Training LLMs for Optimization Modeling via Iterative Data Synthesis and
Structured Validation

Anonymous ACL submission

Abstract

Large Language Models (LLMs) have revolu-
tionized various domains but encounter substan-
tial challenges in tackling optimization model-
ing tasks for Operations Research (OR), par-
ticularly when dealing with complex problem.
In this work, we propose Step-Opt-Instruct, a
framework that augments existing datasets and
generates high-quality fine-tuning data tailored
to optimization modeling. Step-Opt-Instruct
employs iterative problem generation to system-
atically increase problem complexity and step-
wise validation to rigorously verify data, pre-
venting error propagation and ensuring the qual-
ity of the generated dataset. Leveraging this
framework, we fine-tune open-source LLMs,
including LLaMA-3-8B and Mistral-7B, to de-
velop Step-Opt—a model that achieves state-
of-the-art performance on benchmarks such as
NL4OPT, MAMO, and IndustryOR. Extensive
experiments demonstrate the superior perfor-
mance of Step-Opt, especially in addressing
complex OR tasks, with a notable 17.01% im-
provement in micro average accuracy on diffi-
cult problems. These findings highlight the ef-
fectiveness of combining structured validation
with gradual problem refinement to advance the
automation of decision-making processes using
LLMs. The code and dataset are available at
https://anonymous.4open.science/r/Step-Opt.

1 Introduction

Operations Research (OR) is a valuable discipline
for addressing complex decision-making problems,
widely applied in fields such as economics, engi-
neering, and computer science (Bertsimas et al.,
2019; Belgacem et al., 2020; Pereira et al., 2022).
Effective implementation of OR involves two es-
sential steps: modeling real-world problems and
solving them. Despite significant advancements in
solution techniques and the development of more
efficient solvers, constructing appropriate models
remains a challenge. Such a task requires formulat-

ing natural language descriptions into mathemati-
cal models, which is labor-intensive and demands
domain-specific expertise as well as a deep under-
standing of modeling methodologies. These re-
quirements greatly restrict the broader application
of OR, particularly in real-world scenarios.

Recent developments in Large Language Models
(LLMs) have enhanced the feasibility of automat-
ing optimization modeling. Approaches like Chain-
of-Experts (CoE) (Xiao et al., 2023) and OptiMUS
(AhmadiTeshnizi et al., 2024) employ well-crafted
prompts and multi-agent systems to enhance the
construction of optimization models and corre-
sponding programs. However, these approaches
rely on general-purpose LLMs, which, though pow-
erful, are not specifically tailored for OR, limit-
ing their effectiveness in addressing specialized
challenges. Additionally, the need to upload sen-
sitive data poses additional privacy concerns. In
response, ORLM (Tang et al., 2024) presents an
alternative by fine-tuning open-source LLLMs us-
ing a dataset of 30K examples generated from 686
industry cases. While this improves the model’s
performance for OR modeling, ORLM remains
semi-automated, requiring significant manual post-
processing to achieve satisfactory results. More-
over, its prompt design lacks the precision needed
to manage problem complexity and diversity, result-
ing in suboptimal outputs. Furthermore, modeling
errors are not identified in real-time, allowing inac-
curacies to persist and propagate. While rule-based
post-processing can address minor errors, it often
fails to rectify deeper logical and structural issues,
further compromising data quality.

Utilizing high-quality training data is vital for
improving the modeling capabilities of LLMs.
However, current methods not only rely heavily
on manual post-processing but also struggle to en-
sure data reliability. To address these limitations,
we propose an approach from two primary perspec-
tives. First, we enhance the prompt design and in-

https://anonymous.4open.science/r/Step-Opt

~N
A theme park uses scooters (carry 2 people) and rickshaws (carry 3
people) to transport at least 300 visitors. Rickshaws cannot exceed 40%
of vehicles. Minimize the number of vehicles used

J

Constraint|modification

[numher of vehicles used

- N N
A theme park uses scooters ... Rickshaws cannot exceed 40% of the total
vehicles, and must be at least 20% of the total vehicles. Minimize the

J

Para meterladj ustment

A theme park uses scooters .
at least 500 visitors. Ricksha

and |golf carts (carry 5 people) to transport
s cannot exceed 35% of the total vehicles
and must be at least 25% of the total vehicles ...

J

Objenivelalteration

Domain Transformation

~
A theme park uses scooters (carry 2 people and eost $10), rickshaws
(carry 3 people and j€0st $20). and golf carts (carry 5 people and cost $30)
to transport at least 500 visitors. ... Minimize the total operational costs.

J

A hospital uses nurses (handle 2

Scope-Evolving

Combination

A software company is allocating devs to two

patients) and physicians (handle
3 patients) to care for at least
300 patients. Physicians cannot
exceed 40% of the total staff.
Minimize the number of staff.

minimum total cost?

An environmental agency is allocating
resources to X and Y, with costs of
$50 and $60, respectively. X must be
between 0 and 200 units. What is the

projects: Mobile App and Cloud Infra. The
details are in table. Cloud Infra cannot exceed
25% of the total. Minimize the total cost.

Project Needed Cost
Mobile App 5-100 500
Cloud Infra 15-200 700

Figure 1: Examples of Iterative Problem Generation. It includes two types of methods: Complexity-Evolving,
which refines problem complexity through constraint modification, parameter adjustment, and objective alteration;
and Scope-Evolving, which enhances diversity via domain transformations and problem combinations. Red and
blue backgrounds indicate changes introduced by Complexity- and Scope-Evolving, respectively. Repeated content

is replaced with "..." for clarity.

troduce an Iterative Problem Generation, as shown
in Figure 1. This method incrementally increases
the complexity and scope of the problems, allow-
ing the dataset to retain varying levels of difficulty
and breadth. This diversity plays a crucial role in
improving the model’s generalization capabilities,
as WizardLM (Xu et al., 2024) suggested. Second,
we incorporate a stepwise validation mechanism
that performs real-time checks throughout the gen-
eration process, effectively filtering out low-quality
or erroneous data. This prevents errors from enter-
ing and propagating through the seed dataset. We
refer to this framework as Step-Opt-Instruct. Our
framework eliminates the need for post-processing,
enabling fully automated generation while reduc-
ing API costs by utilizing only high-quality data
for future iterations.

Step-Opt-Instruct consists of two key compo-
nents: Iterative Problem Generation and Stepwise
Validation Mechanism. The Iterative Problem
Generation is specifically designed to address the
unique challenges of OR-specific tasks, such as
complex variable definitions and strict constraint
implementation. By employing tailored methods
such as Complexity-Evolving and Scope-Evolving,
this approach generates a dataset enriched with
enhanced complexity and diversity from the given
one, facilitating the fine-tuning of LLMs to enhance
their modeling ability for OR problems. As illus-
trated in Figure 1, Complexity-Evolving increases

the complexity of the problem refining constraints,
objectives, or parameters, while Scope-Evolving
expands linguistic diversity and problem scope by
adapting problems to new contexts or merging sce-
narios. This approach ensures that the generated
dataset captures a wide range of complexities and
provides robust coverage.

