

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ACCELERATING MHC-II EPITOPE DISCOVERY VIA MULTI-SCALE PREDICTION IN ANTIGEN PRESENTA- TION

006  
007 **Anonymous authors**  
008 Paper under double-blind review

## 010 011 ABSTRACT

012 Antigenic epitope presented by major histocompatibility complex II (MHC-II)  
013 proteins plays an essential role in immunotherapy. However, compared to the more  
014 widely studied MHC-I in computational immunotherapy, the study of MHC-II  
015 antigenic epitope poses significantly more challenges due to its complex binding  
016 specificity and ambiguous motif patterns. Consequently, existing datasets for MHC-  
017 II interactions are smaller and less standardized than those available for MHC-I.  
018 To address these challenges, we present a well-curated dataset derived from the  
019 Immune Epitope Database (IEDB) and other public sources. It not only extends  
020 and standardizes existing peptide–MHC-II datasets, but also introduces a novel  
021 antigen–MHC-II dataset with richer biological context. Leveraging this dataset,  
022 we formulate three major machine learning (ML) tasks of peptide binding, peptide  
023 presentation, and antigen presentation, which progressively capture the broader  
024 biological processes within the MHC-II antigen presentation pathway. We further  
025 employ a multi-scale evaluation framework to benchmark [existing models](#), along  
026 with a comprehensive [analysis over various modeling designs to this problem with a  
027 modular framework](#). Overall, this work serves as a valuable resource for advancing  
028 computational immunotherapy, providing a foundation for future research in ML  
029 guided epitope discovery and predictive modeling of immune responses.

## 030 1 INTRODUCTION

031 The major histocompatibility complex (MHC), including both Class I (MHC-I) and Class II (MHC-II)  
032 proteins, is essential for immune surveillance. Among them, MHC-II-mediated antigen presentation  
033 is particularly crucial. Antigenic epitopes are bound to MHC-II and presented on the surface of  
034 antigen-presenting cells (APCs), where they are then recognized by CD4<sup>+</sup> T-cells to initiate immune  
035 responses or maintain self-tolerance (Ishina et al., 2023). Recently, emerging researches further  
036 highlight the importance of MHC-II epitopes in cancer immunotherapy, where they can directly  
037 stimulate CD4<sup>+</sup> T-cells and indirectly affect CD8<sup>+</sup> T-cell responses (Alspach et al., 2019; Brightman  
038 et al., 2023).

039 Despite these promising roles, MHC-II epitope discovery remains considerably unexplored, especially  
040 within computational frameworks. A substantial gap exists between models developed in this domain  
041 and the broader advances in machine learning (ML). We believe the reasons are three-fold: (1) MHC-  
042 II interactions are inherently challenging to model, as the highly polymorphic alleles exhibit an  
043 open binding groove that accepts peptides of variable lengths, making the binding patterns more  
044 complicated. (2) Available experimental datasets for MHC-II interactions are smaller, noisier, more  
045 unbalanced, and less standardized than the MHC-I counterparts (Reynisson et al., 2020; Vita et al.,  
046 2018), which introduces additional challenges for robust ML development. (3) The problem is less  
047 exposed to the ML community, such that the most acknowledged and widely used methods to date  
048 remain simple ensembles of feedforward neural networks built on feature-engineered inputs (Racle  
049 et al., 2023; Reynisson et al., 2020). In addition, existing works (Reynisson et al., 2020; Jensen et al.,  
050 2018; Racle et al., 2023; You et al., 2022; Cheng et al., 2021; Wang et al., 2024) focus sorely on  
051 the peptide-level interaction, which overlooks the importance of biological context (e.g., the source  
052 antigen) within the MHC-II antigen presentation pathway.

053 Motivated by these challenges, we curate a high-quality, large-scale dataset for modeling MHC-II  
054 antigen presentation in humans across immunological scales, followed by a comprehensive benchmark

study. The experimental peptide samples, initially collected from the Immune Epitope Database (IEDB) (Vita et al., 2018) and other public sources (e.g., (Reynisson et al., 2020; Racle et al., 2023)), undergo rigorous data filtering, data splitting with strict and practical constraints, antigen information alignment, antigen-aware augmentation, and additional data integration from third-party algorithms (e.g., predicted MHC-II structure from AlphaFold3 (Abramson et al., 2024) and estimated binding core via motif deconvolution (Racle et al., 2019b)). This effort not only expands and standardizes the existing peptide-MHC-II datasets, but also introduces a novel antigen-MHC-II dataset that supports the more comprehensive antigen-based modeling and evaluation.

Based on the curated dataset, we employ three major machine learning tasks that capture different stages of the MHC-II antigen presentation pathway: peptide binding affinity (BA) prediction, peptide eluted ligand (EL) presentation prediction, and antigen EL presentation prediction. While the first two tasks are well-established in existing works, our work is the first attempt that address MHC-II presentation at the antigen level, as there exists no antigen datasets or antigen-based methods for this problem. **The antigen modeling task** reflects a broader biological process within the presentation pathway that peptide-based **tasks** overlook (i.e., antigen processing stage). After training, a multi-scale evaluation framework is employed to benchmark both the model precision and efficiency in identifying epitope candidates. **We conduct a comprehensive benchmark analysis using a modular architectural framework that is able to accommodate various modeling designs commonly used in AI for science, including alternative input configurations, model architectures, and training strategies.** **We also evaluate state-of-the-art peptide-MHC-II models on our dataset to establish strong baseline references.** While this dataset is grounded on biological domain knowledge in immunology, it reflects the practical and fundamental challenge of how fine-grained biomolecular interactions can be learned from large-scale sequence data. This challenge underlies many tasks in AI for science, where experimental complex structures are often not accessible.

Our contributions can be summarized as: (1) the curation of a large-scale dataset for human MHC-II antigen presentation, which supports not only the well-established peptide prediction but also the novel task of antigen prediction, (2) the construction of a benchmark task with better MHC-II coverage, peptide diversity, and binding core constraints, (3) the introduction of a multi-scale evaluation framework that assesses model performance across immunological scales, providing deeper insights into model behavior and generalizability, **and (4) a benchmark study that offers strong baseline results and valuable insights into modeling design choices to guide future ML developments.**

## 2 BACKGROUND AND RELATED WORK

### 2.1 MHC-II ANTIGEN PRESENTATION

The MHC-II antigen presentation pathway typically involves five stages: (1) The uptake of exogenous antigens into antigen-presenting cells (APC), (2) antigen processing into peptide fragments, (3) peptide-MHC-II binding into stable complexes, (4) the presentation of these complexes to the cell surface, and (5) the recognition by CD4<sup>+</sup> T-cells, initiating immune responses like cytokine secretion (Pishesha et al., 2022). A high-level illustration of this process is provided in Figure A2.

Three major types of data are considered: binding affinity (BA), assessed using in vitro binding assays, reflects the binding strength between peptides and MHC-II (Stage 3); eluted ligand (EL) presentation, obtained via mass spectrometry (MS) after peptide elution from MHC-II, indicates if peptides are presented on the cell surface (Stages 3~4); T-cell immune response data reflects the recognition of presented peptides by CD4<sup>+</sup> T-cells (Stage 5), which is the most relevant to immune outcomes. These data types are highly correlated along the antigen presentation pathway (Weingarten-Gabbay et al., 2024; Wu et al., 2019) with some subtle differences. For example, weak binders may still elicit T-cell responses if they are stably bound to MHC-II and efficiently presented (James & Kwok, 2008). In this work, we mainly focus on BA and EL data, and further extend EL with antigen information to cover the biological processes from antigen processing to peptide presentation (Stage 2~4).

### 2.2 PEPTIDE-MHC-II DATASETS

Existing datasets for MHC-II antigen presentation largely come from the Immune Epitope Database (IEDB), which covers experimentally validated peptides from literature and direct submissions. However, its raw data is not directly formatted for ML purpose due to annotation noise, ambiguous labels, and inconsistent experimental approaches. For BA data, NetMHCIIpan3.2 (Jensen et al.,

108  
 109  
 110  
 Table 1: Comparison of train sets used in existing works (Net4.2/3 = NetMHCIIpan4.2/3, RPE =  
 RPEMHC, Mix2 = MixMHC2Pred2). Number of peptide cluster indicates the peptide diversity.  
 Notably, our dataset is the first one that supports antigen-based modeling for MHC-II presentation.

| Train set | BA <sub>peptide</sub> |          |       | EL <sub>peptide</sub> |        |        |        | EL <sub>antigen</sub> |
|-----------|-----------------------|----------|-------|-----------------------|--------|--------|--------|-----------------------|
|           | Ours                  | Net4.2/3 | RPE   | Ours                  | Net4.2 | Net4.3 | Mix2   |                       |
| #Pair     | 136K                  | 126K     | 131K  | 634K                  | 123K   | 339K   | 558K   | 46,539                |
| #MHCII    | 77                    | 72       | 72    | 132                   | 43     | 56     | 76     | 121                   |
| #Cluster  | 5,698                 | 4,998    | 4,942 | 62,461                | 18,508 | 30,424 | 61,432 | 30,709                |

111  
 112  
 113  
 114  
 115  
 116  
 Table 2: Comparison of test sets used for evaluating performance in peptide-MHC-II prediction.  
 117 "Mixed" indicates that labels are collected from varying experimental measures. "Immune" means  
 118 the label is taken from reported CD4<sup>+</sup> T-cell immune response.

| Test set     | Ours   | ID2017 | BD2020 | IC50 <sub>test</sub> | T-cell <sub>epitope</sub> | CD4 <sub>epitope</sub> | Neodb  |
|--------------|--------|--------|--------|----------------------|---------------------------|------------------------|--------|
| #Pair        | 3,867  | 857    | 64,954 | 2,413                | 1,698                     | 917                    | 128    |
| #Seq         | 2,608  | 163    | 18,770 | 552                  | 1,112                     | 713                    | 120    |
| #MHCII       | 80     | 10     | 49     | 47                   | 36                        | 20                     | 36     |
| #MHCII DR    | 30     | 10     | 49     | 25                   | 31                        | 20                     | 24     |
| #MHCII DP    | 29     | 0      | 0      | 10                   | 1                         | 0                      | 7      |
| #MHCII DQ    | 21     | 0      | 0      | 9                    | 2                         | 0                      | 5      |
| Antigen Info | ✓      | ✗      | ✗      | ✗                    | ✓                         | ✓                      | ✗      |
| Strict 9-mer | ✓      | ✗      | ✗      | ✗                    | ✗                         | ✓                      | ✗      |
| Label        | BA, EL | BA     | Mixed  | BA                   | Immune                    | Immune                 | Immune |

120  
 121  
 122  
 123  
 124  
 125  
 126  
 127  
 128  
 129  
 130  
 131 2018) curated the widely used IEDB2016 dataset by selecting records with valid IC50 (half maximal  
 132 inhibitory concentration, a common measure for binding affinity) values from IEDB. It contains 126K  
 133 human peptide-MHC-II binding pairs. For EL data, NetMHCIIpan series (Reynisson et al., 2020;  
 134 Nilsson et al., 2023b;a) and MixMHC2pred2 (Racle et al., 2023) each curated their own training  
 135 data from mass-spectrometry (MS) records in public (e.g., IEDB) and in-house sources. One key  
 136 issue of EL data compared to BA is its class imbalancing, with most of the documented EL results  
 137 being positive. This requires negative augmentation for effective model training. NetMHCIIpan  
 138 series randomly samples negative decoy peptides of the same length from the human proteome, while  
 139 MixMHC2pred2 samples unobserved peptides from their source antigen as negatives. Even though  
 140 the latter antigen-aware augmentation better follows biological context, it requires access to antigen  
 141 information, which is not always available.

