embedding of the [CLS] token is858

extracted to use it as a comprehensive representa-859

tion of the input. Then, the [CLS] token embedding860

is fed into a multi-layer fully-connected neural net-861

work, which outputs the scalar quality score. More862

formally, considering t as the input text for a sen-863

tinel metric:864

et = XLMR(t)865

h
(1)
t = Dropout

(
Tanh

(
W

(1)
h et + b

(1)
h

))
866

h
(2)
t = Dropout

(
Tanh

(
W

(2)
h h

(1)
t + b

(2)
h

))
867

st = Woh
(2)
t + bo868

Where:869

• et is the embedding of the [CLS] token from870

the input text t, obtained through the XLM-871

RoBERTa large model.872

• h
(i)
t represents the output of the ith layer, with873

each layer consisting of a linear transforma-874

tion (using weight matrix W
(i)
h and bias vector875

b
(i)
h ) followed by an activation function and876

regularization.877

• Wo and bo are the weight matrix and bias 878

vector, respectively, for the output layer. 879

• st is the scalar quality score. 880

Both the initial training phase using DA data and 881

the subsequent fine-tuning phase with MQM scores 882

employ the same set of hyperparameters, detailed 883

in Table 4. 884

C Grouping Strategies 885

In Tables 5, 6, 7, we report the complete set of 886

rankings and Pearson correlations, at the segment 887

level, of the primary submission to the WMT23 888

Metrics Shared Task, with sentinel metrics. Sen- 889

tinel metrics are consistently ranked lower with 890

Segment Grouping. However, this grouping strat- 891

egy requires the estimation of multiple Pearson 892

correlation coefficients – one for each group of 893

translations – which are ultimately averaged. As a 894

consequence, the number of clusters of statistical 895

significance is reduced. 896

In Tables 8, 9, 10, we report the complete set 897

of rankings and Kendall τ correlation coefficients, 898

at the segment level, of the primary submissions 899

to the WMT23 Metrics Shared Task, with sentinel 900

metrics. With Kendall τ as well, sentinel metrics 901

have worse performances when Segment Grouping 902

is employed. We wish to remark that one should 903

not focus on the absolute values of the ranks but on 904

their value relative to that of the other metrics. In- 905

deed, as already mentioned, the number of clusters 906

of statistical significance is reduced with Segment 907

Grouping. For instance, in Table 9, SENTINELCAND 908

is ranked 5th out of 19 with No Grouping, and 909

4th out of 11 with Segment Grouping. While the 910

absolute value of the rank is higher, in terms of 911

correlation it has moved from the 8th to the 17th 912

position. 913

D Metrics pairwise correlations 914

In Figures 2, 3, 4, we report the pairwise correla- 915

tion between a part of the primary submissions and 916

baselines of WMT23, with the inclusion of sentinel 917

metrics. We use Pearson correlation coefficient, 918

with No Grouping. As can be seen, state-of-the-art 919

regression-based metrics display a notably high cor- 920

relation with sentinels. Specifically, the highest cor- 921

relations are reported for XCOMET-Ensemble and 922

MetricX-23, and their reference-less counterparts. 923

Moderate correlation is also reported between sen- 924

tinels and baseline metrics such as CometKiwi, 925

11
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EN → DE HE → EN ZH → EN
Metric Avg. corr Pearson acceq Pearson acceq Pearson acceq

