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Abstract001

Large Language Models (LLMs) have revolu-002
tionized various domains but encounter substan-003
tial challenges in tackling optimization model-004
ing tasks for Operations Research (OR), par-005
ticularly when dealing with complex problem.006
In this work, we propose Step-Opt-Instruct, a007
framework that augments existing datasets and008
generates high-quality fine-tuning data tailored009
to optimization modeling. Step-Opt-Instruct010
employs iterative problem generation to system-011
atically increase problem complexity and step-012
wise validation to rigorously verify data, pre-013
venting error propagation and ensuring the qual-014
ity of the generated dataset. Leveraging this015
framework, we fine-tune open-source LLMs,016
including LLaMA-3-8B and Mistral-7B, to de-017
velop Step-Opt—a model that achieves state-018
of-the-art performance on benchmarks such as019
NL4OPT, MAMO, and IndustryOR. Extensive020
experiments demonstrate the superior perfor-021
mance of Step-Opt, especially in addressing022
complex OR tasks, with a notable 17.01% im-023
provement in micro average accuracy on diffi-024
cult problems. These findings highlight the ef-025
fectiveness of combining structured validation026
with gradual problem refinement to advance the027
automation of decision-making processes using028
LLMs. The code and dataset are available at029
https://anonymous.4open.science/r/Step-Opt.030

1 Introduction031

Operations Research (OR) is a valuable discipline032

for addressing complex decision-making problems,033

widely applied in fields such as economics, engi-034

neering, and computer science (Bertsimas et al.,035

2019; Belgacem et al., 2020; Pereira et al., 2022).036

Effective implementation of OR involves two es-037

sential steps: modeling real-world problems and038

solving them. Despite significant advancements in039

solution techniques and the development of more040

efficient solvers, constructing appropriate models041

remains a challenge. Such a task requires formulat-042

ing natural language descriptions into mathemati- 043

cal models, which is labor-intensive and demands 044

domain-specific expertise as well as a deep under- 045

standing of modeling methodologies. These re- 046

quirements greatly restrict the broader application 047

of OR, particularly in real-world scenarios. 048

Recent developments in Large Language Models 049

(LLMs) have enhanced the feasibility of automat- 050

ing optimization modeling. Approaches like Chain- 051

of-Experts (CoE) (Xiao et al., 2023) and OptiMUS 052

(AhmadiTeshnizi et al., 2024) employ well-crafted 053

prompts and multi-agent systems to enhance the 054

construction of optimization models and corre- 055

sponding programs. However, these approaches 056

rely on general-purpose LLMs, which, though pow- 057

erful, are not specifically tailored for OR, limit- 058

ing their effectiveness in addressing specialized 059

challenges. Additionally, the need to upload sen- 060

sitive data poses additional privacy concerns. In 061

response, ORLM (Tang et al., 2024) presents an 062

alternative by fine-tuning open-source LLMs us- 063

ing a dataset of 30K examples generated from 686 064

industry cases. While this improves the model’s 065

performance for OR modeling, ORLM remains 066

semi-automated, requiring significant manual post- 067

processing to achieve satisfactory results. More- 068

over, its prompt design lacks the precision needed 069

to manage problem complexity and diversity, result- 070

ing in suboptimal outputs. Furthermore, modeling 071

errors are not identified in real-time, allowing inac- 072

curacies to persist and propagate. While rule-based 073

post-processing can address minor errors, it often 074

fails to rectify deeper logical and structural issues, 075

further compromising data quality. 076

Utilizing high-quality training data is vital for 077

improving the modeling capabilities of LLMs. 078

However, current methods not only rely heavily 079

on manual post-processing but also struggle to en- 080

sure data reliability. To address these limitations, 081

we propose an approach from two primary perspec- 082

tives. First, we enhance the prompt design and in- 083
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Figure 1: Examples of Iterative Problem Generation. It includes two types of methods: Complexity-Evolving,
which refines problem complexity through constraint modification, parameter adjustment, and objective alteration;
and Scope-Evolving, which enhances diversity via domain transformations and problem combinations. Red and
blue backgrounds indicate changes introduced by Complexity- and Scope-Evolving, respectively. Repeated content
is replaced with "..." for clarity.

