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Abstract

To analyze the scaling potential of deep tabular representation learning models, we
introduce a novel Transformer-based architecture specifically tailored to tabular
data and cross-table representation learning by utilizing table-specific tokenizers
and a shared Transformer backbone. Our training approach encompasses both
single-table and cross-table models, trained via missing value imputation through a
self-supervised masked cell recovery objective. To understand the scaling behavior
of our method, we train models of varying sizes, ranging from approximately 10*
to 107 parameters. These models are trained on a carefully curated pretraining
dataset, consisting of 135 M training tokens sourced from 76 diverse datasets. We
assess the scaling of our architecture in both single-table and cross-table pretraining
setups by evaluating the pretrained models using linear probing on a curated set of
benchmark datasets and comparing the results with conventional baselines.

1 Introduction

Tabular data is abundant in many real-world applications across industries as well as research
domains and has been argued to be the data type with the highest potential for Al impact [§].
Nevertheless, on tabular data, deep learning approaches fail to consistently outperform established
boosting implementations such as XGBoost, LightGBM, and CatBoost [[7, 23|11} |15]. Nevertheless,
the success of the Transformer architecture [40] and self-supervised learning applied to large datasets
in natural language and computer vision has motivated similar methods in the tabular domain.
However, the scaling behavior of these approaches has not been investigated. This is mostly due to
the fact that tabular benchmark data is often small and separate models are trained for each table,
requiring that the models remain small for fast training and to avoid over-parametrization. This limits
the scaling potential of the underlying architecture as both the model size as well as the training data
would need to be scaled for a consistent increase in performance as shown in the language and vision
domain [22}(16]]. For most tables, however, accessing or creating more data is not possible.

In order to scale tabular deep learning approaches, the architecture needs to be able to generalize
across multiple tables so that a large heterogeneous training corpus can be used. Furthermore, cross-
table generalization amortizes the increased costs of training a large versatile model as opposed to
training table-specific ones. Besides a potential performance gain from increased scale, a tabular
general-purpose model that generalizes across multiple tables is of practical importance. For example,
pretrained tabular backbones lend themselves as feature extractors and could be of interest in the zero-
and few-show regime, with no or only limited training data, as well as in joint representation learning
to be used with language models or incorporating inter-table dependencies in relational databases.
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While a variety of cross-table approaches based on Large Language Models (LLMs) have been
proposed in the past [[18] 47, 46], table-specific architectures are extremely scarce. Despite showing
first promising results, we believe the potential of LLMs in the context of tabular data to be limited
mainly due to the technical challenges around tokenization which we will discuss in detail. On the
other hand, simple and straightforward Transformer-based architectures in the tabular domain are the
exception [[14,51]] while the field is scattered with, in our opinion, complex and sometimes convoluted
architectures. We believe a solid understanding of a Transformer-based tabular architecture, and, in
particular, the preceding table tokenization, to be the core of future developments and a successful
scaling of architectures towards a new state of the art. In our opinion, the full potential of existing
approaches, namely self-supervised Transformer-based architectures, has yet to be understood.

To address these limitations, we propose a clean and simple Transformer-based architecture, similar
to the FT-Transformer [14]], and generalize the architecture for cross-table self-supervised pretraining
via masked cell recovery. Overall, our main contributions are as follows:

* We propose a novel architecture and training pipeline for cross-table pretraining based on
self-supervised masked cell recovery. This loss can be naturally interpreted as multi-variate
value imputation, a formidable problem in real-world applications.

* We investigate the scaling behavior of the proposed approach both in a single- as well as a
cross-table pretraining setup. We do so by training four model configurations with backbone
sizes ranging from roughly 10* to 107 parameters using a large curated heterogeneous
pretraining corpus of 76 datasets and evaluating the pretrained models via linear probing
using a small curated collection of benchmark datasets.

2 Cross-Table Representation Learning

While a wide range of approaches has been proposed in the context of learning representations for
single tables, covering both supervised [20} [14] as well as self-supervised methods [38}, |1} |35} 3} |34]],
how to best design architectures for learning representations across multiple tables is still an open
question in the community. Following the tremendous success of deep learning in natural language
and computer vision, Transformer-based architectures trained via self-supervision at scale are most
promising to push the state of the art in tabular representation learning and perhaps finally surpass
the strong conventional baselines. However, as opposed to natural language or computer vision,
where tokenization and embedding methods naturally generalize across a wide range of datasets,
the characteristics of tabular data are table-specific. Notably, different tables usually have different
numbers of columns with numerical and categorical features, as well as column-specific statistics.
That is, even if column names have a similar label indicating a shared semantic, the corresponding
(joint and marginalized) statistics may be extremely diverse. Moreover, unlike language or images,
tabular data does not possess a natural ordering and is invariant against column and row permutations.

