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Abstract

Extreme multi-label text classification (XMTC)001
is the task of tagging each document with the002
relevant labels in a large predefined label space,003
where the label frequency distribution is of-004
ten highly skewed. That is, a large portion of005
labels (namely the tail labels) have very few006
positive instances, posing a hard optimization007
problem for training the classification models.008
The severe data sparse issue with tail labels009
is more announced in recent neural classifiers,010
where the embeddings of both the input docu-011
ments and the output labels need to be jointly012
learned, and the success of such learning re-013
lies on the availability of sufficient training in-014
stances. This paper addresses this tough chal-015
lenge in XMTC by proposing a novel approach016
that combines the strengths of both traditional017
bag-of-words (BoW) classifiers and recent neu-018
ral embedding based classifiers. Specifically,019
we use a trained BoW model to generate a020
pseudo description for each label, and apply021
a neural model to establish the mapping be-022
tween input documents and target labels in023
the latent embedding spaces. Our experiments024
show significant improvements of the proposed025
approach over other strong baseline methods026
on benchmark datasets, especially on tail label027
prediction. We also provide a theoretical anal-028
ysis for relating BoW and neural models w.r.t.029
performance lower bound.030

1 Introduction031

Extreme multi-label text classification (XMTC) is032

the task of tagging each document with the rele-033

vant category labels in a very large predefined label034

space, in which the number of categories can be035

from a few thousands to more than a million. It has036

a wide range of potential applications, such as as-037

signing subject topics to articles, tagging keywords038

for online shopping recommendation, classifying039

products for tax purposes, and so on.040

The label frequencies in XMTC often follow a041

power law. That is, a small portion of the labels042

Figure 1: In the skewed distribution of XMTC, tail
labels with less than 10 training instances cover a large
portion, if not the majority, of the label space, but their
training instances cover a only small percentage of the
training set.

have a dominating number of training instances 043

(namely head labels), whereas the majority of the 044

labels have very few training instances (namely as 045

tail labels), as illustrated in figure 1. The severe 046

data sparse issue with the tail labels poses a harder 047

optimization problem for XMTC than the classi- 048

fication tasks where the number of categories are 049

much smaller and the label distributions are not as 050

skewed. 051

Traditional classifiers typically use a bag-of- 052

words (BoW) vector to represent each document, 053

whose dimension is the the entire document vocab- 054

ulary. Each word in the document is treated as an 055

one-hot vector weighted by the tf-idf (Kuang and 056

Xu, 2010) value. Summing over the one-hot vectors 057

of the within-document words yields the BoW rep- 058

resentation of the document. Since the BoW vec- 059

tors of documents are typically high-dimensional 060

and very sparse, we call the classification models 061

based on such representation as BoW classifiers 062

or sparse classifiers. Models like DiSMEC (Bab- 063

bar and Schölkopf, 2017), ProXML (Babbar and 064

Schölkopf, 2019) and PPDSparse (Yen et al., 2017) 065

are recent examples of this kind. BoW classifiers 066

enjoy their simplicity and effectiveness in utilizing 067
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local and global frequencies of words in unlabeled068

