Extreme Multi-label Text Classification with Pseudo Label Descriptions

Anonymous ACL submission

Abstract

Extreme multi-label text classification (XMTC)
is the task of tagging each document with the
relevant labels in a large predefined label space,
where the label frequency distribution is of-
ten highly skewed. That is, a large portion of
labels (namely the tail labels) have very few
positive instances, posing a hard optimization
problem for training the classification models.
The severe data sparse issue with tail labels
is more announced in recent neural classifiers,
where the embeddings of both the input docu-
ments and the output labels need to be jointly
learned, and the success of such learning re-
lies on the availability of sufficient training in-
stances. This paper addresses this tough chal-
lenge in XMTC by proposing a novel approach
that combines the strengths of both traditional
bag-of-words (BoW) classifiers and recent neu-
ral embedding based classifiers. Specifically,
we use a trained BoW model to generate a
pseudo description for each label, and apply
a neural model to establish the mapping be-
tween input documents and target labels in
the latent embedding spaces. Our experiments
show significant improvements of the proposed
approach over other strong baseline methods
on benchmark datasets, especially on tail label
prediction. We also provide a theoretical anal-
ysis for relating BoW and neural models w.r.t.
performance lower bound.

1 Introduction

Extreme multi-label text classification (XMTC) is
the task of tagging each document with the rele-
vant category labels in a very large predefined label
space, in which the number of categories can be
from a few thousands to more than a million. It has
a wide range of potential applications, such as as-
signing subject topics to articles, tagging keywords
for online shopping recommendation, classifying
products for tax purposes, and so on.

The label frequencies in XMTC often follow a
power law. That is, a small portion of the labels

Tail label with 1~9 training instances
label vs instance distribution
100%

88.65%

Il Label

80% M Instance

63.48%
60!

R

40%
27.06%

20%

9.50%

0.27%
AmazonCat-13K

0%
EURLex-4K

Wiki10-31K

Figure 1: In the skewed distribution of XMTC, tail
labels with less than 10 training instances cover a large
portion, if not the majority, of the label space, but their
training instances cover a only small percentage of the
training set.

have a dominating number of training instances
(namely head labels), whereas the majority of the
labels have very few training instances (namely as
tail labels), as illustrated in figure 1. The severe
data sparse issue with the tail labels poses a harder
optimization problem for XMTC than the classi-
fication tasks where the number of categories are
much smaller and the label distributions are not as
skewed.

Traditional classifiers typically use a bag-of-
words (BoW) vector to represent each document,
whose dimension is the the entire document vocab-
ulary. Each word in the document is treated as an
one-hot vector weighted by the tf-idf (Kuang and
Xu, 2010) value. Summing over the one-hot vectors
of the within-document words yields the BoW rep-
resentation of the document. Since the BoW vec-
tors of documents are typically high-dimensional
and very sparse, we call the classification models
based on such representation as BoW classifiers
or sparse classifiers. Models like DiISMEC (Bab-
bar and Scholkopf, 2017), ProXML (Babbar and
Scholkopf, 2019) and PPDSparse (Yen et al., 2017)
are recent examples of this kind. BoW classifiers
enjoy their simplicity and effectiveness in utilizing

local and global frequencies of words in unlabeled
data, such as TF (the within-document frequency
of each word) and IDF (the within-corpus inverted
document frequency of each word), which is ar-
guably a strength in addressing the severe data
sparse issue in tail label prediction (see the rest
of this paper for deeper insights). As for their
weaknesses or limitations, the word independence
assumption in the BoW presentations is clearly un-
justified, as word location, ordering and semantic
dependencies in context are ignored.

In contrast, recent neural classifiers use neural
networks to extract latent features with learnable
parameters, and obtain a lower dimensional dense
vector as document embedding. Typically, neural
classifiers learn the latent label embeddings jointly
with the document embeddings in an end-to-end
training process. Since the learned document and
label representations are both dense vectors, we
call such models dense classifiers in this paper. Re-
cently, large pre-trained Transformer-based mod-
els such as BERT (Devlin et al., 2018) and XL-
Net (Yang et al., 2019) have been adapted to XMTC
problems to extract expressive contextualized fea-
tures. Examples include X-Transformer (Chang
et al., 2020), APLC-XLNet (Ye et al., 2020) and
LightXML (Jiang et al., 2021), which achieved
state-of-the-art (SOTA) performance on several
benchmark datasets for XMTC evaluation. Despite
the desirable expressiveness of such dense classi-
fiers, how much does their successes depend on the
availability of a large quantity of labeled training
data, and how much does their performance suffers
under severe data sparse conditions? These ques-
tions have not investigated in sufficient depth so
far. Furthermore, the dense classifiers do not make
explicit use of the unsupervised statistics like tf-idf
term weights, which maybe a potential weakness.

This paper aims to improve the prediction power
of XMTC classifiers especially with respect to tail
label prediction. Specifically, we propose a frame-
work that combines the strengths of both BoW
sparse classifiers and neural dense classifiers. The
key idea is 1) using a trained BoW model to select
keywords for each label, which yields the pseudo
label description, and 2) training a neural model
based on the training pairs of input documents
and the pseudo descriptions. Step 1 leverages the
strength of Bow models in using unsupervised TF-
IDF statistics, which would be particularly impor-
tant under severe data sparse conditions (see sec-

tion 3 for details) , and Step 2 takes advantage
of a neural encoder in learning expressive repre-
sentations (embeddings) of documents and labels.
Our experiments show significant improvements
of the proposed approach over other strong base-
line methods on benchmark datasets, especially on
tail label prediction. A theoretical analysis is also
provided for relating BoW and neural models w.r.t.
performance lower bound.