Cross-table tokenization Tokenization transforms tables (or individual rows) into a sequence of
tokens, which are subsequently embedded in a shared embedding space and processed by the model
backbone. In the single-table case, tokenization can be achieved by a combination of conventional
tabular encoding and subsequent embedding [ 14} [13]]. Numerical features can be tokenized via
standardization or quantile transformation while categoricals can be tokenized via integer or one-hot
encoding [21]]. Linear projections or lookup embeddings map the tokens into the embedding space.
However, a cross-table generalization of these approaches is not straightforward and has only recently
been proposed within the XTab framework [51]]. Here, table-specific tokenizers are used to extend
the FT-Transformer approach [14], whereas the shared backbone contextualizes the embeddings.

A currently popular approach to cross-table tokenization and representation learning is to serialize
a table’s row into a string, e.g. “[Column A] is [Value 1], [Column B] is ...”), and then use a
pretrained LLM to generate the row’s embeddings. Many works exist in this area, notably utilizing
pretrained BERT models [18| 47, (37} 43]], as well as GPT-style generative architectures [6, S0].
Badaro et al. [2]] and Hegselmann et al. [[17] discuss and compare multiple forms of table serialization.
This seemingly straightforward concept of table serialization and text-based tokenization comes
with a few challenges and pitfalls. (i) Text tokenizers struggle with numerical features, which are
typically broken down into multiple tokens by splitting at the decimal point and other subwords in
the vocabulary. Recent research has shown that this likely leads to subpar performance on numerical
tasks such as arithmetic and financial reasoning [31} 149} 45, [25]. While some workarounds, like



character-level tokenization for numeric features, have been used [50], they don’t fully address
the core issue and introduce additional complexity by requiring a separate decoder architecture.
(i1) The coding scheme is not token-efficient, resulting in an excessive amount of tokens per cell.
As Transformers scale quadratically with the input’s length, the excessive representation length
of a row requires more computational power than we believe is necessary. Hence, the number of
columns that can be encoded is limited by the context length of the backbone model. (iii) When using
causal language modeling, we need to artificially introduce a column order, despite the table’s natural
column permutation invariance. To break this artificial order, any-order learning needs to be enforced,
leading to an exponential overhead in column orders that need to be trained, e.g. via permutation
augmentation. On the other hand, in masked language modeling, the masking of individual tokens is
not the same as blanking an entire table cell, requiring special treatment of the masking function.

Drawing parallels with text tokenization in natural language processing, we recognize that tok-
enization is a nuanced, domain-specific problem. Tokenizer developments in natural language have
significantly enhanced Transformer-based language models by addressing linguistic and engineering
challenges [28},|52]. In the same way, tokenization for tabular data demands specialized efforts and
meticulous experimentation to optimize its utility and compatibility with Transformer architectures.

Permutation invariance and imputation loss While the embeddings contextualized by a Trans-
former are inherently permutation invariant, this invariance is typically explicitly broken by in-
troducing positional encodings [40, |12]. Nevertheless, in particular, LLM-based tabular learning
architectures use positional encoding and address the problem, if at all, via permutation augmenta-
tion [32} 5 50]. Positional encodings are not helpful for tabular data due to their invariance against
column permutations. Instead, semantic column encodings, e.g. via additive column-specific bias
embeddings, can be a useful inductive bias to distinguish between different columns [[14} |51]].

A possible solution are bidirectional models, such as BERT [|10]], based on masked token recovery
losses, akin to a denoising objective. Note that this is not a natural loss for a language, which
is typically constructed in a sequential manner. However, this objective is most natural for table
representation learning. As table columns have no natural order, and often suffer from missing values,
one can interpret masked cell recovery as an imputation of missing values. In fact, this allows for a
natural generalization to a table-generative model using Markov Random Field sampling [41]].

Cross-table pretraining In the supervised case, early works treat tables as images and utilize
general-purpose vision backbones [36], whereas recent approaches such as TransTab [44] are limited
to tables from similar domains. In a different line of research, prior-fitted networks were introduced,
recasting the problem to approximate Bayesian inference learned over a large synthetic prior, dubbed
TabPFEN [19]]. While useful for practitioners and conceptually interesting, TabPFN is limited to small
datasets and classification tasks based on purely numeric features and cannot be scaled naively.

Most self-supervised tabular learning approaches are explored in the single-table domain, ranging
from autoencoders [48]], contrastive approaches [38},(9, |35} 3]], to more recent masked autoencoding
objectives [1, [27]]. In the cross-table setup, some works deal with self-supervised representation
learning for tables with partially (or largely) overlapping columns [24}30]. We are aware of only one
non-LLM-based architecture for unconstrained tabular representation learning, namely the recently
proposed XTab framework [[51]]. XTab generalizes the FT-Transformer to multiple tables via table-
specific tokenizers and otherwise uses its exact hyperparameter configuration. Notably, XTab’s
Transformer backbone has less than 1 M trainable parameters.

3 Proposed Approach

We propose a simple Transformer-based architecture and training pipeline for cross-table pretraining
that minimizes inductive biases as shown in Figure(l| This way, the proposed approach can be used
as a baseline for further experimentation, for example around cross-table tokenization techniques.
Our approach builds on the FT-Transformer [[14] and is similar to the recently proposed XTab
framework [51]], with a few important distinctions which we outline in the following.