As new generated problems become increasingly
complex, current LLMs often struggle to solve
them accurately, resulting in errors. If these errors
remain undetected and uncorrected, they will propa-
gate through the iterative process, ultimately affect-
ing the quality of the generated data. To mitigate
this, the stepwise validation mechanism is imple-
mented to not only prevent errors but also guarantee
the accurate application of essential modeling tech-
niques. Problems are first validated via a descrip-
tion checker for completeness, followed by checks
on variables, constraints, and programs. Identified
issues are resolved via feedback loops, with ad-
vanced techniques like the Big-M method verified
using specially designed prompts that guide the
LLM step-by-step to confirm accurate implemen-
tation. This validation process enables the genera-
tion of reliable and high-quality datasets, which are
crucial for fine-tuning LLMs and enhancing their
modeling ability for OR problems.

In order to evaluate the effectiveness of Step-
Opt-Instruct, we collect 260 seed cases and gen-
erate nearly 4.5K examples. This data is then ap-

plied to train LLaMA-3-8B (Al@Meta, 2024) and
Mistral-7B (Jiang et al., 2023), producing a model
named Step-Opt. Furthermore, we manually re-
view benchmarks including NLAOPT (Ramamon-
jison et al., 2023), MAMO (Huang et al., 2024),
and IndustryOR (Tang et al., 2024), correcting a
large number of examples with error labels. Exper-
iments across these benchmarks indicate that our
method outperforms existing approaches, achiev-
ing a 6.07% improvement in the micro average and
a 7.93% enhancement in the macro average. No-
tably, when focusing on more complex components,
Step-Opt exhibits a more significant advantage, at-
taining improvements of 17.01% and 12.26% in
micro and macro averages, respectively. This sub-
stantial lead underscores our method’s capability
to manage complex problems effectively.

Our contributions are as follows:

* Introduction of advanced feedback mecha-
nisms and real-time data updates, significantly re-
ducing error propagation, eliminating the need for
extensive manual post-processing.

* Development of Step-Opt-Instruct, a novel
framework specifically designed to enhance the
capabilities of open-source LLMs for effectively
modeling OR problems.

* Proposal of the Step-Opt model, which
achieves state-of-the-art performance across sev-
eral benchmarks and particularly for complex prob-
lems, with additional manual corrections applied to
errors in established benchmarks such as NL4OPT,
MAMO, and IndustryOR.

2 Related Work

LLM-based Automated Modeling for OR is an
emerging field that uses LLMs to generate mathe-
matical models for OR problems. Existing methods
can be categorized into prompt-engineering and
fine-tuning. Approaches like Chain-of-Thought
(Wei et al., 2022) and Reflexion (Shinn et al.,
2024) improve performance but are not special-
ized for OR. More advanced methods, including
OptiGuide (Li et al., 2023a), Chain-of-Experts
(Xiao et al., 2023), and OptiMUS (AhmadiTesh-
nizi et al., 2024), employ multi-agent systems with
LLM to construct models but encounter difficul-
ties with complex problems due to LLM’s limi-
tations. ORLM (Tang et al., 2024), conversely,
utilizes dataset generated from industry cases and
GPT-4, coupled with rule-based post-processing, to
fine-tune LLMs and improve outcomes. However,

it lacks precise prompt and effective filtering mech-
anisms. Our framework addresses these limitations
by iterative-based generation and real-time vali-
dation to control complexity and minimize errors,
thereby enhancing the performance.

Data Augmentation improves LLM perfor-
mance by generating synthetic datasets, often used
when real-world data is insufficient for complex
tasks(Wang et al., 2022; An et al., 2023; Oh et al.,
2023; Panetal., 2023; Gandhi et al., 2024; Xu et al.,
2024; Zhou et al., 2024). In operations research,
data augmentation approaches like (Prasath and
Karande, 2023; Li et al., 2023b) focus on synthesiz-
ing optimization problems from natural language
descriptions, but with limited complexity. ORLM
(Tang et al., 2024) expands industry case datasets
through modifications and rephrasings, while ReSo-
cratic (Yang et al., 2024b) takes a reverse data syn-
thesis approach, generating optimization scenarios
from solutions. Among all these works, the closest
to ours is Evol-Instruct (Xu et al., 2024), which
uses In-depth Evolving and In-breadth Evolving to
generate instruction data. However, as OR mod-
eling presents unique challenges, we propose a
stepwise validation mechanism to ensure accuracy
and avoid error propagation in generated data.

3 Method

This section outlines the proposed framework. As
depicted in Figure 2, It comprises two primary
components: generators and a stepwise validation
mechanism. The details of the generators are pro-
vided in Sec. 3.2, while the stepwise validation
mechanism is detailed in Sec. 3.3.

3.1 Preliminary

We start generation from a given initial dataset, de-
noted as D = {(q;,m;)}}£,, where each instance
includes a problem description ¢; and its associated
mathematical model and program m;. A valid g;
must contain an objective function, constraints, and
all relevant parameters with specified numerical
values. The model m; implements the constraints
and objective functions defined in ¢; and produces
executable code. An example of the training data
is provided in Appendix A.l. The parameter K
denotes the size of the initial seed dataset.

3.2 Generators

The problem generator adopts an iterative method-
ology, progressively producing problems with in-

Description
Checker

qualified data

Variables
Checker

&9

Task Description: Check the
‘| Completeness of ... in the
Problem Description

#Task Description: Check the
Correctness of Decision Variable
Definitions

(=3

4

7
Assume you are an
Evolutionary expert in combinatorial

Strategies optimization modeling.
{strategy desciption}...
You only need to
produce a single new
problem and do not

solve it.

qs qn

mg Evo

o

& " & "
Problem R & Solution o8 Constraints
Generators Generators Checker
]
wm,

Assume you are an expert in
combinatorial optimization
modeling. Given {qs} and {qn},
where {q,} is derived from {q.
based on the following approach:
{Evo}. Please refer to{mg} build
a mathematical model and
corresponding Python code

using coptpy that appropriately
wresses qn). /

9

-]

Task Description: Check the
Correctness of special
\Constraints including ... Y,

%
3
}\

q

#Task Describﬁon: Check the
Correctness of the program.

Figure 2: The framework of Step-Opt-Instruct. Each iteration begins by sampling seed data from an initial dataset.
The Problem Generator uses evolving prompts to create a problem description, which is refined through feedback
from the Description Checker. Once approved, the Solution Generator produces a solution, validated by the
Variables, Constraints, and Program Checkers. Detected errors are fed back for revision. Only verified descriptions
and solutions are added to the dataset. All components rely on tailored prompts to ensure quality. Red text indicates
prompt customizations. The resulting dataset is then used to fine-tune LLMs, improving modeling capabilities.

creasing complexity and diversity. In each iter-
ation, a seed data (gs, ms) is randomly sampled.
A specific evolving method, denoted as f., is
then applied to create a new problem description
Gn = fe(qs). This process employs prompt-based
LLM methods to refine problem descriptions and
systematically expand their scope. These methods
can be categorized into two types: Complexity-
Evolving and Scope-Evolving, as detailed below.

Complexity-Evolving increases complexity by
modifying existing conditions or introducing new
elements. Considering the specific characteristics
of OR problems, three approaches are included:
constraint modification, objective alteration, and
parameter adjustment. These incrementally raise
complexity while preserving logical integrity.