2 Related Work

Sparse Classifier: Traditional sparse classifiers
rely on the bag-of-words features such as one-hot
vector with tf-idf weights, which capture the word
importance in a document. An early example is
the one-vs-all SVM (Babbar and Schélkopf, 2017;
Yen et al., 2017). Later methods leverage the tree
structure of the label space for more effective or
scalable learning (Prabhu et al., 2018; Jain et al.,
2019). Since tf-idf features rely on surface-level
word matching, sparse classifiers tend to miss the
semantic matching among lexical variants or re-
lated concepts in different wording.

Dense Neural Models: Neural models learn to
capture the high level semantics of documents
with dense feature embeddings. Typically, these
methods employ a neural feature extractor such as
CNN (Liu et al., 2017) or deep pre-trained Trans-
former models (Chang et al., 2020; Jiang et al.,
2021; Ye et al., 2020) to encode the input document
into a fixed vector. Another type of method applies
a label-word attention mechanism (You et al., 2018)
to calculate label-aware document embeddings, but
it requires more computational cost proportional
to the document length. In the above neural mod-
els, the feature extractor and the label embedding
(randomly initialized) are jointly optimized via su-
pervised signals. As we will show later, neither
the feature extractor nor the label embedding can
be sufficiently optimized for the tail labels whose
supervision signals are mostly negative.

Hybrid Approach: X-Transformer (Chang et al.,
2020) complements neural model with sparse fea-
ture by concatenating tf-idf with the learned cluster-
level neural embedding. The prediction is mathe-
matically equivalent to aggregating the scores of
the sparse and dense classifiers. However, the two
classifiers are independent to each other. Recent
works in retrieval combines the sparse and dense
features into a unified system for enhanced perfor-
mance. SPARC (Lee et al., 2019) learns contex-

tualized sparse feature indirectly via Transformer
attention. COIL (Gao et al., 2021) leverages lexical
matching of contextualized BERT embeddings, and
CLEAR (Gao et al., 2004) designs a residual-based
loss function for the neural model to learn hard
examples from a sparse retrieval model. While we
also combine the sparse feature with neural model,
the classification setting does not assume prede-
fined label description as in the retrieval setting.

Label Description: When both the document text
and label descriptions are available, the ranked-
based multi-label classification is similar to the
retrieval setting, where the dual encoder mod-
els (Gao and Callan, 2021; Xiong et al., 2020;
Luan et al., 2020; Karpukhin et al., 2020) have
achieved SOTA performance in information re-
trieval on large benchmark datasets with millions
of passages. The Siamese network (Dahiya et al.,
2021) for classification encodes both input docu-
ments and label descriptions under the assumption
that high quality label descriptions are available.
Chai et al. (2020) tries a generative model with
reinforcement learning to produce extended label
description with predefined label descriptions for
initialization and uses cross attentions between in-
put text document and output labels. Although
their ideas of utilizing label descriptions are attrac-
tive, the performance of those systems crucially
depends on availability of predefined high-quality
label descriptions, which is often difficult to obtain
in real-world applications. Instead, the realistic
label descriptions are often short, noisy and insuffi-
cient for lexicon-matching based label prediction
for input documents. How to generate informative
label descriptions without human efforts is thus an
important problem, for which we offer an algorith-
mic solution in this paper.

3 Rethinking Sparse and Dense XMTC

Let D = {(xi,¥i) f\irf“} be the training data where
x; is the input text and y; € {0, 1} are the binary
ground truth labels. Given an instance x and a label
[, a neural classification system jointly learns the
feature embedding ¢y, (x; 0) (parameterized by)
and the label embedding w;. The system calculates
a relevance score (logits) s; = (¢, (), w;), which
is then normalized by the sigmoid function to pro-
duce p; = o(s;), indicating the probability of the
label being true. The probability is optimized by

the binary cross entropy (BCE) loss:

L
Lycg = — Zyl logp; + (1 — ;) log(1 — py)
=1

The derivative of Lgcg w.r.t the logits is:

aﬁga;__{pl—l ity =1

0sy Dl otherwise

We analyze the difficulty of both the document
and label embedding optimization in the skewed la-
bel distribution from the gradient perspective, and
show that: 1) the learned document feature lacks
for the representation of tail label. 2) the tail label
embedding is hard to encode meaningful informa-
tion by supervised signals alone. We then provide
empirical observations together to shed light on our
proposed framework.

3.1 Analysis of Document Feature Learning

In multi-label classification, the document feature
needs to reflect all the representations of relevant
labels. In fact, the gradient describes the relation
between feature ¢, (x) and label embedding w;.
By the chain rule, the gradient of Lgcg w.r.t the
document feature is:

OLpce(y1,p1) _ {(pz —Dw; ify =1

O0n(x) piw;

By optimizing parameters 6 of feature extractor,
the document feature is encourage to remove the
information of a negative label, that is:

otherwise

On(x;0') + o (x;0) — npwy

where 7 is the learning rate. Since a tail label has
an overwhelming number of negative instances and
0 is shared for all the data, the feature extractor is
inclined to remove the tail label information, which
will be missing in the document representation. In
comparison, the sparse feature like tf-idf is unsu-
pervised from corpus statics, which does not suffer
from this problem. The feature may still maintain
the representation power to separate the tail labels.