data, such as TF (the within-document frequency069

of each word) and IDF (the within-corpus inverted070

document frequency of each word), which is ar-071

guably a strength in addressing the severe data072

sparse issue in tail label prediction (see the rest073

of this paper for deeper insights). As for their074

weaknesses or limitations, the word independence075

assumption in the BoW presentations is clearly un-076

justified, as word location, ordering and semantic077

dependencies in context are ignored.078

In contrast, recent neural classifiers use neural079

networks to extract latent features with learnable080

parameters, and obtain a lower dimensional dense081

vector as document embedding. Typically, neural082

classifiers learn the latent label embeddings jointly083

with the document embeddings in an end-to-end084

training process. Since the learned document and085

label representations are both dense vectors, we086

call such models dense classifiers in this paper. Re-087

cently, large pre-trained Transformer-based mod-088

els such as BERT (Devlin et al., 2018) and XL-089

Net (Yang et al., 2019) have been adapted to XMTC090

problems to extract expressive contextualized fea-091

tures. Examples include X-Transformer (Chang092

et al., 2020), APLC-XLNet (Ye et al., 2020) and093

LightXML (Jiang et al., 2021), which achieved094

state-of-the-art (SOTA) performance on several095

benchmark datasets for XMTC evaluation. Despite096

the desirable expressiveness of such dense classi-097

fiers, how much does their successes depend on the098

availability of a large quantity of labeled training099

data, and how much does their performance suffers100

under severe data sparse conditions? These ques-101

tions have not investigated in sufficient depth so102

far. Furthermore, the dense classifiers do not make103

explicit use of the unsupervised statistics like tf-idf104

term weights, which maybe a potential weakness.105

This paper aims to improve the prediction power106

of XMTC classifiers especially with respect to tail107

label prediction. Specifically, we propose a frame-108

work that combines the strengths of both BoW109

sparse classifiers and neural dense classifiers. The110

key idea is 1) using a trained BoW model to select111

keywords for each label, which yields the pseudo112

label description, and 2) training a neural model113

based on the training pairs of input documents114

and the pseudo descriptions. Step 1 leverages the115

strength of Bow models in using unsupervised TF-116

IDF statistics, which would be particularly impor-117

tant under severe data sparse conditions (see sec-118

tion 3 for details) , and Step 2 takes advantage 119

of a neural encoder in learning expressive repre- 120

sentations (embeddings) of documents and labels. 121

Our experiments show significant improvements 122

of the proposed approach over other strong base- 123

line methods on benchmark datasets, especially on 124

tail label prediction. A theoretical analysis is also 125

provided for relating BoW and neural models w.r.t. 126

performance lower bound. 127

2 Related Work 128

Sparse Classifier: Traditional sparse classifiers 129

rely on the bag-of-words features such as one-hot 130

vector with tf-idf weights, which capture the word 131

importance in a document. An early example is 132

the one-vs-all SVM (Babbar and Schölkopf, 2017; 133

Yen et al., 2017). Later methods leverage the tree 134

structure of the label space for more effective or 135

scalable learning (Prabhu et al., 2018; Jain et al., 136

2019). Since tf-idf features rely on surface-level 137

word matching, sparse classifiers tend to miss the 138

semantic matching among lexical variants or re- 139

lated concepts in different wording. 140

Dense Neural Models: Neural models learn to 141

capture the high level semantics of documents 142

with dense feature embeddings. Typically, these 143

methods employ a neural feature extractor such as 144

CNN (Liu et al., 2017) or deep pre-trained Trans- 145

former models (Chang et al., 2020; Jiang et al., 146

2021; Ye et al., 2020) to encode the input document 147

into a fixed vector. Another type of method applies 148

a label-word attention mechanism (You et al., 2018) 149

to calculate label-aware document embeddings, but 150

it requires more computational cost proportional 151

to the document length. In the above neural mod- 152

els, the feature extractor and the label embedding 153

(randomly initialized) are jointly optimized via su- 154

pervised signals. As we will show later, neither 155

the feature extractor nor the label embedding can 156

be sufficiently optimized for the tail labels whose 157

supervision signals are mostly negative. 158

Hybrid Approach: X-Transformer (Chang et al., 159

2020) complements neural model with sparse fea- 160

ture by concatenating tf-idf with the learned cluster- 161

level neural embedding. The prediction is mathe- 162

matically equivalent to aggregating the scores of 163

the sparse and dense classifiers. However, the two 164

classifiers are independent to each other. Recent 165

works in retrieval combines the sparse and dense 166

features into a unified system for enhanced perfor- 167

mance. SPARC (Lee et al., 2019) learns contex- 168
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tualized sparse feature indirectly via Transformer169