Tokenization = We employ table-specific tokenizers and use quantile encoding of numerical features
combined with look-up embeddings as opposed to quantile transformation with subsequent linear
projection embeddings used in FT-Transformer, XTab, and other approaches [[13]. That is, instead of
transforming the features in order to normalize the column distributions, we encode each value using
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Figure 1: Overview of the proposed cross-table pertaining architecture. Individual tables are tokenized
using table-specific tokenizers, including numerical as well as categorical features, and processed by
a shared Transformer backbone.
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its quantile index. Encoding numericals as quasi-categorical values makes the further treatment of all
columns uniform. It simplifies the overall setup and makes the implementation easier to optimize, e.g.
via vectorization. As all values are treated equally, there is no need to distinguish between numericals
and categoricals at inference. Hence, balancing classification and regression losses is not necessary.
However, the gained flexibility and robustness come at the cost of a quantization error and increased
numbers of learnable embedding parameters, depending on the number of quantiles chosen. However,
combining a low embedding space and linear up-projection can counter this problem, which we plan
to address in future work. Furthermore, the ordinal character of the encodings is lost without explicit
additional treatment. For categoricals, we use standard integer encoding and embedding via learnable
look-up embeddings. Numerical features with less than 20 unique values are treated directly as
categoricals. Finally, missing values are encoded as an additional NAN category for both numerical
as well as categorical features. Sample statistics needed for the encoding , such as the quantiles, are
estimated separately for each dataset using a fixed amount of 10,000 samples each before training.

Finally, we did not add any further additive encodings such as positional encodings and table- or
column-specific bias terms, in order to minimize inductive biases and to retain the permutation
invariance of the architecture. Hence, the column- and table-specific characteristics have to be
learned by each embedding individually. While our current work only uses minimal architectural
requirements, we see different types of additive encodings as an interesting prospective research
question likely to increase the efficiency of the model training.

Data interleaving To obtain rows from multiple tables, we sample from a large heterogeneous
corpus of tables, which we describe in detail in Section[d] We choose to perform stratified sampling,
that is, in every batch the occurrence of each dataset is equally likely, regardless of the dataset size.
This way, we sample uniformly from tasks and domains instead of sampling uniformly from the
union of datasets. As a consequence, smaller datasets are iterated over more often than large ones. To
process these samples in a single batch, we add a learnable padding token to each sequence up to the
maximum number of tokens per batch. This is vastly different from XTab, which utilizes a federated
learning approach, deploying the table-specific tokenizers on individual GPUs. By processing inter-
table samples natively, we are able to scale the required hardware independently of the number of
tables contained in the pretraining dataset. In fact, we perform all experiments on a single GPU. Our
approach can easily be further parallelized using standard techniques from distributed training.

Contextualization and learning objective  The interleaved batch of tokens are contextualized by
a single Transformer backbone. In line with FT-Transformer and XTab, we use the pre-norm variant
due to better performance and stability in the natural language context [42]. For self-supervised
pretraining, we use the masked cell recovery objective — the tabular analog of masked language
modeling (MLM). A random subset of tokens per cell is masked with a learnable Mask token and
the training objective is to reconstruct the masked values from the contextualized embedding of the
corresponding masked token. We note that this is a natural loss for tabular data, as opposed to MLM
in the case of natural language. Masked tokens can be interpreted as missing values, a common
occurrence in practical table modeling problems, and the recovery objective is simply the imputation
of its value, whereas masking and recovering words in NLP is a less intrinsically meaningful objective.
Compared to traditional imputation methods such as univariate mean, median, or mode estimation,



the imputation loss is multi-variate in nature. Hence it can capture richer dependencies between
columns and other missing values, that are not able to be captured with standard methods. In the
cross-table regime, this loss has been shown to perform better than contrastive pretraining while being
more lightweight [51]]. As opposed to XTab, we fully replace masked tokens with a single learnable
mask embedding instead of random values drawn from the marginalized distribution. We believe this
to yield a stronger training signal, but a comparison is left for future works. Note that, in order to
obtain a uniform masking rate for all tasks, masking is performed before padding of the tokens.

For the cell recovery, the contextualized masked tokens are projected by a linear layer into the
corresponding target probability space. As all values have been effectively encoded into categoricals,
we optimize for classification via minimization of the cross-entropy loss. Unlike XTab, we do not use
table-specific target heads but perform the target projection into the union of the individual column’s
target probability spaces. More precisely, given the individual column-specific target probability
spaces C;; for column j of dataset 4, the full target probability space is modeled as their direct product,

C= Hf\i 1 vazl Ci;. However, the calculation of the cross-entropy for each token is restricted to its
individual subspace via binary masking corresponding to an orthogonal projection onto C;;.

4 Datasets
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Figure 2: Column and row statistics of
the individual datasets contained in our
curated pretraining corpus.