3.2 Analysis of Label Feature Learning

When the labels are treated as indices in a classi-
fication system, they are randomly initialized and
learned from supervised signals. The gradients of
Lycg w.r.t the label feature is:

mmmmm_{m—n%@)
Ow PiPn (m)

ify; =1

otherwise

The label embedding is updated by:

w) = w; + N77. E (1 — pa)Pn(i)
wain ;o7
Ui
TN pzlﬁbn(mz)
train i1 =0

After the optimization, the label embedding tends
to include features from positive instances and ex-
clude features from negative instances. As most
of the instances are negative for a tail label, the
update is inundated with the aggregation of nega-
tive features, making it hard to encode distinctive
feature reflecting its identity. Therefore, learning
the tail label embedding from supervised signals
alone can be very distracting. Although previous
works leverage negative sampling to alleviate the
problem (Jiang et al., 2021; Chang et al., 2020),
we argue that it is important to initialize the label
embedding with the label side information.

Tail-label 1~9, Macro F1@k relative to SVM
| pe Transformer I XLNet-APLC LightXmML AttentlonXML
25% .0

7.5%

oy T
-27.5%

-45%
-62.5%

-80%

relative improvement

618

-83,0 981

EURLex-4K W1k110 31K AmazonCat 13K

Figure 2: The evaluation of tail label prediction for
SOTA Transformer-based models with macro-averaging
F1@k, where k£ = 19 for Wikil0-31K and k£ = 5 for
the other datasets. The figure shows the relative im-
provement to the SVM baseline with * indicating the
significance for p < 0.01.

3.3 Observations and Proposed Idea

Obs. 1: sparse classifier has an advantage on
tail label prediction. We evaluate the classifica-
tion performance of tail labels with less than 10
training instances by the macro-averaging F1 met-
ric described in section 6. In figure 2, the dense
models are compared with a linear SVM baseline
trained from tf-idf feature, and the relative improve-
ment is reported. The 3 deep Transformer models
except for AttentionXML underperform the sparse
classifier on all datasets, with * indicating the sig-
nificance (Yang and Liu, 1999) for p < 0.01. At-
tentionXML performs the best in two datasets, but
it utilizes the more expensive label-word attention
that doesn’t encode the document into a fixed rep-
resentation, which we don’t seek to improve it in
this paper.

Obs. 2: provided label descriptions are noisy.
The provided label descriptions are shown in the
left of table 1, which are usually very short, noisy
and insufficient to be related to the document with
lexical matching. As an example in Wikil0-31K,
the label text phase4 (with only 1 training instance)
is hard even for human to understand the meaning
without more context or definitions specific to the
document. With generated pseudo label description
(explained in the next part), we can understand it is
about medical testing phases with keywords trial,
clinical, drug ... extracted. Although not all the
keywords can provide rich semantics to comple-
ment the original label text, they may serve as a
context for the label to make it more distinguish-
able, i.e. responsibility, reconciliation for label
child care.

Proposed Idea From the analysis of document fea-
ture learning and observation 1, the sparse classifier
has a strength in tail label prediction. Additionally,
the learned label embeddings from a sparse classi-
fier can be interpreted as importance of words in
the corpus vocabulary for the label. In this way,
we can extract the top k keywords from the label
embedding as the pseudo label description. From
the analysis of label feature learning, it is impor-
tant to provide additional label side information
for label embedding. In observation 2, the neural
model may benefit from the extracted keywords
that leverage the knowledge from the sparse classi-
fier and generalize better with neural embeddings
of the keywords.

In section 4, we will explain the proposed frame-
work that leverages the pseudo label description; in
section 5, we provide theoretical analysis to relate
the performance of our model with respect to the
sparse classifier; in section 6, we demonstrate the
generalization power of our model by experiments
on benchmark datasets.

4 Keyword-selected Dual Encoder

In this section, we proposed a dual encoder frame-
work that leverages the pairs of input document
with the pseudo label descriptions extracted from a
sparse classifier. We call it the Keyword-selected
Dual Encoder (KDE).

Sparse classifier: We train a linear SVM model
with tf-idf feature ¢ () as the sparse classifier:

fsparse(xa l) = U(<¢t(m)7 'wl>)

The learned word embedding w;; denotes the im-

Dataset Label Text \ Top Keywords

care child parent upbringing family responsabilitie occupational affordable reconciliation
leave reconcile responsibility arise enable need service effective talent ambition charter
science confidential 452 access society scientific purposes whose researchers

child care (1)

EURLex-4K scientific profession (3) bodies bank 831 issues may central list recalling data recognises 412
.. traction(5) extractive industries extracting drilling contract soda awarded mineral mining ash
minmng extraction 531 corporation through dialogue tailings communicate tenneco 1600 webb value
hased (1) trials clinical protection personal directive processed data trial drug phase eu
pha processing patients sponsor controller legislation regulation art investigator study
Wikil0-31K eco-construction (3) solar building cob passive glazing cordwood thermal timber sewage natural

autonomous roof clay window insulation cistern septic shade bale reduce
tex book artist spine binding bind bookbinding bookbinder nickname scroll signature

bookmaking (5) someone raise glue sew texas fold cloth endpaper typeset

cabinetmaking booklet upcoming excerpts building centers cabinet book joinery
kreg mark basics develop provided content produce allow entire customer covers
favorable slung impress dye sweater worn multi dress pair space
super sure palette knit jean low favorite jacket brown soft
crops acres farmers sustainable hobby grit profitable livestock farms discusses
small issue national gardening soil readers designed magazine traditional homegrown

booklet envelopes (1)
Amazoncat-13K sweater dresses (3)

farming (5)

Table 1: Example of provided label descriptions with training frequency in parenthesis for the benchmark datasets,
and the top 20 extracted label keywords from the sparse classifier. For illustration purpose, we manually highlight
keywords that can enrich the original label text.

portance of the word ¢ for label {. The top k& impor-
tant keywords selected for label [is denoted as z;,
where k is a hyperparameter.