attention. COIL (Gao et al., 2021) leverages lexical170

matching of contextualized BERT embeddings, and171

CLEAR (Gao et al., 2004) designs a residual-based172

loss function for the neural model to learn hard173

examples from a sparse retrieval model. While we174

also combine the sparse feature with neural model,175

the classification setting does not assume prede-176

fined label description as in the retrieval setting.177

Label Description: When both the document text178

and label descriptions are available, the ranked-179

based multi-label classification is similar to the180

retrieval setting, where the dual encoder mod-181

els (Gao and Callan, 2021; Xiong et al., 2020;182

Luan et al., 2020; Karpukhin et al., 2020) have183

achieved SOTA performance in information re-184

trieval on large benchmark datasets with millions185

of passages. The Siamese network (Dahiya et al.,186

2021) for classification encodes both input docu-187

ments and label descriptions under the assumption188

that high quality label descriptions are available.189

Chai et al. (2020) tries a generative model with190

reinforcement learning to produce extended label191

description with predefined label descriptions for192

initialization and uses cross attentions between in-193

put text document and output labels. Although194

their ideas of utilizing label descriptions are attrac-195

tive, the performance of those systems crucially196

depends on availability of predefined high-quality197

label descriptions, which is often difficult to obtain198

in real-world applications. Instead, the realistic199

label descriptions are often short, noisy and insuffi-200

cient for lexicon-matching based label prediction201

for input documents. How to generate informative202

label descriptions without human efforts is thus an203

important problem, for which we offer an algorith-204

mic solution in this paper.205

3 Rethinking Sparse and Dense XMTC206

Let D = {(xi,yi)
Ntrain
i=1 } be the training data where207

xi is the input text and yi ∈ {0, 1}L are the binary208

ground truth labels. Given an instance x and a label209

l, a neural classification system jointly learns the210

feature embedding ϕn(x; θ) (parameterized by θ)211

and the label embedding wl. The system calculates212

a relevance score (logits) sl = ⟨ϕn(x),wl⟩, which213

is then normalized by the sigmoid function to pro-214

duce pl = σ(sl), indicating the probability of the215

label being true. The probability is optimized by216

the binary cross entropy (BCE) loss: 217

LBCE = −
L∑
l=1

yl log pl + (1− yl) log(1− pl) 218

The derivative of LBCE w.r.t the logits is: 219

∂LBCE

∂sl
=

{
pl − 1 if yl = 1

pl otherwise
220

We analyze the difficulty of both the document 221

and label embedding optimization in the skewed la- 222

bel distribution from the gradient perspective, and 223

show that: 1) the learned document feature lacks 224

for the representation of tail label. 2) the tail label 225

embedding is hard to encode meaningful informa- 226

tion by supervised signals alone. We then provide 227

empirical observations together to shed light on our 228

proposed framework. 229

3.1 Analysis of Document Feature Learning 230

In multi-label classification, the document feature 231

needs to reflect all the representations of relevant 232

labels. In fact, the gradient describes the relation 233

between feature ϕn(x) and label embedding wl. 234

By the chain rule, the gradient of LBCE w.r.t the 235

document feature is: 236

∂LBCE(yl, pl)

∂ϕn(x)
=

{
(pl − 1)wl if yl = 1

plwl otherwise
237

By optimizing parameters θ of feature extractor,
the document feature is encourage to remove the
information of a negative label, that is:

ϕn(x; θ
′)← ϕn(x; θ)− ηplwl

where η is the learning rate. Since a tail label has 238

an overwhelming number of negative instances and 239

θ is shared for all the data, the feature extractor is 240

inclined to remove the tail label information, which 241

will be missing in the document representation. In 242

comparison, the sparse feature like tf-idf is unsu- 243

pervised from corpus statics, which does not suffer 244

from this problem. The feature may still maintain 245

the representation power to separate the tail labels. 246

3.2 Analysis of Label Feature Learning 247

When the labels are treated as indices in a classi- 248

fication system, they are randomly initialized and 249

learned from supervised signals. The gradients of 250

LBCE w.r.t the label feature is: 251

∂LBCE(yl, pl)

∂wl
=

{
(pl − 1)ϕn(x) if yl = 1

plϕn(x) otherwise
252
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The label embedding is updated by:253

w′
l = wl +

η

Ntrain

∑
i:yil=1

(1− pil)ϕn(xi)254

− η

Ntrain

∑
i:yil=0

pilϕn(xi)255

After the optimization, the label embedding tends256

to include features from positive instances and ex-257

clude features from negative instances. As most258

of the instances are negative for a tail label, the259

update is inundated with the aggregation of nega-260

tive features, making it hard to encode distinctive261

feature reflecting its identity. Therefore, learning262

the tail label embedding from supervised signals263

alone can be very distracting. Although previous264

works leverage negative sampling to alleviate the265

problem (Jiang et al., 2021; Chang et al., 2020),266

we argue that it is important to initialize the label267

embedding with the label side information.268

Figure 2: The evaluation of tail label prediction for
SOTA Transformer-based models with macro-averaging
F1@k, where k = 19 for Wiki10-31K and k = 5 for
the other datasets. The figure shows the relative im-
provement to the SVM baseline with ∗ indicating the
significance for p < 0.01.