Constraint modification revises existing con-
straints or adds new ones to enhance the problem,
with the core principle being to "modify constraints
based on the given problem while retaining its log-
ical structure.” This ensures that the essential logic
of the problem remains intact as complexity in-
creases. Similarly, objective alteration either mod-
ifies objectives or introduces new ones, with the
restriction that changes cannot merely adjust coef-
ficients. Parameter adjustment changes values or
adds elements. These approaches, while tailored to
specific contexts, share the principle of preserving

the underlying structure. Together, they enhance
problem difficulty from various perspectives.

Nevertheless, the generated problems may be-
come so complex that they exceed the processing
capabilities of LLMs. To manage this, modifica-
tions to constraints or objectives are limited to one
at a time, and parameter adjustments introduce
at most one new entity. Specifically, the prompt
for constraint modification is subject to strict lim-
itations: only one constraint can be modified or
added per iteration to control the growth in com-
plexity. These restrictions not only ensure a bal-
anced dataset with varying difficulty levels but also
exclude excessively challenging examples, thereby
improving the model’s generalization capabilities.
Prompt templates are provided in Appendix A.3.

Scope-Evolving broadens topic coverage and
diversity by transforming the seed example into a
different domain or combining it with another ex-
ample to create a novel scenario. Domain transfor-
mation transfers the basic structure of the original
problem to a new domain, while preserving its logic
and constraints, thereby increasing linguistic and
contextual diversity. To ensure practical relevance,
we define a list of reference domains. Alternatively,
the combination approach merges two distinct prob-
lems to create a new one that belongs to a different
domain and contains unique details. This approach

introduces more substantial changes. To control
complexity, the new problem is required to be of
a similar length to one of the originals, maintain-
ing manageable difficulty. Prompt templates for
Scope-Evolving are provided in Appendix A.4.
As the Complexity- and Scope-Evolving
progress, the complexity, scope, and diversity of
generated data expand, ensuring comprehensive
coverage across dimensions. All approaches use
two-shot examples to maintain consistency.
Solution generator g produces a mathematical
model and program m,, for a valid problem g¢,.
It generates m,, = g(qn, gs, Ms, fe) using gs, ms
and evolving method f. as references. Since LLMs
may struggle with complex models, we embed the
instruction "ensuring the format and structure are
as consistent as possible with the provided qs and
my" into the meta-prompt to enforce consistency.

3.3 Stepwise Validation Mechanism

While the aforementioned generation methods can
produce descriptions and solutions, the complexity
of OR problem modeling poses significant chal-
lenges for current LLMs, often causing missing
parameters, ambiguous objectives, or misused ad-
vanced techniques. Without sufficient supervision
and error-correction mechanisms, such issues tend
to persist, gradually undermining dataset quality
and negatively impacting model performance.

To address these challenges, we design a step-
wise validation mechanism that checks throughout
the generation process, eliminating low-quality or
erroneous data to maintain dataset integrity. This
mechanism comprises four checkers, each focus-
ing on a specific aspect: description completeness,
variable definition, constraint implementation, and
program quality. The description checker evaluates
whether the generated ¢,, contains essential com-
ponents. If any is missing, the checker provides
feedback, prompting regeneration until validation
succeeds or the attempt limit is reached. Only af-
ter passing this check does the solution generator
produce the mathematical model and program.

Subsequently, additional checkers cross-
reference ¢, and m,, to conduct assessments. For
variables, step-by-step instructions are provided,
along with examples covering common types,
enabling the checker to verify variable definitions.

The constraint checker ensures constraints are
correctly formulated and aligned with the problem
description. It follows a systematic process: identi-
fying constraints, then verifying their consistency

with the problem’s content, similar to variable vali-
dation. While all constraints are reviewed, special
attention is given to advanced techniques such as
the Big-M method and K-way selection constraints.
These serve as specialized checks, with other ad-
vanced techniques also applicable. Finally, the pro-
gram checker extracts and executes the program,
capturing outputs or errors, and providing feedback
to the solution generator as needed.

When errors are identified in m,, they are
relayed back to the solution generator with the
prompt: "Please regenerate the solution based on
the 'Error’. Ensure that the new solution correctly
addresses the problem while maintaining the for-
mat and structure, with only the necessary correc-
tions and improvements.” The revised solution un-
dergoes further testing until it passes all validation
stages. If the retry limit is reached, the problem
will be discarded. This validation process ensures
both ¢, and m,, are error-free. Only data that pass
all assessments are integrated into the dataset D
for future iterations. This minimizes errors within
D, thereby preventing the propagation of inaccura-
cies in future generations and safeguarding overall
dataset quality. Details of the checkers and regen-
eration are provided in Appendix A.5

4 Experiment

4.1 Experimental Setup

Dataset. We assess our method using a range
of datasets, spanning simple ones like NLAOPT
(Ramamonjison et al., 2023) and MAMO EasyL.P
(Huang et al., 2024), and complex ones such as
MAMO ComplexLP (Huang et al., 2024) and In-
dustryOR (Tang et al., 2024). Answers were manu-
ally revised when needed. Examples are shown in
Appendix A.2.

NL4OPT originates from the Neur[PS 2022
NL4Opt competition and includes 1,101 simple
linear programming problems (LPs), 289 used for
evaluation. We correct 16 inaccurate instances.

MAMO contains two sub-datasets: EasyLP and
ComplexLP. The former contains 652 simple LPs,
and the latter 211 complex ones, all are paired with
optimal solutions. We rectify 78 inaccuracies.

IndustryOR consists of 100 complex OR prob-
lems. Many lack essential information or accurate
values, leading to 50 corrections and removal of 23
instances that fail to meet modeling criteria.

Baselines rag-BART (Kani and Gangwar, 2022)
is a pre-trained language model (PLM) that won

Table 1: Performance comparison of methods. Values marked with a * are directly copied from original papers.

Method NL4OPT 1}3/[?5%(})) CM]%)%)?LP IndustryOR Micro Avg Macro Avg
PLMs tag-BART 47.90%" - - - - -
Standard 13.06% 35.58% 10.90% 6.49% 24.64% 16.51%
GPT-3.5 CoT 33.06% 66.56% 13.27% 12.99% 46.67% 31.47%
’ Reflexion 43.67% 67.64% 14.22% 15.58% 49.79% 35.28%
CoE 52.24% 61.81% 17.06% 18.18% 49.03% 37.32%
Standard 72.65% 81.13% 24.64% 25.97% 65.74% 51.10%
GPT-4 CoT 76.73% 84.97% 29.86% 25.97% 69.62% 54.38%
Reflexion 78.78% 85.12% 36.02% 27.27% 71.05% 56.49%
CoE 76.73% 84.36% 40.28% 31.17% 71.48% 58.14%
ORLM 7837% 84.20% 38.39% 35.06% 71.65% 59.01%
Fine-tune Step-Opt-Mistral-7B 72.65% 82.06% 52.61% 40.26% 72.15% 61.90%
Step-Opt-LLaMA-3-8B 84.49% 85.28% 61.61% 36.36% 77.72% 66.94%

1st place in the NL4Opt competition.

Standard, CoT (Chain-of-Thought) (Wei et al.,
2022), and Reflexion (Shinn et al., 2024) repre-
sent typical prompting strategies, including direct
generation, intermediate reasoning, and iterative
feedback-based refinement.

Chain-of-Experts (CoE) (Xiao et al., 2023) is a
multi-agent prompting framework leveraging inter-
actions among LL.Ms to enhance problem-solving.