KDE: We first train a base neural classifier with
feature extract ¢, (x) (initialized by BERT) and
the label embeddings u; (randomly initialized):

fdense(mal) = U(<¢n(w)aul>) (1)

Then we fine-tune the model on pseudo label de-
scriptions by sharing the encoder ¢y,(.) for both the
text (x) and keywords (z;):

o ((On(®), Pn(21))) + faense(@, 1)

2

2
The predicted probability is an average of two
terms, where o({¢,(x), d,(z;))) leverages the
document and label semantic matching that ben-
efits the tail label prediction, and fgense(, () is a
dense classifier that is better optimized for head
labels with sufficient training data.
Inference: we can directly use fxpg or a weighted
sum of sparse and KDE classifiers:

Jkpe(z, 1) =

fﬁnal(wa l) = (1 -)\)fsparse(wa l) +)\fKDE('Ta l)

We set A = % as a simple design choice.

Learning: fgense and fiparse are optimized with the
BCE loss. For fxpe(x, 1), calculating ¢, (2;) for
all labels both expensive and prohibitive by mem-
ory limit, so we use negative sampling for in-batch

optimization. Specifically, the label representations
are calculated over a subset of labels S, = Py, UNp,
where Pj, contains all the positive labels for the in-
stances in the batch and N, are the negative labels
with hard negatives and uniform random sampling.
For each instance, the hard negative labels are the
false positive predictions by the SVM model. The
objective for dual encoder is:

N
1
mmN; Z+longDE(w,p)
i 3)
+ Y log(1— frpr(z,n))
nGSb\yi+

where yj is the set of positive labels for instance .

5 Theoretical Analysis on Performance

In the theoretical analysis, we demonstrate that
KDE achieves a lower bound performance as the
sparse classifier, given the selected keywords are
important and the sparse classifier can separate
the positive from the negative instances with non-
trivial margin.

Let ¢;(x) be the normalized tf-idf feature vector
of text with ||¢¢(x)||2 = 1. The sparse label embed-
dings {wy, ..., wr} satisfies ||w;||2 < 1,wy; > 0.
In fact, label embeddings can be transformed to sat-
isfy the condition without changing the prediction
rank. Let 2; be the selected keywords and v; be the

sparse keyword embedding with v;; = wy; if 7 is
keyword and 0 otherwise. We define the keyword
importance and error margin which are major terms
affecting the performance bound.

Definition 1. For label | and § > 0, the sparse
keyword embedding is §-bounded if (¢(x),v;) >
(¢e(z), wi) — 6.
Definition 2. For two labels p and n, the error mar-
gin is the difference between the predicted scores
M(¢(w)7 Wp, wn) = <¢($)7 Wwp — wn>

We state the theorem below with additional as-
sumptions and proofs in appendix A.

Theorem 3. Let ¢i(x) and ¢, () be the sparse
and dense (dimension d) feature, w; be the la-
bel embedding and z; be the §-bounded keywords.
For a positive label p, let N, = {ni,...,nu,}
be a set of negative labels ranked lower than p.
The error margin €; = p(pi(x), wp, wy,) and
¢ = min({e1,...,en,}). An error event & oc-
curs when 11(n (@), 6n(2,), dn(2,)) < 0. The

probability of any such error happening satisfies
e—0)%d

P(E1U...U&N,) < 4M, eXp(_(ESO))

When (e — §) > 10 10ngp

bounded by Mip

, the probability is

Discussion: An error event occurs when the sparse
model makes a correct prediction but the neural
model doesn’t. If the neural model avoids all such
errors, the performance should be at least as good
as the SVM model, and Theorem 3 gives a bound
of that probability.

The term § measures the importance of selected
keywords (smaller the more important), the term
€ term measures the error margin of the correctly
predicted positive and negative pairs by the sparse
model. The theorem states that the model achieves
a lower bound performance as sparse classifier if
the keywords are informative and error margin is
non-trivial.

Theoretical analysis vs. empirical experiments:
1) the bound in the theoretical analysis is very loose
as the proof doesn’t consider contextualized seman-
tic embedding of Transformer models, which could
produce more meaningful features based on the
context and generalize better. 2) we select top k
keywords for every label as a hyper-parameter for
efficient batch encoding of label keywords instead
of the §-bounded keywords. 3) by mining hard
negatives as inputs to KDE , the neural model may

generalize better to avoid the mistakes by sparse
classifier.

6 Experiments

6.1 Experimental Setting

Datasets We conduct our experiments on 3
benchmark datasets: EURLex-4K (Loza Mencia
and Fiirnkranz, 2008), Wikil0-31K (Zubiaga,
2012) and AmazonCat-13K (McAuley and
Leskovec, 2013). The statistics of the datasets
are shown in Table 2. For the tail label evalua-
tion, we consider the labels with 1 ~ 9 training
instances, because we assume the absolute number
of training instance reflects the difficulty of opti-
mization across datasets. The tail labels covers
63.48%, 88.65% and 30% of training labels for the
3 datasets respectively. We obtain the datasets from
the Extreme classification Repository' and a un-
stemmed version of EURLex-4K from the APLC-
XLNet github?.