XCOMET-Ensemble 1 0.697 1 0.695 1 0.604 1 0.556 1 0.586 1 0.650 1 0.543
MetricX-23 2 0.682 4 0.585 1 0.603 1 0.548 2 0.577 2 0.625 3 0.531
XCOMET-QE-Ensemble* 3 0.681 2 0.679 3 0.588 3 0.498 4 0.554 1 0.647 3 0.533
MetricX-23-QE* 4 0.681 3 0.626 2 0.596 2 0.520 3 0.564 1 0.647 4 0.527
mbr-metricx-qe* 5 0.652 4 0.571 3 0.584 5 0.411 4 0.553 6 0.489 2 0.537
GEMBA-MQM* 6 0.639 6 0.502 5 0.572 5 0.401 3 0.564 7 0.449 5 0.522
MaTESe 7 0.636 5 0.554 9 0.528 4 0.459 5 0.550 5 0.511 12 0.479
CometKiwi* 8 0.632 7 0.475 5 0.569 7 0.387 6 0.544 7 0.442 4 0.525
sescoreX 9 0.628 6 0.519 6 0.563 7 0.385 16 0.484 4 0.536 9 0.499
SENTINELCAND * 10 0.626 5 0.561 6 0.562 10 0.339 16 0.483 3 0.580 14 0.473
cometoid22-wmt22* 11 0.625 8 0.441 4 0.578 9 0.365 12 0.515 6 0.479 7 0.515
KG-BERTScore* 12 0.624 8 0.451 7 0.556 8 0.382 7 0.537 8 0.430 6 0.516
COMET 13 0.622 9 0.432 4 0.574 5 0.401 8 0.532 9 0.396 7 0.514
BLEURT-20 14 0.622 7 0.484 5 0.572 8 0.382 11 0.519 10 0.378 6 0.518
Calibri-COMET22-QE* 15 0.603 9 0.441 12 0.483 6 0.395 13 0.506 7 0.443 10 0.491
Calibri-COMET22 16 0.603 10 0.413 10 0.522 5 0.401 12 0.515 9 0.396 14 0.474
YiSi-1 17 0.600 12 0.366 8 0.542 6 0.395 8 0.529 12 0.290 8 0.504
docWMT22CometDA 18 0.598 11 0.394 7 0.559 10 0.339 14 0.497 11 0.353 10 0.493
docWMT22CometKiwiDA* 19 0.598 8 0.444 8 0.547 12 0.286 15 0.489 9 0.387 10 0.493
prismRef 20 0.593 6 0.516 10 0.518 11 0.319 9 0.528 14 0.183 8 0.504
MS-COMET-QE-22* 21 0.588 13 0.310 8 0.546 12 0.295 14 0.498 10 0.367 9 0.498
BERTscore 22 0.582 13 0.325 9 0.528 10 0.335 12 0.515 13 0.236 9 0.499
mre-score-labse-regular 23 0.558 18 0.111 9 0.530 8 0.378 10 0.522 16 0.145 12 0.481
XLsim 24 0.544 14 0.239 9 0.527 14 0.233 17 0.480 17 0.111 15 0.464
f200spBLEU 25 0.540 14 0.237 9 0.526 14 0.230 19 0.447 18 0.108 13 0.476
MEE4 26 0.539 17 0.202 9 0.529 13 0.256 20 0.441 18 0.105 12 0.480
tokengram_F 27 0.537 16 0.227 10 0.520 14 0.226 18 0.461 20 0.060 11 0.485
chrF 28 0.537 15 0.232 10 0.519 15 0.221 18 0.460 19 0.063 11 0.485
BLEU 29 0.533 17 0.192 10 0.520 15 0.220 20 0.442 17 0.119 14 0.472
prismSrc* 30 0.530 9 0.425 13 0.426 16 0.140 20 0.441 13 0.223 17 0.421
embed_llama 31 0.529 14 0.250 12 0.483 15 0.215 21 0.430 15 0.161 16 0.447
SENTINELSRC * 32 0.512 7 0.469 15 0.231 10 0.334 21 0.428 4 0.540 19 0.240
SENTINELREF 33 0.506 8 0.464 15 0.231 11 0.301 21 0.428 5 0.506 19 0.240
eBLEU 34 0.491 20 −0.011 11 0.512 16 0.131 19 0.445 22 −0.084 14 0.473
Random-sysname* 35 0.463 19 0.064 14 0.409 17 0.041 21 0.428 21 0.018 18 0.381

Table 3: Complete segment-level results for the primary submissions to the WMT 2023 Metrics Shared Task, with
sentinel metrics.