In total, we obtain a corpus containing 76 tables including

30 binary and 26 multiclass classification tasks as well as 20 regression datasets of different widths
and sizes. Overall, the pretraining corpus contains ca. 135 M tokens in total. Using the previously
discussed table-specific tokenization approach, we obtain a token vocabulary size, i.e. the number
of unique numerical quantiles and categories to be embedded via look-up, of roughly 66k. As a
comparison, the BERT language model was trained using a vocabulary size of about 30k, whereas
GPT-2 used ca. 50 k. The feature and sample statistics of our pretraining corpus are shown in Figure[2]
More detailed information on the datasets and statistics are presented in Appendix

Benchmark datasets Instead of evaluating on a similarly large corpus of datasets or curating a
larger set of datasets and splitting it into two folds similar to XTab, we believe a small curated set
to be more suitable for investigating these early scaling experiments as opposed to average rank
performance across a large benchmark suite. This way, we anticipate gaining more nuanced insights
into the performance behavior. For these reasons, we followed the work by Borisov et al. [|5] and use
five tabular datasets for our evaluation, namely HELOC, California Housing, Adult Income, Cover
Type, and Higgs, details of which are shown in Appendix [C} These datasets cover a range of tasks
(binary and multi-class classification, as well as regression), different numbers and types of columns
(from 9 to 55 features), as well as sizes, ranging from roughly 10k to 10 M samples per dataset. Even
in the single-table case, we expect a Transformer-based model to perform severely differently across
these five datasets. We split each dataset into 60 % used for pretraining and 40 % evaluated via a
5-fold cross-validation. We describe the pretraining and evaluation procedure in detail next.

5 Experiment Description

We perform scaling experiments for the proposed architecture using self-supervised pretraining
in the single-table as well as the cross-table setup. In total, we investigate four different model



configurations, covering four orders of magnitudes in terms of the backbone model’s parameter count,
ranging from 13k to 16 M. Due to limitations with respect to the dataset sizes, for the single-table
case, we evaluate models S, M, and L, whereas M, L, and XL are considered in the cross-table case.

Single-table evaluation Serving as a baseline, we investigate the scaling behavior of our approach
in the single-table case. That is, for each table in our benchmark suite, we train a separate model
via the imputation loss using the mentioned 60 % pretraining set. We then evaluate the task-specific
performance of the pretrained model via linear probing using 5-fold validation on the remaining
40 % of each benchmark dataset. Linear probing is a well-established method to assess the quality of
embeddings obtained via self-supervised pretraining and effectively corresponds to learning a linear
projection layer supervised on the table-specific task. Hence, linear probing investigates the linear
separability of the table representations with respect to a specific downstream task which the model
was not explicitly trained on. Note that we evaluate the pretraining performance and do not perform
any supervised fine-tuning of the tokenizers or backbone, which we leave for future investigations.

Cross-table evaluation Secondly, we investigate the cross-table case. Here, each model config-
uration is pretrained using the imputation loss on the large pretraining corpus. As our architecture
uses table-specific tokenizers, the cross-table pretrained models cannot directly be investigated on
the benchmark datasets. To this end, we again use the table-specific pretraining portion and train the
corresponding tokenizers for the pretrained model. To observe the transferability during training, we
checkpoint the pretraining models every 250 M training tokens and evaluate all checkpointed models
via linear probing on all benchmark datasets. Importantly, for a direct and fair comparison, we also
use the same self-supervised learning objective here as in the single-table case to be able to assess
the impact of cross-table pretraining. In this evaluation, we perform two variations: one where the
pretrained backbone is frozen and only the tokenizer is trained, and one where the tokenizers and
backbone weights are trained jointly. The obtained models are then evaluated via linear probing in
full analogy to the single-table case using 5-fold cross-validation on the remaining portion of each
dataset. Again, we do not perform any supervised fine-tuning.

We want to point out that in both cases a comparison to baselines is challenging, as existing methods,
such as boosted trees, are trained in a supervised fashion on a single table. This is in stark contrast to
this work, which uses self-supervised training without labeled targets and simply uses the representa-
tion features to train a linear model on top to predict the target. Furthermore, a comparison to other
cross-table architectures is difficult, as the only existing approach, XTab, is trained in a federated
setup requiring a training cluster of, in our case, 76 GPUs, which is outside our computational budget.

Hyperparameters and training Trainings are performed via mini-batch stochastic gradient
descent using the AdamW optimizer [26] with the default parameters. In the single-table experiments,
we choose a batch size of 2048 which we reduce to 512 for the cross-table pretraining due to memory
constraints. In total, we use 5 M, 10 M, and 25 M samples for pretraining the S, M, and L model in
the single-table cases, respectively. In the cross-table case, we train all model configurations using
75 M samples, i.e. rows. The total number of training fokens is calculated by summing the number of
cells for all samples excluding Padding tokens. For the learning rate, we choose a warmup phase for
the first 10 % of training samples, linearly increasing the learning rate from 5 x 107 to 1073, and a
cosine decay to 0 for the remaining 90 % of training samples. We employ a global weight decay, i.e.
an Lo-norm regularization, of 1072, Throughout, we use a dropout rate of 10 % during training. For
all experiments, we use a masking fraction of 25 %. More details on the used hyperparameters are
given in Appendix [A] All experiments are conducted using compute nodes with 8 CPU cores, 32 GB
of RAM, and a single Nvidia L4 GPU.