Implementation Details For the sparse model,
since the public available BoW feature doesn’t have
a vocabulary dictionary, we generate the tf-idf fea-
ture by ourselves. We tokenize and lemmatize the
raw text with the Spacy (Honnibal and Montani,
2017) library and extract the tf-idf feature with the
Sklearn (Pedregosa et al., 2011) library, with un-
igram whose idf is >= 2 and <= 70%. For the
dense model, we fine-tune a 12 layer BERT-base
model with different learning rates for the BERT
encoder, BERT pooler and the classifier. The learn-
ing rates are (le—>5, le—4, 1le—3) for Wikil0-31K
and (5e — 5, le — 4, 2e — 3) for the rest datasets.
We used learning rate le — 5 for fine-tuning the
KDE model. For the pseudo label descriptions, we
concatenate the provided label description with the
generated the top 20 keywords. The final length is
truncated up to 32 after BERT tokenization.

Evaluation Metrics We use the micro-averaging
P@QFk metric to evaluate the overall system perfor-
mance and the macro-averaging F'1@QFk metric to
evaluate the tail label prediction, because both pre-
cision and recall are important for tail label predic-
tions (and F'1QkF is a harmonic average of both).

micro-averaging P@k: The micro-averaging P@k
metric is widely used to evaluate a ranked list of

"http://manikvarma.org/downloads/XC/
XMLRepository.html

https://github.com/huiyegit/APLC_
XLNet .git

http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
https://github.com/huiyegit/APLC_XLNet.git
https://github.com/huiyegit/APLC_XLNet.git

Dataset ‘ Ntrain Niest F l_/d L ptlail ptdail

EURLex-4K 15,539 3,809 34,932 5.30 3956 63.48% 9.50%
Wikil0-31K 14,146 6,616 189,795 18.64 30,938 88.65% 27.06%
AmazonCat-13K | 1,186,239 306,782 200,000 5.04 13,330 29.53% 0.27%

"l:able 2: Niain and Ny are the number of training and testing instances respectively. F' is the tf-idf feature size.
L4 is the average number of labels per document. L is the number of labels. For tail labels with 1 ~ 9 training
instances, pﬁaﬂ is percentage of tail labels and pféi, is the percentage of training instances covered by the tail labels.

EUR-Lex Wikil0-31K AmazonCat-13K
Methods P@l P@3 P@5 | P@l P@3 P@5 | P@l P@3 P@5
DisMEC 83.21 70.39 58.73 | 84.13 7472 65.94 | 93.81 79.08 64.06
Pfastre XML 73.14 60.16 50.54 | 83.57 68.61 59.10 | 91.75 7797 63.68
Parabel 82.12 6891 57.89 | 84.19 7246 63.37 | 93.02 79.14 64.51
Bonsai 82.30 69.55 58.35 | 84.52 73776 64.69 | 9298 79.13 64.46
AttentionXML 85.12 72.80 61.01 | 86.46 77.22 6798 | 95.53 82.03 67.00
X-Transformer 8546 72.87 60.79 | 87.12 76.51 66.69 | 95.75 82.46 67.22
BERT-APLC 8554 72.68 60.59 | 88.54 77.21 6743 | 9449 79.74 64.46
XLNet-APLC 86.83 7434 6194 | 8899 7879 69.79 | 94.56 79.78 64.59
LightXML 86.12 73.87 61.67 | 87.39 77.02 68.21 | 94.61 79.83 64.45
tf-idf+SVM (ours) | 83.44 70.62 59.08 | 84.61 74.64 6589 | 93.20 78.89 64.14
BERT (ours) 84.72 71.66 59.12 | 87.60 76.74 67.03 | 94.26 79.63 64.39
KDE 86.13 73.82 6222 | 88.52 78.13 6898 | 96.13 82.70 67.52
KDE+SVM 8798 7581 63.62 | 89.10 80.24 70.49 | 96.25 81.90 65.20

Table 3: Comparisons between KDE and the SOTA sparse and dense classifiers. The results are evaluated with the
micro-averaging P@5 metrics, with highest values in bold. We report our baseline sparse (tf-idf+SVM) and dense
(BERT) classifiers with KDE and KDE+SVM (average of KDE and SVM predicted score).

predicted labels:

PQk =

=

k
> 1y (i) “
i=1

where p; is the ¢-th label in the predicted ranked
list p and 1, + is the indicator function. The metric
score is averaged over all the test instances.
macro-averaging F1@k: The F'1 metric is a har-
monic average of prediction (P) and recall (R):

P-R

F1=2
P+ R

)

The precision and recall for a predicted ranked list
p are computed by P = %EFP, R = %
according to the confusion matrix in table 4.

‘ liny; I not in y;
linp; True Positive(TP;) False Positive(FP})
I notin p; | False Negative(FN;) True Negative(TN7)

Table 4: Confusion Matrix for instance 7 and label [
given the ranked list p;.

Given N instances and L labels, the macro-
average computes the scores on individual category
first (F'1;), and then take an average over all the
categories (F1 = ﬁ ZieLFll), which reflects
label level performance of the methods.

For micro-averaging P@k, we choose k =
1,3,5 the same as in other works. For macro-
averaging F1 @k, we choose k£ = 19 for WikilO-
31K because it has an average of 18.64 labels and
k = b5 for the rest datasets.