COMET, and BLEURT-20. As expected, instead,926

close to no correlation is reported for lexical-based927

metrics such as BLEU and chrF, which are not928

trained metrics. Similarly, GEMBA-MQM, a state-929

of-the-art LLM-based metric that has not been fine-930

tuned on human assessments, shows low levels of931

correlation with the sentinel metrics.932

E Kendall τ and acceq computation933

In this section, we provide an example of the com-934

putation of Kendall τ and acceq from two vectors935

of human and metric scores, i.e., h and m in the936

following table:937

m 0.6 0.5 0.4 0.4
h 5 3 5 5

938

For each vector, there are six pairs of assessments.939

For example, the pairs of metric assessments 940

are (m1,m2), (m1,m3), (m1,m4), (m2,m3), 941

(m2,m4), (m3,m4). 942

In Equations 1 and 2, C = 1, since the only 943

concordant pair is (m1,m2). Indeed, m1 > 944

m2 and h1 > h2. D = 2, since the pairs 945

(m2,m3), (m2,m4) are discordant. Tm = 0, since 946

there are no pairs tied only in the metric scores. 947

Th = 2, since the pairs (h1, h3), (h1, h4) are tied 948

only in the human scores. Thm = 1, since the re- 949

maining pair, i.e., (m3,m4), is tied in both human 950

and metric scores. In this example, τ = −0.258 951

and acceq = 0.333. 952

F Ties 953

In Table 11, we report the percentage of tied hu- 954

man pairs in several datasets containing human 955

judgments in the form of MQM scores. 956
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Figure 2: Pairwise correlation between a part of the primary submissions and baselines of WMT23, and sentinel
metrics. Correlation is Pearson with No Grouping, and the language direction is ZH → EN.
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Figure 3: Pairwise correlation between a part of the primary submissions and baselines of WMT23, and sentinel
metrics. Correlation is Pearson with No Grouping, and the language direction is EN → DE.
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Figure 4: Pairwise correlation between a part of the primary submissions and baselines of WMT23, and sentinel
metrics. Correlation is Pearson with No Grouping, and the language direction is HE → EN.
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Hyperparameter Value

Optimizer RAdam (Liu et al., 2021)
Learning Rate 1e-6
Number of Epochs 1
Batch Size 8
Accumulation Steps 2
Dropout 0.1
Dimension of h(1)

t 512
Dimension of h(2)

t 128

Table 4: Hyperparameters used for training and fine-
tuning the sentinel metrics.

In Tables 12, 13, 14, we report the values of pt957

and pn used to sub-sample the ZH → EN, EN →958

DE, and HE → EN test sets, respectively, to conduct959

the experiment illustrated in Section 4.4. We also960

report the corresponding percentage of human ties961

and total number of pairs, for each sample.962

In Figures 5a, 6a, 7a, we report the acceq and963

optimal ϵ for each of the considered metrics, in964

all three language directions considered at WMT965

2023.966

In Figure 8, we report the acceq values of the967

considered metrics on the entire test set. ϵ values968

have been estimated from sub-samples of the test969

data, each sub-sample having a different percentage970

of human ties (represented by the numbers on the971

x-axis).972
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Metric No Segment System

XCOMET-Ensemble 1 0.650 2 0.421 1 0.610
MetricX-23-QE* 1 0.647 4 0.359 1 0.610
XCOMET-QE-Ensemble* 1 0.647 3 0.380 1 0.612
MetricX-23 2 0.625 3 0.373 2 0.580
SENTINELCAND * 3 0.580 11 0.201 2 0.578
SENTINELSRC * 4 0.540 14 0.000 3 0.561
sescoreX 4 0.536 7 0.295 5 0.505
MaTESe 5 0.511 6 0.325 6 0.441
SENTINELREF 5 0.506 14 0.000 4 0.525
mbr-metricx-qe* 6 0.489 1 0.436 7 0.431
cometoid22-wmt22* 6 0.479 4 0.357 6 0.446
GEMBA-MQM* 7 0.449 1 0.434 9 0.378
Calibri-COMET22-QE* 7 0.443 5 0.355 8 0.411
CometKiwi* 7 0.442 3 0.388 9 0.388
KG-BERTScore* 8 0.430 4 0.369 10 0.374
COMET 9 0.396 4 0.364 12 0.345
Calibri-COMET22 9 0.396 7 0.311 11 0.360
docWMT22CometKiwiDA* 10 0.387 6 0.340 13 0.320
BLEURT-20 10 0.378 4 0.371 13 0.330
MS-COMET-QE-22* 11 0.367 7 0.306 14 0.313
docWMT22CometDA 12 0.353 6 0.327 15 0.291
YiSi-1 13 0.290 6 0.329 16 0.237
BERTscore 14 0.236 7 0.309 17 0.186
prismSrc* 15 0.223 13 0.078 16 0.243
prismRef 16 0.183 6 0.332 18 0.135
embed_llama 17 0.161 12 0.138 18 0.139
mre-score-labse-regular 18 0.145 8 0.251 19 0.123
BLEU 19 0.119 11 0.208 20 0.093
XLsim 19 0.111 10 0.218 21 0.069
f200spBLEU 20 0.108 10 0.220 21 0.077
MEE4 20 0.105 9 0.236 21 0.070
chrF 21 0.063 8 0.263 22 0.020
tokengram_F 22 0.060 8 0.262 23 0.015
Random-sysname* 23 0.018 14 0.019 23 0.002
eBLEU 24 −0.084 10 0.219 24 −0.115