142 The test data, by contrast, is less standardized. Researchers typically construct their own test sets  
 143 by either extracting non-overlapping entries from IEDB (e.g., ID2017 (You et al., 2022), BD2020  
 144 (Venkatesh et al., 2020), IC50<sub>test</sub> (Cheng et al., 2021), T-cell<sub>epitope</sub> (Jensen et al., 2018), CD4<sub>epitope</sub>  
 145 (Reynisson et al., 2020)) or generating data via wet-lab experiments (e.g., Neodb (Wu et al., 2023),  
 146 DFRMLI (Zhang et al., 2011)). One important and widely accepted constraint is to exclude any  
 147 peptide that contains a 9-mer (9-residue subsequence) previously seen in training, whereas only the  
 148 construction of CD4<sub>epitope</sub> strictly follows this criteria. This leads to potential information leakage and  
 149 overestimated performance for most test sets. On the other hand, MHC-II distribution in most data is  
 150 highly skewed towards the DR alleles, leaving other MHC-II classes (i.e., DP, DQ) underrepresented.  
 Moreover, antigen information is often absent, making antigen-level evaluation infeasible.

### 151 2.3 PEPTIDE-MHC-II MODELING

152 Several machine learning methods were proposed for modeling peptide-MHC-II interaction. The  
 153 NetMHCIIpan (Nielsen et al., 2008; Jensen et al., 2018) family utilizes the NNAlign (Nielsen &  
 154 Lund, 2009) framework, which is an ensemble method of feedforward neural networks (FNNs) with  
 155 feature-engineered inputs of peptide and MHC-II sequence. NetMHCIIpan4 (Reynisson et al., 2020;  
 156 Nilsson et al., 2023b;a) series further extends this approach using NNAlign\_MA (Alvarez et al.,  
 157 2019) to handle multi-allele data, which is beyond the scope of this paper. MixMHC2pred (Racle  
 158 et al., 2023; 2019a) adopts a two-stage feature-engineered pipeline that predicts MHC-II binding  
 159 specificity and peptide presentation sequentially using FNNs. Advanced deep learning methods,  
 160 on the other hand, are less explored in this domain. Researchers typically use bidirectional LSTM  
 161 (Venkatesh et al., 2020), 1D convolutional encoder (You et al., 2022), or a pretrained protein BERT  
 162 model (Cheng et al., 2021) to encode both peptide and MHC-II sequences, followed by attentive

pooling (Venkatesh et al., 2020; Wang et al., 2024), dot-product operation (You et al., 2022), or multi-head cross-attention (Shen et al., 2025) to capture the peptide-MHC-II interaction. In this work, we experiment with various sequence encoders followed by cross-attention module to capture the peptide-MHC-II interaction.

### 3 DATASET DESCRIPTION

Our dataset focuses on the human MHC-II antigen presentation pathway, and is built upon two experimental measures: binding affinity (BA) and MS-based eluted ligand (EL) presentation. In addition to the conventional peptide-MHC-II data, we further extract antigen information from public sources and build a comprehensive dataset for antigen-MHC-II presentation.

#### 3.1 DATA COLLECTION

Our dataset integrates public data from multiple sources. For peptide-MHC-II BA data, we take the well curated IEDB2016 (Jensen et al., 2018) and enrich it with BA records from the latest MHC-II ligand assay in IEDB (Vita et al., 2018) (accessed on Feb 16, 2025). After binding pairs de-duplication, we further filter out entries with ambiguous BA labels (e.g.,  $IC50 > 1000nM$ ) and non-human MHC-II. The BA labels are normalized into  $[0, 1]$  via the transformation  $1 - \log(IC50) / \log(50000)$ . After these processing steps, we collect  $\sim 141K$  binding pairs, covering 78 unique human MHC-II.

For peptide-MHC-II EL data, we start by aggregating the compiled MS-based datasets from NetMHC-Ipan4 (Reynisson et al., 2020) and MixMHC2pred2 (Racle et al., 2023). NetMHCIIpan4 is trained on data from 16 public sources, while MixMHC2pred2 is trained on data from 30 public sources. Both methods also incorporate their in-house datasets. However, these datasets are all at the peptide-level, which only addresses the biological stages following peptide binding. Our goal is to build a multi-scale dataset that can capture a broader scope of antigen presentation pathway. We first enrich the existing samples by incorporating the latest EL records from IEDB, followed by de-duplication, removal of non-human MHC-II and ones with conflicting labels. Eventually, we are able to collect  $\sim 1.2M$  peptide-level EL data, covering 134 unique human MHC-II. To further enable antigen-level training, we extract all the available antigen information from IEDB and perform peptide-antigen alignment. This supports our proposed antigen-level task and evaluation, which further reflects the upstream stage of antigen processing. We successfully assign antigen information to  $\sim 219K$  peptide-MHC-II pairs, covering 10,023 unique antigen sequences. As shown in Table 1, our dataset is more comprehensive, with better MHC-II coverage and peptide diversity compared to existing ones.

#### 3.2 DATA SPLITS CONSTRUCTION

The data splits for BA,  $EL_{peptide}$ , and  $EL_{antigen}$  datasets are carefully constructed, with consideration of MHC-II coverage, antigen information availability, and orthogonality of binding motifs. We also prevent peptide overlap between training and testing across BA and EL tasks to provide an easy setup for joint training, which has been shown to improve performance on individual tasks (Reynisson et al., 2020; Barra et al., 2018).

Candidate test samples for BA and EL are first selected from IEDB using a year cutoff of 2020. To prevent data leakage during joint training, peptides appearing in the other's training set are reassigned to training. Peptides lacking antigen information are also moved to training. In addition, for strict and practical evaluation, common practice (Jensen et al., 2018; Reynisson et al., 2020; Nielsen et al., 2007) argues that no 9-mer (i.e., 9-residue subsequence) in the test peptides should appear in training. We iteratively move peptides from test to training with continuous verification of 9-mer overlaps until convergence. Our final test sets include 938 BA and 2,929 EL peptide-MHC-II pairs, covering 28 and 73 unique MHC-II, respectively. These sets are comparable in size to prior work but offer stricter evaluation, broader MHC-II coverage, and antigen annotations (Table 2).

For validation set of antigen-level tasks, the initial validation samples come from random selection of peptide clusters generated by the CD-HIT algorithm (Fu et al., 2012) instead of a year cutoff. Then, peptides with no antigen information and seen 9-mers are moved to training. This ensures that observed peptides in antigen-level tasks are also out-of-distribution. Note that the same antigen may appear across data splits. It reflects the practical scenario where biologist seeks to explore alternative peptides within the antigen even when known epitope exists. We further expand the peptide-level validation set from peptides without antigen information. We apply stratified sampling based on the MHC-II distribution, while controlling for the peptide overlap ratio. As a result, the final validation

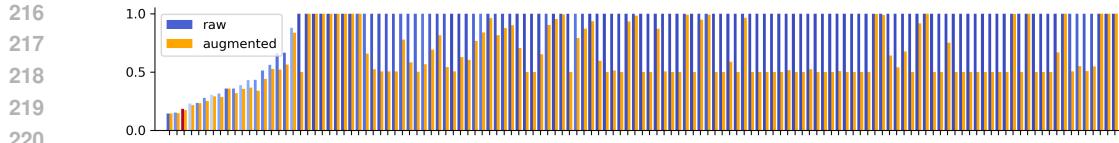


Figure 1: Label positive ratio of peptide-level eluted ligand (EL) data for each MHC-II molecule, before (left) and after (right) the data augmentation and label re-balancing. **The red bar highlights the raw label distribution of the DRB10101 MHC-II type (main contributor of negative examples).**

sets contain 6,958 and 54,351 peptide-MHC-II pairs for BA and EL data (roughly 5% of training data), respectively. The peptide overlap ratio is controlled at around 25%, with consistent MHC-II distribution between training and validation. Detailed data statistics are included in Table A6.

### 3.3 LABEL RE-BALANCING AND DATA AUGMENTATION

Although the peptide-level EL data appears to be globally balanced (603K positives versus 511K negatives), the label distribution is highly skewed per MHC-II. As shown by the left bar of the side-by-side barplot in Figure 1, 86% of MHC-II molecules are associated with only positive peptides, while DRB10101 (highlighted in red) alone contributing to 17% of negative data. The same issue is observed in prior works as well (Nielsen et al., 2008; Racle et al., 2019a). To address this issue, a common approach is to randomly sample decoy peptides of the same length from the human proteome as negative candidates (Reynisson et al., 2020). However, this may result in easily distinguishable negatives, such that the candidates are too dissimilar to positive ones in terms of interaction patterns and immunological relevance. To enable a finer-grained distinction between positive and negative peptide-MHC-II interactions, we extract the neighboring peptides from the same source antigen as the negative samples. These peptides share similar biological context with the positives, and are likely to be processed through endosome but not selected for presentation due to subtle differences in binding motifs. We further use the estimated binding cores from MoDec (Racle et al., 2019b) as guidance, such that the negatives are allowed to have overlaps with the positives without violating the binding cores. We generate four negative augmentations for each positive peptide. Additionally, to further enhance training robustness of sequence-based model, we allow random extension of the peptide at both end and random shifting of peptide window by 1 based on its source antigen. The updated label distribution for each MHC-II is shown by the right orange bar in Figure 1. The persistent label imbalance for some MHC-II samples happens due to the lack of antigen information of their corresponding peptides. As discussed later, we further use an auxiliary task of binding core estimation for improved learning in these MHC-II samples. We also demonstrate that the false negative rate of our augmentation approach is almost negligible in Appendix.

### 3.4 ADDITIONAL DATA ENRICHMENT

In addition to the data collection, we compute and annotate multiple items that could potentially enhance model learning **for both input features and output labels**. We first extract the residue-level ESM2 (Lin et al., 2023) embedding as the additional sequence feature. It is one of the most widely used protein language models that has shown to have implicit structural knowledge. In addition, we estimate the binding motifs within each positive peptide from motif deconvolution using MoDec (Racle et al., 2019b). As we will show later, it can serve as a pseudo-label for the auxiliary task of binding core prediction. We further infer the MHC-II structures via AlphaFold3 (Abramson et al., 2024) to include explicit structural information **as input**. We avoid computing the peptide structures from two perspectives. Biologically, unbound peptide conformations often differ from their bound states within the MHC-II complexes, which makes the predicted peptide structures unlikely to reflect the true conformation in complexes (Ayres et al., 2017). MHC-II, on the other hand, has a relatively rigid binding groove and stable conformation. Computationally, it is also infeasible to compute millions of structures of diverse peptides in both training and inference. Detailed descriptions of MoDec and AlphaFold3 are included Appendix, as well as the quality analysis of MHC-II predicted structures and the sensitivity analysis of models’ outputs towards structural noise.

## 4 BENCHMARK TASKS AND EVALUATION

The curated dataset enables various machine learning tasks that align with different stages of the antigen MHC-II presentation pathway. Besides the well-established tasks of peptide binding affinity

(BA) and eluted ligand presentation (EL) prediction, we introduce a novel antigen-level EL task that aims at identifying immunologically important regions within full antigen sequences. To better evaluate the model performance, we employ a multi-scale evaluation framework, incorporating both standard peptide-level and epitope-level metrics, and a novel antigen-level coverage-redundancy analysis. Table A7 provides an overview of the mapping between evaluation methods and benchmark tasks.

#### 4.1 BENCHMARK TASKS

At the peptide level, the model predicts (1) BA between peptides and MHC-II as a regression task, and (2) EL presentation by the given MHC-II as a binary classification task. However, one of the issues with peptide-based modeling is the absence of antigen context. From data analysis, we observe that the same peptide can have contradictory labels across different antigens. For example, the CD4 epitope benchmark (Jensen et al., 2018) contains 35 out of 713 peptides that have opposite labels. This may arise from factors like variations in antigen processing or competition among neighboring peptides in the biological processes.

To address this issue, we further introduce the third task of (3) antigen-level EL presentation. Given an antigen sequence and an MHC-II, the goal is to identify regions of immunological importance (i.e., predict the likelihood of each amino acid being positive). This task goes beyond peptide modeling and requires the model to reason over the full antigen sequence as a richer biological context. Performance on this task reflects a model’s ability to capture three stages in presentation pathway, including antigen processing, peptide binding, and peptide presentation. The corresponding evaluation method is described below.

#### 4.2 MULTI-SCALE EVALUATION ACROSS IMMUNOLOGICAL SCALES

To examine both the accuracy and the efficiency of the model in identifying epitope candidates to MHC-II presentation, we employ a multi-scale evaluation framework. In addition to the peptide-level and epitope-level metrics used in prior studies, we introduce a novel antigen-level evaluation method that enables a global and fine-grained view of model performance across antigen sequences.