troduce an Iterative Problem Generation, as shown084

in Figure 1. This method incrementally increases085

the complexity and scope of the problems, allow-086

ing the dataset to retain varying levels of difficulty087

and breadth. This diversity plays a crucial role in088

improving the model’s generalization capabilities,089

as WizardLM (Xu et al., 2024) suggested. Second,090

we incorporate a stepwise validation mechanism091

that performs real-time checks throughout the gen-092

eration process, effectively filtering out low-quality093

or erroneous data. This prevents errors from enter-094

ing and propagating through the seed dataset. We095

refer to this framework as Step-Opt-Instruct. Our096

framework eliminates the need for post-processing,097

enabling fully automated generation while reduc-098

ing API costs by utilizing only high-quality data099

for future iterations.100

Step-Opt-Instruct consists of two key compo-101

nents: Iterative Problem Generation and Stepwise102

Validation Mechanism. The Iterative Problem103

Generation is specifically designed to address the104

unique challenges of OR-specific tasks, such as105

complex variable definitions and strict constraint106

implementation. By employing tailored methods107

such as Complexity-Evolving and Scope-Evolving,108

this approach generates a dataset enriched with109

enhanced complexity and diversity from the given110

one, facilitating the fine-tuning of LLMs to enhance111

their modeling ability for OR problems. As illus-112

trated in Figure 1, Complexity-Evolving increases113

the complexity of the problem refining constraints, 114

objectives, or parameters, while Scope-Evolving 115

expands linguistic diversity and problem scope by 116

adapting problems to new contexts or merging sce- 117

narios. This approach ensures that the generated 118

dataset captures a wide range of complexities and 119

provides robust coverage. 120

As new generated problems become increasingly 121

complex, current LLMs often struggle to solve 122

them accurately, resulting in errors. If these errors 123

remain undetected and uncorrected, they will propa- 124

gate through the iterative process, ultimately affect- 125

ing the quality of the generated data. To mitigate 126

this, the stepwise validation mechanism is imple- 127

mented to not only prevent errors but also guarantee 128

the accurate application of essential modeling tech- 129

niques. Problems are first validated via a descrip- 130

tion checker for completeness, followed by checks 131

on variables, constraints, and programs. Identified 132

issues are resolved via feedback loops, with ad- 133

vanced techniques like the Big-M method verified 134

using specially designed prompts that guide the 135

LLM step-by-step to confirm accurate implemen- 136

tation. This validation process enables the genera- 137

tion of reliable and high-quality datasets, which are 138

crucial for fine-tuning LLMs and enhancing their 139

modeling ability for OR problems. 140

In order to evaluate the effectiveness of Step- 141

Opt-Instruct, we collect 260 seed cases and gen- 142

erate nearly 4.5K examples. This data is then ap- 143
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plied to train LLaMA-3-8B (AI@Meta, 2024) and144