3.3 Observations and Proposed Idea269

Obs. 1: sparse classifier has an advantage on270

tail label prediction. We evaluate the classifica-271

tion performance of tail labels with less than 10272

training instances by the macro-averaging F1 met-273

ric described in section 6. In figure 2, the dense274

models are compared with a linear SVM baseline275

trained from tf-idf feature, and the relative improve-276

ment is reported. The 3 deep Transformer models277

except for AttentionXML underperform the sparse278

classifier on all datasets, with ∗ indicating the sig-279

nificance (Yang and Liu, 1999) for p < 0.01. At-280

tentionXML performs the best in two datasets, but281

it utilizes the more expensive label-word attention282

that doesn’t encode the document into a fixed rep-283

resentation, which we don’t seek to improve it in284

this paper.285

Obs. 2: provided label descriptions are noisy. 286

The provided label descriptions are shown in the 287

left of table 1, which are usually very short, noisy 288

and insufficient to be related to the document with 289

lexical matching. As an example in Wiki10-31K, 290

the label text phase4 (with only 1 training instance) 291

is hard even for human to understand the meaning 292

without more context or definitions specific to the 293

document. With generated pseudo label description 294

(explained in the next part), we can understand it is 295

about medical testing phases with keywords trial, 296

clinical, drug ... extracted. Although not all the 297

keywords can provide rich semantics to comple- 298

ment the original label text, they may serve as a 299

context for the label to make it more distinguish- 300

able, i.e. responsibility, reconciliation for label 301

child care. 302

Proposed Idea From the analysis of document fea- 303

ture learning and observation 1, the sparse classifier 304

has a strength in tail label prediction. Additionally, 305

the learned label embeddings from a sparse classi- 306

fier can be interpreted as importance of words in 307

the corpus vocabulary for the label. In this way, 308

we can extract the top k keywords from the label 309

embedding as the pseudo label description. From 310

the analysis of label feature learning, it is impor- 311

tant to provide additional label side information 312

for label embedding. In observation 2, the neural 313

model may benefit from the extracted keywords 314

that leverage the knowledge from the sparse classi- 315

fier and generalize better with neural embeddings 316

of the keywords. 317

In section 4, we will explain the proposed frame- 318

work that leverages the pseudo label description; in 319

section 5, we provide theoretical analysis to relate 320

the performance of our model with respect to the 321

sparse classifier; in section 6, we demonstrate the 322

generalization power of our model by experiments 323

on benchmark datasets. 324

4 Keyword-selected Dual Encoder 325

In this section, we proposed a dual encoder frame- 326

work that leverages the pairs of input document 327

with the pseudo label descriptions extracted from a 328

sparse classifier. We call it the Keyword-selected 329

Dual Encoder (KDE). 330

Sparse classifier: We train a linear SVM model
with tf-idf feature ϕt(x) as the sparse classifier:

fsparse(x, l) = σ(⟨ϕt(x),wl⟩)

The learned word embedding wli denotes the im- 331
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Dataset Label Text Top Keywords

child care (1) care child parent upbringing family responsabilitie occupational affordable reconciliation
leave reconcile responsibility arise enable need service effective talent ambition charter

EURLex-4K scientific profession (3) science confidential 452 access society scientific purposes whose researchers
bodies bank 831 issues may central list recalling data recognises 412

mining extraction(5) extractive industries extracting drilling contract soda awarded mineral mining ash
531 corporation through dialogue tailings communicate tenneco 1600 webb value

phase4 (1) trials clinical protection personal directive processed data trial drug phase eu
processing patients sponsor controller legislation regulation art investigator study

Wiki10-31K eco-construction (3) solar building cob passive glazing cordwood thermal timber sewage natural
autonomous roof clay window insulation cistern septic shade bale reduce

bookmaking (5) tex book artist spine binding bind bookbinding bookbinder nickname scroll signature
someone raise glue sew texas fold cloth endpaper typeset

booklet envelopes (1) cabinetmaking booklet upcoming excerpts building centers cabinet book joinery
kreg mark basics develop provided content produce allow entire customer covers

Amazoncat-13K sweater dresses (3) favorable slung impress dye sweater worn multi dress pair space
super sure palette knit jean low favorite jacket brown soft

farming (5) crops acres farmers sustainable hobby grit profitable livestock farms discusses
small issue national gardening soil readers designed magazine traditional homegrown

Table 1: Example of provided label descriptions with training frequency in parenthesis for the benchmark datasets,
and the top 20 extracted label keywords from the sparse classifier. For illustration purpose, we manually highlight
keywords that can enrich the original label text.

portance of the word i for label l. The top k impor-332

tant keywords selected for label l is denoted as zl,333

where k is a hyperparameter.334

KDE: We first train a base neural classifier with335

feature extract ϕn(x) (initialized by BERT) and336

the label embeddings ul (randomly initialized):337

fdense(x, l) = σ(⟨ϕn(x),ul⟩) (1)338

Then we fine-tune the model on pseudo label de-339

scriptions by sharing the encoder ϕn(.) for both the340

text (x) and keywords (zl):341

fKDE(x, l) =
σ(⟨ϕn(x), ϕn(zl)⟩) + fdense(x, l)

2
(2)342

The predicted probability is an average of two343

terms, where σ(⟨ϕn(x), ϕn(zl)⟩) leverages the344

document and label semantic matching that ben-345

efits the tail label prediction, and fdense(x, l) is a346

dense classifier that is better optimized for head347

labels with sufficient training data.348

Inference: we can directly use fKDE or a weighted
sum of sparse and KDE classifiers:

ffinal(x, l) = (1− λ)fsparse(x, l) + λfKDE(x, l)

We set λ = 1
2 as a simple design choice.349

Learning: fdense and fsparse are optimized with the350

BCE loss. For fKDE(x, l), calculating ϕn(zl) for351

all labels both expensive and prohibitive by mem-352

ory limit, so we use negative sampling for in-batch353

optimization. Specifically, the label representations 354

are calculated over a subset of labels Sb = Pb∪Nb, 355

where Pb contains all the positive labels for the in- 356

stances in the batch and Nb are the negative labels 357

with hard negatives and uniform random sampling. 358

For each instance, the hard negative labels are the 359

false positive predictions by the SVM model. The 360

objective for dual encoder is: 361

min
1

N

N∑
i=1

( ∑
p∈y+

i

log fKDE(x, p)