Table 5: Segment-level Pearson correlation for the primary submissions to the WMT23 Metrics Shared Task, with
sentinel metrics. The language direction is ZH → EN. Starred metrics are reference-free, underlined metrics are
baselines, and highlighted metrics are sentinels. Ranks represent clusters of statistical significance and are computed
following Freitag et al. (2023), which leverage the PERM-BOTH hypothesis test introduced by Deutsch et al. (2021).
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Metric No Segment System

XCOMET-Ensemble 1 0.695 1 0.538 1 0.676
XCOMET-QE-Ensemble* 2 0.679 2 0.507 2 0.658
MetricX-23-QE* 3 0.626 2 0.511 3 0.564
MetricX-23 4 0.585 2 0.507 4 0.547
mbr-metricx-qe* 4 0.571 1 0.543 3 0.551
SENTINELCAND * 5 0.561 6 0.396 5 0.522
MaTESe 5 0.554 8 0.330 4 0.526
sescoreX 6 0.519 3 0.459 6 0.502
prismRef 6 0.516 7 0.349 4 0.528
GEMBA-MQM* 6 0.502 3 0.482 7 0.446
BLEURT-20 7 0.484 2 0.492 7 0.455
CometKiwi* 7 0.475 3 0.463 7 0.451
SENTINELSRC * 8 0.469 12 0.000 6 0.502
SENTINELREF 8 0.464 12 0.000 6 0.492
KG-BERTScore* 8 0.451 4 0.456 8 0.421
docWMT22CometKiwiDA* 9 0.444 5 0.426 9 0.404
cometoid22-wmt22* 9 0.441 2 0.499 9 0.385
Calibri-COMET22-QE* 9 0.441 5 0.432 8 0.414
COMET 9 0.432 2 0.508 10 0.363
prismSrc* 9 0.425 11 0.102 6 0.487
Calibri-COMET22 10 0.413 3 0.477 10 0.370
docWMT22CometDA 11 0.394 3 0.484 11 0.310
YiSi-1 12 0.366 5 0.404 12 0.284
BERTscore 13 0.325 7 0.355 13 0.250
MS-COMET-QE-22* 13 0.310 6 0.400 13 0.241
embed_llama 14 0.250 10 0.242 14 0.180
XLsim 14 0.239 6 0.372 16 0.151
f200spBLEU 14 0.237 7 0.343 14 0.178
chrF 15 0.232 8 0.336 15 0.157
tokengram_F 16 0.227 8 0.340 16 0.153
MEE4 17 0.202 7 0.360 16 0.145
BLEU 17 0.192 9 0.310 17 0.140
mre-score-labse-regular 18 0.111 6 0.376 18 0.087
Random-sysname* 19 0.064 11 0.124 19 −0.015
eBLEU 20 −0.011 8 0.317 19 −0.030

Table 6: Segment-level Pearson correlation for the primary submissions to the WMT23 Metrics Shared Task, with
sentinel metrics. The language direction is EN → DE. Starred metrics are reference-free, underlined metrics are
baselines, and highlighted metrics are sentinels. Ranks represent clusters of statistical significance and are computed
following Freitag et al. (2023), which leverage the PERM-BOTH hypothesis test introduced by Deutsch et al. (2021).
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Metric No Segment System