**Peptide-level Evaluation:** As the most straightforward way of evaluating peptide-based model performance, peptide-level metrics directly compare the observed peptide labels from experiments with their corresponding predicted scores. For binding affinity prediction, root mean square error (RMSE) is reported. We also follow the existing works (Jensen et al., 2018; You et al., 2022; Wang et al., 2024) and binarize the binding affinity label IC50 using the threshold of 500nM, a common threshold used to differentiate binders from non-bindlers, and report the ROC-AUC score. This measures the model’s ability in ranking binders higher than non-bindlers. For eluted ligand classification, we report only the accuracy as the success rate since the test set only contains experimentally verified presented peptides.

**Epitope-level Evaluation:** Epitope-level evaluation examines the model effectiveness in identifying the known epitope from its source antigen. It not only considers the predicted score of the observed peptides, but also the prediction of other unobserved peptides within the antigen, which provides a broader view of model performance. For peptide-based models, evaluation is done by first identifying the source antigen of the epitope. Then, all candidate peptides of the same length as the epitope are generated from the antigen, and predictions are made for each peptide-MHC-II pair. Conventional metrics that fall into this category are *FRANK* score (Reynisson et al., 2020; Jensen et al., 2018; Wang et al., 2024) and  $AUC_{epitope}$  (Wang et al., 2024) score. *FRANK* computes the fraction of peptides with a higher predicted scores than the known epitope. In other words, it measures the false positive rate. The  $AUC_{epitope}$  score is measured by assigning negative labels to all peptide candidates other than the epitope and report the ROC-AUC score. In this work, we directly adapt these metrics to our BA and EL test data. While the positive peptides in both data are not strictly validated epitope, we adopt the term “epitope” for convenience purposes.

Even though epitope-level evaluation is more comprehensive than the direct peptide-level evaluation, several limitations remain. One of the biggest issues is that it overlooks cases where multiple epitopes exist within a single antigen. As a result, the same peptide may be treated inconsistently as positive and negative across evaluation rounds. For example, 77 out of 140 antigen in the CD4 epitope benchmark (Reynisson et al., 2020) contain multiple epitopes, leading to 653 out of 713 unique peptides being inconsistently labeled at least once. Considering multiple epitopes can be indeed

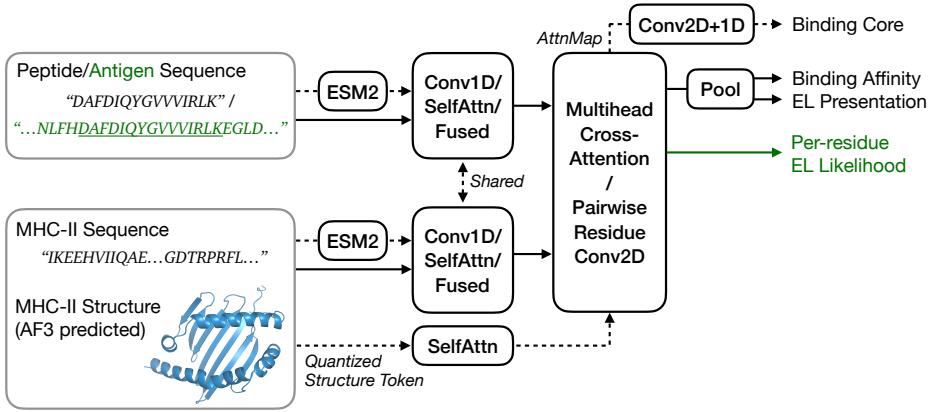


Figure 2: Overview of the architectural framework used in our benchmark study. The dashed lines indicate optional settings used for ablation analysis, which includes the use of ESM2 embeddings, structural features, and binding core prediction auxiliary task. Antigen modeling is shown in green.

challenging when evaluating peptide-based models, especially when positive peptides have varying length. For starter, highly overlapped and redundant peptide candidates need to be generated from the given antigen, which drastically increases the computational complexity. Meanwhile, as the number of epitopes increases, the computed metric becomes less comparable across antigen as the amount of negative candidate also scales linearly with respect to the length of antigen.

**Antigen-level Evaluation:** Inspired by object detection metrics, we propose an antigen-level evaluation that examines the tradeoff between region-level coverage and redundancy in the predicted EL regions for each antigen. This provides a global and fine-grained view of the model’s ability to capture epitope candidates from antigen, while mitigating the limitations of epitope-level evaluation.

We first compute the per-residue labels as the count of inclusion from epitopes identified from experiments: for each residue  $r_i$ ,  $\text{label}_i = \sum_j \mathbb{1}(r_i \in E_j)$ , where  $E_j$  is the  $j$ th epitope within the antigen and  $\mathbb{1}(\dots)$  being the indicator function. We then define ground truth regions  $G = \{G_1, \dots, G_n\}$  as  $n$  contiguous non-overlapping segments of residues where the label is nonzero. Note that  $n \leq |E|$  since overlapped epitopes are aggregated into one region. The per-residue prediction can be extracted intuitively from antigen-based models, and can be approximated by aggregating the predicted scores along a fix-length sliding window from peptide-based models. We set the length to be 9, which is the conventional size of binding cores. The  $m$  predicted regions  $P = \{P_1, \dots, P_m\}$  is then defined similarly as contiguous segments with the score passes a given threshold. Based on the two region sets  $G$  and  $P$ , we compute region-level coverage and redundancy as follow:

*Region-level Coverage* measures how well the predicted regions cover the ground truth regions, computed by the weighted sum of residue overlapped ratio between  $G_i$  and  $P$ .

$$\text{Coverage} = \sum_{i=1}^n \tilde{w}_i \left( \frac{\sum_j (|G_i \cap P_j|)}{|G_i|} \right) \quad (1)$$

where  $\sum_j (|G_i \cap P_j|)$  simply represents the total number of residues in  $G_i$  predicted as positive, and weight  $\tilde{w}_i$  is the sum of log scale of residue-level labels within the ground truth region  $G_i$ , normalized by both the region size and the total number of regions across antigen. The log scaling retains the ranking of region importance, while compressing the label magnitude to be more reasonable.

$$\tilde{w}_i = \frac{w_i}{\sum_{j=1}^n w_j}, \quad w_i = \frac{1}{|G_i|} \sum_{r_j \in G_i} \log(1 + \text{label}_j) \quad (2)$$

*Redundancy* computes the number of residues within all predicted regions normalized over the length of antigen  $A$ , which indicates the opposite of prediction sparsity.

$$\text{Redundancy} = \frac{1}{|A|} \sum_i \sum_j \mathbb{1}(r_j \in P_i) \quad (3)$$

378  
379  
380  
381 Table 3: Comparison of different input configurations and training strategies [evaluated on peptide BA](#)  
382 and [EL tasks](#). The full results are included in Appendix.

| Input | Strategy |        |       | Binding Affinity |               | Eluted Ligand          |               |                        |               |
|-------|----------|--------|-------|------------------|---------------|------------------------|---------------|------------------------|---------------|
|       | ESM2     | Struct | Joint | Aux              | AUC           | AUC <sub>epitope</sub> | Accuracy      | AUC <sub>epitope</sub> | CR-AUC        |
| ✓     |          |        |       |                  | 0.7547        | 0.7717                 | 0.6470        | 0.8253                 | 0.6048        |
|       |          |        |       |                  | 0.7313        | 0.7615                 | 0.6098        | 0.8095                 | 0.6101        |
| ✓     | ✓        |        |       |                  | 0.7367        | 0.7564                 | 0.6582        | 0.8264                 | 0.6198        |
| ✓     |          | ✓      |       |                  | 0.7473        | 0.7747                 | 0.6554        | 0.8328                 | 0.6045        |
| ✓     | ✓        | ✓      |       |                  | <b>0.7656</b> | 0.7658                 | 0.6763        | 0.8372                 | 0.6420        |
| ✓     | ✓        | ✓      | ✓     |                  | 0.7627        | <b>0.8127</b>          | <b>0.6955</b> | <b>0.8492</b>          | <b>0.6634</b> |

388  
389  
390  
391 Table 4: Performance comparison of existing peptide-based models. The asterisk (\*) indicates that  
392 the test data is filtered with valid inputs under MixMHC2Pred2’s constraints for fair comparison.  
393 [Ours<model>](#) represents our replicate of existing models. The full results are included in Appendix.

| Method                                            | Binding Affinity |                        |               | Eluted Ligand*         |               |  |
|---------------------------------------------------|------------------|------------------------|---------------|------------------------|---------------|--|
|                                                   | AUC              | AUC <sub>epitope</sub> | Accuracy      | AUC <sub>epitope</sub> | CR-AUC        |  |
| NetMHCIIIPan4.3 (Nilsson et al., 2023a)           | <b>0.8115</b>    | 0.8236                 | 0.4980        | <b>0.8672</b>          | 0.6526        |  |
| <a href="#">NetMHCIIIPan4.3<sub>context</sub></a> | <b>0.7627</b>    | <b>0.8160</b>          | <b>0.5314</b> | <b>0.8646</b>          | <b>0.6510</b> |  |
| RPEMHC (Wang et al., 2024)                        | 0.7978           | <b>0.8436</b>          | -             | -                      | -             |  |
| MixMHC2Pred2 (Racle et al., 2023)                 | -                | -                      | 0.3462        | 0.8658                 | 0.6906        |  |
| ImmuScope (Shen et al., 2025)                     | -                | -                      | 0.6570        | 0.8549                 | 0.6796        |  |
| <a href="#">OursRPEMHC</a>                        | <b>0.7713</b>    | <b>0.7978</b>          | <b>0.6993</b> | <b>0.8642</b>          | <b>0.7210</b> |  |
| <a href="#">OursImmuScope</a>                     | <b>0.7927</b>    | <b>0.8227</b>          | <b>0.7162</b> | <b>0.8601</b>          | <b>0.7175</b> |  |
| <a href="#">Ours (best from Table 3)</a>          | 0.7627           | 0.8127                 | <b>0.7347</b> | 0.8662                 | <b>0.7349</b> |  |

402  
403 We then evaluate the tradeoff between coverage and redundancy, and report the *Coverage-redundancy*  
404 *Area Under the Curve (CR-AUC)* score. In general, both coverage and redundancy tend to increase  
405 monotonically as the threshold gets stricter (i.e., increases from 0 to 1). A coverage-redundancy  
406 curve can be constructed by varying the threshold used for defining the predicted regions. It captures  
407 the model efficiency in capturing biologically meaningful regions. A steep initial rise (Figure A3a)  
408 indicates that confident predictions are sufficient to localize ground truth regions. Meanwhile, a  
409 shallow or flattened curve (Figure A3c) shows less effective prediction, where additional region  
410 proposal fails to substantially improve the coverage. We then report the CR-AUC score. A higher  
411 value reflects a more favorable tradeoff, archiving high coverage with low redundancy. Based on the  
412 normalization above, CR-AUC lies within [0, 1], and is comparable across models and antigens.