Baselines Our method is compared with the state-
of-the-art baselines including both the sparse and
dense classifiers. Specifically, DisMEC (Bab-
bar and Scholkopf, 2017), PfastreXML (Jain
et al., 2016), Parabel (Prabhu et al., 2018), Bon-
sai (Khandagale et al., 2019) belong to the
sparse classifiers, and X-Transformer (Chang
et al., 2020), APLC-XLNet (Ye et al., 2020)
and LightXML (Jiang et al.,, 2021), Atten-
tionXML (You et al., 2018) belong to the dense

classifier. X-Transformer, LightXML, and APLC-
XLNet employ pre-trained Transformers to encode
a document into a fixed embedding. We report the
single model performance (chosen from their pa-
pers) with BERT-large for X-Transformer, BERT-
base for LightXML and XLNet-base for APLC-
XLNet. The AttentionXML utitizes label-word at-
tention to generate label-aware word embedding in-
stead of a fix document representation. We provide
an additional linear SVM model with our extracted
tf-idf features as a sparse baseline, and BERT-base
classifier as a dense baseline.

6.2 Experimental Results and Discussions

The performance of model evaluated on the micro-
averaging P@5 metric is reported in table 3.
Sparse and dense classifiers: The sparse classi-
fiers (first panel) generally underperform the dense
models (second panel) under the micro-averaging
evaluation metric. Our implementation of Linear
SVM model and BERT model achieve compara-
ble result with the sparse and dense classifiers re-
spectively, except that the AttentionXML and X-
Transformer achieve better result in Amazoncat-
13K. The reason could be that the Amazoncat-13K
product categorization relies more on the lexicon
matching features, which gives the two methods
performance gains.

KDE: Our KDE model is fine-tuned on top of the
BERT model with the pseudo label descriptions
generated from the SVM model. As shown in the
result, KDE has additional gains on both of the
classifiers, indicating KDE can: 1) leverage the
keyword semantic from sparse model for better
generalization, 2) alleviate the difficult of optimiza-
tion of neural model with scarce data by providing
label side information. The KDE model outper-
forms the baseline models on the Amazoncat-13K
dataset, and the KDE+SVM (average of KDE and
sparse classifier scores) performs the best on the
other two datasets.

6.3 Tail Label Evaluation

Previously, we observe that the pre-trained
Transformer-based models underperform the sparse
classifier (Linear SVM baseline) on tail label pre-
diction. In this section, we want to test the ability
of KDE to generalize over the sparse classifier with
the generated pseudo label description for tail label
prediction. The experimental results are shown in
figure 3, where we report the relative performance
of the models under investigation with respect to

Tail-label 1~-9, Macro F1@k relative to SVM

%3
Q
R

*
29.3
*
6.3 10.5

. =8 BB -

- -10.9 5.2 I BERT
36.67% I KDE+label
58.33% 47.8

* * *
20.8 * oo * 47 622:623.3

~

o ®
Lo
238
¥ R R

KDE+label+key5
[KDE+label+key16
KDE+label+key32

relative improvement

-59.2 *
-80% -81.3

EURLex-4K Wiki10-31K * AmazonCat-13K

Figure 3: The evaluation of tail label prediction for a
dense classifier base (BERT) and our proposed KDE
with different settings. The metric is macro-averaging
F1@k, where k = 19 for Wikil0-31K and k = 5 for
the other datasets. The figure shows the relative im-
provement to the SVM baseline with * indicating the
significance for p < 0.01.

the sparse classifier. Specifically, we include the
dense classifier (BERT) without any label side in-
formation as a baseline, which underperforms the
SVM on all of the datasets.

Only Provided Label Text We fine-tune KDE
with only the provided label text, denoted as KDE
+label. The model outperforms the sparse classifier
on the EURLex-4K and Amazoncat-13K dataset,
with the latter one being significant. This is proba-
bly because these two datasets has higher quality
label text compared with Wikil0-31K, where the
label space is both large and noisy.

Pseudo Label Description We fine-tune KDE
with pseudo label descriptions, denoted as KDE
+label+keyk, where k is the length of the pseudo
label description after BERT tokenization. We ob-
serve that with keyword length 16, the model per-
forms the best, which achieves significant improve-
ment on the tail label prediction for all datasets.
With larger £ = 32 in the default setting, the
model includes additional "less important” key-
words, which may introduce noises and thus lower
the performance.

7 Conclusion

In this paper, we analyze the difficulty of opti-
mization of classification systems for XMTC with
skewed label distribution. We alleviate the is-
sue with the a trained sparse classifier to generate
pseudo label descriptions and propose a keyword-
selected dual encoder framework to leverage the in-
put text document with label descriptions. We show
the relation of performance between our model and
the sparse classifier in the theoretical analysis and
demonstrate the effectiveness of our model empiri-
cally on the benchmark datasets.

References

Rohit Babbar and Bernhard Scholkopf. 2017. Dismec:
Distributed sparse machines for extreme multi-label
classification. In Proceedings of the Tenth ACM Inter-
national Conference on Web Search and Data Mining,
pages 721-729.

Rohit Babbar and Bernhard Schélkopf. 2019. Data
scarcity, robustness and extreme multi-label classifi-
cation. Machine Learning, 108(8):1329-1351.

Shai Ben-David, Nadav Eiron, and Hans Ulrich Simon.
2002. Limitations of learning via embeddings in
euclidean half spaces. Journal of Machine Learning
Research, 3(Nov):441-461.

Duo Chai, Wei Wu, Qinghong Han, Fei Wu, and Jiwei
Li. 2020. Description based text classification with
reinforcement learning. In International Conference
on Machine Learning, pages 1371-1382. PMLR.

Wei-Cheng Chang, Hsiang-Fu Yu, Kai Zhong, Yiming
Yang, and Inderjit S Dhillon. 2020. Taming pre-
trained transformers for extreme multi-label text clas-
sification. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery
& Data Mining, pages 3163-3171.