Mistral-7B (Jiang et al., 2023), producing a model145

named Step-Opt. Furthermore, we manually re-146

view benchmarks including NL4OPT (Ramamon-147

jison et al., 2023), MAMO (Huang et al., 2024),148

and IndustryOR (Tang et al., 2024), correcting a149

large number of examples with error labels. Exper-150

iments across these benchmarks indicate that our151

method outperforms existing approaches, achiev-152

ing a 6.07% improvement in the micro average and153

a 7.93% enhancement in the macro average. No-154

tably, when focusing on more complex components,155

Step-Opt exhibits a more significant advantage, at-156

taining improvements of 17.01% and 12.26% in157

micro and macro averages, respectively. This sub-158

stantial lead underscores our method’s capability159

to manage complex problems effectively.160

Our contributions are as follows:161

• Introduction of advanced feedback mecha-162

nisms and real-time data updates, significantly re-163

ducing error propagation, eliminating the need for164

extensive manual post-processing.165

• Development of Step-Opt-Instruct, a novel166

framework specifically designed to enhance the167

capabilities of open-source LLMs for effectively168

modeling OR problems.169

• Proposal of the Step-Opt model, which170

achieves state-of-the-art performance across sev-171

eral benchmarks and particularly for complex prob-172

lems, with additional manual corrections applied to173

errors in established benchmarks such as NL4OPT,174

MAMO, and IndustryOR.175

2 Related Work176

LLM-based Automated Modeling for OR is an177

emerging field that uses LLMs to generate mathe-178

matical models for OR problems. Existing methods179

can be categorized into prompt-engineering and180

fine-tuning. Approaches like Chain-of-Thought181

(Wei et al., 2022) and Reflexion (Shinn et al.,182

2024) improve performance but are not special-183

ized for OR. More advanced methods, including184

OptiGuide (Li et al., 2023a), Chain-of-Experts185

(Xiao et al., 2023), and OptiMUS (AhmadiTesh-186

nizi et al., 2024), employ multi-agent systems with187

LLM to construct models but encounter difficul-188

ties with complex problems due to LLM’s limi-189

tations. ORLM (Tang et al., 2024), conversely,190

utilizes dataset generated from industry cases and191

GPT-4, coupled with rule-based post-processing, to192

fine-tune LLMs and improve outcomes. However,193

it lacks precise prompt and effective filtering mech- 194

anisms. Our framework addresses these limitations 195

by iterative-based generation and real-time vali- 196

dation to control complexity and minimize errors, 197

thereby enhancing the performance. 198

Data Augmentation improves LLM perfor- 199

mance by generating synthetic datasets, often used 200

when real-world data is insufficient for complex 201

tasks(Wang et al., 2022; An et al., 2023; Oh et al., 202

2023; Pan et al., 2023; Gandhi et al., 2024; Xu et al., 203

2024; Zhou et al., 2024). In operations research, 204

data augmentation approaches like (Prasath and 205

Karande, 2023; Li et al., 2023b) focus on synthesiz- 206

ing optimization problems from natural language 207

descriptions, but with limited complexity. ORLM 208

(Tang et al., 2024) expands industry case datasets 209

through modifications and rephrasings, while ReSo- 210

cratic (Yang et al., 2024b) takes a reverse data syn- 211

thesis approach, generating optimization scenarios 212

from solutions. Among all these works, the closest 213

to ours is Evol-Instruct (Xu et al., 2024), which 214

uses In-depth Evolving and In-breadth Evolving to 215

generate instruction data. However, as OR mod- 216

eling presents unique challenges, we propose a 217

stepwise validation mechanism to ensure accuracy 218

and avoid error propagation in generated data. 219

3 Method 220

This section outlines the proposed framework. As 221

depicted in Figure 2, It comprises two primary 222

components: generators and a stepwise validation 223

mechanism. The details of the generators are pro- 224

vided in Sec. 3.2, while the stepwise validation 225

mechanism is detailed in Sec. 3.3. 226

3.1 Preliminary 227

We start generation from a given initial dataset, de- 228

noted as D = {(qi,mi)}Ki=1, where each instance 229

includes a problem description qi and its associated 230

mathematical model and program mi. A valid qi 231

must contain an objective function, constraints, and 232

all relevant parameters with specified numerical 233

values. The model mi implements the constraints 234

and objective functions defined in qi and produces 235

executable code. An example of the training data 236

is provided in Appendix A.1. The parameter K 237

denotes the size of the initial seed dataset. 238

3.2 Generators 239

The problem generator adopts an iterative method- 240

ology, progressively producing problems with in- 241
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Figure 2: The framework of Step-Opt-Instruct. Each iteration begins by sampling seed data from an initial dataset.
The Problem Generator uses evolving prompts to create a problem description, which is refined through feedback
from the Description Checker. Once approved, the Solution Generator produces a solution, validated by the
Variables, Constraints, and Program Checkers. Detected errors are fed back for revision. Only verified descriptions
and solutions are added to the dataset. All components rely on tailored prompts to ensure quality. Red text indicates
prompt customizations. The resulting dataset is then used to fine-tune LLMs, improving modeling capabilities.

creasing complexity and diversity. In each iter-242

ation, a seed data (qs,ms) is randomly sampled.243

A specific evolving method, denoted as fe, is244

then applied to create a new problem description245

qn = fe(qs). This process employs prompt-based246

LLM methods to refine problem descriptions and247

systematically expand their scope. These methods248

can be categorized into two types: Complexity-249

Evolving and Scope-Evolving, as detailed below.250

Complexity-Evolving increases complexity by251

modifying existing conditions or introducing new252

elements. Considering the specific characteristics253

of OR problems, three approaches are included:254

constraint modification, objective alteration, and255

parameter adjustment. These incrementally raise256

complexity while preserving logical integrity.257

Constraint modification revises existing con-258

straints or adds new ones to enhance the problem,259

with the core principle being to "modify constraints260

based on the given problem while retaining its log-261

ical structure." This ensures that the essential logic262

of the problem remains intact as complexity in-263

creases. Similarly, objective alteration either mod-264

ifies objectives or introduces new ones, with the265

restriction that changes cannot merely adjust coef-266

ficients. Parameter adjustment changes values or267

adds elements. These approaches, while tailored to268

specific contexts, share the principle of preserving269

the underlying structure. Together, they enhance 270

problem difficulty from various perspectives. 271

Nevertheless, the generated problems may be- 272

come so complex that they exceed the processing 273

capabilities of LLMs. To manage this, modifica- 274

tions to constraints or objectives are limited to one 275

at a time, and parameter adjustments introduce 276

at most one new entity. Specifically, the prompt 277

for constraint modification is subject to strict lim- 278

itations: only one constraint can be modified or 279

added per iteration to control the growth in com- 280

plexity. These restrictions not only ensure a bal- 281

anced dataset with varying difficulty levels but also 282

exclude excessively challenging examples, thereby 283

improving the model’s generalization capabilities. 284

Prompt templates are provided in Appendix A.3. 285

Scope-Evolving broadens topic coverage and 286

diversity by transforming the seed example into a 287

different domain or combining it with another ex- 288

ample to create a novel scenario. Domain transfor- 289

mation transfers the basic structure of the original 290

problem to a new domain, while preserving its logic 291

and constraints, thereby increasing linguistic and 292

contextual diversity. To ensure practical relevance, 293

we define a list of reference domains. Alternatively, 294

the combination approach merges two distinct prob- 295

lems to create a new one that belongs to a different 296

domain and contains unique details. This approach 297
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introduces more substantial changes. To control298