Baseline methods For comparison, we evaluate two baseline approaches. We investigate per-table
performance using XGBoost [7], as well as a simple linear model using the raw features as predictors.
Naturally, these methods are fitted on each benchmark dataset separately and do not allow for cross-
table generalization. In all cases, we do not perform any hyperparameter optimization — including
our proposed approach. As we use a different split of the benchmark data, due to the necessity of
setting aside a portion for self-supervised pretraining, we cannot directly compare with the many
baselines presented in the paper by Borisov et al. [5]]. However, we do not expect the results to be
fundamentally different on the splits used here as we follow the identical evaluation protocol via
five-fold cross-validation.
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Figure 3: Mean 5-fold cross-validation linear probing results for the considered benchmark datasets
in the case of single-table as well as cross-table pretraining with frozen and updated backbones (BB).
The (supervised) performance of a linear model as well as XGBoost are shown for comparison.

6 Results

Our main results investigate the scaling behavior of the different models in terms of their linear
probing performance on the benchmark datasets and are shown in Figure 3]

Single-table performance Investigating the single-table case, we make the following observations:
First, the imputation objective of recovering masked cell values is indeed informative on the dataset-
specific downstream task. Recall that we do not perform any supervised fine-tuning. It indicates that
the models are indeed learning multi-variate dependencies to efficiently recover missing values. That
is, despite the model not being trained on the task specifics, the obtained contextualized features
show good linear separability with respect to the downstream tasks. In most cases, in particular for
HELOC and HIGGS, the contextualized features have more predictive power than the unprocessed
ones as shown by the comparison with the linear model. Generally, the results are sub-par compared
to a non-optimized XGBoost, which, however, is trained in a supervised fashion. With respect
to the backbone size, we see slight improvements with scale: The linear probing performance
increases with the amount of backbone parameters, as expected. We do, however, observe that in most
cases, in particular with smaller datasets, this increase is saturated already with the Medium model
configuration while larger datasets, such as Cover Type and HIGGS, do not show this saturation. This
is, to some extent, expected as the amount of training data has to be scaled with increasing backbone
parameter counts. This supports our claimed need for cross-table approaches in order to be able to
scale tabular models towards a much larger scale. The training loss and imputation accuracies for all
trained models are provided in Appendix

Cross-table performance Generally, we observe a slight increase in performance when using
cross-table pretraining, in particular notable in the HELOC and Adult Income datasets. Typically,
the updating of the backbone parameters jointly with the training of the tokenizer, again in a self-
supervised fashion, tends to perform better than the frozen weights obtained during pretraining, with
the exception of the HELOC dataset. Overall, we do not see a strong increase in performance with
scale, which indicates that we might be far from optimal dataset sizes to saturate the models and
learn meaningful cross-table contextualization patterns within the backbone. On the other hand, we
also observe that scaling does not hurt performance, which could indicate that increasing the dataset
sizes can lead to improvements. Slight increases can be observed in the HELOC dataset, whereas
increased scale actually leads to worse performance in some instances such as the California Housing
dataset. Moreover, we see an interestingly steep increase in imputation accuracy during transfer
learning on the benchmark datasets, as shown in Figure []in the case of the Adult Income dataset
and in Appendix [B]for the remaining ones. This encourages the usage of the proposed cross-table
pretrained model as a multivariate imputation system.
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onto the Adult Income dataset.

Further, looking more closely at the linear probing performance at several stages during pretraining,
which are shown in Appendix [Bl we do not see systematic improvements with longer pretraining.
This is surprising and suggests that the backbone feature processing does not increase in performance
with increased pretraining performance. That is, while we see an increase in pretraining imputation
accuracy, this does not directly transfer to improvements with respect to the linear separability of the
benchmark tasks, unlike our observations in the single-table case. This is an interesting observation
that could be caused by a number of reasons opening several future research directions. First, we note
that the cross-table pretraining was limited by our compute budget and that all models, in particular
the L and XL variants, show further potential in training as shown in Figure[5] Here, the training loss
of the XL model is hardly saturated and we expect further gains with longer training. This is less the
case in the single-table training, for which we present the loss curves in Appendix [B] which are limited
by the individual dataset sizes and saturate much earlier. Second, the approach to using table-specific
tokenizers comes at the cost of a comparably large parameter overhead. As previously mentioned, our
cross-table pretraining vocabulary contains 66 k tokens and look-up embeddings, resulting in a large
number of additional training parameters as detailed in Appendix [A] For comparison, GPT-2 uses a
60 k subword vocabulary at a size of 1.5 B parameters and 40 B training tokens, which is orders of
magnitudes larger than the ones used here. This imbalance of tokenization and backbone parameters
could be a reason for the observed behavior. Continued scaling experimentation is required, while
keeping the vocabulary size constant, e.g. by using larger pretraining datasets or improving the
tokenization efficiency by using a lower-dimensional embedding space combined with a shared
upsampling layer. Finally, we do not investigate supervised fine-tuning here. For one, it would
be interesting to observe whether pretraining boosts supervised fine-tuning, similar to the results
obtained in the XTab framework [51]. Furthermore, using a supervised objective, either in addition to
the self-supervised pretraining or for the benchmark dataset transfer, would allow for introducing
a learnable CLS token to aggregate the contextualized embeddings in an adaptive way. Currently,
our evaluation protocol uses mean pooling across the contextualized row tokens, excluding Pad
tokens, for linear probing. This aggregation might smooth out representations with higher predictive
performance and is not task-adaptive. However, in the fully self-supervised case, it is not directly
possible to introduce global contextualized representations, e.g. via a learnable CLS token.