## 413 5 EXPERIMENTS

414  
415 We employ various experimental settings to benchmark our curated datasets, including different task  
416 formulations, input features, and training strategies. We also compare the BA performance with  
417 RPEMHC (Wang et al., 2024) and NetMHCIIIPan4.3 (Nilsson et al., 2023a), and EL performance with  
418 NetMHCIIIPan4.3, MixMHC2Pred2 (Racle et al., 2023), and ImmuScope (Shen et al., 2025), which  
419 represent the latest methods in this domain. [We also include results from NetMHCIIpan-4.3 using its](#)  
420 [context-encoding option, which allows the model to use three neighboring residues on each side of](#)  
421 [the peptide as additional context for prediction. In addition, we built our own modular experimental](#)  
422 [framework to provide insights behind different modeling choices \(e.g., input configuration, model](#)  
423 [architectures, training strategies\) to this problem \(Figure 2\). Our best model architecture uses a fused](#)  
424 [module to encode peptide/antigen sequences, a self-attention module to encode MHC-II sequence](#)  
425 [and structure, and a multi-head cross-attention module to capture the biological interactions. Full](#)  
426 [model details are described in Appendix C.1. Following the evaluation protocol in Table A7, we](#)  
427 [report the performance on both peptide binding, peptide presentation, and antigen presentation tasks.](#)  
428 [Overall, the model results establish strong baselines and modeling insights for both the peptide and](#)  
429 [antigen tasks, providing useful reference points for future ML work.](#)

### 430 5.1 EXPERIMENTAL RESULTS ON PEPTIDE BINDING AND PRESENTATION

431  
432 **Input Configuration:** Three types of features are controlled in our experiments. Following the work  
433 in (Koh et al., 2024), we leverage (1) physicochemical residue-level features to initialize the residue

432 Table 5: Antigen EL performance of peptide- and antigen-based model. The asterisk (\*) denotes  
 433 the same test data setup as in Table 4, making their CR-AUC scores comparable. The rest of the  
 434 CR-AUC scores are comparable with the results in Table 3.

| Method | Peptide-based |        |        |        | Antigen-based |        |               |               | random* |
|--------|---------------|--------|--------|--------|---------------|--------|---------------|---------------|---------|
|        | $k$           | -      | 32     | 64     | 128           | 512    | 1024          | random        |         |
| CR-AUC | 0.6092        | 0.6346 | 0.6409 | 0.6463 | 0.6402        | 0.6340 | <b>0.6649</b> | <b>0.6808</b> |         |

435  
 436  
 437  
 438  
 439 embedding. We further consider the usage of (2) ESM2 (Lin et al., 2023) protein language embedding  
 440 of both peptides and MHCII for its implicit knowledge of protein structure, and (3) the predicted  
 441 MHC-II structures from AlphaFold3 (Abramson et al., 2024) as the additional structural inputs. As  
 442 shown in Table 3, performance drops significantly for both tasks without ESM2 embedding. The  
 443 incorporation of MHC-II structural information significantly improves over settings without structural  
 444 inputs in EL task, while the results in BA task show mixed patterns. This could be attributed to the  
 445 greater amount of data required to effectively capture the sequence–structure relationship, while BA  
 446 data is about 10 times fewer than EL data.

447  
 448 **Training Strategy:** We further evaluate how training strategies affect the performance. We first  
 449 examine the effects of joint training on BA and EL performance. As shown by the first and forth row  
 450 of Table 3, joint training has shown to have improvement in some metrics. We then examine the effect  
 451 of auxiliary supervision on peptide binding core prediction. The binding core is predicted using a 2D  
 452 convolution over the cross-attention map between peptides and MHC-II. Given that attention maps  
 453 have the potential of capturing spatial proximity between residues (Lin et al., 2023), we hypothesize  
 454 that the attention map alone can infer the binding core largely determined by spatial interaction. As  
 455 shown in the last row of Table 3, the auxiliary task significantly improves the performance of both  
 456 tasks. Despite label re-balancing and data augmentation, some MHC-II can still have extremely  
 457 skewed label distribution (Figure 1). The auxiliary core prediction tasks allows the model to localize  
 458 meaning patterns from peptide-MHC-II interaction, even in cases where all associated labels are  
 459 positive. We argue this as the main reason for the observed performance improvement.

460  
 461 **Method Comparison:** We further compare our model using the best configuration above with  
 462 existing methods in Table 4. All performance results are obtained from the publicly released  
 463 models. NetMHCIIpan4.3 and MixMHC2Pred2 only provide precompiled models with limited  
 464 implementation details. To examine how key architectural differences in RPEMHC and ImmuScope  
 465 may affect performance, we additionally train two model variants that replicate their design choices.  
 466 Ours<sub>RPEMHC</sub> replaces the peptide-MHCII cross-attention module with a 2D convolution over pairwise  
 467 residue features, while Ours<sub>ImmuScope</sub> augments our model with additional convolutional refinement  
 468 blocks for peptide representations after cross-attention. For BA task, our model performs slightly  
 469 worse than RPEMHC and NetMHCIIPan4.3. One of the reasons might be related to checkpoint  
 470 selection. Currently, the best checkpoint of the joint BA-EL training is chosen based on the average  
 471 peptide AUC scores across both tasks. However, since BA has much less data compared to EL, the  
 472 selected checkpoint could be biased towards EL performance. For EL task, we first filter our test set  
 473 according to MixMHC2Pred2’s input constraints (i.e., peptides composed of natural amino acids  
 474 with lengths 12–21) for a fair comparison across models, which reduces the test size from 2929 to  
 475 2484. We also increase the sliding window size from 9 to 12 in antigen-level evaluation. In general,  
 476 our approach shows stronger performance, especially on peptide-level and antigen-level metrics. We  
 477 realized that MixMHC2Pred2 is relatively more conservative in its scoring. Its highest peptide score  
 478 averaged across all test antigen is 0.438, while NetMHCIIPan4.3 is 0.572. This could explain its low  
 479 peptide accuracy measured by the probability threshold of 0.5. Our best model performs slightly  
 480 better than Ours<sub>RPEMHC</sub> on average, which is expected since 2D convolution is less efficient than  
 481 cross-attention at capturing global interactions. Ours<sub>ImmuScope</sub> shows improvement on BA specifically.  
 482 Since BA signals are more sensitive to the binding core, the additional convolutional refinement may  
 483 help the model focus on the most relevant local regions for prediction.

## 484 5.2 EXPERIMENTAL RESULTS ON ANTIGEN PRESENTATION

485  
 486 The antigen-based model shares the same model architecture as the peptide-based model, except  
 487 the prediction head is modified into a position-wise (residue-level) prediction layer without global  
 488 pooling. The main objective of the antigen modeling task is to identify the antigenic regions most  
 489 relevant for MHC-II presentation, which is evaluated using the proposed CR-AUC score. In addition,

486 for efficient training, antigen sequences are truncated to a maximum window size  $k$  to avoid CUDA  
 487 out-of-memory errors. Instead of sampling arbitrary subsequences of length  $k$ , we only sample from  
 488 "valid" regions, where no known epitope is being cut through. This preserves biologically meaningful  
 489 regions for training. [The evaluation is performed on the full antigen sequence without any truncation.](#)  
 490 We then compare the performance of antigen-based models with varying  $k$  with the performance of  
 491 the peptide-based models [trained only on the peptide EL task for fairer comparison \(Table A2\).](#)

492 As shown in Table 5, the best-performing antigen-based model significantly outperforms the peptide-  
 493 based model by a large margin. Notably, the antigen-based models have only seen around 25% of  
 494 positive peptides available for training peptide-based models, which further highlights the promising  
 495 potential of antigen-based modeling [in solving the antigen EL task](#). The choice of window size  $k$   
 496 also influences the performance. As  $k$  decreases to small values (e.g., from 128 to 32), the antigen  
 497 modeling will gradually reduce to peptide modeling, which results in performance drop. On the  
 498 other hand, although increasing  $k$  (e.g., from 128 to 1024) will provide richer biological context,  
 499 the training difficulty also increases as the residue-level label distribution becomes less balanced.  
 500 Instead of hand-picking a fixed window size to balance the trade-off, we propose the randomized  
 501 window sizing, where  $k$  is sampled at each iteration from a predefined set instead of being fixed. We  
 502 use the set {64, 128, 256, 512, 1024} in our experiment, which corresponds to the result of "random".  
 503 It reaches the best performance with a CR-AUC score of 0.6649. ["random\\*" corresponds to the](#)  
 504 [same setup in Table 4, where the test data is filtered according to MixMHC2Pred2's constraints.](#)  
 505 Therefore, its CR-AUC value is directly comparable to the CR-AUC reported in Table 4. This result  
 506 outperforms almost all existing baselines, but falls slightly behind our best peptide-based models that  
 507 uses joint training and the core-prediction auxiliary task. A promising direction for improving future  
 508 antigen-based models is to incorporate more diverse supervision signals at training (e.g., predicting  
 509 whether an epitope exists within antigenic regions as a global label), which we leave for future work.  
 510 A qualitative analysis of the coverage-redundancy curve for the best peptide-based and antigen-based  
 511 models is provided in Appendix D.5, which further highlights the potential of antigen-based models  
 512 in localizing candidate epitopes with high confidence.

## 513 6 DISCUSSION

514 We curate a comprehensive and large-scale dataset for human MHC-II antigen presentation prediction.  
 515 It supports three major ML tasks, including a novel antigen-level task that captures broader biological  
 516 processes within the presentation pathway. We further employ a multi-scale evaluation framework  
 517 to comprehensively analyze the model performance. Via extensive experiments, we find that joint  
 518 training, structural inputs, and auxiliary binding core prediction can improve performance on both  
 519 peptide BA and EL tasks. Meanwhile, antigen-based modeling, which incorporates richer biological  
 520 context, has shown its great potential in localizing epitope candidates within antigen sequence.

521 For future work, we plan to expand the structural component of our dataset using the peptide-MHC-II  
 522 complex structures via AlphaFold3. The co-folding model is expected to have a better implicit  
 523 knowledge of inter-chain residue interactions, which will be reflected in its predicted complex  
 524 structures. It is also promising to explore other advanced approaches (e.g., constructing protein  
 525 graphs from estimated contact map (Koh et al., 2024), or directly applying equivariant models (Fuchs  
 526 et al., 2020; Satorras et al., 2022) to encode protein geometry) to further improve performance in  
 527 antigen presentation.

## 528 7 LIMITATION

529 One limitation of this work is that both BA and EL labels are indirect proxies for T-cell immune  
 530 responses. While they provide useful signals for epitope likelihood, they do not fully capture  
 531 downstream immunogenicity. Unfortunately, T-cell response data remains too scarce to support  
 532 large-scale training. In addition, antigen annotations are missing for a subset of peptides, which may  
 533 introduce selection bias in the subset used for training antigen-level models. Another limitation is that  
 534 our study focuses exclusively on single-allele data, where the peptide-MHC-II mapping is certain. In  
 535 contrast, real-world MS data often involves multi-allele samples, where a positive label only indicates  
 536 that at least one MHC-II within a group is responsible for the peptide presentation. Extending our  
 537 framework to incorporate multi-allele data is an important direction for future work, and may benefit  
 538 from strategies like multi-instance learning (Alvarez et al., 2019; Ilse et al., 2018).

540 8 ETHICS STATEMENT  
541542 This work does not raise any ethical concerns.  
543544 9 REPRODUCIBILITY STATEMENT  
545546 The data collection and processing steps are detailed in Section 3. The implementation details, model  
547 specification, and training hyperparameters are comprehensively discussed in Appendix C. Upon  
548 acceptance, the curated dataset will be released, as well as the code repository for the multi-scale  
549 evaluation and our experimental pipeline.  
550551 REFERENCES  
552

553 Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf  
554 Ronneberger, Lindsay Willmore, Andrew J. Ballard, Joshua Bambrick, Sebastian W. Boden-  
555 stein, David A. Evans, Chia-Chun Hung, Michael O'Neill, David Reiman, Kathryn Tunyasuvu-  
556 nakool, Zachary Wu, Akvilé Žemgulyté, Eirini Arvaniti, Charles Beattie, Ottavia Bertolli, Alex  
557 Bridgland, Alexey Cherepanov, Miles Congreve, Alexander I. Cowen-Rivers, Andrew Cowie,  
558 Michael Figurnov, Fabian B. Fuchs, Hannah Gladman, Rishub Jain, Yousuf A. Khan, Caro-  
559 line M. R. Low, Kuba Perlin, Anna Potapenko, Pascal Savy, Sukhdeep Singh, Adrian Stecula,  
560 Ashok Thillaisundaram, Catherine Tong, Sergei Yakneen, Ellen D. Zhong, Michal Zielinski,  
561 Augustin Žídek, Victor Bapst, Pushmeet Kohli, Max Jaderberg, Demis Hassabis, and John M.  
562 Jumper. Accurate structure prediction of biomolecular interactions with alphafold 3. *Nature*,  
563 630(8016):493–500, Jun 2024. ISSN 1476-4687. doi: 10.1038/s41586-024-07487-w. URL  
564 <https://doi.org/10.1038/s41586-024-07487-w>.