complexity, the new problem is required to be of299

a similar length to one of the originals, maintain-300

ing manageable difficulty. Prompt templates for301

Scope-Evolving are provided in Appendix A.4.302

As the Complexity- and Scope-Evolving303

progress, the complexity, scope, and diversity of304

generated data expand, ensuring comprehensive305

coverage across dimensions. All approaches use306

two-shot examples to maintain consistency.307

Solution generator g produces a mathematical308

model and program mn for a valid problem qn.309

It generates mn = g(qn, qs,ms, fe) using qs, ms310

and evolving method fe as references. Since LLMs311

may struggle with complex models, we embed the312

instruction "ensuring the format and structure are313

as consistent as possible with the provided qs and314

ms" into the meta-prompt to enforce consistency.315

3.3 Stepwise Validation Mechanism316

While the aforementioned generation methods can317

produce descriptions and solutions, the complexity318

of OR problem modeling poses significant chal-319

lenges for current LLMs, often causing missing320

parameters, ambiguous objectives, or misused ad-321

vanced techniques. Without sufficient supervision322

and error-correction mechanisms, such issues tend323

to persist, gradually undermining dataset quality324

and negatively impacting model performance.325

To address these challenges, we design a step-326

wise validation mechanism that checks throughout327

the generation process, eliminating low-quality or328

erroneous data to maintain dataset integrity. This329

mechanism comprises four checkers, each focus-330

ing on a specific aspect: description completeness,331

variable definition, constraint implementation, and332

program quality. The description checker evaluates333

whether the generated qn contains essential com-334

ponents. If any is missing, the checker provides335

feedback, prompting regeneration until validation336

succeeds or the attempt limit is reached. Only af-337

ter passing this check does the solution generator338

produce the mathematical model and program.339

Subsequently, additional checkers cross-340

reference qn and mn to conduct assessments. For341

variables, step-by-step instructions are provided,342

along with examples covering common types,343

enabling the checker to verify variable definitions.344

The constraint checker ensures constraints are345

correctly formulated and aligned with the problem346

description. It follows a systematic process: identi-347

fying constraints, then verifying their consistency348

with the problem’s content, similar to variable vali- 349

dation. While all constraints are reviewed, special 350

attention is given to advanced techniques such as 351

the Big-M method and K-way selection constraints. 352

These serve as specialized checks, with other ad- 353

vanced techniques also applicable. Finally, the pro- 354

gram checker extracts and executes the program, 355

capturing outputs or errors, and providing feedback 356

to the solution generator as needed. 357

When errors are identified in mn, they are 358

relayed back to the solution generator with the 359

prompt: "Please regenerate the solution based on 360

the ’Error’. Ensure that the new solution correctly 361

addresses the problem while maintaining the for- 362

mat and structure, with only the necessary correc- 363

tions and improvements." The revised solution un- 364

dergoes further testing until it passes all validation 365

stages. If the retry limit is reached, the problem 366

will be discarded. This validation process ensures 367

both qn and mn are error-free. Only data that pass 368

all assessments are integrated into the dataset D 369

for future iterations. This minimizes errors within 370

D, thereby preventing the propagation of inaccura- 371

cies in future generations and safeguarding overall 372

dataset quality. Details of the checkers and regen- 373

eration are provided in Appendix A.5 374

4 Experiment 375

4.1 Experimental Setup 376

Dataset. We assess our method using a range 377

of datasets, spanning simple ones like NL4OPT 378

(Ramamonjison et al., 2023) and MAMO EasyLP 379

(Huang et al., 2024), and complex ones such as 380

MAMO ComplexLP (Huang et al., 2024) and In- 381

dustryOR (Tang et al., 2024). Answers were manu- 382

ally revised when needed. Examples are shown in 383

Appendix A.2. 384

NL4OPT originates from the NeurIPS 2022 385

NL4Opt competition and includes 1,101 simple 386

linear programming problems (LPs), 289 used for 387

evaluation. We correct 16 inaccurate instances. 388

MAMO contains two sub-datasets: EasyLP and 389

ComplexLP. The former contains 652 simple LPs, 390

and the latter 211 complex ones, all are paired with 391

optimal solutions. We rectify 78 inaccuracies. 392

IndustryOR consists of 100 complex OR prob- 393

lems. Many lack essential information or accurate 394

values, leading to 50 corrections and removal of 23 395

instances that fail to meet modeling criteria. 396

Baselines tag-BART (Kani and Gangwar, 2022) 397

is a pre-trained language model (PLM) that won 398
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Table 1: Performance comparison of methods. Values marked with a ∗ are directly copied from original papers.

Method NL4OPT MAMO MAMO IndustryOR Micro Avg Macro AvgEasyLP ComplexLP
PLMs tag-BART 47.90%∗ - - - - -

GPT-3.5

Standard 13.06% 35.58% 10.90% 6.49% 24.64% 16.51%
CoT 33.06% 66.56% 13.27% 12.99% 46.67% 31.47%
Reflexion 43.67% 67.64% 14.22% 15.58% 49.79% 35.28%
CoE 52.24% 61.81% 17.06% 18.18% 49.03% 37.32%

GPT-4

Standard 72.65% 81.13% 24.64% 25.97% 65.74% 51.10%
CoT 76.73% 84.97% 29.86% 25.97% 69.62% 54.38%
Reflexion 78.78% 85.12% 36.02% 27.27% 71.05% 56.49%
CoE 76.73% 84.36% 40.28% 31.17% 71.48% 58.14%

Fine-tune

ORLM 78.37% 84.20% 38.39% 35.06% 71.65% 59.01%
Step-Opt-Mistral-7B 72.65% 82.06% 52.61% 40.26% 72.15% 61.90%
Step-Opt-LLaMA-3-8B 84.49% 85.28% 61.61% 36.36% 77.72% 66.94%