Limitations and future work Our current approach offers several limitations, the most technical
of which we previously discussed. In addition, our current evaluation protocol is limited in scope.
A comparison across more benchmark datasets as well as supervised and unsupervised baselines,
such as boosting or LLM-based approaches, is of interest and we plan to address this in the future.
Also, performing a hyperparameter optimization should yield better results for both the considered
baselines and the proposed approach, e.g. investigating the dropout and masking ratios in detail.
Furthermore, we plan to investigate the cross-table tokenization in detail in future works, for example,
the impact of row and table encodings as well as the explicit use of the individual table schemas, for
example by using a separate learnable schema embedder. Finally, we argue there is a great need for
more elaborate tabular training data in order to scale tabular models towards model sizes comparable
to, e.g., GPT-2 as a first step. Similarly, benchmarks tailored to the usage of deep learning models
need to be further developed and refined.



7 Conclusion

We have presented a novel architecture and training pipeline for cross-table pretraining and conducted
scaling experiments that showed first interesting results. Generally, we see an increase in the linear
probing accuracy across several benchmark datasets with larger model scales in both the single-
and the cross-table case. Whereas models trained in a single-table fashion saturated, we saw slight
improvements using cross-table pretraining, which was however limited likely due to a lack of
training data or compute resources. We have discussed multiple possible reasons for the observed
behavior and interesting further research directions.
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A Additional Technical Details

Model configuration details As previously discussed, we investigate four different model con-
figurations. The configurations are depicted in Table [T| with a detailed parameter count, including
the tokenizer and projection layers in the case of single-table and cross-table pretraining, given in
Table 2]

Hyperparameter details The full hyperparameter configuration of our approach and pretraining
setup is given in Table [3] with model-specific ones detailed in Tabled] For the masking procedure,
each value is masked randomly by drawing from the Binomial distribution of the corresponding
masking fraction.

Table 1: Investigated Transformer backbone model configurations. The XTab configuration is shown
for comparison. The depicted parameters correspond solely to the backbone parameters and do not
include the trainable parameters of the tokenizers or projection heads.

Model Embedding dimension =~ Number of heads Number of layers = Parameter count
XTab [51] 192 8 3 740k

S 16 4 4 13k

M 64 8 4 200k

L 128 8 8 1.6 M

XL 192 16 36 16M

Table 2: Number of trainable parameters of the different investigated model configurations, including
backbone, tokenizer, and projection head parameters. Note that, in the single-table case, the number
of encoder and projection parameters depend on the datasets specifics, in particular the number of
rows and categorical as well as numerical features. Therefore, we state the minimum and maximum
number of parameters across the five used benchmark datasets for reference.

Parameter count

Model Tokenizer Projection Head
Backbone - -
Single-table  Cross-table  Single-table  Cross-table
S 13k 3k-10k - 3k-11k -
M 200k 11k-41k 2M 11k-41k 2M
L 1.6M  22k-82k 4M 23k-83k 4M
XL 16M - 6M - 6M
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Table 3: Detailed hyperparameter con-
figuration of the proposed approach and

pretraining setup.

Hyperparameter Value
Dropout rate 0.1
Masking rate 0.25
Optimizer
Type AdamW
Bo 0.9
B1 0.999
Weight decay 0.01
Learning rate init 0.000 05
Learning rate peak 0.001
Learning rate final 0
Batch size 256-2048
Train samples SM-75M
Encoder

Numerical encoder

Num. quantiles

Categorical encoder

Categorical threshold
Embedder

Numerical embedder

Categorical embedder

Quantile enc.
25
Integer enc.
20

Look-up emb.
Look-up emb.

Table 4: Detailed model-specific batch size and
training samples used with our approach. Note
that the number of training samples corresponds
to rows and not the total amount of tokens, which
also on the numbers of columns per table.