Kunal Dahiya, Ananye Agarwal, Deepak Saini, K Gu-
ruraj, Jian Jiao, Amit Singh, Sumeet Agarwal, Pu-
rushottam Kar, and Manik Varma. 2021. Siame-
sexml: Siamese networks meet extreme classifiers
with 100m labels. In International Conference on
Machine Learning, pages 2330-2340. PMLR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Luyu Gao and Jamie Callan. 2021. Unsupervised cor-
pus aware language model pre-training for dense pas-
sage retrieval. arXiv preprint arXiv:2108.05540.

Luyu Gao, Zhuyun Dai, and Jamie Callan. 2021. Coil:
Revisit exact lexical match in information retrieval
with contextualized inverted list. arXiv preprint
arXiv:2104.07186.

Luyu Gao, Zhuyun Dai, Tongfei Chen, Zhen Fan,
BV Durme, and Jamie Callan. 2004. Complementing
lexical retrieval with semantic residual embedding
(2020). URL: http://arxiv. org/abs.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremental
parsing. To appear.

Himanshu Jain, Venkatesh Balasubramanian, Bhanu
Chunduri, and Manik Varma. 2019. Slice: Scal-
able linear extreme classifiers trained on 100 mil-
lion labels for related searches. In Proceedings of
the Twelfth ACM International Conference on Web
Search and Data Mining, pages 528-536.

Himanshu Jain, Yashoteja Prabhu, and Manik Varma.
2016. Extreme multi-label loss functions for rec-
ommendation, tagging, ranking & other missing la-
bel applications. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 935-944.

Ting Jiang, Deqing Wang, Leilei Sun, Huayi Yang,
Zhengyang Zhao, and Fuzhen Zhuang. 2021.
Lightxml: Transformer with dynamic negative sam-
pling for high-performance extreme multi-label text
classification. arXiv preprint arXiv:2101.03305.

William B Johnson and Joram Lindenstrauss. 1984. Ex-
tensions of lipschitz mappings into a hilbert space 26.
Contemporary mathematics, 26.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. arXiv preprint
arXiv:2004.04906.

Sujay Khandagale, Han Xiao, and Rohit Babbar. 2019.
Bonsai — diverse and shallow trees for extreme multi-
label classification.

Qiaoyan Kuang and Xiaoming Xu. 2010. Improvement
and application of tfe idf method based on text classi-
fication. In 2010 International Conference on Inter-
net Technology and Applications, pages 1-4. IEEE.

Jinhyuk Lee, Minjoon Seo, Hannaneh Hajishirzi, and
Jaewoo Kang. 2019. Contextualized sparse represen-
tations for real-time open-domain question answer-
ing. arXiv preprint arXiv:1911.02896.

Jingzhou Liu, Wei-Cheng Chang, Yuexin Wu, and Yim-
ing Yang. 2017. Deep learning for extreme multi-
label text classification. In Proceedings of the 40th
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
115-124.

Eneldo Loza Mencia and Johannes Fiirnkranz. 2008.
Efficient pairwise multilabel classification for large-
scale problems in the legal domain. In Machine
Learning and Knowledge Discovery in Databases.
Springer Berlin Heidelberg.

Yi Luan, Jacob Eisenstein, Kristina Toutanova, and
Michael Collins. 2020. Sparse, dense, and attentional
representations for text retrieval. arXiv preprint
arXiv:2005.00181.

Julian McAuley and Jure Leskovec. 2013. Hidden fac-
tors and hidden topics: Understanding rating dimen-
sions with review text. page 165—172. Association
for Computing Machinery.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825-2830.

http://arxiv.org/abs/1904.08249
http://arxiv.org/abs/1904.08249
http://arxiv.org/abs/1904.08249
https://doi.org/10.1145/2507157.2507163
https://doi.org/10.1145/2507157.2507163
https://doi.org/10.1145/2507157.2507163
https://doi.org/10.1145/2507157.2507163
https://doi.org/10.1145/2507157.2507163

Yashoteja Prabhu, Anil Kag, Shrutendra Harsola, Rahul
Agrawal, and Manik Varma. 2018. Parabel: Par-
titioned label trees for extreme classification with
application to dynamic search advertising. In Pro-
ceedings of the 2018 World Wide Web Conference,
pages 993-1002.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,
Jialin Liu, Paul Bennett, Junaid Ahmed, and Arnold
Overwijk. 2020. Approximate nearest neighbor neg-
ative contrastive learning for dense text retrieval.
arXiv preprint arXiv:2007.00808.

Yiming Yang and Xin Liu. 1999. A re-examination of
text categorization methods. In Proceedings of the
22nd annual international ACM SIGIR conference on
Research and development in information retrieval,

pages 42-49.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V Le.
2019. Xlnet: Generalized autoregressive pretrain-
ing for language understanding. arXiv preprint
arXiv:1906.08237.

Hui Ye, Zhiyu Chen, Da-Han Wang, and Brian Davison.
2020. Pretrained generalized autoregressive model
with adaptive probabilistic label clusters for extreme
multi-label text classification. In International Con-
ference on Machine Learning, pages 10809-10819.
PMLR.

Ian EH Yen, Xiangru Huang, Wei Dai, Pradeep
Ravikumar, Inderjit Dhillon, and Eric Xing. 2017.
Ppdsparse: A parallel primal-dual sparse method for
extreme classification. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 545-553.

Ronghui You, Zihan Zhang, Ziye Wang, Suyang Dai,
Hiroshi Mamitsuka, and Shanfeng Zhu. 2018. At-
tentionxml: Label tree-based attention-aware deep
model for high-performance extreme multi-label text
classification. arXiv preprint arXiv:1811.01727.