ORLM (Tang et al., 2024) is a fine-tuned model
using a checkpoint from Hugging Face !, along
with 3K training examples?, which we also use in
ablation studies.

To ensure fairness, all methods are evaluated
with temperature set to 0. Fine-tuned models use
greedy decoding in a zero-shot context, selecting
the top-1 completion as the solution. Step-Opt
and ORLM use the COPT solver to ensure align-
ment with the raw data format. Prompt engineer-
ing methods are evaluated using GPT-3.5 (gpt-3.5-
turbo-1106) and GPT-4 (gpt-4-turbo-2024-04-09),
respectively. For additional comparison, we eval-
uate more advanced LLMs such as GPT-40 and
Qwen2.5 (Yang et al., 2024a) on the MAMO Com-
plexLP, with results provided in Appendix A.6.

Details To construct the dataset, we begin with
260 examples and perform 8,400 iterations us-
ing GPT-4-turbo-0409, resulting in 4,464 exam-
ples. Further details on the instance generation
can be found in Appendix A.7. We then fine-tune
LLaMA-3-8B (Al@Meta, 2024) and Mistral-7B
(Jiang et al., 2023) utilizing the LLaMA-Factory
framework (Zheng et al., 2024) with the Alpaca

"https://huggingface.co/CardinalOperations/
ORLM-LLaMA-3-8B

2h'ctps ://huggingface.co/datasets/
CardinalOperations/OR-Instruct-Data-3K

format template (Taori et al., 2023), applying the
LoRA technique (Hu et al., 2021) for efficient pa-
rameter adaptation. In this setup, the input consists
of a fixed prompt with a problem description, and
the output includes mathematical models and the
corresponding programs. Hyperparameter details
are provided in Appendix A.8. During inference,
we employ greedy search in a zero-shot context,
setting the max generation length to 2,048 tokens.

Metric. Considering the potential for minor dis-
crepancies in numerical solutions, we define a com-
parison rule to account for small inaccuracies. Let
o be the output of generated programs from differ-
ent methods, and g denote the ground truth. The
comparison is governed by the following criterion:

0—g
g+e

<1074, (1)

Where € is a small number to avoid division errors;
o and g are equivalent if they satisfy Eq. 1.

4.2 Comparison Analysis

As shown in Table 1, Step-Opts based on LLaMA-
3-8B and Mistral-7B significantly outperform base-
lines by a large margin, including tag-BART which
achieves only 47.90% on NL4OPT despite requir-
ing extensive manual constraint validation, lag-
ging far behind LLM-based approaches. The best-
performing Step-Opt, trained on LLaMA-3-8B,
achieves state-of-the-art results on all benchmarks.
This demonstrates its superior modeling capabil-
ity. Notably, fine-tuned LLMs exceed the prompt
engineering methods on average. However, the dif-
ferences are less pronounced in the easier datasets,
NL4OPT and MAMO EasyLP. The reason lies in
the straightforward modeling requirements of these
problems, which primarily require understanding

https://huggingface.co/CardinalOperations/ORLM-LLaMA-3-8B
https://huggingface.co/CardinalOperations/ORLM-LLaMA-3-8B
https://huggingface.co/datasets/CardinalOperations/OR-Instruct-Data-3K
https://huggingface.co/datasets/CardinalOperations/OR-Instruct-Data-3K

Table 2: Ablation Study on different evolving methods

Method NL4OPT MAMO EasyLP MAMO ComplexLP IndustryOR
Step-Opt 77.55% 85.43% 36.02% 23.38%
w/o Constraint Modification ~ 75.92% 85.58% 19.91% 15.58%
w/o Objective Alteration 77.55% 85.89% 25.12% 19.48%
w/o Parameter Adjustment 73.06% 83.59% 26.07% 22.08%
w/o Domain Transformation 73.88% 83.13% 20.38% 18.18%
w/o Combination 77.96% 85.12% 33.65% 22.08%

Table 3: Comparison of Step-Opt and ORLM with 3K examples.

Method NL4OPT MAMO EasyLP MAMO ComplexLP IndustryOR Micro Avg Macro Avg

Step-Opt 78.37% 8451%

44.08 %

32.47% 72.66 % 59.86 %

ORLM 75.92% 88.19%

28.91%

25.97% 71.05% 54.75%

problem descriptions—a strength of models like
ChatGPT and GPT-4. In contrast, for more com-
plex datasets, the performance of fine-tuned models
significantly improves, greatly exceeding that of
prompt engineering methods. This indicates that
fine-tuned models possess enhanced modeling ca-
pabilities. A prominent example is MAMO Com-
plexLP, where the advantage of Step-Opt-LLaMA-
3-8B reaches 21.33%.

To emphasize the distinctions, we analyze results
across simple and complex datasets using GPT-4
prompt engineering as the baseline compared with
the top-performing Step-Opt model. As shown
in Figure 3, nearly all methods perform well on
simple datasets, with most achieving over 80% ac-
curacy, except for the Standard method. The differ-
ences between methods on simple datasets are rel-
atively minor. In contrast, the results for complex
datasets demonstrate that advanced prompt engi-
neering techniques, such as CoE, significantly out-
perform Standard, CoT, and Reflexion, though they
still lag behind our proposed methods. Notably,
Step-Opt achieves an accuracy above 50%, signif-
icantly surpassing existing methods and showcas-
ing its superior modeling capabilities for complex
problems. Given the intricate nature of complex
problem descriptions and the advanced techniques
required, our models exhibit a greater capacity to
handle higher-order techniques.

4.3 Ablation Study

We conduct an ablation analysis to explore the ef-
fectiveness of different evolving methods and the
composition of the training data, while also facili-
tating a fair comparison between OR-Instruct and
Step-Opt-Instruct. For all ablation experiments,
we set the hyper-parameters to the same and use

LLaMA-3-8B as the backbone. The parameter set-
tings can be found in the Appendix A.8. In addition,
we further evaluate the Stepwise Validation Mech-
anism on the MAMO ComplexLP, the details are
shown in Appendix A.9.

Study on evolving methods: Initially, we evalu-
ate the survival rates of different generation meth-
ods, yielding the following results: 1,716 for con-
straint modification, 1,242 for objective alteration,
2,123 for parameter adjustment, 2,077 for domain
transformation, and 455 for combination. The
higher survival rates for parameter adjustment and
domain transformation reflect their relative simplic-
ity, allowing examples to pass evaluations more
easily. Conversely, the combination is the most
challenging, as it requires two sets of descriptions
and solutions, often failing due to potential mis-
alignment. The other two methods, which intro-
duce new elements, are also more prone to errors.

Then, we randomly sample 2,000 examples with-
out specific methods and train LLaMA-3-8B on
this data. As shown in Table 2, removing domain
transformation yields the worst performance, with
a clear drop across all datasets, underscoring its
critical importance. While parameter adjustment
notably affects simpler benchmarks, its impact on
complex datasets is limited. In contrast, both con-
straint modification and objective alteration exert
a greater influence on complex datasets compared
to easier ones. Particularly for constraint modifi-
cation, it introduces additional constraints and in-
creases the difficulty, facilitating the model’s ability
to process more complex conditions.