565 Elise Alspach, Danielle M Lussier, Alexander P Miceli, Ilya Kizhvatov, Michel DuPage, Adrienne M  
566 Luoma, Wei Meng, Cheryl F Lichti, Ekaterina Esaulova, Anthony N Vomund, et al. Mhc-ii  
567 neoantigens shape tumour immunity and response to immunotherapy. *Nature*, 574(7780):696–701,  
568 2019.

569 Bruno Alvarez, Birkir Reynisson, Carolina Barra, Søren Buus, Nicola Ternette, Tim Connelley,  
570 Massimo Andreatta, and Morten Nielsen. NNAlign\_MA; MHC peptidome deconvolution for  
571 accurate MHC binding motif characterization and improved t-cell epitope predictions. *Mol. Cell.*  
572 *Proteomics*, 18(12):2459–2477, December 2019.

573 Cory M. Ayres, Steven A. Corcelli, and Brian M. Baker. Peptide and Peptide-Dependent Motions  
574 in MHC Proteins: Immunological Implications and Biophysical Underpinnings. *Frontiers in*  
575 *Immunology*, 8:935, August 2017. ISSN 1664-3224. doi: 10.3389/fimmu.2017.00935. URL <http://journal.frontiersin.org/article/10.3389/fimmu.2017.00935/full>.

576 Carolina Barra, Bruno Alvarez, Sinu Paul, Alessandro Sette, Bjoern Peters, Massimo Andreatta,  
577 Søren Buus, and Morten Nielsen. Footprints of antigen processing boost mhc class ii natural  
578 ligand predictions. *Genome Medicine*, 10(1):84, Nov 2018. ISSN 1756-994X. doi: 10.1186/s13073-018-0594-6. URL <https://doi.org/10.1186/s13073-018-0594-6>.

579 Spencer E Brightman, Angelica Becker, Rukman R Thota, Martin S Naradikian, Leila Chihab,  
580 Karla Soria Zavala, Ashmitaa Logandha Ramamoorthy Premlal, Ryan Q Griswold, Joseph S  
581 Dolina, Ezra EW Cohen, et al. Neoantigen-specific stem cell memory-like cd4+ t cells mediate  
582 cd8+ t cell-dependent immunotherapy of mhc class ii-negative solid tumors. *Nature immunology*,  
583 24(8):1345–1357, 2023.

584 Jun Cheng, Kaidre Bendjama, Karola Rittner, and Brandon Malone. BERTMHC: improved  
585 MHC-peptide class II interaction prediction with transformer and multiple instance learning.  
586 *Bioinformatics*, 37(22):4172–4179, November 2021. ISSN 1367-4803, 1367-4811. doi: 10.  
587 1093/bioinformatics/btab422. URL <https://academic.oup.com/bioinformatics/article/37/22/4172/6294399>.

588 Limin Fu, Beifang Niu, Zhengwei Zhu, Sitao Wu, and Weizhong Li. CD-HIT: accelerated for  
589 clustering the next-generation sequencing data. *Bioinformatics*, 28(23):3150–3152, December

594 2012. ISSN 1367-4803, 1367-4811. doi: 10.1093/bioinformatics/bts565. URL <https://academic.oup.com/bioinformatics/article/28/23/3150/192160>.

595

596

597 Fabian Fuchs, Daniel Worrall, Volker Fischer, and Max Welling. Se(3)-transformers: 3d roto-

598 translation equivariant attention networks. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan,

599 and H. Lin (eds.), *Advances in Neural Information Processing Systems*, volume 33, pp. 1970–

600 1981. Curran Associates, Inc., 2020. URL [https://proceedings.neurips.cc/paper\\_files/paper/2020/file/15231a7ce4ba789d13b722cc5c955834-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2020/file/15231a7ce4ba789d13b722cc5c955834-Paper.pdf).

601

602 Maximilian Ilse, Jakub Tomczak, and Max Welling. Attention-based deep multiple instance learning.

603 In Jennifer Dy and Andreas Krause (eds.), *Proceedings of the 35th International Conference on Ma-*

604 *chine Learning*, volume 80 of *Proceedings of Machine Learning Research*, pp. 2127–2136. PMLR,

605 10–15 Jul 2018. URL <https://proceedings.mlr.press/v80/ilse18a.html>.

606

607 Irina A. Ishina, Maria Y. Zakharova, Inna N. Kurbatskaia, Azad E. Mamedov, Alexey A. Belogurov,

608 and Alexander G. Gabibov. Mhc class ii presentation in autoimmunity. *Cells*, 12(2), 2023. ISSN

609 2073-4409. doi: 10.3390/cells12020314. URL <https://www.mdpi.com/2073-4409/12/2/314>.

610

611 Eddie A James and William W Kwok. Low-affinity major histocompatibility complex-binding

612 peptides in type 1 diabetes. *Diabetes*, 57(7):1788–1789, July 2008.

613

614 Kamilla Kjaergaard Jensen, Massimo Andreatta, Paolo Marcattili, Søren Buus, Jason A Greenbaum,

615 Zhen Yan, Alessandro Sette, Bjoern Peters, and Morten Nielsen. Improved methods for predicting

616 peptide binding affinity to MHC class II molecules. *Immunology*, 154(3):394–406, July 2018.

617

618 Huan Yee Koh, Anh T. N. Nguyen, Shirui Pan, Lauren T. May, and Geoffrey I. Webb. Physico-

619 chemical graph neural network for learning protein–ligand interaction fingerprints from sequence

620 data. *Nature Machine Intelligence*, 6(6):673–687, Jun 2024. ISSN 2522-5839. doi: 10.1038/s42256-024-00847-1. URL <https://doi.org/10.1038/s42256-024-00847-1>.

621

622 Mingchen Li, Yang Tan, Xinzhu Ma, Bozitao Zhong, Huiqun Yu, Ziyi Zhou, Wanli Ouyang, Bingxin

623 Zhou, Pan Tan, and Liang Hong. Prosst: Protein language modeling with quantized structure and

624 disentangled attention. In *The Thirty-eighth Annual Conference on Neural Information Processing*

625 Systems

626 2024.

627

628 Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,

629 Robert Verkuil, Ori Kabeli, Yaniv Shmueli, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom

630 Sercu, Salvatore Candido, and Alexander Rives. Evolutionary-scale prediction of atomic-level pro-

631 tein structure with a language model. *Science*, 379(6637):1123–1130, 2023. doi: 10.1126/science.

632 ade2574. URL <https://www.science.org/doi/abs/10.1126/science.adc2574>.

633

634 Morten Nielsen and Ole Lund. Nn-align. an artificial neural network-based alignment algo-

635 rithm for mhc class ii peptide binding prediction. *BMC Bioinformatics*, 10(1):296, Sep 2009.

636 ISSN 1471-2105. doi: 10.1186/1471-2105-10-296. URL <https://doi.org/10.1186/1471-2105-10-296>.

637

638 Morten Nielsen, Claus Lundegaard, and Ole Lund. Prediction of mhc class ii binding affinity

639 using smm-align, a novel stabilization matrix alignment method. *BMC Bioinformatics*, 8(1):238,

640 Jul 2007. ISSN 1471-2105. doi: 10.1186/1471-2105-8-238. URL <https://doi.org/10.1186/1471-2105-8-238>.

641

642 Morten Nielsen, Claus Lundegaard, Thomas Blicher, Bjoern Peters, Alessandro Sette, Sune Justesen,

643 Søren Buus, and Ole Lund. Quantitative Predictions of Peptide Binding to Any HLA-DR Molecule

644 of Known Sequence: NetMHCIIpan. *PLoS Computational Biology*, 4(7):e1000107, July 2008.

645 ISSN 1553-7358. doi: 10.1371/journal.pcbi.1000107. URL <https://dx.plos.org/10.1371/journal.pcbi.1000107>.

646

647 Jonas B. Nilsson, Saghari Kaabinejadian, Hooman Yari, Michel G. D. Kester, Peter van Balen,

648 William H. Hildebrand, and Morten Nielsen. Accurate prediction of hla class ii antigen presentation

649 across all loci using tailored data acquisition and refined machine learning. *Science Advances*,

650 9(47):eadj6367, 2023a. doi: 10.1126/sciadv.adj6367. URL <https://www.science.org/doi/abs/10.1126/sciadv.adj6367>.

648 Jonas B. Nilsson, Sascha Kaabinejadian, Hadi Yari, and et al. Machine learning reveals limited  
 649 contribution of trans-only encoded variants to the HLA-DQ immunopeptidome. *Communications*  
 650 *Biology*, 6:442, 2023b. doi: 10.1038/s42003-023-04749-7. URL <https://doi.org/10.1038/s42003-023-04749-7>.

652 Novalia Pishesha, Thibault J Harmand, and Hidde L Ploegh. A guide to antigen processing and  
 653 presentation. *Nature Reviews Immunology*, 22(12):751–764, 2022.

655 Julien Racle, Justine Michaux, Georg Alexander Rockinger, Marion Arnaud, Sara Bobisse, Chloe  
 656 Chong, Philippe Guillaume, George Coukos, Alexandre Harari, Camilla Jandus, Michal Bassani-  
 657 Sternberg, and David Gfeller. Robust prediction of hla class ii epitopes by deep motif de-  
 658 convolution of immunopeptidomes. *Nature Biotechnology*, 37(11):1283–1286, Nov 2019a.  
 659 ISSN 1546-1696. doi: 10.1038/s41587-019-0289-6. URL <https://doi.org/10.1038/s41587-019-0289-6>.

661 Julien Racle, Justine Michaux, Georg Alexander Rockinger, Marion Arnaud, Sara Bobisse, Chloe  
 662 Chong, Philippe Guillaume, George Coukos, Alexandre Harari, Camilla Jandus, Michal Bassani-  
 663 Sternberg, and David Gfeller. Robust prediction of hla class ii epitopes by deep motif de-  
 664 convolution of immunopeptidomes. *Nature Biotechnology*, 37(11):1283–1286, Nov 2019b.  
 665 ISSN 1546-1696. doi: 10.1038/s41587-019-0289-6. URL <https://doi.org/10.1038/s41587-019-0289-6>.

667 Julien Racle, Philippe Guillaume, Julien Schmidt, Justine Michaux, Amédé Larabi, Kelvin Lau,  
 668 Marta A.S. Perez, Giancarlo Croce, Raphaël Genolet, George Coukos, Vincent Zoete, Florence  
 669 Pojer, Michal Bassani-Sternberg, Alexandre Harari, and David Gfeller. Machine learning pre-  
 670 dictions of MHC-II specificities reveal alternative binding mode of class II epitopes. *Immunity*,  
 671 56(6):1359–1375.e13, June 2023. ISSN 10747613. doi: 10.1016/j.immuni.2023.03.009. URL  
 672 <https://linkinghub.elsevier.com/retrieve/pii/S1074761323001292>.

673 Birkir Reynisson, Bruno Alvarez, Sinu Paul, Bjoern Peters, and Morten Nielsen. NetMHCpan-  
 674 4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent  
 675 motif deconvolution and integration of MS MHC eluted ligand data. *Nucleic Acids Research*, 48  
 676 (W1):W449–W454, July 2020. ISSN 0305-1048, 1362-4962. doi: 10.1093/nar/gkaa379. URL  
 677 <https://academic.oup.com/nar/article/48/W1/W449/5837056>.

679 Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E(n) equivariant graph neural networks,  
 680 2022. URL <https://arxiv.org/abs/2102.09844>.

681 L. C. Shen, Y. Zhang, Z. Wang, et al. Self-iterative multiple-instance learning enables the prediction  
 682 of CD4<sup>+</sup> t cell immunogenic epitopes. *Nature Machine Intelligence*, 7:1250–1265, 2025. doi:  
 683 10.1038/s42256-025-01073-z.

685 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz  
 686 Kaiser, and Illia Polosukhin. Attention is all you need. In *Proceedings of the 31st International*  
 687 *Conference on Neural Information Processing Systems*, NIPS’17, pp. 6000–6010, Red Hook, NY,  
 688 USA, 2017. Curran Associates Inc. ISBN 9781510860964.