1st place in the NL4Opt competition.399

Standard, CoT (Chain-of-Thought) (Wei et al.,400

2022), and Reflexion (Shinn et al., 2024) repre-401

sent typical prompting strategies, including direct402

generation, intermediate reasoning, and iterative403

feedback-based refinement.404

Chain-of-Experts (CoE) (Xiao et al., 2023) is a405

multi-agent prompting framework leveraging inter-406

actions among LLMs to enhance problem-solving.407

ORLM (Tang et al., 2024) is a fine-tuned model408

using a checkpoint from Hugging Face 1, along409

with 3K training examples2, which we also use in410

ablation studies.411

To ensure fairness, all methods are evaluated412

with temperature set to 0. Fine-tuned models use413

greedy decoding in a zero-shot context, selecting414

the top-1 completion as the solution. Step-Opt415

and ORLM use the COPT solver to ensure align-416

ment with the raw data format. Prompt engineer-417

ing methods are evaluated using GPT-3.5 (gpt-3.5-418

turbo-1106) and GPT-4 (gpt-4-turbo-2024-04-09),419

respectively. For additional comparison, we eval-420

uate more advanced LLMs such as GPT-4o and421

Qwen2.5 (Yang et al., 2024a) on the MAMO Com-422

plexLP, with results provided in Appendix A.6.423

Details To construct the dataset, we begin with424

260 examples and perform 8,400 iterations us-425

ing GPT-4-turbo-0409, resulting in 4,464 exam-426

ples. Further details on the instance generation427

can be found in Appendix A.7. We then fine-tune428

LLaMA-3-8B (AI@Meta, 2024) and Mistral-7B429

(Jiang et al., 2023) utilizing the LLaMA-Factory430

framework (Zheng et al., 2024) with the Alpaca431

1https://huggingface.co/CardinalOperations/
ORLM-LLaMA-3-8B

2https://huggingface.co/datasets/
CardinalOperations/OR-Instruct-Data-3K

format template (Taori et al., 2023), applying the 432

LoRA technique (Hu et al., 2021) for efficient pa- 433

rameter adaptation. In this setup, the input consists 434

of a fixed prompt with a problem description, and 435

the output includes mathematical models and the 436

corresponding programs. Hyperparameter details 437

are provided in Appendix A.8. During inference, 438

we employ greedy search in a zero-shot context, 439

setting the max generation length to 2,048 tokens. 440

Metric. Considering the potential for minor dis- 441

crepancies in numerical solutions, we define a com- 442

parison rule to account for small inaccuracies. Let 443

o be the output of generated programs from differ- 444

ent methods, and g denote the ground truth. The 445

comparison is governed by the following criterion: 446∣∣∣∣o− g

g + ϵ

∣∣∣∣ ≤ 10−4, (1) 447

Where ϵ is a small number to avoid division errors; 448

o and g are equivalent if they satisfy Eq. 1. 449

4.2 Comparison Analysis 450

As shown in Table 1, Step-Opts based on LLaMA- 451

3-8B and Mistral-7B significantly outperform base- 452

lines by a large margin, including tag-BART which 453

achieves only 47.90% on NL4OPT despite requir- 454

ing extensive manual constraint validation, lag- 455

ging far behind LLM-based approaches. The best- 456

performing Step-Opt, trained on LLaMA-3-8B, 457

achieves state-of-the-art results on all benchmarks. 458

This demonstrates its superior modeling capabil- 459

ity. Notably, fine-tuned LLMs exceed the prompt 460

engineering methods on average. However, the dif- 461

ferences are less pronounced in the easier datasets, 462

NL4OPT and MAMO EasyLP. The reason lies in 463

the straightforward modeling requirements of these 464

problems, which primarily require understanding 465
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Table 2: Ablation Study on different evolving methods

Method NL4OPT MAMO EasyLP MAMO ComplexLP IndustryOR
Step-Opt 77.55% 85.43% 36.02% 23.38%
w/o Constraint Modification 75.92% 85.58% 19.91% 15.58%
w/o Objective Alteration 77.55% 85.89% 25.12% 19.48%
w/o Parameter Adjustment 73.06% 83.59% 26.07% 22.08%
w/o Domain Transformation 73.88% 83.13% 20.38% 18.18%
w/o Combination 77.96% 85.12% 33.65% 22.08%

Table 3: Comparison of Step-Opt and ORLM with 3K examples.

Method NL4OPT MAMO EasyLP MAMO ComplexLP IndustryOR Micro Avg Macro Avg
Step-Opt 78.37% 84.51% 44.08% 32.47% 72.66% 59.86%
ORLM 75.92% 88.19% 28.91% 25.97% 71.05% 54.75%