Study on the components of training exam-
ples: As described in Sec. 3, each training example
includes a mathematical model and corresponding
programs utilizing the COPT solver, though only

Performance Comparison on Easy and Complex Datasets (Micro and Macro Avg)

80 —

60

40

Performance (%)

20

Task-Easy-Micro Task-Easy-Macro

Methods
=3 standard
= CoT
B Reflexion
B CoE
=3 ORLM
N Step-Opt

Task-Complex-Micro

Task Type and Metric

Task-Complex-Macro

Figure 3: Performance comparison of various methods on easy and complex datasets.

Table 4: Comparison of Step-Opt and Step-Opt without mathematical model

Method NL4OPT MAMO EasyLP MAMO ComplexLP IndustryOR
Step-Opt 84.49% 85.28% 61.61% 36.36%
Step-Opt-4.73M 81.22% 84.97% 50.24% 33.77%
w/o mathematical model-4.73M 80.00% 81.44% 45.97% 29.87%

the program is used for problem-solving. To as-
sess the impact of the mathematical model, we
remove this component from the entire dataset and
train LLaMA-3-8B. The results, presented in Ta-
ble 4, reveal a significant performance drop upon
the removal of the mathematical model. To fur-
ther mitigate the influence of token count (as data
without the mathematical model contain fewer to-
kens), we maintain a total of 4.73 million tokens
across all datasets. Even with equivalent training
sizes, the dataset including the mathematical model
consistently outperforms the one without it. This
improvement can be ascribed to the mathemati-
cal model functioning similarly to the Chain-of-
Thought approach, providing a structured frame-
work that guides the reasoning process in a sys-
tematic manner, effectively bridging the problem
description and the code solution. In its absence,
the model skips critical reasoning steps, leading to
a significant reduction in performance.

Comparison of OR-Instruct and Step-Opt-
Instruct: ORLM gathers 686 industry cases and
creates 30,000 examples with the OR-Instruct
framework, including 3,000 publicly available ex-
amples. To assess the performance of OR-Instruct
in comparison to Step-Opt-Instruct, we randomly
select 3,000 examples for evaluation. Both datasets,
each comprising 3,000 examples, are used to train
LLaMA-3-8B. As illustrated in Table 3, except
for MAMO EasyLP, our method uniformly outper-

forms ORLM, achieving a 1.61% improvement in
micro average and a 5.11% enhancement in macro
average. The gains on more complex datasets, such
as MAMO ComplexLP and IndustryOR, are even
more pronounced. These advancements suggest
that Step-Opt-Instruct possesses superior capabil-
ities and generates higher-quality data, allowing
LLMs to more effectively address OR problems,
particularly those of greater complexity.

5 Conclusion

In this paper, we present Step-Opt-Instruct, a frame-
work that integrates iterative problem generation
with a stepwise validation mechanism to enhance
the capabilities of LLMs in addressing complex
OR problems. By progressively increasing prob-
lem complexity and ensuring data quality through
real-time validation, Step-Opt-Instruct effectively
prevents error propagation by removing low-quality
data during the generation process. This ap-
proach enables full automation without relying
on post-processing, ensuring high-quality datasets
for fine-tuning. The resulting model, Step-Opt,
achieved significant performance improvements
across benchmarks such as NL4OPT, MAMO, and
IndustryOR, particularly excelling in complex op-
timization tasks. These results highlight the ef-
fectiveness of combining systematic problem gen-
eration with structured validation to significantly
enhance the modeling capabilities of LLM:s.

Limitations: The proposed method faces diffi-
culties in dealing with the wide variety of modeling
techniques commonly used in OR, which limits its
ability to handle the full range of possible scenar-
i0s. Moreover, the performance of the approach has
not been fully tested across all types of OR prob-
lems. Finally, its broader application still needs to
be tested in other fields to validate its applicability
and adaptability.

References

Ali AhmadiTeshnizi, Wenzhi Gao, and Madeleine Udell.
2024. Optimus: Scalable optimization modeling with
(mi) Ip solvers and large language models. arXiv
preprint arXiv:2402.10172.

Al@Meta. 2024. Llama 3 model card.

Shengnan An, Zexiong Ma, Zeqi Lin, Nanning Zheng,
Jian-Guang Lou, and Weizhu Chen. 2023. Learn-
ing from mistakes makes llm better reasoner. arXiv
preprint arXiv:2310.20689.

Ali Belgacem, Kadda Beghdad-Bey, Hassina Nacer, and
Sofiane Bouznad. 2020. Efficient dynamic resource
allocation method for cloud computing environment.
Cluster Computing, 23(4):2871-2889.

Dimitris Bertsimas, Jack Dunn, and Nishanth Mundru.
2019. Optimal prescriptive trees. INFORMS Journal
on Optimization, 1(2):164-183.

Saumya Gandhi, Ritu Gala, Vijay Viswanathan, Tong-
shuang Wu, and Graham Neubig. 2024. Better syn-
thetic data by retrieving and transforming existing
datasets. arXiv preprint arXiv:2404.14361.

Dongdong Ge, Qi Huangfu, Zizhuo Wang, Jian Wu, and
Yinyu Ye. 2022. Cardinal optimizer (copt) user guide.
arXiv preprint arXiv:2208.14314.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Xuhan Huang, Qingning Shen, Yan Hu, Anningzhe Gao,
and Benyou Wang. 2024. Mamo: a mathematical
modeling benchmark with solvers. arXiv preprint
arXiv:2405.13144.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, and 1 others. 2023.
Mistral 7b. arXiv preprint arXiv:2310.06825.

Nickvash Kani and Neeraj Gangwar. 2022. Tagged
input and decode all-at-once strategy. https://
github.com/MLPgroup/nl4opt-generation.

Beibin Li, Konstantina Mellou, Bo Zhang, Jeevan
Pathuri, and Ishai Menache. 2023a. Large language
models for supply chain optimization. arXiv preprint
arXiv:2307.03875.

Qingyang Li, Lele Zhang, and Vicky Mak-Hau. 2023b.
Synthesizing mixed-integer linear programming mod-
els from natural language descriptions. arXiv
preprint arXiv:2311.15271.

Seokjin Oh, Su Ah Lee, and Woohwan Jung. 2023.
Data augmentation for neural machine translation
using generative language model. arXiv preprint
arXiv:2307.16833.

Yan Pan, Davide Cadamuro, and Georg Groh. 2023.
Data-augmented task-oriented dialogue response gen-
eration with domain adaptation. In Proceedings of
the 37th Pacific Asia Conference on Language, Infor-
mation and Computation, pages 96—106.

Joao Luiz Junho Pereira, Guilherme Antonio Oliver,
Matheus Brendon Francisco, Sebastiao Simoes
Cunha Jr, and Guilherme Ferreira Gomes. 2022.
A review of multi-objective optimization: methods
and algorithms in mechanical engineering problems.
Archives of Computational Methods in Engineering,
29(4):2285-2308.

Ganesh Prasath and Shirish Karande. 2023. Synthe-
sis of mathematical programs from natural language
specifications. arXiv preprint arXiv:2304.03287.

Rindranirina Ramamonjison, Timothy Yu, Raymond
Li, Haley Li, Giuseppe Carenini, Bissan Ghaddar,
Shiqi He, Mahdi Mostajabdaveh, Amin Banitalebi-
Dehkordi, Zirui Zhou, and 1 others. 2023. Nl4opt
competition: Formulating optimization problems
based on their natural language descriptions. In
NeurIPS 2022 Competition Track, pages 189-203.
PMLR.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2024. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36.