XCOMET-Ensemble 1 0.556 1 0.479 1 0.515
MetricX-23 1 0.548 2 0.441 1 0.509
MetricX-23-QE* 2 0.520 5 0.387 2 0.480
XCOMET-QE-Ensemble* 3 0.498 4 0.397 3 0.458
MaTESe 4 0.459 5 0.373 4 0.408
mbr-metricx-qe* 5 0.411 2 0.448 5 0.362
GEMBA-MQM* 5 0.401 2 0.431 6 0.354
COMET 5 0.401 3 0.421 5 0.367
Calibri-COMET22 5 0.401 4 0.397 5 0.371
YiSi-1 6 0.395 2 0.439 6 0.348
Calibri-COMET22-QE* 6 0.395 6 0.354 5 0.369
CometKiwi* 7 0.387 5 0.375 6 0.353
sescoreX 7 0.385 5 0.370 6 0.352
KG-BERTScore* 8 0.382 5 0.375 7 0.347
BLEURT-20 8 0.382 3 0.418 7 0.344
mre-score-labse-regular 8 0.378 4 0.407 8 0.335
cometoid22-wmt22* 9 0.365 7 0.309 7 0.346
docWMT22CometDA 10 0.339 5 0.379 9 0.294
SENTINELCAND * 10 0.339 11 0.104 7 0.343
BERTscore 10 0.335 4 0.412 9 0.293
SENTINELSRC * 10 0.334 13 0.000 7 0.336
prismRef 11 0.319 3 0.428 10 0.276
SENTINELREF 11 0.301 13 0.000 9 0.299
MS-COMET-QE-22* 12 0.295 9 0.252 10 0.274
docWMT22CometKiwiDA* 12 0.286 7 0.324 11 0.234
MEE4 13 0.256 8 0.291 11 0.222
XLsim 14 0.233 7 0.314 12 0.198
f200spBLEU 14 0.230 8 0.287 12 0.195
tokengram_F 14 0.226 7 0.311 13 0.184
chrF 15 0.221 7 0.308 14 0.179
BLEU 15 0.220 9 0.260 13 0.189
embed_llama 15 0.215 10 0.188 13 0.187
prismSrc* 16 0.140 11 0.100 15 0.150
eBLEU 16 0.131 8 0.280 16 0.104
Random-sysname* 17 0.041 12 0.057 17 0.001

Table 7: Segment-level Pearson correlation for the primary submissions to the WMT23 Metrics Shared Task, with
sentinel metrics. The language direction is HE → EN. Starred metrics are reference-free, underlined metrics are
baselines, and highlighted metrics are sentinels. Ranks represent clusters of statistical significance and are computed
following Freitag et al. (2023), which leverage the PERM-BOTH hypothesis test introduced by Deutsch et al. (2021).
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Metric No Segment System

XCOMET-Ensemble 1 0.473 2 0.299 1 0.456
XCOMET-QE-Ensemble* 2 0.467 3 0.273 2 0.451
MetricX-23-QE* 3 0.461 4 0.252 2 0.448
GEMBA-MQM* 3 0.457 1 0.365 4 0.416
MetricX-23 4 0.449 3 0.269 3 0.434
mbr-metricx-qe* 5 0.427 2 0.301 5 0.403
cometoid22-wmt22* 5 0.423 4 0.252 4 0.408
SENTINELCAND * 6 0.404 9 0.148 4 0.410
SENTINELSRC * 7 0.397 14 0.000 4 0.411
CometKiwi* 7 0.391 3 0.263 6 0.368
Calibri-COMET22-QE* 8 0.386 4 0.241 6 0.366
sescoreX 9 0.375 6 0.217 6 0.367
MaTESe 9 0.371 3 0.271 7 0.345
KG-BERTScore* 10 0.361 4 0.248 8 0.337
SENTINELREF 11 0.340 14 0.000 7 0.353
COMET 11 0.333 4 0.248 9 0.311
MS-COMET-QE-22* 11 0.332 6 0.213 9 0.311
Calibri-COMET22 12 0.330 6 0.217 9 0.310
BLEURT-20 13 0.310 3 0.261 10 0.288
docWMT22CometKiwiDA* 14 0.299 5 0.234 11 0.265
docWMT22CometDA 15 0.276 5 0.231 12 0.248
prismSrc* 16 0.234 12 0.044 12 0.251
YiSi-1 17 0.220 5 0.231 13 0.196
BERTscore 18 0.180 6 0.216 14 0.156
mre-score-labse-regular 18 0.178 7 0.176 14 0.165
prismRef 19 0.165 5 0.232 15 0.140
embed_llama 20 0.109 11 0.096 16 0.093
XLsim 20 0.101 10 0.140 17 0.080
MEE4 21 0.091 8 0.172 18 0.064
BLEU 21 0.085 9 0.154 18 0.062
f200spBLEU 22 0.068 8 0.165 19 0.042
chrF 23 0.045 7 0.187 20 0.017
tokengram_F 24 0.042 7 0.187 21 0.012
Random-sysname* 25 0.015 13 0.025 22 −0.005
eBLEU 26 −0.041 9 0.156 23 −0.064