+
∑

n∈Sb\y+
i

log(1− fKDE(x, n))

) (3) 362

where y+
i is the set of positive labels for instance i. 363

5 Theoretical Analysis on Performance 364

In the theoretical analysis, we demonstrate that 365

KDE achieves a lower bound performance as the 366

sparse classifier, given the selected keywords are 367

important and the sparse classifier can separate 368

the positive from the negative instances with non- 369

trivial margin. 370

Let ϕt(x) be the normalized tf-idf feature vector 371

of text with ∥ϕt(x)∥2 = 1. The sparse label embed- 372

dings {w1, . . . ,wL} satisfies ∥wl∥2 ≤ 1, wli > 0. 373

In fact, label embeddings can be transformed to sat- 374

isfy the condition without changing the prediction 375

rank. Let zl be the selected keywords and vl be the 376
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sparse keyword embedding with vli = wli if i is377

keyword and 0 otherwise. We define the keyword378

importance and error margin which are major terms379

affecting the performance bound.380

Definition 1. For label l and δ ≥ 0, the sparse381

keyword embedding is δ-bounded if ⟨ϕt(x),vl⟩ ≥382

⟨ϕt(x),wl⟩ − δ.383

Definition 2. For two labels p and n, the error mar-384

gin is the difference between the predicted scores385

µ(ϕ(x),wp,wn) = ⟨ϕ(x),wp −wn⟩.386

We state the theorem below with additional as-387

sumptions and proofs in appendix A.388

Theorem 3. Let ϕt(x) and ϕn(x) be the sparse389

and dense (dimension d) feature, wl be the la-390

bel embedding and zl be the δ-bounded keywords.391

For a positive label p, let Np = {n1, . . . , nMp}392

be a set of negative labels ranked lower than p.393

The error margin ϵi = µ(ϕt(x),wp,wni) and394

ϵ = min({ϵ1, . . . , ϵMp}). An error event Ei oc-395

curs when µ(ϕn(x), ϕn(zp), ϕn(zni)) ≤ 0. The396

probability of any such error happening satisfies397

P (E1 ∪ . . . ∪ EMp) ≤ 4Mp exp(−
(ϵ− δ)2d

50
)398

When (ϵ − δ) ≥ 10
√

logMp

d , the probability is399

bounded by 1
Mp

.400

Discussion: An error event occurs when the sparse401

model makes a correct prediction but the neural402

model doesn’t. If the neural model avoids all such403

errors, the performance should be at least as good404

as the SVM model, and Theorem 3 gives a bound405

of that probability.406

The term δ measures the importance of selected407

keywords (smaller the more important), the term408

ϵ term measures the error margin of the correctly409

predicted positive and negative pairs by the sparse410

model. The theorem states that the model achieves411

a lower bound performance as sparse classifier if412

the keywords are informative and error margin is413

non-trivial.414

Theoretical analysis vs. empirical experiments:415

1) the bound in the theoretical analysis is very loose416

as the proof doesn’t consider contextualized seman-417

tic embedding of Transformer models, which could418

produce more meaningful features based on the419

context and generalize better. 2) we select top k420

keywords for every label as a hyper-parameter for421

efficient batch encoding of label keywords instead422

of the δ-bounded keywords. 3) by mining hard423

negatives as inputs to KDE , the neural model may424

generalize better to avoid the mistakes by sparse 425

classifier. 426

6 Experiments 427

6.1 Experimental Setting 428

Datasets We conduct our experiments on 3 429

benchmark datasets: EURLex-4K (Loza Mencía 430

and Fürnkranz, 2008), Wiki10-31K (Zubiaga, 431

2012) and AmazonCat-13K (McAuley and 432

Leskovec, 2013). The statistics of the datasets 433

are shown in Table 2. For the tail label evalua- 434

tion, we consider the labels with 1 ∼ 9 training 435

instances, because we assume the absolute number 436

of training instance reflects the difficulty of opti- 437

mization across datasets. The tail labels covers 438

63.48%, 88.65% and 30% of training labels for the 439

3 datasets respectively. We obtain the datasets from 440

the Extreme classification Repository1 and a un- 441

stemmed version of EURLex-4K from the APLC- 442

XLNet github2. 443