Zhengyang Tang, Chenyu Huang, Xin Zheng, Shixi
Hu, Zizhuo Wang, Dongdong Ge, and Benyou
Wang. 2024. Orlm: Training large language mod-
els for optimization modeling. arXiv preprint
arXiv:2405.17743.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2022. Self-instruct: Aligning lan-
guage models with self-generated instructions. arXiv
preprint arXiv:2212.10560.

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/MLPgroup/nl4opt-generation
https://github.com/MLPgroup/nl4opt-generation
https://github.com/MLPgroup/nl4opt-generation

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. Advances
in neural information processing systems, 35:24824—
24837.

Ziyang Xiao, Dongxiang Zhang, Yangjun Wu, Lilin Xu,
Yuan Jessica Wang, Xiongwei Han, Xiaojin Fu, Tao
Zhong, Jia Zeng, Mingli Song, and 1 others. 2023.
Chain-of-experts: When llms meet complex opera-
tions research problems. In The Twelfth International
Conference on Learning Representations.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. 2024. Wizardlm: Empowering
large pre-trained language models to follow complex
instructions. In The Twelfth International Conference
on Learning Representations.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, and 1 others. 2024a. Qwen?2.
5 technical report. arXiv preprint arXiv:2412.15115.

Zhicheng Yang, Yinya Huang, Wei Shi, Liang Feng,
Lingi Song, Yiwei Wang, Xiaodan Liang, and Jing
Tang. 2024b. Benchmarking llms for optimization
modeling and enhancing reasoning via reverse so-
cratic synthesis. arXiv preprint arXiv:2407.09887.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma.
2024. Llamafactory: Unified efficient fine-tuning
of 100+ language models. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 3: System Demonstra-
tions), Bangkok, Thailand. Association for Computa-
tional Linguistics.

Kun Zhou, Beichen Zhang, Jiapeng Wang, Zhipeng
Chen, Wayne Xin Zhao, Jing Sha, Zhichao Sheng,
Shijin Wang, and Ji-Rong Wen. 2024. Jiuzhang3.
0: Efficiently improving mathematical reasoning by
training small data synthesis models. arXiv preprint
arXiv:2405.14365.

10

http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372

A Appendix

A.1 Example for training data

We use COPT (Ge et al., 2022) as the default solver
in our experiments.

A.2 Examples for modifications of test sets

NL4OPT, Entry #228 : Wrong variable definition

Problem: A macro-counting fitness guru only
eats salmon and eggs. Each bowl of salmon con-
tains 300 calories, 15 grams of protein, and 80
mg of sodium. Each bowl of eggs contains 200
calories, 8 grams of protein, and 20 mg of sodium.
Since the fitness guru has a limit to how many eggs
he would like to eat, at most 40% of his meals can
be eggs. The fitness guru needs to eat at least 2000
calories and 90 grams of protein. How many of
each type of meal should he eat to minimize his
sodium intake? Answer: 430.7692307692307

The answer is initially derived by treating the
number of salmon and egg bowls as continuous
variables. However, since the number of bowls
should be integers, the correct solution is adjusted,
and the actual answer is 460.

MAMO EasyLP, Entry #216 : Incorrect Han-
dling of Absolute Value Constraint

Problem: A retail manager is planning to allo-
cate resources across three different departments:
purchasing (X), sales (Y), and logistics (Z). These
departments have different cost per unit of resource
allocated, with $5 for X, $3 for Y, and $4 for Z. The
objective is to minimize the total cost while meet-
ing certain operational constraints. The combined
resources allocated to purchasing and sales cannot
exceed 1000 units due to budget limitations. Sim-
ilarly, the combined resources allocated to sales
and logistics cannot exceed 800 units due to man-
power availability. To ensure a balanced operation,
the difference in resource allocation between pur-
chasing and logistics should be at least 200 units.
Given that each department has specific bounds on
resource allocation (Purchasing can have up to 500
units, Sales up to 300 units, Logistics up to 200
units) and that allocations must be whole numbers
due to indivisible nature of the resources being al-
located:What is the minimum total cost required
for this scenario? type of meal should he eat to
minimize his sodium intake? Answer: 1000

The initial solution was derived without success-
fully establishing an absolute value constraint for
"the difference in resource allocation between pur-

11

chasing and logistics should be at least 200 units."
Instead, only the constraint for one side (greater
than or equal to 200) is retained, leading to an
error. That is "model.addConstr(x - z >= 200,
name=ResourceDifferenceConstraint)" in the pro-
gram. The correct solution, considering both sides
of the absolute value constraint, yields an actual
cost of 800.

MAMO ComplexLP, Entry #216 : Incorrect
Handling of Subtour Elimination

Problem: Imagine a logistics manager tasked
with planning a delivery route for a truck that needs
to visit four different cities to distribute goods. The
cities are identified numerically as 1, 2, 3, and 4.
The truck can start its journey from any of these
cities but must travel to each city exactly once and
then return to the starting point. The objective is
to arrange this route in such a way that the total
travel cost is minimized. The costs associated with
traveling between the cities are as follows: The
cost to travel from City 1 to City 2 is 52 units, to
City 3 is 89 units, and to City 4 is 11 units. From
City 2, it costs 52 units to reach City 1, 14 units to
get to City 3, and 13 units to City 4. Traveling from
City 3, the costs are 89 units to City 1, 14 units to
City 2, and 87 units to City 4. Lastly, from City 4,
it costs 11 units to go to City 1, 13 units to City 2,
and 87 units to City 3. What is the minimum total
travel cost for the truck to visit each city exactly
once and return to the starting city? Answer: 50

The initial solution was derived without success-
fully establishing the subtour elimination constraint
for the Traveling Salesman Problem (TSP). As a
result, subtours were not eliminated properly, lead-
ing to an incorrect minimum total travel cost of 50
units. The correct solution, ensuring that subtours
are eliminated and all cities are visited exactly once,
yields an actual minimum total travel cost of 127
units.

IndustryOR, Entry #86: Missing Number

Problem: Fighter jets are important combat tools,
but in order for them to be effective, there must be
enough pilots. Therefore, in addition to a portion
of the produced fighter jets being used directly for
combat, another portion needs to be allocated for
pilot training. It is known that the number of fighter
jets produced each year is a;(j = 1,---,n), and
each fighter jet can train k pilots per year. How
should the production of fighter jets be allocated
each year to maximize their contribution to national
defense over a period of n year? There is no numer-
ical value for all parameters.

Problem Description q;

A logistics company wants to allocate up to 250 vehicles between operations A
and B. To ensure efficiency, the difference between twice the vehicles in A and
those in B must be at least 60 units. Additionally, The number of vehicles in A
plus twice the number in B should not exceed 300 units. Each vehicle costs $400
for A and $300 for B. What would be the minimum total cost (in dollars)?