Table 8: Segment-level Kendall τ correlation coefficient for the primary submissions to the WMT23 Metrics Shared
Task, with sentinel metrics. The language direction is ZH → EN. Starred metrics are reference-free, underlined
metrics are baselines, and highlighted metrics are sentinels. Ranks represent clusters of statistical significance
and are computed following Freitag et al. (2023), which leverage the PERM-BOTH hypothesis test introduced by
Deutsch et al. (2021).
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Metric No Segment System

XCOMET-Ensemble 1 0.546 1 0.380 1 0.530
XCOMET-QE-Ensemble* 2 0.532 2 0.360 2 0.516
MetricX-23-QE* 3 0.509 2 0.357 3 0.487
MetricX-23 3 0.506 2 0.368 3 0.485
sescoreX 4 0.493 3 0.343 4 0.476
mbr-metricx-qe* 4 0.490 1 0.397 4 0.467
GEMBA-MQM* 4 0.482 1 0.399 5 0.449
SENTINELCAND * 5 0.463 4 0.290 5 0.456
MaTESe 5 0.462 5 0.286 6 0.447
BLEURT-20 6 0.452 2 0.366 7 0.426
SENTINELSRC * 6 0.443 11 0.000 5 0.462
cometoid22-wmt22* 7 0.422 2 0.362 8 0.398
SENTINELREF 7 0.418 11 0.000 6 0.437
COMET 7 0.418 2 0.366 9 0.387
Calibri-COMET22 7 0.417 3 0.342 9 0.387
CometKiwi* 8 0.408 3 0.330 9 0.379
Calibri-COMET22-QE* 8 0.406 5 0.279 9 0.379
MS-COMET-QE-22* 9 0.391 5 0.280 10 0.363
KG-BERTScore* 10 0.361 4 0.310 11 0.329
docWMT22CometKiwiDA* 10 0.358 4 0.316 11 0.329
prismRef 11 0.345 6 0.247 11 0.332
docWMT22CometDA 11 0.337 2 0.360 12 0.296
YiSi-1 12 0.280 4 0.297 13 0.250
prismSrc* 12 0.267 10 0.039 12 0.284
BERTscore 13 0.253 5 0.260 14 0.224
MEE4 14 0.225 5 0.271 15 0.190
XLsim 14 0.217 6 0.257 15 0.180
f200spBLEU 15 0.187 6 0.255 16 0.151
chrF 15 0.186 6 0.241 16 0.152
tokengram_F 16 0.183 6 0.245 17 0.149
embed_llama 16 0.182 8 0.163 16 0.150
BLEU 17 0.137 7 0.231 18 0.103
eBLEU 18 0.096 7 0.230 19 0.070
mre-score-labse-regular 18 0.084 5 0.269 19 0.066
Random-sysname* 19 0.033 9 0.081 20 −0.018

Table 9: Segment-level Kendall τ correlation coefficient for the primary submissions to the WMT23 Metrics Shared
Task, with sentinel metrics. The language direction is EN → DE. Starred metrics are reference-free, underlined
metrics are baselines, and highlighted metrics are sentinels. Ranks represent clusters of statistical significance
and are computed following Freitag et al. (2023), which leverage the PERM-BOTH hypothesis test introduced by
Deutsch et al. (2021).
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Metric No Segment System