problem descriptions—a strength of models like466

ChatGPT and GPT-4. In contrast, for more com-467

plex datasets, the performance of fine-tuned models468

significantly improves, greatly exceeding that of469

prompt engineering methods. This indicates that470

fine-tuned models possess enhanced modeling ca-471

pabilities. A prominent example is MAMO Com-472

plexLP, where the advantage of Step-Opt-LLaMA-473

3-8B reaches 21.33%.474

To emphasize the distinctions, we analyze results475

across simple and complex datasets using GPT-4476

prompt engineering as the baseline compared with477

the top-performing Step-Opt model. As shown478

in Figure 3, nearly all methods perform well on479

simple datasets, with most achieving over 80% ac-480

curacy, except for the Standard method. The differ-481

ences between methods on simple datasets are rel-482

atively minor. In contrast, the results for complex483

datasets demonstrate that advanced prompt engi-484

neering techniques, such as CoE, significantly out-485

perform Standard, CoT, and Reflexion, though they486

still lag behind our proposed methods. Notably,487

Step-Opt achieves an accuracy above 50%, signif-488

icantly surpassing existing methods and showcas-489

ing its superior modeling capabilities for complex490

problems. Given the intricate nature of complex491

problem descriptions and the advanced techniques492

required, our models exhibit a greater capacity to493

handle higher-order techniques.494

4.3 Ablation Study495

We conduct an ablation analysis to explore the ef-496

fectiveness of different evolving methods and the497

composition of the training data, while also facili-498

tating a fair comparison between OR-Instruct and499

Step-Opt-Instruct. For all ablation experiments,500

we set the hyper-parameters to the same and use501

LLaMA-3-8B as the backbone. The parameter set- 502

tings can be found in the Appendix A.8. In addition, 503

we further evaluate the Stepwise Validation Mech- 504

anism on the MAMO ComplexLP, the details are 505

shown in Appendix A.9. 506

Study on evolving methods: Initially, we evalu- 507

ate the survival rates of different generation meth- 508

ods, yielding the following results: 1,716 for con- 509

straint modification, 1,242 for objective alteration, 510

2,123 for parameter adjustment, 2,077 for domain 511

transformation, and 455 for combination. The 512

higher survival rates for parameter adjustment and 513

domain transformation reflect their relative simplic- 514

ity, allowing examples to pass evaluations more 515

easily. Conversely, the combination is the most 516

challenging, as it requires two sets of descriptions 517

and solutions, often failing due to potential mis- 518

alignment. The other two methods, which intro- 519

duce new elements, are also more prone to errors. 520

Then, we randomly sample 2,000 examples with- 521

out specific methods and train LLaMA-3-8B on 522

this data. As shown in Table 2, removing domain 523

transformation yields the worst performance, with 524

a clear drop across all datasets, underscoring its 525

critical importance. While parameter adjustment 526

notably affects simpler benchmarks, its impact on 527

complex datasets is limited. In contrast, both con- 528

straint modification and objective alteration exert 529

a greater influence on complex datasets compared 530

to easier ones. Particularly for constraint modifi- 531

cation, it introduces additional constraints and in- 532

creases the difficulty, facilitating the model’s ability 533

to process more complex conditions. 534

Study on the components of training exam- 535

ples: As described in Sec. 3, each training example 536

includes a mathematical model and corresponding 537

programs utilizing the COPT solver, though only 538
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Figure 3: Performance comparison of various methods on easy and complex datasets.

Table 4: Comparison of Step-Opt and Step-Opt without mathematical model

Method NL4OPT MAMO EasyLP MAMO ComplexLP IndustryOR
Step-Opt 84.49% 85.28% 61.61% 36.36%
Step-Opt-4.73M 81.22% 84.97% 50.24% 33.77%
w/o mathematical model-4.73M 80.00% 81.44% 45.97% 29.87%

the program is used for problem-solving. To as-539

sess the impact of the mathematical model, we540

remove this component from the entire dataset and541

train LLaMA-3-8B. The results, presented in Ta-542

ble 4, reveal a significant performance drop upon543

the removal of the mathematical model. To fur-544

ther mitigate the influence of token count (as data545

without the mathematical model contain fewer to-546

kens), we maintain a total of 4.73 million tokens547

across all datasets. Even with equivalent training548

sizes, the dataset including the mathematical model549

consistently outperforms the one without it. This550

improvement can be ascribed to the mathemati-551

cal model functioning similarly to the Chain-of-552

Thought approach, providing a structured frame-553

work that guides the reasoning process in a sys-554

tematic manner, effectively bridging the problem555

description and the code solution. In its absence,556

the model skips critical reasoning steps, leading to557

a significant reduction in performance.558

Comparison of OR-Instruct and Step-Opt-559

Instruct: ORLM gathers 686 industry cases and560

creates 30,000 examples with the OR-Instruct561

framework, including 3,000 publicly available ex-562

amples. To assess the performance of OR-Instruct563

in comparison to Step-Opt-Instruct, we randomly564

select 3,000 examples for evaluation. Both datasets,565

each comprising 3,000 examples, are used to train566

LLaMA-3-8B. As illustrated in Table 3, except567

for MAMO EasyLP, our method uniformly outper-568

forms ORLM, achieving a 1.61% improvement in 569

micro average and a 5.11% enhancement in macro 570

average. The gains on more complex datasets, such 571

as MAMO ComplexLP and IndustryOR, are even 572

more pronounced. These advancements suggest 573

that Step-Opt-Instruct possesses superior capabil- 574

ities and generates higher-quality data, allowing 575

LLMs to more effectively address OR problems, 576

particularly those of greater complexity. 577

5 Conclusion 578

In this paper, we present Step-Opt-Instruct, a frame- 579

work that integrates iterative problem generation 580

with a stepwise validation mechanism to enhance 581

the capabilities of LLMs in addressing complex 582

OR problems. By progressively increasing prob- 583

lem complexity and ensuring data quality through 584

real-time validation, Step-Opt-Instruct effectively 585

prevents error propagation by removing low-quality 586

data during the generation process. This ap- 587

proach enables full automation without relying 588

on post-processing, ensuring high-quality datasets 589

for fine-tuning. The resulting model, Step-Opt, 590

achieved significant performance improvements 591

across benchmarks such as NL4OPT, MAMO, and 592

IndustryOR, particularly excelling in complex op- 593

timization tasks. These results highlight the ef- 594

fectiveness of combining systematic problem gen- 595

eration with structured validation to significantly 596

enhance the modeling capabilities of LLMs. 597
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Limitations: The proposed method faces diffi-598

culties in dealing with the wide variety of modeling599

techniques commonly used in OR, which limits its600

ability to handle the full range of possible scenar-601

ios. Moreover, the performance of the approach has602

not been fully tested across all types of OR prob-603

lems. Finally, its broader application still needs to604

be tested in other fields to validate its applicability605

and adaptability.606
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A Appendix743