Implementation Details For the sparse model, 444

since the public available BoW feature doesn’t have 445

a vocabulary dictionary, we generate the tf-idf fea- 446

ture by ourselves. We tokenize and lemmatize the 447

raw text with the Spacy (Honnibal and Montani, 448

2017) library and extract the tf-idf feature with the 449

Sklearn (Pedregosa et al., 2011) library, with un- 450

igram whose idf is >= 2 and <= 70%. For the 451

dense model, we fine-tune a 12 layer BERT-base 452

model with different learning rates for the BERT 453

encoder, BERT pooler and the classifier. The learn- 454

ing rates are (1e−5, 1e−4, 1e−3) for Wiki10-31K 455

and (5e − 5, 1e − 4, 2e − 3) for the rest datasets. 456

We used learning rate 1e − 5 for fine-tuning the 457

KDE model. For the pseudo label descriptions, we 458

concatenate the provided label description with the 459

generated the top 20 keywords. The final length is 460

truncated up to 32 after BERT tokenization. 461

Evaluation Metrics We use the micro-averaging 462

P@k metric to evaluate the overall system perfor- 463

mance and the macro-averaging F1@k metric to 464

evaluate the tail label prediction, because both pre- 465

cision and recall are important for tail label predic- 466

tions (and F1@k is a harmonic average of both). 467

micro-averaging P@k: The micro-averaging P@k 468

metric is widely used to evaluate a ranked list of 469

1http://manikvarma.org/downloads/XC/
XMLRepository.html

2https://github.com/huiyegit/APLC_
XLNet.git
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Dataset Ntrain Ntest F L̄d L pltail pdtail

EURLex-4K 15,539 3,809 34,932 5.30 3,956 63.48% 9.50%
Wiki10-31K 14,146 6,616 189,795 18.64 30,938 88.65% 27.06%
AmazonCat-13K 1,186,239 306,782 200,000 5.04 13,330 29.53% 0.27%

Table 2: Ntrain and Ntest are the number of training and testing instances respectively. F is the tf-idf feature size.
L̄d is the average number of labels per document. L is the number of labels. For tail labels with 1 ∼ 9 training
instances, pltail is percentage of tail labels and pdtail is the percentage of training instances covered by the tail labels.

EUR-Lex Wiki10-31K AmazonCat-13K

Methods P@1 P@3 P@5 P@1 P@3 P@5 P@1 P@3 P@5

DisMEC 83.21 70.39 58.73 84.13 74.72 65.94 93.81 79.08 64.06
PfastreXML 73.14 60.16 50.54 83.57 68.61 59.10 91.75 77.97 63.68

Parabel 82.12 68.91 57.89 84.19 72.46 63.37 93.02 79.14 64.51
Bonsai 82.30 69.55 58.35 84.52 73.76 64.69 92.98 79.13 64.46

AttentionXML 85.12 72.80 61.01 86.46 77.22 67.98 95.53 82.03 67.00
X-Transformer 85.46 72.87 60.79 87.12 76.51 66.69 95.75 82.46 67.22
BERT-APLC 85.54 72.68 60.59 88.54 77.21 67.43 94.49 79.74 64.46
XLNet-APLC 86.83 74.34 61.94 88.99 78.79 69.79 94.56 79.78 64.59

LightXML 86.12 73.87 61.67 87.39 77.02 68.21 94.61 79.83 64.45

tf-idf+SVM (ours) 83.44 70.62 59.08 84.61 74.64 65.89 93.20 78.89 64.14
BERT (ours) 84.72 71.66 59.12 87.60 76.74 67.03 94.26 79.63 64.39

KDE 86.13 73.82 62.22 88.52 78.13 68.98 96.13 82.70 67.52
KDE+SVM 87.98 75.81 63.62 89.10 80.24 70.49 96.25 81.90 65.20

Table 3: Comparisons between KDE and the SOTA sparse and dense classifiers. The results are evaluated with the
micro-averaging P@5 metrics, with highest values in bold. We report our baseline sparse (tf-idf+SVM) and dense
(BERT) classifiers with KDE and KDE+SVM (average of KDE and SVM predicted score).

predicted labels:470

P@k =
1

k

k∑
i=1

1y+
i
(pi) (4)471

where pi is the i-th label in the predicted ranked472

list p and 1y+
i

is the indicator function. The metric473

score is averaged over all the test instances.474

macro-averaging F1@k: The F1 metric is a har-475

monic average of prediction (P) and recall (R):476

F1 = 2
P ·R
P +R

(5)477

The precision and recall for a predicted ranked list478

p are computed by P = TP
TP+FP ,R = TP

TP+FN479

according to the confusion matrix in table 4.

l in yi l not in yi

l in pi True Positive(TPi
l) False Positive(FPi

l)
l not in pi False Negative(FNi

l) True Negative(TNi
l)

Table 4: Confusion Matrix for instance i and label l
given the ranked list pi.