XCOMET-Ensemble 1 0.415 2 0.323 1 0.395
MetricX-23 2 0.401 3 0.302 2 0.382
GEMBA-MQM* 2 0.399 1 0.369 3 0.367
XCOMET-QE-Ensemble* 3 0.374 5 0.276 3 0.358
MetricX-23-QE* 3 0.370 6 0.251 3 0.355
mbr-metricx-qe* 3 0.366 2 0.316 4 0.339
MaTESe 4 0.361 3 0.302 4 0.341
COMET 5 0.350 3 0.309 5 0.327
Calibri-COMET22 6 0.348 4 0.284 6 0.324
BLEURT-20 6 0.344 4 0.295 6 0.320
sescoreX 6 0.342 4 0.285 6 0.320
CometKiwi* 7 0.338 6 0.238 6 0.323
Calibri-COMET22-QE* 7 0.336 7 0.230 6 0.322
YiSi-1 7 0.333 2 0.325 7 0.303
mre-score-labse-regular 7 0.328 4 0.284 7 0.300
KG-BERTScore* 8 0.322 6 0.242 7 0.304
cometoid22-wmt22* 9 0.310 7 0.216 7 0.301
prismRef 9 0.302 3 0.309 8 0.273
BERTscore 10 0.295 4 0.298 9 0.266
docWMT22CometDA 11 0.278 5 0.270 10 0.249
MS-COMET-QE-22* 12 0.261 9 0.174 10 0.249
SENTINELSRC * 13 0.243 12 0.000 10 0.247
SENTINELCAND * 13 0.243 11 0.049 10 0.249
XLsim 13 0.233 7 0.228 11 0.211
MEE4 13 0.231 7 0.221 11 0.202
docWMT22CometKiwiDA* 14 0.227 7 0.229 12 0.192
SENTINELREF 15 0.210 12 0.000 11 0.214
tokengram_F 15 0.207 7 0.228 13 0.175
chrF 16 0.204 7 0.224 14 0.171
f200spBLEU 17 0.193 7 0.219 15 0.162
BLEU 18 0.184 8 0.205 16 0.157
embed_llama 18 0.174 10 0.147 16 0.151
eBLEU 19 0.166 8 0.209 17 0.141
prismSrc* 19 0.164 11 0.043 14 0.169
Random-sysname* 20 0.027 11 0.033 18 0.002

Table 10: Segment-level Kendall τ correlation coefficient for the primary submissions to the WMT23 Metrics Shared
Task, with sentinel metrics. The language direction is HE → EN. Starred metrics are reference-free, underlined
metrics are baselines, and highlighted metrics are sentinels. Ranks represent clusters of statistical significance
and are computed following Freitag et al. (2023), which leverage the PERM-BOTH hypothesis test introduced by
Deutsch et al. (2021).
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Figure 5: acceq (a) and optimal ϵ (b) of the considered metrics for varying percentages of human ties in the test
dataset (0.24 is the percentage of human ties in the entire dataset, obtained when pt and pn are both 0). ϵ values
have been scaled using min-max scaling. Specifically, for each metric, the minimum ϵ is the optimal ϵ at 0% of
human ties, and the maximum is the optimal ϵ at 100%. The language direction is ZH → EN. For each percentage of
human ties, we use 5 different seeds to sub-sample the test data. Therefore, the shown acceq and ϵ, for each metric
and percentage of ties, are averaged across 5 different runs.
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Figure 6: acceq (a) and optimal ϵ (b) of the considered metrics for varying percentages of human ties in the test
dataset (0.23 is the percentage of human ties in the entire dataset, obtained when pt and pn are both 0). ϵ values
have been scaled using min-max scaling. Specifically, for each metric, the minimum ϵ is the optimal ϵ at 0% of
human ties, and the maximum is the optimal ϵ at 100%. The language direction is EN → DE. For each percentage of
human ties, we use 5 different seeds to sub-sample the test data. Therefore, the shown acceq and ϵ, for each metric
and percentage of ties, are averaged across 5 different runs.
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Figure 7: acceq (a) and optimal ϵ (b) of the considered metrics for varying percentages of human ties in the test
dataset (0.43 is the percentage of human ties in the entire dataset, obtained when pt and pn are both 0). ϵ values
have been scaled using min-max scaling. Specifically, for each metric, the minimum ϵ is the optimal ϵ at 0% of
human ties, and the maximum is the optimal ϵ at 100%. The language direction is HE → EN. For each percentage of
human ties, we use 5 different seeds to sub-sample the test data. Therefore, the shown acceq and ϵ, for each metric
and percentage of ties, are averaged across 5 different runs.
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(a) The language pair is ZH → EN. 0.24 is the percentage
of human ties in the sub-sample used to estimate ϵ.
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(b) The language pair is EN → DE. 0.23 is the percentage
of human ties in the sub-sample used to estimate ϵ.
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(c) The language pair is HE → EN. 0.43 is the percentage
of human ties in the sub-sample used to estimate ϵ.