689 Gopalakrishnan Venkatesh, Aayush Grover, G Srinivasaraghavan, and Shrisha Rao. MHCAttnNet:  
 690 predicting MHC-peptide bindings for MHC alleles classes I and II using an attention-based  
 691 deep neural model. *Bioinformatics*, 36(Supplement\_1):i399–i406, July 2020. ISSN 1367-4803,  
 692 1367-4811. doi: 10.1093/bioinformatics/btaa479. URL [https://academic.oup.com/bioinformatics/article/36/Supplement\\_1/i399/5870494](https://academic.oup.com/bioinformatics/article/36/Supplement_1/i399/5870494).

694 Randi Vita, Swapnil Mahajan, James A Overton, Sandeep Kumar Dhanda, Sheridan Martini, Jason R  
 695 Cantrell, Daniel K Wheeler, Alessandro Sette, and Bjoern Peters. The immune epitope database  
 696 (iedb): 2018 update. *Nucleic Acids Research*, 47(D1):D339–D343, 10 2018. ISSN 0305-1048.  
 697 doi: 10.1093/nar/gky1006. URL <https://doi.org/10.1093/nar/gky1006>.

699 Xuejiao Wang, Tingfang Wu, Yelu Jiang, Taoning Chen, Deng Pan, Zhi Jin, Jingxin Xie, Li-  
 700 jun Quan, and Qiang Lyu. RPEMHC: improved prediction of MHC-peptide binding affin-  
 701 ity by a deep learning approach based on residue-residue pair encoding. *Bioinformatics*,  
 40(1):btad785, January 2024. ISSN 1367-4803, 1367-4811. doi: 10.1093/bioinformatics/

702       btad785. URL <https://academic.oup.com/bioinformatics/article/doi/10.1093/bioinformatics/btad785/7510841>.

703

704

705       Sharon Weingarten-Gabbay, Daniel Y. Chen, Siranush Sarkizova, Hannah B. Taylor, Marcello Gentili,  
 706       Geyu M. Hernandez, Lauren R. Pearlman, Michael R. Bauer, Charles M. Rice, Karl R. Clauser, Nir  
 707       Hacohen, Steven A. Carr, Jennifer G. Abelin, Mohammed Saeed, and Pardis C. Sabeti. The HLA-II  
 708       immunopeptidome of SARS-CoV-2. *Cell Reports*, 43(1):113596, January 2024. doi: 10.1016/j.celrep.2023.113596.  
 709       URL <https://doi.org/10.1016/j.celrep.2023.113596>.

710

711       Tao Wu, Jing Chen, Kaixuan Diao, Guangshuai Wang, Jinyu Wang, Huizi Yao, and Xue-Song Liu.  
 712       Neodb: a comprehensive neoantigen database and discovery platform for cancer immunotherapy.  
*Database (Oxford)*, 2023, June 2023.

713

714       Tong Wu, Jie Guan, Andreas Handel, and et al. Quantification of epitope abundance reveals the  
 715       effect of direct and cross-presentation on influenza CTL responses. *Nature Communications*,  
 716       10:2846, 2019. doi: 10.1038/s41467-019-10661-8. URL <https://doi.org/10.1038/s41467-019-10661-8>.

717

718       Ronghui You, Wei Qu, Hiroshi Mamitsuka, and Shanfeng Zhu. DeepMHCII: a novel binding  
 719       core-aware deep interaction model for accurate MHC-II peptide binding affinity prediction. *Bioinfor-*  
 720       *matics*, 38(Supplement\_1):i220–i228, June 2022. ISSN 1367-4803, 1367-4811. doi: 10.  
 721       1093/bioinformatics/btac225. URL [https://academic.oup.com/bioinformatics/article/38/Supplement\\_1/i220/6617501](https://academic.oup.com/bioinformatics/article/38/Supplement_1/i220/6617501).

722

723       Guang Lan Zhang, Hong Huang Lin, Derin B Keskin, Ellis L Reinherz, and Vladimir Brusic. Dana-  
 724       Farber repository for machine learning in immunology. *J. Immunol. Methods*, 374(1-2):18–25,  
 725       November 2011.

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

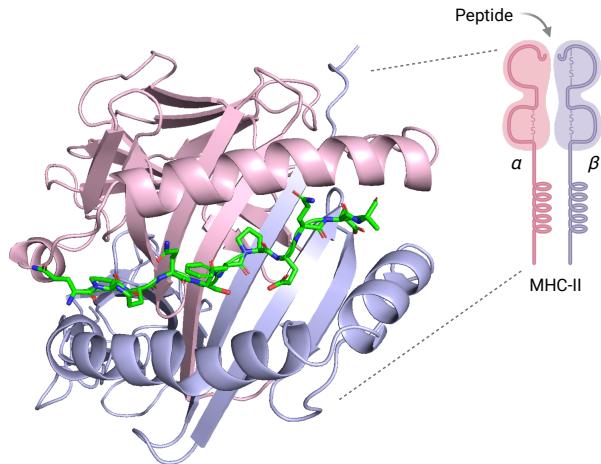
753

754

755

756 A BACKGROUND OF MHC-II ANTIGEN PRESENTATION PATHWAY  
757

758 MHC-II proteins are a class of major histocompatibility complex molecules primarily present anti-  
759 genic epitopes on the surface of antigen-presenting cells (APCs). They are encoded by genes in the  
760 HLA-DP, HLA-DQ, and HLA-DR loci and consist of two chains/domains ( $\alpha$  and  $\beta$ ) that together  
761 form an open-ended binding groove (Figure A1). This structure allows MHC-II to accommodate  
762 peptides of varying lengths. Among the HLA Class II loci, HLA-DR is the most extensively stud-  
763 ied, with more available epitope sequence data in public databases. This is attributed to its higher  
764 expression level and polymorphism in the human population, which make it more accessible for  
765 experimental isolation and characterization.



783 Figure A1: A example visualization of the peptide-MHC-II complex. MHC-II protein contains two  
784 chains, with  $\alpha 1$  domain colored in pink and  $\beta 1$  domain colored in purple. The peptide, colored in  
785 green, is bound into the middle part. The open-ended binding groove of MHC-II is formed by two  
786  $\alpha$ -helices and one  $\beta$ -sheet.

787 The MHC-II antigen presentation pathway, as shown in Figure A2, mainly consists of five stages: (1)  
788 The antigen-presenting cell (APC) first takes in the antigen. (2) The antigen is then processed and  
789 broken down into peptide fragments within the endosomal compartments. (3) MHC-II molecules  
790 selectively bind to a peptide and form peptide-MHC-II complexes. (4) The peptide-MHC-II com-  
791 plexes are then transported to the cell surface for presentation. As last, (5)  $CD4^+$  T-cells scan the  
792 surface of APC and triggers T-cell immune response if the presented peptide is recognized. In our  
793 machine learning formulation, peptide binding affinity prediction corresponds to stage (3); peptide  
794 eluted ligand prediction captures both stages (3) and (4); while antigen eluted ligand prediction covers  
795 stages (2), (3), and (4).

797  
798 B MORE DATA ANALYSIS  
799800 B.1 FALSE NEGATIVE FROM DATA AUGMENTATION  
801

802 In our experiments, we utilize the antigen-aware augmentation to increase the number of negative  
803 peptides given MHC-II. Here, we perform a statistical analysis in the potential false negative rate  
804 introduced by this approach. Although it is challenging to precisely quantify the exact ratio in  
805 practical web-lab settings, we approximate the ratio by first examining the positions of all positive  
806 peptides from the same antigen in our training and validation sets, and then computing the ratio of  
807 two peptides being neighbors. We define neighbors as peptides whose starting positions are less than  
808 15 amino acids apart, which is the typical peptide length. Only 5.64% of the positive peptide pairs  
809 meet this criteria, indicating that neighboring peptides of a positive peptide are rarely also positive.  
This suggests that false negatives introduced through augmentation are likely negligible.

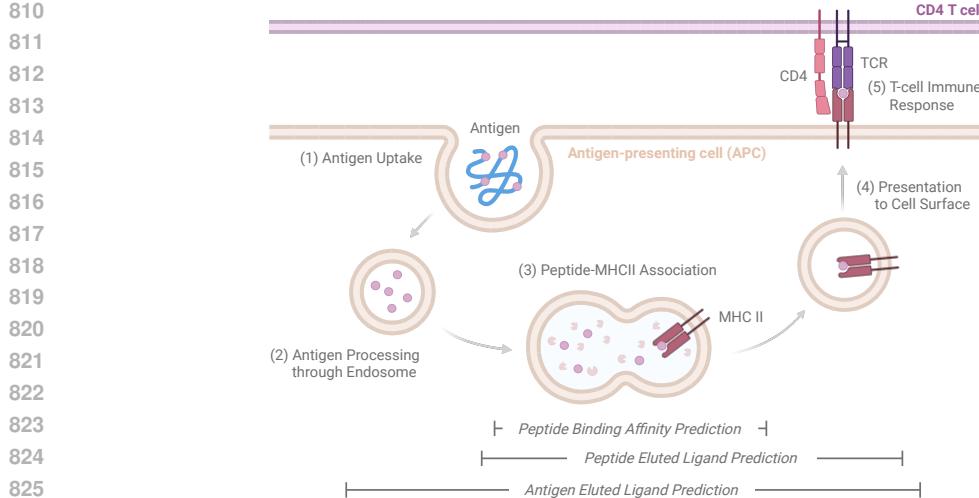


Figure A2: A simplified and high-level illustration of the MHC-II antigen presentation pathway. The process can be broken down into five stages of (1) Antigen uptake, (2) Antigen processing (3) Peptide-MHCII binding (4) MHC-II presentation of peptide on cell surface, and (5) T-cell immune response.

## B.2 QUALITY OF MHC-II PREDICTED STRUCTURES FROM ALPHAFOLD3

In our experiments, we generate five seeded structures for each MHC-II using AlphaFold3 (AF3), and the one with the highest ranking score (default confidence score provided by AF3) is selected as the final MHC-II structure. Conventional confidence metrics are reported in Table A1, including Predicted TM-score (pTM), Inter-chain Predicted TM-score (ipTM), and Predicted Local Distance Difference Test (pLDDT). According to AF3, the predicted structures are viewed as high-quality for  $ipTM > 0.8$  and  $pTM > 0.5$ . The prediction is considered as confident for  $70 < pLDDT < 90$ . To further evaluate the quality of predicted MHC-II structures, we compute the root-mean-square-deviation (RMSD) between predicted structures and experimentally derived structures available on 16 unique MHC-II subtypes. All MHC-II pairs have  $RMSD < 2.0\text{\AA}$ , indicating the predicted structures are highly similar to the experimental structures. A sensitivity analysis of the model’s outputs with respect to the structural noise is included in Appendix D.4.

## C IMPLEMENTATION DETAILS

### C.1 MODEL ARCHITECTURE

As shown in Figure 2, the general model architecture used in this work follows the workflow of encoding, interaction, and prediction. For sequence-based encoding of peptide/antigen/MHC-II, we experiment with self-attention (Vaswani et al., 2017), 1D convolution, and a fused encoder module where 1D convolution and self-attention layers are alternatively applied. ESM2 embedding (Lin et al., 2023), if used, is summed with the residue-level features after a linear projection. For structural input, we discretize the 3D coordinates into structure tokens using ProSST (Li et al., 2024) and encode them with a separate self-attention module.

The interaction module iteratively updates the representations of both peptide/antigen sequence and MHC-II sequence. **We experiment with both the multi-head cross attention and the 2D convolution over residue pairwise representations. The latter approach is similar to the RPEMHC (Wang et al., 2024).** In settings with structural inputs, the cross-attention updates are performed sequentially from the MHC-II sequence representation to the peptide representation, followed by updates from the MHC-II structural representation to the peptide representation. In our experiments, the MHC-II sequence and structural representations are not updated based on each other. After the **interaction** updates, attentive pooling is applied, followed by task-specific prediction heads.