Single-table Cross-table
Model
Batch size Samples Batchsize Samples
S 2048 5M - -
M 2048 10M 512 75M
L 2048 25M 512 5M
XL - - 256 75M
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B Additional Results

Single-table pretraining The training loss and training imputation accuracy, including top-3
accuracy, are given in Figure[6] In general, we observe a strong imputation performance (on the
training data), in particular for larger model sizes. In fact, the results for the smaller datasets, namely
HELOC and California Housing, show a potential of overfitting with the Large model configuration.
That is, we observe a double-descent-like training loss. However, we do not observe an additional
validation set as the remaining portions of the datasets are used for linear probing. Hence, whether
overfitting actually occurs or we are in an interpolation, i.e. grokking, regime, is speculative [4, 29|
33|

Cross-table pretraining The linear probe accuracy in the cross-table pretraining case for different
amounts of processed training tokens is depicted in Figure [/| That is, the cross-table pretrained
models were checkpointed every 250 M tokens. All checkpointed models were then transferred to the
individual benchmark dataset via self-supervised learning using the imputation loss in order to train a
new tokenizer for each set, in full analogy to the evaluation of the final checkpoints depicted in the
main text. The obtained models are then evaluated via linear probing as previously discussed. Again,
we generally see that updating the backbone models during transfer on the specific downstream tasks
is beneficial. This is not to be confused with a supervised fine-tuning as we update the backbone
model weights jointly with the encoder via the self-supervised imputation loss. However, we observe,
that regardless of the model size, the final downstream task performance does not significantly
increase with longer pretraining. This is somewhat in line with the observations made in the main
paper, i.e. that the cross-table pretrained models seem to be bottlenecked in their performance, likely
due to a lack of pretraining and transfer learning data. This needs to be further investigated in future
works.

A similar observation can be made from the transfer learning loss and imputation accuracy curves as
depicted in Figure[§] We see that the imputation accuracy increases steeply with only few transfer
learning steps, underlining the generalization capability of the models as an imputation system.
However, further (self-supervised) transfer learning does not further increase imputation accuracy.
Assuming that the imputation accuracy is an informative proxy for the downstream task performance,
this would point towards a similar problem as previously discussed.
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C Additional Dataset Details

Benchmark datasets

Detailed properties of the used benchmark datasets HELOC, California

Housing, Adult Income, Cover Type, and HIGGS are stated in Table 5]

Pretraining corpus
as our pretraining corpus. The column and row stat
Further details of all used datasets are given in Tabl

Table 5: Properties of the used benchmark datasets. Throughout, evaluation is performed using a

5-fold cross-validation on the eval split.

As previously described, we collect a total of 76 datasets from various sources
istics of the used datasets are shown in Figure 9}

cfel

Task HELOC California Housing ~ Adult Income  Cover Type HIGGS
Task type binary regression binary multiclass binary
Samples 7519 16512 39073 464809 8800000
Features (all) 24 9 15 55 29
Features (numerical) 16 8 1 10 24
Missing values 0 0 5259 0 0
Pretrain split 60 % 60 % 60 % 60 % 60 %
Eval split 40 % 40 % 40 % 40 % 40 %
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Figure 9: Row and column statistics of the datasets used in our curated pretraining corpus.
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Table 6: Details of the datasets used in our curated pretraining corpus.

Name Collection Task Classes Rows Columns  Numer. features  Cat. features  Unique cat. NANs in %
wine-quality-white automl_benchmark training multiclass 7 4898 11 11 0 0 0.0
wine-quality-red automl_benchmark training multiclass 6 1599 11 11 0 0 0.0
wind automl_benchmark training binary 2 6574 14 14 0 0 0.0
waveform-5000 automl_benchmark training multiclass 3 5000 40 40 0 0 0.0
wave_energy openml_ctr23 regression 71993 72000 48 48 0 0 0.0
wall-robot-navigation automl_benchmark training multiclass 4 5456 24 24 0 0 0.0
video_transcoding openml_ctr23 regression 10960 68784 18 16 2 8 0.0
texture automl_benchmark training multiclass 11 5500 40 40 0 0 0.0
steel-plates-fault automl_benchmark training binary 2 1941 33 33 0 0 0.0
spoken-arabic-digit automl_benchmark training multiclass 10 263256 14 14 0 0 0.0
solar_flare openml_ctr23 multiclass 8 1066 10 2 8 27 0.0
satimage automl_benchmark training multiclass 6 6430 36 36 0 0 0.0
sarcos openml_ctr23 regression 11414 48933 21 21 0 0 0.0
1l automl_benchmark training binary 2 31406 22 8 14 89 4.3
ringnorm automl_benchmark training binary 2 7400 20 20 0 0 0.0
gsar-biodeg automl_benchmark training binary 2 1055 41 41 0 0 0.0
pumadyn32nh openml_ctr23 regression 8191 8192 32 32 0 0 0.0
porto-seguro automl_benchmark training binary 2 595212 37 12 25 102 3.8
pol automl_benchmark training binary 2 15000 48 48 0 0 0.0
pokerhand automl_benchmark training multiclass 10 829201 10 5 5 20 0.0
pendigits automl_benchmark training multiclass 10 10992 16 16 0 0 0.0
pc2 automl_benchmark training binary 2 5589 36 36 0 0 0.0
pbeseq automl_benchmark training binary 2 1945 18 12 6 13 32
parityS_plus_5 automl_benchmark training binary 2 1124 10 0 10 20 0.0
page-blocks automl_benchmark training multiclass 5 5473 10 10 0 0 0.0
nyc-taxi-green-dec-2016 automl_benchmark regression  regression 1811 581 835 18 9 9 22 0.0
naval_propulsion_plant openml_ctr23 regression 51 11934 14 14 0 0 0.0
mv automl_benchmark training binary 2 40768 10 7 3 7 0.0
mushroom automl_benchmark training binary 2 8124 22 0 22 117 1.4
mofn-3-7-10 automl_benchmark training binary 2 1324 10 0 10 20 0.0
microaggregation2 automl_benchmark training multiclass 5 20000 20 20 0 0 0.0
miami_housing openml_ctr23 regression 2111 13932 15 15 0 0 0.0
mcl automl_benchmark training binary 2 9466 38 38 0 0 0.0
letter automl_benchmark training multiclass 26 20000 16 16 0 0 0.0
led24 automl_benchmark training multiclass 10 3200 24 0 24 48 0.0
kings_county openml_ctr23 regression 4028 21613 21 17 4 45 0.0
kick automl_benchmark training binary 2 72983 32 14 18 134 6.4
jml automl_benchmark training binary 2 10885 21 21 0 0 0.0