Figure 8: acceq of the considered metrics on the entire test set. For each metric, ϵ values are estimated using
sub-samples of the test set, with varying percentages of human ties, that are on the x-axis. For each percentage of
human ties, we use 5 different seeds to sub-sample the test data. Therefore, the shown acceq for each metric and
percentage of ties are averaged across 5 different runs.
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2020 2021 2022 2023

EN → DE 15.14 44.62 53.35 23.11
ZH → EN 17.01 30.31 41.55 24.03
EN → RU – 53.24 44.42 –
HE → EN – – – 42.84

Table 11: Percentage of tied pairs in the MQM data
released over different years at the Metrics Shared Task
(or by Freitag et al. (2021a), for 2020), and regarding
different translation directions.

26



pt 1.00 0.65 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pn 0.00 0.00 0.00 0.00 0.20 0.40 0.50 0.60 0.65 0.70 0.75 0.80 0.85
% 0 10 18 24 28 35 39 44 47 51 56 61 68
# 93890 104304 114664 123585 104888 85969 76522 67237 62624 57948 53110 48491 43730

Table 12: pt is the probability of removing a tied human pair, and pn is that of removing a non-tied human pair.
The considered test set is WMT23 ZH → EN. Each column, i.e., each pair (pt, pn), represents a sub-sample of the
test set, in which tied and non-tied pairs have been removed with such probabilities. The third row contains the
percentage of tied human pairs over all pairs, as a result of the sub-sampling. The last row contains the total number
of pairs remaining in the test set after the sub-sampling.

pt 1.00 0.65 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pn 0.00 0.00 0.00 0.00 0.20 0.40 0.50 0.60 0.65 0.7 0.75 0.80 0.85
% 0 10 17 23 27 33 38 43 46 50 54 60 67
# 23343 25803 28236 30360 25694 21021 18689 16353 15184 14014 12899 11698 10493

Table 13: pt is the probability of removing a tied human pair, and pn is that of removing a non-tied human pair.
The considered test set is WMT23 EN → DE. Each column, i.e., each pair (pt, pn), represents a sub-sample of the
test set, in which tied and non-tied pairs have been removed with such probabilities. The third row contains the
percentage of tied human pairs over all pairs, as a result of the sub-sampling. The last row contains the total number
of pairs remaining in the test set after the sub-sampling.

pt 1.0 0.90 0.80 0.65 0.50 0.35 0.20 0.00 0.00 0.00 0.00 0.00 0.00
pn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.40 0.55 0.65 0.75
% 0 7 13 21 27 33 38 43 48 56 62 68 75
# 36561 39254 42038 46202 50272 54435 58516 63960 56679 49315 43918 40145 36530

Table 14: pt is the probability of removing a tied human pair, and pn is that of removing a non-tied human pair.
The considered test set is WMT23 HE → EN. Each column, i.e., each pair (pt, pn), represents a sub-sample of the
test set, in which tied and non-tied pairs have been removed with such probabilities. The third row contains the
percentage of tied human pairs over all pairs, as a result of the sub-sampling. The last row contains the total number
of pairs remaining in the test set after the sub-sampling.
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