Mathematical Model and Program m;
Mathematical Model

Decision Variables:
X4, Xg: Non-negative integer variables representing the number of vehicles
allocated to A and B, respectively.
z: A binary variable to model the efficiency constraint.
#it Objective Function: Maximize: Z = 400 x4 + 300 xp
#it Constraints:
1. Total number of vehicles constraint: x4 + x5 < 250.
2. Efficiency condition constraint (Introducing a sufficiently large constant M):
2x,—xp =60—M=2, xp—2x,=60—M=*(1-2),
3. Capacity condition: x4 + 2xp < 300.
##t Program
import coptpy as cp
from coptpy import COPT
env = cp.Envr()
model = env.createModel(| csVehicleAllocation™)
X A = model. addVar{vt}fpe—COPT INTEGER name="+ ")

model setObjective(400 * x A+ 300 * x B, SEI‘ISE“CDPT MINIM]ZE]
mﬂdel addConstr(x_A +x B <= 250, name=""TotalVehicles")

mﬂdel,mlve(}

Figure 4: Examples of training data.

12

A.3 Prompt Templates for
Complexity-Evolving

Prompt for objective alteration of Complexity-Evolving

Assume you are an expert in combinatorial optimization modeling. Modity the objective function to
either transform the current objective into a different metric or add a new objective to convert it into
a multi-objective optimization problem, while retaining its logical structure. The modifications or
additions to the objective function should be substantial and not merely changes to coefficients. If
there are already two or more objective functions, no new objectives may be added; only the existing
objectives can be modified. The newly generated problems should align with real-world scenarios.
You only need to produce a single new problem and do not solve it.

Given examplel: {Here is Examplel}

Given example2: {Here is Example2}

Given input: {Here is the original problem description }
kAnswer:

13

Prompt for parameter adjustment of Complexity-Evolving

Assume you are an expert in combinatorial optimization modeling. Adjust the parameters of the
given problem while retaining its logical structure, constraints, and objective. When introducing a
new entity, restrict the introduction to at most one new entity to control the complexity of the
problem. The newly generated problems should align with real-world scenarios.

You only need to produce a single new problem and do not solve it.

Given examplel: {Here is Examplel}
Given example2: {Here is Example2}
Given input: {Here is the original problem description }
kAnswer:)

A.4 Prompt Templates for Scope-Evolving

14

Prompt for constraint modification of Complexity-Evolving

Assume you are an expert in combinatorial optimization modeling.

Modify constraints or add new constraints based on the given problem while retaining its logical
structure. Note that the modifications or additions to the constraints should be limited to a maximum
of one. The newly generated problems should align with real-world scenarios.

You only need to produce a single new problem and do not solve it.

Given examplel: {Here is Examplel}
Given example2: {Here is Example2}
Given input: {Here is the original problem description}
Answer:
|\ J

Prompt for domain transformation of Scope-Evolving

Assume you are an expert in combinatorial optimization modeling.

Transform the basic structure of the given problem into a different application domain while
retaining its logical structure and constraints. The new application domain can include, but is not
limited to, the following: the following: Education, Manufacturing, Logistics, Retail, Agriculture, I'T
Services, Healthcare, Event Planning, Construction, Entertainment, Research and Development,
Hospitality, Defense, Energy Sector, Transportation, and Telecommunications.

You only need to produce a single new problem and do not solve it.

Given examplel: {Here is Examplel }
Given example2: {Here is Example2 }
Given input: {Here is the original problem description}
Answer:
o J

Prompt for combination of Scope-Evolving

Assume you are an expert in combinatorial optimization modeling. Given two problems (#Problem1
and #Problem?2), generate a new problem. The new problem should be similar in length to one of the
original problems but should belong to a different domain and have distinct specific details. The
newly generated problem should align with real-world scenarios.

You only need to produce a single new problem and do not solve it.
Given examplel: {Here is Examplel }
Given example2: {Here is Example2}

Given input:

Problem1: {Here is the first problem description}
Problem?2: {Here is the second problem description}
Answer:

15

A.5 Prompt Templates for checkers and
regeneration

16

Prompt for regenerating the problem description

The #Problem is a generated problem but has some 'Error'. Please regenerate the problem
description based on the 'Error'. Ensure that the new problem follows the same format and structure
as #Problem, with only the necessary corrections and detail enhancements. No solution or any
other additional explanations are required.
#Problem:

{generated problem}
'Error":

{Error}

Examplel:
#Problem:

{examplel problem}
'Error":

{examplel error}
'Regenerate':
{examplel regenerate}

Example2:
#Problem:

{example2_ problem}
'Error":

{example2_error}
'"Regenerate':
{example2 regenerate}

Qnswer: /

17

Check the Correctness of Decision Variable Definitions

Important: The checks must be based on the problem description and common sense, No
assumptions or conjectures should be made. The conclusions must be justified by the problem
description or common sense.

Solution Description:To check the definitions of decision variables in the "## Mathematical
Model:" for a combinatorial optimization problem, follow this structured approach:

Step 1: Extract Decision Variable Definitions
1. In the "## Mathematical Model:" section, find definitions under "### Decision Variables."
2. In the "## Python Code Solution Using coptpy:", identify definitions where model.addVar is used.

Step 2:Confirm Consistency with Problem Description
1. Ensure each variable's type and bounds align with the problem's actual meaning.

Step 3:Confirm Variable Types and Bounds
Note: The examples provided below are not exhaustive. Specific examples should be analyzed
based on their actual meaning in the context of the problem.

Integer Variables (Bounds > 0): {Examples for Integer Variables}
Binary Variables (0 or 1): {Examples for Binary Variables}
Continuous Variables (0 or 1): {Examples for Continuous Variables}

Continuous Variables with Range: {Examples for Continuous Variables with Range}

#it# Step 4. Check the Python Code Solution Using coptpy

1. For integer variables: Ensure vtype=COPT.INTEGER.

2. For continuous variables: Ensure vtype=COPT.CONTINUOUS.
3. For binary variables: Ensure vtype=COPT.BINARY.

If there are no errors, output: ""There are no errors found."

If there are errors, output the specific errors with the format: "ERROR: [description of

error|" and suggest how to fix them.

Please check for any errors in the variable definitions based on the steps above. Do not repeat
the prompt, only provide the errors and fixes if any, or confirm there are no errors. /

18

Task Description: Comprehensive Constraint Validation for OR Problems.

Important: The checks must be based on the problem description and common sense. No
assumptions or conjectures should be made.

Solution Description: To verify the correctness of all constraints in the "## Mathematical Model"
for an problem, follow this structured approach:

Step 1: Extract Constraint Definitions
1. In the "## Mathematical Model", identify constraints under "### Constraints."
2. In the "## Python Code Solution Using coptpy", find where "model.addConstr" is used.

Step 2: Validate Constraint Alignment with Problem Objectives

Step 3: Special Checks on Big-M Method Applications

1. Absolute Value Constraints: For constraints of the form |x; — x;| = a (a = 0),

verify the use of the Big-M method:

* Introduce a binary decision variable y for each constraint, and a sufficiently large constant M.
* Split into two constraints: x; —x; =2 a—M=*yand x; —x; =Za—M (1 —y)

2. K-Way Selection Constraints: At most K Selection (N types), confirm constraints are

Zévzl y; < K and x; £ M * y;, where y; is a binary variable and M is a sufficiently large constant.

Step 4: Confirm Consistency with Python Code
Ensure that the constraints defined in the mathematical model are accurately translated into the code.