864 Table A1: Quality of MHC-II structures from AF3 measured by confidence metrics and RMSD.  
865

| MHC-II | #Subtype | pTM           | ipTM          | pLDDT        | RMSD (Å) |
|--------|----------|---------------|---------------|--------------|----------|
| DR     | 51       | 0.876 ± 0.020 | 0.869 ± 0.021 | 88.85 ± 2.03 | 0.512    |
| DP     | 33       | 0.838 ± 0.041 | 0.832 ± 0.055 | 85.31 ± 3.87 | 1.189    |
| DQ     | 64       | 0.841 ± 0.052 | 0.830 ± 0.053 | 85.84 ± 5.53 | 0.744    |

872 For peptide binding affinity and peptide eluted ligand prediction tasks, we apply a bilinear projection  
873 layer to integrate the pooled representations of the peptide and MHC-II for final prediction. In  
874 contrast, for antigen eluted ligand prediction, no pooling is used after the cross-attention. Instead,  
875 a position-wise prediction head is employed to produce residue-level scores. The auxiliary task of  
876 binding core prediction is implemented by encoding the cross-attention map between the peptide  
877 and MHC-II using 2D convolution, followed by a sliding-window-based ([1D convolution](#)) prediction  
878 head constructed with 1D convolution. The size of sliding window is set to 9, which corresponds to  
879 the conventional size of the binding core.

## 882 C.2 THIRD-PARTY MODEL SPECIFICATION

884 We use AlphaFold3 (AF3) to generate MHC-II structures. For each MHC-II, we first generate 5  
885 candidate structures via AF3 using model seed 12345 and its default settings (dialect = alphafold3,  
886 version = 1). We then choose the structure with the highest default confidence score provided by AF3.  
887 For ESM2 embedding, we use the esm2\_t33\_650M\_UR50D checkpoint of ESM2 to generate  
888 protein language embeddings. Each amino acid will receive a pretrained representation of dimension  
889 1280. For motif deconvolution, we use the MoDec algorithm that finds the motifs and corresponding  
890 binding cores given a list of peptides. We used the published version of MoDec-1.2, and ran with the  
891 settings: Kmax = 6, L = 9, nruncs = 20, mode = MHC2.

## 894 C.3 TRAINING HYPERPARAMETER

896 All experiments are conducted using the same set of training hyperparameters. Specifically, we use a  
897 learning rate of 0.0005 with a total of 50 training epochs, and adopt a cosine annealing scheduler  
898 with 10% of the epochs for learning rate warmup. The model is configured with a hidden dimension  
899 of 256 and an output dimension of 128 for the final prediction head. A dropout rate of 0.1 is applied  
900 throughout each module, except for the final prediction head, where the dropout equals 0.3. Each  
901 encoder consists of 4 encoder layers. For self-attention, the number of heads is set to 4. Additional,  
902 we employ the multi-kernal 1D convolution with kernel sizes of [5, 9]. For loss computation, we  
903 use binary cross-entropy loss for both peptide EL prediction and antigen EL prediction, and mean  
904 squared error (MSE) loss for peptide BA prediction. The auxiliary task of binding core prediction is  
905 also supervised using binary cross-entropy loss. However, this auxiliary loss is weighted by a factor  
906 of 0.1, as it serves primarily as a regularization term and relies on estimated labels.

## 909 C.4 BALANCED SAMPLING DURING TRAINING

911 To address the label imbalance in the EL data, we employ a balanced sampling strategy during training  
912 besides data augmentation. For peptides with positive labels, we randomly sample augmented peptides  
913 with a 0.5 probability from either the positive or negative augmentation set at each training step. Note  
914 that augmentations are only available for peptides that have been experimentally verified as positive.  
915 The antigen EL task follows a similar procedure. At each training step, valid subsequences from  
916 antigen truncation are grouped into positive and negative groups. A subsequence is labeled as positive  
917 if it contains at least one known epitope. We then randomly sample subsequences randomly from  
either group to ensure balanced training.

918  
919 Table A2: Comparison of different encoder choices. The asterisk (\*) indicates the setting where  
920 peptide and MHC-II share a unified sequence encoder. The full results table is included in Appendix.  
921

| Encoder   | Binding Affinity |               |               | Eluted Ligand          |               |                        |
|-----------|------------------|---------------|---------------|------------------------|---------------|------------------------|
|           | Peptide          | MHCII         | AUC           | AUC <sub>epitope</sub> | Accuracy      | AUC <sub>epitope</sub> |
| conv      | conv             | 0.7318        | 0.7389        | 0.6309                 | 0.8075        | 0.6014                 |
|           | conv*            | 0.7185        | 0.7165        | 0.6374                 | 0.8087        | 0.6016                 |
|           | self-attn        | 0.7288        | 0.7573        | 0.6145                 | 0.8084        | 0.6025                 |
|           | fused            | 0.7260        | 0.7437        | 0.6145                 | 0.8112        | 0.6085                 |
| self-attn | conv             | 0.7134        | 0.7270        | 0.6480                 | 0.8291        | 0.5882                 |
|           | self-attn        | 0.7330        | 0.7717        | 0.6507                 | 0.8328        | 0.5783                 |
|           | self-attn*       | 0.7044        | 0.7491        | <b>0.6582</b>          | 0.8342        | 0.5915                 |
|           | fused            | 0.7242        | 0.7318        | 0.6514                 | <b>0.8418</b> | 0.5973                 |
| fused     | conv             | 0.7382        | 0.7574        | 0.6309                 | 0.8266        | 0.5921                 |
|           | self-attn        | <b>0.7547</b> | <b>0.7718</b> | 0.6470                 | 0.8253        | 0.6048                 |
|           | fused            | 0.7212        | 0.7474        | 0.6504                 | 0.8248        | 0.6058                 |
|           | fused*           | 0.7543        | 0.7594        | 0.6555                 | 0.8351        | <b>0.6092</b>          |

934  
935 Table A3: Performance difference based on different training data scale.  
936

| Scale | Binding Affinity |                        | Eluted Ligand |                        |        |
|-------|------------------|------------------------|---------------|------------------------|--------|
|       | AUC              | AUC <sub>epitope</sub> | Accuracy      | AUC <sub>epitope</sub> | CR-AUC |
| 100%  | 0.7627           | 0.8127                 | 0.6955        | 0.8492                 | 0.6634 |
| 70%   | 0.7584           | 0.7923                 | 0.6731        | 0.8382                 | 0.6392 |
| 50%   | 0.7415           | 0.8051                 | 0.6627        | 0.8390                 | 0.5978 |
| 30%   | 0.7310           | 0.7989                 | 0.6412        | 0.8257                 | 0.5821 |

## 944 D MORE EXPERIMENTAL RESULTS

### 945 D.1 ABLATION IN MODEL ARCHITECTURES

946  
947 We first conduct ablation experiments on model architectures, following the general framework of  
948 encoding, interaction, and prediction. For sequence-based encoding of peptide/antigen/MHC-II, we  
949 examine self-attention (Vaswani et al., 2017), 1D convolution, and a fused module that alternates  
950 between them. The interaction module is built from cross-attention layers to captures the peptides-  
951 MHC-II interaction. Then, task-specific prediction heads are applied. The models are trained  
952 separately on peptide BA and EL tasks with inputs initialized by residue-level features and ESM2  
953 embeddings. Augmentation is applied for EL tasks. As shown in Table A2, BA performance is much  
954 better when peptides are encoded via the fused encoder. This can be attributed to the combination of  
955 1D convolution, which captures the binding core more efficiently, and the self-attention layer, which  
956 captures global dependencies. For EL, self-attention encoders generally perform better. One possible  
957 explanation is that self-attention, based on its higher expressivity, benefits more from the larger-scale  
958 EL data. Based on these results, we use the fused encoder for peptides and self-attention for MHC-II  
959 in all other experiments in this work.

### 960 D.2 ABLATION IN DIFFERENT DATA SCALES

961  
962 In this experiment, we perform an ablation study with respect to data scales to demonstrate the  
963 advantages of our curated dataset. Table 1 already shows that our dataset has more data points  
964 compared to existing ones, along with better MHC-II coverage and peptide diversity. To quantitatively  
965 evaluate how data scale affects the model performance, we re-train our best model using 70%, 50%,  
966 and 30% of the training data from random sampling. As shown in Table A3, both peptide-level and  
967 antigen-level metrics show large performance improvement as data scale increases. The epitope-level  
968 measures, on the other hand, show marginal improvement. As we noted in the main text, epitope-level  
969 evaluation can be noisy, less efficient, and biased toward antigens with more verified epitopes. We  
970 argue that this is one of the reasons behind the marginal improvement.  
971

972  
973  
974 Table A4: Performance across different MHC-II alleles (DQ, DP, DR) of our best model.  
975  
976  
977  
978

| MHC-II Type | Binding Affinity |                        | Eluted Ligand |                        |        |
|-------------|------------------|------------------------|---------------|------------------------|--------|
|             | AUC              | AUC <sub>epitope</sub> | Accuracy      | AUC <sub>epitope</sub> | CR-AUC |
| DP          | 1.0              | 1.0                    | 0.7213        | 0.8906                 | 0.6883 |
| DQ          | 0.7008           | 0.8420                 | 0.5898        | 0.8126                 | 0.6231 |
| DR          | 0.7641           | 0.8079                 | 0.7237        | 0.8038                 | 0.6386 |

979  
980 Table A5: Sensitivity analysis of the model outputs with different levels of structural noise.  
981  
982  
983  
984  
985

| Method               | Task | $\sigma = 0.1$ | $\sigma = 0.3$ | $\sigma = 0.5$ |
|----------------------|------|----------------|----------------|----------------|
| Sequence + Structure | BA   | 2.57e-06       | 3.48e-06       | 3.37e-06       |
| Sequence + Structure | EL   | 1.15e-05       | 1.85e-05       | 1.97e-05       |
| Structure-only       | BA   | 8.54e-04       | 1.6e-03        | 2.3e-03        |
| Structure-only       | EL   | 0.016          | 0.051          | 0.069          |

986  
987 D.3 PERFORMANCE ACROSS MHC-II ALLELES  
988

989 We further evaluate the performance across different MHC-II alleles. The results from our best  
990 peptide model is shown in Table A4. The best antigen-based model has an average CR-AUC score of  
991 0.6649, with MHC-II specific scores of DP = 0.721, DQ = 0.598, and DR = 0.612. In general, DQ has  
992 the lowest performance, followed by DR and DP. This could be attributed to the uneven distribution  
993 of samples across MHC-II types. In training data, both EL and BA datasets have highly unbalanced  
994 MHC-II coverage, with DP:DQ:DR ratio equals 16:8:76 and 42:20:38, respectively. The BA test set  
995 is also unbalanced with only 5% of samples from DQ and DP, making their performance less reliable.  
996 This imbalance is inevitable, as the latest binding affinity entries in IEDB after 2020, as our initial  
997 test candidates, are already heavily skewed towards DR, which accounts for 95% of samples. One  
998 reason for this bias is that DR alleles are often expressed at higher levels on antigen-presenting cells,  
999 making them more dominant in immune presentation and easier to study experimentally. In contrast,  
1000 the MHC-II distribution on EL test set is much more balanced (38% DR, 42% DP, and 20% DQ),  
1001 offering a reliable view of how models perform across MHC-II types. In short, the smaller number of  
1002 DQ allele samples may be the source of challenges behind achieving good model performance.

1003 D.4 SENSITIVITY ANALYSIS WITH STRUCTURAL NOISE  
1004

1005 Since the predicted structure from AlphaFold3 may suffer from errors that propagate to the main  
1006 model, we perform a sensitivity analysis of the model’s outputs against structural noise. We first  
1007 train a model variant that only takes MHC-II structures as inputs instead of both MHC-II sequences  
1008 and structures. Note that the amino acid type information is inherently encoded in the structure. We  
1009 then perform a sensitivity analysis by evaluating output variance under settings of simulated structure  
1010 prediction errors. This is achieved via structure perturbation. Gaussian noises with mean 0 and three  
1011 base scales,  $\sigma \in \{0.1, 0.3, 0.5\}$ , are added to the atom coordinates. To mimic the actual prediction  
1012 error, the scale is further weighted by the pLDDT score (ranging from 0 to 100) of each atom, which  
1013 is a confidence estimate from AF3. The less confident the prediction, the more noise is added to the  
1014 structure. Concretely, noise is sampled from  $\mathcal{N}(0, \sigma(1 - \text{pLDDT}/100))$ . We generate 5 perturbed  
1015 structures for each MHC-II and base scales, and convert them into the input structure tokens. We then  
1016 report the output variance averaged across all peptide-MHC-II test pairs in BA and EL in Table A5.  
1017 The outputs are highly stable for the sequence-structure model. This is expected since the sequence  
1018 modality is more robust to noise or prediction errors. On the other hand, the structure-only model  
1019 shows much larger output variance as the noise increases, despite its comparable performance. This  
1020 indicates the advantages of explicitly integrating sequence information as a separate modality for  
1021 robust prediction in realistic and noisy settings.