0¢

Name Collection Task Classes Rows Columns  Numer. features  Cat. features  Unique cat. NANsin %
hypothyroid automl_benchmark_training ~ multiclass 4 3772 29 7 22 47 55
house_sales automl_benchmark_regression regression 4028 21613 21 20 1 0 0.0
house_16H automl_benchmark_training binary 2 22784 16 16 0 0 0.0
health_insurance openml_ctr23 regression 75 22272 11 4 7 21 0.0
grid_stability openml_ctr23 regression 10000 10000 12 12 0 0 0.0
fried automl_benchmark_training  binary 2 40768 10 10 0 0 0.0
fps_benchmark_ openml_ctr23 regression 2675 24624 43 30 13 96 6.6
fifa openml_ctr23 regression 133 19178 28 27 1 0 0.0
fars automl_benchmark_training multiclass 8 100968 29 14 15 93 0.0
eye_movements automl_benchmark_training multiclass 3 10936 27 24 3 6 0.0
elevators automl_benchmark_training  binary 2 16599 18 18 0 0 0.0
eeg-eye-state automl_benchmark_training  binary 2 14980 14 14 0 0 0.0
delays_zurich_transport tabular_benchmark_ categori- regression 4082 5465575 11 8 3 12 0.0
cal_regression
cpu_activity openml_ctr23 regression 56 8192 21 21 0 0 0.0
compas-two-years automl_benchmark_training ~ binary 2 5278 13 7 6 12 0.0
colleges_usnews automl_benchmark_training  binary 2 1302 33 32 1 51 18.2
colleges_aaup automl_benchmark_training  binary 2 1161 15 13 2 56 1.5
colleges automl_benchmark_regression regression 4502 7063 44 32 12 206 33.5
cjs automl_benchmark_training  multiclass 6 2796 33 31 2 68 73.8
churn automl_benchmark_training  binary 2 5000 20 16 4 17 0.0
cardiotocography automl_benchmark_training  multiclass 10 2126 35 35 0 0 0.0
baseball automl_benchmark_training multiclass 3 1340 16 15 1 7 0.1
bank32nh automl_benchmark_training  binary 2 8192 32 32 0 0 0.0
autoUniv-au7-1100 automl_benchmark_training multiclass 5 1100 12 8 4 10 0.0
Traffic_violations automl_benchmark_training  multiclass 3 70340 20 1 19 268 0.2
PhishingWebsites automl_benchmark_training  binary 2 11055 30 0 30 68 0.0
Moneyball automl_benchmark_regression regression 374 1232 14 8 6 66 20.9
MagicTelescope automl_benchmark_training  binary 2 19020 10 10 0 0 0.0
JapaneseVowels automl_benchmark_training  multiclass 9 9961 14 14 0 0 0.0
Gesture Phase Segmentation  automl_benchmark_training  multiclass 5 9873 32 32 0 0 0.0
Processed
GAMETES Heterogeneity automl benchmark training  binary 2 1600 20 0 20 59 0.0
20atts 600_Het_0.4_0.2_7
GAMETES Epistasis 3-Way automl_benchmark_training  binary 2 1600 20 0 20 60 0.0
20atts 0.2H EDM-1_1
Diabetes130US automl_benchmark_training multiclass 3 101766 49 13 36 130 0.0
Brazilian_houses automl_benchmark_regression regression 5751 10692 12 8 4 44 0.0
Bike_Sharing_Demand tabular_benchmark_ categori- regression 869 17379 11 6 5 14 0.0
cal_regression
BachChoralHarmony automl_benchmark_training  regression 102 5665 16 2 14 102 0.0
Ailerons tabular_benchmark_ numeri- multiclass 35 13750 33 33 0 0 0.0
cal_regression
2dplanes automl_benchmark_training  binary 2 40768 10 10 0 0 0.0
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