If no errors are found: "There are no errors found."
\If errors are identified: Output ""ERROR:" followed by the issue and advice for correction. Y,

Prompt for regenerating the problem description

The #Problem is a generated problem but has some 'Error'. Please regenerate the problem
description based on the 'Error'. Ensure that the new problem follows the same format and structure
as #Problem, with only the necessary corrections and detail enhancements. No solution or any
other additional explanations are required.
#Problem:

{generated problem}
'Error':

{Error}

Examplel:
#Problem:

{examplel problem}
'Error':

{examplel_error}
'Regenerate':
{examplel regenerate}

Example2:
#Problem:

{example2 problem}
'Error':

{example2_error}
'Regenerate':
{example2 regenerate}
\Answer: Y,

19

Prompt for regenerating the solution

#Solution is the mathematic model and program of #Problem. An 'Error' was detected in #Solution.
Please regenerate the solution based on the 'Error'. Ensure that the new solution correctly addresses
the problem while maintaining the same format and structure as the original #Solution, with only the

#Problem:
#Solution:
'Error'":

Given Examplel:

Given Example2:

Answer:
N\

necessary corrections and improvements. No additional explanations are required.
{Here is the generated problem description }
{Here is the mathematic model and program for #Problem}
{Here is the error}
{Here is Examplel}

{Here is Example2}

A.6 Performance Comparison on MAMO
ComplexLLP

To further validate our results, we conducted
comparative studies on the MAMO ComplexLP
dataset, involving leading proprietary LLM GPT-
40-2024-08-06 and an advanced open-source LLM
Qwen2.5-72B-Instruct. These comparisons pro-
vide additional context to the effectiveness of our
Step-Opt framework. As shown in Table 5, pro-
prietary models like GPT-40 demonstrate notable
improvements, achieving a maximum accuracy of
54.03% with CoE and consistently outperforming
earlier versions like GPT-4 and GPT-3.5. Similarly,
open-source models such as Qwen?2.5 achieve com-
petitive results, with Reflexion reaching 47.87%
and CoE achieving 51.66%. These findings in-
dicate that open-source models are steadily nar-
rowing the gap with proprietary counterparts, even
without task-specific fine-tuning.

Despite these advancements, Step-Opt still
demonstrates significant superiority, achieving
the highest accuracy of 61.61% with Step-Opt-
LLaMA-3-8B, surpassing GPT-40 and other base-
lines. Step-Opt-Mistral-7B also achieves 52.61%,
further showcasing the effectiveness of our frame-
work. These results emphasize the impact of Step-
Opt’s task-specific training data in elevating model
performance across diverse problem formulations.

By generating high-quality, diverse datasets,
Step-Opt addresses a key challenge in structured
optimization tasks: enabling LLM:s to better handle
complex problems. The consistent performance of
Step-Opt-trained models highlights the importance
of integrating precise, task-specific data into fine-
tuning pipelines, paving the way for more reliable
and effective solutions to real-world optimization
challenges.

20

A.7 Additional Details on Instance
Generation

The instance generation involved 64K queries, and
the number of tokens was 179M. On average, each
generation iteration required approximately 7.66
queries, with 3.14 queries dedicated to generating
and validating the problem description, and 4.52
queries used for solution generation and valida-
tion. Of the total tokens, 39M were allocated to
generating and validating the problem description,
while the remaining 140M were used for solution
generation and validation. Additionally, 8,400 gen-
erations were conducted, yielding 4,464 samples,
indicating that 46.86% of the generated samples
were discarded.

A.8 Hyper-parameters for Training Step-Opt
and baselines

All experiments are conducted on a single GPU
server equipped with eight A100 GPUs, each with
40GB of memory. In experiment, we report the best
results of all checkpoints. The maximum token is
limited to 2,500. The hyper-parameters for training
Step-Opts are as follows:

A.9 Study on Stepwise Validation Mechanism

To evaluate the impact of the proposed Stepwise
Validation Mechanism, we conducted experiments
on the MAMO Complex dataset. The results are
summarized in Table 8. The results demonstrate
that the Stepwise Validation Mechanism delivers
consistent improvements across different GPT mod-
els when compared to Standard, CoT, and Reflex-
ion methods. For GPT-4, our framework achieves
the highest accuracy (42.18%), outperforming all
other methods. However, CoE remains superior for
GPT-3.5 and GPT-4o, reflecting the strength of its
iterative reflection mechanism in these cases.

Table 5: Performance Comparison of Various Methods on MAMO ComplexLLP

Method Standard CoT Reflexion CoE Fine-Tuning

GPT-3.5 10.90% 13.27% 14.22% 17.06% -

GPT-4 24.64% 29.86% 36.02% 40.28% -

GPT-40 46.92% 49.29% 48.34% 54.03% -

Qwen2.5-72B-Instruct 46.45% 4597% 47.87% 51.66% -

ORLM - - - - 38.39%

Step-Opt-Mistral-7B - - - - 52.61%

Step-Opt-LLaMA-3-8B - - - - 61.61%

Table 6: Hyper-parameters for Training Step-Opts.

Backbone BatchSize Per GPU Gradient Accumulation Learning rate Epochs
Mistral-7B 4 8 1.25x107% 10
LLaMA-3-8B 1 8 1.25x10~* 12

Table 7: Hyper-parameters for ablation experiments.

BatchSize Per GPU Gradient Accumulation Learning rate Epochs

4 8

1.25x1074 10

In contrast, the Stepwise Validation Mechanism
emphasizes real-time validation and correction dur-
ing the modeling process, , avoiding the addi-
tional complexity of reflection. This streamlined
approach proves particularly effective for LLMs,
as demonstrated by its superior performance with
GPT-4. Although CoE excels in certain cases, our
method offers a robust and efficient alternative.

Additionally, It is important to consider the inher-
ent difficulty of solving tasks directly during test-
ing, as all methods must generate solutions from
scratch. However, when used for data generation,
the Stepwise Validation Mechanism can reference
the solution of the original problem to generate
solutions for new problems. By focusing only
on the newly added or modified components, the
mechanism significantly reduces the modeling diffi-
culty. This advantage is not available during testing,
where tasks must be solved entirely independently,
but it underscores the potential of Stepwise Valida-
tion Mechanism for facilitating high-quality data
generation.

21

Table 8: Comparison of Stepwise Validation Mechanism and Other Prompt Engineering Methods on MAMO
ComplexLP

Method\Model GPT-3.5 GPT-4 GPT-40
Standard 10.90% 24.64% 46.92%
CoT 13.27% 29.86% 49.29%
Reflexion 14.22% 36.02% 48.34%
CoE 17.06% 40.28% 54.03%

Stepwise Validation Mechanism 16.59% 42.18% 50.71%

A.10 Limitations

The proposed method faces difficulties in deal-
ing with the wide variety of modeling techniques,
which limits its ability to handle the full range of
possible scenarios. Moreover, the performance of
the approach has not been fully tested across all
types of OR problems. Finally, its broader applica-
tion still needs to be tested in other fields to validate
its applicability and adaptability.

22

	Introduction
	Related Work
	Method
	Preliminary
	Generators
	Stepwise Validation Mechanism

	Experiment
	Experimental Setup
	Comparison Analysis
	Ablation Study

	Conclusion
	Appendix
	Example for training data
	Examples for modifications of test sets
	Prompt Templates for Complexity-Evolving
	Prompt Templates for Scope-Evolving
	Prompt Templates for checkers and regeneration
	Performance Comparison on MAMO ComplexLP
	Additional Details on Instance Generation
	Hyper-parameters for Training Step-Opt and baselines
	Study on Stepwise Validation Mechanism
	Limitations