Arkaitz Zubiaga. 2012. Enhancing navigation on
wikipedia with social tags.

http://arxiv.org/abs/1202.5469
http://arxiv.org/abs/1202.5469
http://arxiv.org/abs/1202.5469

A Proof of Theorem 3

Notations: Let ¢.(x) be the normalized tf-idf feature vector of text, s.t. ||¢:(x)||2 = 1. Let the
learned sparse label embeddings be {w;, ..., wr} with [Jw;[2 < 1and w;; > 0,3 € {1,...,L},j €
{1,...,V}. In fact, since we use a ranking metric, we can always normalize the label embeddings by
w;—min({w;;})

max ({ [|w; —min({wi; })[l2}
the keyword-selected label embedding with v;; = wy; if i is keyword and 0 otherwise. Let ¢y, (x) € RY be
the dense neural embedding.

Assumptions: Similar to Luan et al. (2020), we treat neural embedding as fixed dense vector E € R¥*V
with each entry sampled from a random Gaussian N (0, d=1/2), which provides a very loose bound, if not a
lower bound, for neural model performance. Then, ¢,,(a) = Ea is weighted average of word embeddings
whose weights are determined by a sparse vector a. According to the famous the Johnson-Lindenstrauss
Lemma (Johnson and Lindenstrauss, 1984; Ben-David et al., 2002), even if the entries of E are sampled
from a random normal distribution, with large probability, (¢;(x), v) and (E¢.(x), Ev) are close.

> without changing the prediction rank. Let selected keywords be z;, and v; be

Lemma 4. Let v be the §-bounded keyword-selected label embedding of w. For two labels p,n, the error
margins satisfy: |p(p¢(x), wp, wy) — p(pr(x), vy, vy)| <6

Proof. By the definition of §-bounded keyword-selected embedding,

(01(2), wp) — 6 < (¢1(), vp) < (de(T), wp) Q)
(91(), wn) — 6 < (Pr(2), vn) < (Dr(2), wn))
which is equivalent to

(91(), wp) — 0 < (¢r(), vp) < (Pr(x), wp) ®)
—(¢e(@), wn) < —(de(@),vn) < —(dr(2), wn) + 6 ©)

Adding equation 8 and equation 9, we obtain
(Pe(@), wp — wn) — 6 < (Pe(x),vp — vn) < (Pt(x), Wy — Wy) +0 (10)
O

Lemma 5. Let ¢ (x) and ¢, (x) be the sparse and dense (dimension d) feature, w; be the label embedding
and z; be the §-bounded keywords. Let p be a positive label and n be a negative label ranked below
p be the sparse classifier. The error margin is € = ji(¢y(x), wp, wy,). An error event £ occurs when

1(dn (), bn(2p), bn(2n)) < 0. The probability P(€) < 4exp(—214),

Proof. We first state the Johnson-Lindenstrauss Lemma (JL Lemma) (Ben-David et al., 2002):
For vector product states that for any two vectors a, b € R?, let E € R%*" be a random matrix such that
the entries are sampled from a random Gaussian. Then for every constant v > 0:

2
P (|(Ba. Bb) — (a.b)| = 3 (lal> + [|b]?)) < 4exp (—’Qf) an

Lety = Z(e—0), a = ¢¢(x) and b = v, — v,,. Since [|lal|> = 1 and [|bl|2 < ([|vp[|2 + [|vnll2)? < 4, the
JL Lemma gives

P (’M(¢n($), ¢n(zp)a ¢n(zn)) - M(¢t(x)7 (ﬁt(Zp)’ ¢t(zn))‘ Z € — 5) (12)

= P ([(E¢t(z), E(vp — vn)) — (bt(x),vp — vn)| > € —9) (13)
2

< 4exp<_(e53>d) (14)

To complete the proof, we need to show

P((E¢i(x), E(vp —vn)) < 0) < P ([(E¢(x), E(vy — vn)) — (¢1(®), vp —vp)| 2 € =0) (15)

11

An error event occurs when

(Edi(x), E(vp —v,)) <0 (16)
= (E¢i(z), E(vy — vn)) — (¢1(®), wp — wn) < —€ (17
= [(Edi(z), E(vp — vn)) — (91(), wp — wn)| > € (18)
= |<E¢t($)’E(Up_vn)> - <¢t(m)v'vp_vn>‘ 26_6 (19)
where the equation 19 is derived by Lemma 4:
(B¢t (), E(vp —vn)) = (¢e(2), vp — vn)] (20)

=[(E¢i(z), E(vp — vp)) — (¢1(x), wp — wn) + (¢(@), wp — wn) — (P¢(x), vp —)| (21)
2[(E¢i(x), E(vp — vn)) = (d1(), wp — wn)| = [{¢1(), wp — wn) — (¢(x),vp —vn)| (22)
>e—0 (23)

The above shows that the event by equation 19 contains the event by equation 16, which completes the
proof.

Note: Luan et al. (2020) showed that there could be tighter bounds, but that doesn’t affect our analysis.
Our goal is not to derive a tight bound, but to get the relation between the defined terms from the theoretical
analysis. O

Proof of Theorem 3

Proof. The Lemma 2 shows that

i —0)2d —8)32d
P(e) < 4exp(— T < g (0 24)
Apply an union bound on the error events {1, &, ..., E Mp},
M, 9
(e, —0)°d

P(E1U...U&Ey,) < ;4exp(—50) (25)

(e —6)%d
O
When (e—6)? > 10 longp, we have exp(—(e_f)%)Qd) < 4]\/1[» and therefore P(E1U. .. U&y,) < ﬁp

12