480
Given Ntest instances and L labels, the macro- 481

average computes the scores on individual category 482

first (F1l), and then take an average over all the 483

categories (F1 = 1
|L|
∑

i∈L F1l), which reflects 484

label level performance of the methods. 485

For micro-averaging P@k, we choose k = 486

1, 3, 5 the same as in other works. For macro- 487

averaging F1@k, we choose k = 19 for Wiki10- 488

31K because it has an average of 18.64 labels and 489

k = 5 for the rest datasets. 490

Baselines Our method is compared with the state- 491

of-the-art baselines including both the sparse and 492

dense classifiers. Specifically, DisMEC (Bab- 493

bar and Schölkopf, 2017), PfastreXML (Jain 494

et al., 2016), Parabel (Prabhu et al., 2018), Bon- 495

sai (Khandagale et al., 2019) belong to the 496

sparse classifiers, and X-Transformer (Chang 497

et al., 2020), APLC-XLNet (Ye et al., 2020) 498

and LightXML (Jiang et al., 2021), Atten- 499

tionXML (You et al., 2018) belong to the dense 500
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classifier. X-Transformer, LightXML, and APLC-501

XLNet employ pre-trained Transformers to encode502

a document into a fixed embedding. We report the503

single model performance (chosen from their pa-504

pers) with BERT-large for X-Transformer, BERT-505

base for LightXML and XLNet-base for APLC-506

XLNet. The AttentionXML utitizes label-word at-507

tention to generate label-aware word embedding in-508

stead of a fix document representation. We provide509

an additional linear SVM model with our extracted510

tf-idf features as a sparse baseline, and BERT-base511

classifier as a dense baseline.512

6.2 Experimental Results and Discussions513

The performance of model evaluated on the micro-514

averaging P@5 metric is reported in table 3.515

Sparse and dense classifiers: The sparse classi-516

fiers (first panel) generally underperform the dense517

models (second panel) under the micro-averaging518

evaluation metric. Our implementation of Linear519

SVM model and BERT model achieve compara-520

ble result with the sparse and dense classifiers re-521

spectively, except that the AttentionXML and X-522

Transformer achieve better result in Amazoncat-523

13K. The reason could be that the Amazoncat-13K524

product categorization relies more on the lexicon525

matching features, which gives the two methods526

performance gains.527

KDE: Our KDE model is fine-tuned on top of the528

BERT model with the pseudo label descriptions529

generated from the SVM model. As shown in the530

result, KDE has additional gains on both of the531

classifiers, indicating KDE can: 1) leverage the532

keyword semantic from sparse model for better533

generalization, 2) alleviate the difficult of optimiza-534

tion of neural model with scarce data by providing535

label side information. The KDE model outper-536

forms the baseline models on the Amazoncat-13K537

dataset, and the KDE+SVM (average of KDE and538

sparse classifier scores) performs the best on the539

other two datasets.540

6.3 Tail Label Evaluation541

Previously, we observe that the pre-trained542

Transformer-based models underperform the sparse543

classifier (Linear SVM baseline) on tail label pre-544

diction. In this section, we want to test the ability545

of KDE to generalize over the sparse classifier with546

the generated pseudo label description for tail label547

prediction. The experimental results are shown in548

figure 3, where we report the relative performance549

of the models under investigation with respect to550

Figure 3: The evaluation of tail label prediction for a
dense classifier base (BERT) and our proposed KDE
with different settings. The metric is macro-averaging
F1@k, where k = 19 for Wiki10-31K and k = 5 for
the other datasets. The figure shows the relative im-
provement to the SVM baseline with ∗ indicating the
significance for p < 0.01.

the sparse classifier. Specifically, we include the 551

dense classifier (BERT) without any label side in- 552

formation as a baseline, which underperforms the 553

SVM on all of the datasets. 554

Only Provided Label Text We fine-tune KDE 555

with only the provided label text, denoted as KDE 556

+label. The model outperforms the sparse classifier 557

on the EURLex-4K and Amazoncat-13K dataset, 558

with the latter one being significant. This is proba- 559

bly because these two datasets has higher quality 560

label text compared with Wiki10-31K, where the 561

label space is both large and noisy. 562

Pseudo Label Description We fine-tune KDE 563

with pseudo label descriptions, denoted as KDE 564

+label+keyk, where k is the length of the pseudo 565

label description after BERT tokenization. We ob- 566

serve that with keyword length 16, the model per- 567

forms the best, which achieves significant improve- 568

ment on the tail label prediction for all datasets. 569

With larger k = 32 in the default setting, the 570

model includes additional "less important" key- 571

words, which may introduce noises and thus lower 572

the performance. 573

7 Conclusion 574

In this paper, we analyze the difficulty of opti- 575

mization of classification systems for XMTC with 576

skewed label distribution. We alleviate the is- 577

sue with the a trained sparse classifier to generate 578

pseudo label descriptions and propose a keyword- 579

selected dual encoder framework to leverage the in- 580

put text document with label descriptions. We show 581

the relation of performance between our model and 582

the sparse classifier in the theoretical analysis and 583

demonstrate the effectiveness of our model empiri- 584

cally on the benchmark datasets. 585
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A Proof of Theorem 3 736