A.1 Example for training data744

We use COPT (Ge et al., 2022) as the default solver745

in our experiments.746

A.2 Examples for modifications of test sets747

NL4OPT, Entry #228 : Wrong variable definition748

Problem: A macro-counting fitness guru only749

eats salmon and eggs. Each bowl of salmon con-750

tains 300 calories, 15 grams of protein, and 80751

mg of sodium. Each bowl of eggs contains 200752

calories, 8 grams of protein, and 20 mg of sodium.753

Since the fitness guru has a limit to how many eggs754

he would like to eat, at most 40% of his meals can755

be eggs. The fitness guru needs to eat at least 2000756

calories and 90 grams of protein. How many of757

each type of meal should he eat to minimize his758

sodium intake? Answer: 430.7692307692307759

The answer is initially derived by treating the760

number of salmon and egg bowls as continuous761

variables. However, since the number of bowls762

should be integers, the correct solution is adjusted,763

and the actual answer is 460.764

765

MAMO EasyLP, Entry #216 : Incorrect Han-766

dling of Absolute Value Constraint767

Problem: A retail manager is planning to allo-768

cate resources across three different departments:769

purchasing (X), sales (Y), and logistics (Z). These770

departments have different cost per unit of resource771

allocated, with $5 for X, $3 for Y, and $4 for Z. The772

objective is to minimize the total cost while meet-773

ing certain operational constraints. The combined774

resources allocated to purchasing and sales cannot775

exceed 1000 units due to budget limitations. Sim-776

ilarly, the combined resources allocated to sales777

and logistics cannot exceed 800 units due to man-778

power availability. To ensure a balanced operation,779

the difference in resource allocation between pur-780

chasing and logistics should be at least 200 units.781

Given that each department has specific bounds on782

resource allocation (Purchasing can have up to 500783

units, Sales up to 300 units, Logistics up to 200784

units) and that allocations must be whole numbers785

due to indivisible nature of the resources being al-786

located:What is the minimum total cost required787

for this scenario? type of meal should he eat to788

minimize his sodium intake? Answer: 1000789

The initial solution was derived without success-790

fully establishing an absolute value constraint for791

"the difference in resource allocation between pur-792

chasing and logistics should be at least 200 units." 793

Instead, only the constraint for one side (greater 794

than or equal to 200) is retained, leading to an 795

error. That is "model.addConstr(x - z >= 200, 796

name=ResourceDifferenceConstraint)" in the pro- 797

gram. The correct solution, considering both sides 798

of the absolute value constraint, yields an actual 799

cost of 800. 800

MAMO ComplexLP, Entry #216 : Incorrect 801

Handling of Subtour Elimination 802

Problem: Imagine a logistics manager tasked 803

with planning a delivery route for a truck that needs 804

to visit four different cities to distribute goods. The 805

cities are identified numerically as 1, 2, 3, and 4. 806

The truck can start its journey from any of these 807

cities but must travel to each city exactly once and 808

then return to the starting point. The objective is 809

to arrange this route in such a way that the total 810

travel cost is minimized. The costs associated with 811

traveling between the cities are as follows: The 812

cost to travel from City 1 to City 2 is 52 units, to 813

City 3 is 89 units, and to City 4 is 11 units. From 814

City 2, it costs 52 units to reach City 1, 14 units to 815

get to City 3, and 13 units to City 4. Traveling from 816

City 3, the costs are 89 units to City 1, 14 units to 817

City 2, and 87 units to City 4. Lastly, from City 4, 818

it costs 11 units to go to City 1, 13 units to City 2, 819

and 87 units to City 3. What is the minimum total 820

travel cost for the truck to visit each city exactly 821

once and return to the starting city? Answer: 50 822

The initial solution was derived without success- 823

fully establishing the subtour elimination constraint 824

for the Traveling Salesman Problem (TSP). As a 825

result, subtours were not eliminated properly, lead- 826

ing to an incorrect minimum total travel cost of 50 827

units. The correct solution, ensuring that subtours 828

are eliminated and all cities are visited exactly once, 829

yields an actual minimum total travel cost of 127 830

units. 831

IndustryOR, Entry #86: Missing Number 832

Problem: Fighter jets are important combat tools, 833

but in order for them to be effective, there must be 834

enough pilots. Therefore, in addition to a portion 835

of the produced fighter jets being used directly for 836

combat, another portion needs to be allocated for 837

pilot training. It is known that the number of fighter 838

jets produced each year is aj(j = 1, · · · , n), and 839

each fighter jet can train k pilots per year. How 840

should the production of fighter jets be allocated 841

each year to maximize their contribution to national 842

defense over a period of n year? There is no numer- 843

ical value for all parameters. 844
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Figure 4: Examples of training data.
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A.3 Prompt Templates for845

Complexity-Evolving846

847

848

849
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850 A.4 Prompt Templates for Scope-Evolving 851
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A.5 Prompt Templates for checkers and852

regeneration853

854
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A.6 Performance Comparison on MAMO855