1022 D.5 QUALITATIVE ANALYSIS OF CR-AUC  
1023

1024 To better understand what CR-AUC captures and the outcome difference between peptide-based and  
1025 antigen-based models, we select three typical antigen-MHC-II pairs from the test set and visualize  
their coverage-redundancy (CR) curve as shown in Figure A3. All examples suggest that antigen-

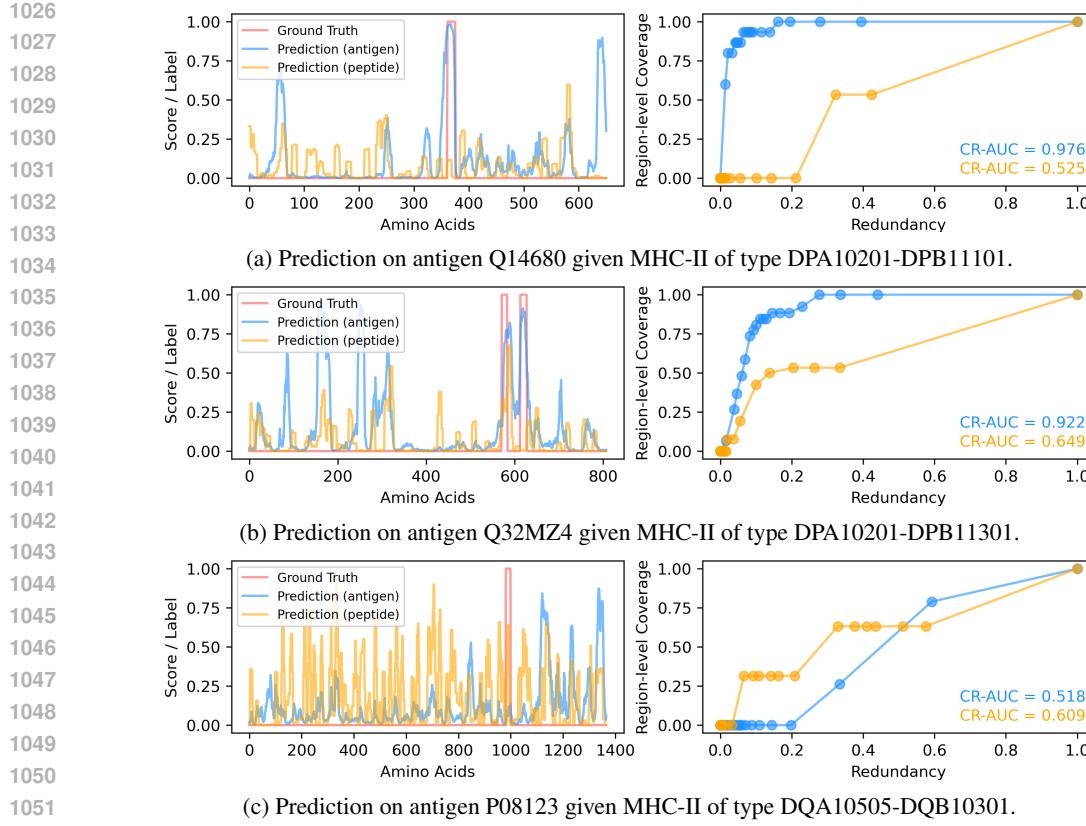


Figure A3: Example performance comparison between peptide-based models and antigen-based models on two antigen proteins using coverage-redundancy curve. The blue and orange line in the left plots indicate the predicted residue-level scores, while the red line captures the ground truth regions.

based models are more likely to produce localized and confident predictions along the antigen sequence, given its richer context. Figure A3b represents cases where the same antigen contains multiple observed epitopes. Since antigen-based models can capture them, it results in a steeper CR curve with higher CR-AUC value. Conversely, Figure A3c presents a case where the antigen-based model fails to detect the observed epitope. Even through the peptide-based model successfully identifies the epitope, it generates a lot more region proposals, resulting in a flatter CR curve compared to Figure A3a.

## E COMPUTATIONAL RESOURCES

All experiments in this work were conducted on an A6000 GPU. Using the training hyperparameters described above, one round of joint BA and EL training takes approximately 20 hours to complete on an Intel(R) Xeon(R) w7-2495X CPU, while one round of antigen training takes approximately 4 hours to finish. The primary computational bottleneck is I/O speed, as each training iteration requires access to the huge precomputed ESM2 database (207GB in total).

## F LICENSES FOR EXISTING ASSETS

Our dataset is mainly curated from IEDB (Vita et al., 2018), which is funded by National Institute of Allergy and Infectious Diseases (NIAID). According to IEDB’s copy right information, NIAID does not impose any restrictions on the use or distribution of data within IEDB. The other sources of MixMHC2pred2 (Racle et al., 2023), NetMHCIpan-3.2 (Jensen et al., 2018), and NetMHCIpan-4.0 (Reynisson et al., 2020) are all under the CC BY-NC 4.0 license.

1080 Table A6: Basic statistics of our curated datasets.  $\#$  denotes the count of unique objects.  $Seq$  refers  
 1081 to peptide sequences for peptide-level tasks and antigen sequences for antigen-level task.  $Seq \odot$   
 1082 indicates sequences that are presented in training. The test pairs are guaranteed to be unseen. The  
 1083 exact count for 1.1M and 0.9M are 1,113,537 and 897,984, respectively.

|              | Peptide Binding Affinity |       |      | Peptide Presentation |        |       | Antigen Presentation |       |       |
|--------------|--------------------------|-------|------|----------------------|--------|-------|----------------------|-------|-------|
|              | Train                    | Val   | Test | Train                | Val    | Test  | Train                | Val   | Test  |
| #Pair        | 133,044                  | 7,040 | 938  | 1.1M                 | 54,351 | 2,929 | 46,539               | 3,058 | 1,759 |
| #Seq         | 16,946                   | 800   | 196  | 0.9M                 | 52,467 | 2,414 | 9,200                | 2,041 | 1,382 |
| #Seq $\odot$ | -                        | 200   | 0    | -                    | 12,387 | 0     | -                    | 1,590 | 979   |
| #MHCII       | 77                       | 60    | 28   | 132                  | 83     | 72    | 121                  | 57    | 73    |

1091 Table A7: Mapping of evaluation methods (column) and benchmark tasks (row).

| Scale         | Peptide-level Tasks    |                        | Antigen-level Task |
|---------------|------------------------|------------------------|--------------------|
|               | Binding Affinity       | Eluted Ligand          |                    |
| Peptide-level | RMSE, AUC              | Accuracy               | -                  |
| Epitope-level | FRANK, $AUC_{epitope}$ | FRANK, $AUC_{epitope}$ | -                  |
| Antigen-level | -                      | CR-AUC                 | CR-AUC             |

1099 The motif deconvolution software MoDec (Racle et al., 2019b) employs a custom software license for  
 1100 academic non-commercial research purposes only. AlphaFold3 (Abramson et al., 2024) is licensed  
 1101 under CC BY-NC-SA 4.0.

## 1103 G USE OF LARGE LANGUAGE MODELS (LLMs)

1106 We only use the LLMs to correct the grammar and polish the writing in this work.

1134  
 1135  
 1136  
 1137  
 1138  
 1139  
 1140  
 1141  
 1142  
 1143  
 1144  
 1145  
 1146  
 1147  
 1148  
 1149  
 1150  
 1151  
 1152  
 1153  
 1154  
 1155  
 1156  
 1157  
 1158  
 1159  
 1160  
 1161  
 1162  
 1163  
 1164  
 1165  
 1166

Table A8: The full results table of Table 3 in the main text.  $\downarrow$  means lower is better, and vice versa.

| Input | Strategy |        |       | Binding Affinity |                   |                | Eluted Ligand      |                                   |                     |                    |                                   |                   |
|-------|----------|--------|-------|------------------|-------------------|----------------|--------------------|-----------------------------------|---------------------|--------------------|-----------------------------------|-------------------|
|       | ESM2     | Struct | Joint | Aux              | RMSE $\downarrow$ | AUC $\uparrow$ | FRANK $\downarrow$ | AUC <sub>epitope</sub> $\uparrow$ | Accuracy $\uparrow$ | FRANK $\downarrow$ | AUC <sub>epitope</sub> $\uparrow$ | CR-AUC $\uparrow$ |
| ✓     | ✓        | ✓      | ✓     | ✓                | 0.2553            | 0.7547         | 0.2240             | 0.7717                            | 0.6470              | 0.1660             | 0.8253                            | 0.6048            |
|       |          |        |       |                  | 0.2466            | 0.7313         | 0.2425             | 0.7615                            | 0.6098              | 0.1850             | 0.8095                            | 0.6101            |
| ✓     | ✓        | ✓      | ✓     | ✓                | 0.2584            | 0.7367         | 0.2401             | 0.7564                            | 0.6582              | 0.1642             | 0.8264                            | 0.6198            |
| ✓     | ✓        | ✓      | ✓     | ✓                | 0.2553            | 0.7473         | 0.2374             | 0.7747                            | 0.6354              | 0.1587             | 0.8328                            | 0.6045            |
| ✓     | ✓        | ✓      | ✓     | ✓                | 0.2419            | <b>0.7656</b>  | 0.2134             | 0.7658                            | 0.6763              | 0.1457             | 0.8372                            | 0.6420            |
| ✓     | ✓        | ✓      | ✓     | ✓                | <b>0.2408</b>     | 0.7627         | <b>0.1855</b>      | <b>0.8127</b>                     | <b>0.6955</b>       | <b>0.1409</b>      | <b>0.8492</b>                     | <b>0.6634</b>     |

1167  
 1168  
 1169  
 1170  
 1171  
 1172  
 1173  
 1174  
 1175  
 1176  
 1177  
 1178  
 1179  
 1180  
 1181  
 1182  
 1183  
 1184  
 1185  
 1186  
 1187  
 1188  
 1189  
 1190  
 1191  
 1192  
 1193  
 1194  
 1195  
 1196  
 1197  
 1198  
 1199

Table A9: The full results table of Table 4 in the main text.  $\downarrow$  means lower is better, and vice versa.

| Method                                | Binding Affinity  |                |                    |                                   |                     |                    | Eluted Ligand*                      |                   |  |
|---------------------------------------|-------------------|----------------|--------------------|-----------------------------------|---------------------|--------------------|-------------------------------------|-------------------|--|
|                                       | RMSE $\downarrow$ | AUC $\uparrow$ | FRANK $\downarrow$ | AUC <sub>epitope</sub> $\uparrow$ | Accuracy $\uparrow$ | FRANK $\downarrow$ | AUC <sub>C-epitope</sub> $\uparrow$ | CR-AUC $\uparrow$ |  |
| NetMHCIPan4.3 (Nilsson et al., 2023a) | <b>0.2295</b>     | <b>0.8115</b>  | 0.1886             | 0.8236                            | 0.4980              | 0.1292             | <b>0.8672</b>                       | 0.6526            |  |
| RPEMHC (Wang et al., 2024)            | 0.2433            | 0.7978         | <b>0.1569</b>      | <b>0.8436</b>                     | -                   | -                  | -                                   | -                 |  |
| MixMHC2Pred2 (Racle et al., 2023)     | -                 | -              | -                  | -                                 | 0.3462              | 0.1420             | 0.8658                              | 0.6906            |  |
| InnuScope (Shen et al., 2025)         | -                 | -              | -                  | -                                 | 0.6570              | 0.1240             | 0.8549                              | 0.6796            |  |
| Ours                                  | 0.2408            | 0.7627         | 0.1855             | 0.8127                            | <b>0.7347</b>       | <b>0.1192</b>      | 0.8662                              | <b>0.7349</b>     |  |