ComplexLP856

To further validate our results, we conducted857

comparative studies on the MAMO ComplexLP858

dataset, involving leading proprietary LLM GPT-859

4o-2024-08-06 and an advanced open-source LLM860

Qwen2.5-72B-Instruct. These comparisons pro-861

vide additional context to the effectiveness of our862

Step-Opt framework. As shown in Table 5, pro-863

prietary models like GPT-4o demonstrate notable864

improvements, achieving a maximum accuracy of865

54.03% with CoE and consistently outperforming866

earlier versions like GPT-4 and GPT-3.5. Similarly,867

open-source models such as Qwen2.5 achieve com-868

petitive results, with Reflexion reaching 47.87%869

and CoE achieving 51.66%. These findings in-870

dicate that open-source models are steadily nar-871

rowing the gap with proprietary counterparts, even872

without task-specific fine-tuning.873

Despite these advancements, Step-Opt still874

demonstrates significant superiority, achieving875

the highest accuracy of 61.61% with Step-Opt-876

LLaMA-3-8B, surpassing GPT-4o and other base-877

lines. Step-Opt-Mistral-7B also achieves 52.61%,878

further showcasing the effectiveness of our frame-879

work. These results emphasize the impact of Step-880

Opt’s task-specific training data in elevating model881

performance across diverse problem formulations.882

By generating high-quality, diverse datasets,883

Step-Opt addresses a key challenge in structured884

optimization tasks: enabling LLMs to better handle885

complex problems. The consistent performance of886

Step-Opt-trained models highlights the importance887

of integrating precise, task-specific data into fine-888

tuning pipelines, paving the way for more reliable889

and effective solutions to real-world optimization890

challenges.891

A.7 Additional Details on Instance 892

Generation 893

The instance generation involved 64K queries, and 894

the number of tokens was 179M. On average, each 895

generation iteration required approximately 7.66 896

queries, with 3.14 queries dedicated to generating 897

and validating the problem description, and 4.52 898

queries used for solution generation and valida- 899

tion. Of the total tokens, 39M were allocated to 900

generating and validating the problem description, 901

while the remaining 140M were used for solution 902

generation and validation. Additionally, 8,400 gen- 903

erations were conducted, yielding 4,464 samples, 904

indicating that 46.86% of the generated samples 905

were discarded. 906

A.8 Hyper-parameters for Training Step-Opt 907

and baselines 908

All experiments are conducted on a single GPU 909

server equipped with eight A100 GPUs, each with 910

40GB of memory. In experiment, we report the best 911

results of all checkpoints. The maximum token is 912

limited to 2,500. The hyper-parameters for training 913

Step-Opts are as follows: 914

A.9 Study on Stepwise Validation Mechanism 915

To evaluate the impact of the proposed Stepwise 916

Validation Mechanism, we conducted experiments 917

on the MAMO Complex dataset. The results are 918

summarized in Table 8. The results demonstrate 919

that the Stepwise Validation Mechanism delivers 920

consistent improvements across different GPT mod- 921

els when compared to Standard, CoT, and Reflex- 922

ion methods. For GPT-4, our framework achieves 923

the highest accuracy (42.18%), outperforming all 924

other methods. However, CoE remains superior for 925

GPT-3.5 and GPT-4o, reflecting the strength of its 926

iterative reflection mechanism in these cases. 927
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Table 5: Performance Comparison of Various Methods on MAMO ComplexLP

Method Standard CoT Reflexion CoE Fine-Tuning
GPT-3.5 10.90% 13.27% 14.22% 17.06% -
GPT-4 24.64% 29.86% 36.02% 40.28% -
GPT-4o 46.92% 49.29% 48.34% 54.03% -
Qwen2.5-72B-Instruct 46.45% 45.97% 47.87% 51.66% -
ORLM - - - - 38.39%
Step-Opt-Mistral-7B - - - - 52.61%
Step-Opt-LLaMA-3-8B - - - - 61.61%

Table 6: Hyper-parameters for Training Step-Opts.

Backbone BatchSize Per GPU Gradient Accumulation Learning rate Epochs
Mistral-7B 4 8 1.25×10−4 10
LLaMA-3-8B 4 8 1.25×10−4 12

Table 7: Hyper-parameters for ablation experiments.

BatchSize Per GPU Gradient Accumulation Learning rate Epochs
4 8 1.25×10−4 10

In contrast, the Stepwise Validation Mechanism928

emphasizes real-time validation and correction dur-929

ing the modeling process, , avoiding the addi-930

tional complexity of reflection. This streamlined931

approach proves particularly effective for LLMs,932

as demonstrated by its superior performance with933

GPT-4. Although CoE excels in certain cases, our934

method offers a robust and efficient alternative.935

Additionally, It is important to consider the inher-936

ent difficulty of solving tasks directly during test-937

ing, as all methods must generate solutions from938

scratch. However, when used for data generation,939

the Stepwise Validation Mechanism can reference940

the solution of the original problem to generate941

solutions for new problems. By focusing only942

on the newly added or modified components, the943

mechanism significantly reduces the modeling diffi-944

culty. This advantage is not available during testing,945

where tasks must be solved entirely independently,946

but it underscores the potential of Stepwise Valida-947

tion Mechanism for facilitating high-quality data948

generation.949

950
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Table 8: Comparison of Stepwise Validation Mechanism and Other Prompt Engineering Methods on MAMO
ComplexLP

Method\Model GPT-3.5 GPT-4 GPT-4o
Standard 10.90% 24.64% 46.92%
CoT 13.27% 29.86% 49.29%
Reflexion 14.22% 36.02% 48.34%
CoE 17.06% 40.28% 54.03%
Stepwise Validation Mechanism 16.59% 42.18% 50.71%

A.10 Limitations951

The proposed method faces difficulties in deal-952

ing with the wide variety of modeling techniques,953

which limits its ability to handle the full range of954

possible scenarios. Moreover, the performance of955

the approach has not been fully tested across all956

types of OR problems. Finally, its broader applica-957

tion still needs to be tested in other fields to validate958

its applicability and adaptability.959
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