Notations: Let ϕt(x) be the normalized tf-idf feature vector of text, s.t. ∥ϕt(x)∥2 = 1. Let the 737

learned sparse label embeddings be {w1, . . . ,wL} with ∥wi∥2 ≤ 1 and wij ≥ 0, i ∈ {1, . . . , L}, j ∈ 738

{1, . . . , V }. In fact, since we use a ranking metric, we can always normalize the label embeddings by 739
wl−min({wij})

max({∥wi−min({wij})∥2}) , without changing the prediction rank. Let selected keywords be zl, and vl be 740

the keyword-selected label embedding with vli = wli if i is keyword and 0 otherwise. Let ϕn(x) ∈ Rd be 741

the dense neural embedding. 742

Assumptions: Similar to Luan et al. (2020), we treat neural embedding as fixed dense vector E ∈ Rd×v 743

with each entry sampled from a random Gaussian N(0, d−1/2), which provides a very loose bound, if not a 744

lower bound, for neural model performance. Then, ϕn(a) = Ea is weighted average of word embeddings 745

whose weights are determined by a sparse vector a. According to the famous the Johnson-Lindenstrauss 746

Lemma (Johnson and Lindenstrauss, 1984; Ben-David et al., 2002), even if the entries of E are sampled 747

from a random normal distribution, with large probability, ⟨ϕt(x),v⟩ and ⟨Eϕt(x),Ev⟩ are close. 748

Lemma 4. Let v be the δ-bounded keyword-selected label embedding of w. For two labels p, n, the error 749

margins satisfy: |µ(ϕt(x),wp,wn)− µ(ϕt(x),vp,vn)| ≤ δ 750

Proof. By the definition of δ-bounded keyword-selected embedding, 751

⟨ϕt(x),wp⟩ − δ ≤ ⟨ϕt(x),vp⟩ ≤ ⟨ϕt(x),wp⟩ (6) 752

⟨ϕt(x),wn⟩ − δ ≤ ⟨ϕt(x),vn⟩ ≤ ⟨ϕt(x),wn⟩ (7) 753

which is equivalent to 754

⟨ϕt(x),wp⟩ − δ ≤ ⟨ϕt(x),vp⟩ ≤ ⟨ϕt(x),wp⟩ (8) 755

− ⟨ϕt(x),wn⟩ ≤ −⟨ϕt(x),vn⟩ ≤ −⟨ϕt(x),wn⟩+ δ (9) 756

Adding equation 8 and equation 9, we obtain 757

⟨ϕt(x),wp −wn⟩ − δ ≤ ⟨ϕt(x),vp − vn⟩ ≤ ⟨ϕt(x),wp −wn⟩+ δ (10) 758

759

Lemma 5. Let ϕt(x) and ϕn(x) be the sparse and dense (dimension d) feature, wl be the label embedding 760

and zl be the δ-bounded keywords. Let p be a positive label and n be a negative label ranked below 761

p be the sparse classifier. The error margin is ϵ = µ(ϕt(x),wp,wn). An error event E occurs when 762

µ(ϕn(x), ϕn(zp), ϕn(zn)) ≤ 0. The probability P (E) ≤ 4 exp(− (ϵ−δ)2d
50 ). 763

Proof. We first state the Johnson-Lindenstrauss Lemma (JL Lemma) (Ben-David et al., 2002): 764

For vector product states that for any two vectors a, b ∈ Rv, let E ∈ Rd×v be a random matrix such that 765

the entries are sampled from a random Gaussian. Then for every constant γ > 0: 766

P
(
|⟨Ea,Eb⟩ − ⟨a, b⟩| ≥ γ

2

(
∥a∥2 + ∥b∥2

))
≤ 4 exp

(
−γ2d

8

)
(11) 767

Let γ = 2
5(ϵ− δ), a = ϕt(x) and b = vp − vn. Since ∥a∥2 = 1 and ∥b∥2 ≤ (∥vp∥2 + ∥vn∥2)2 ≤ 4, the 768

JL Lemma gives 769

P (|µ(ϕn(x), ϕn(zp), ϕn(zn))− µ(ϕt(x), ϕt(zp), ϕt(zn))| ≥ ϵ− δ) (12) 770

= P (|⟨Eϕt(x),E(vp − vn)⟩ − ⟨ϕt(x),vp − vn⟩| ≥ ϵ− δ) (13) 771

≤ 4 exp(−(ϵ− δ)2d

50
) (14) 772

To complete the proof, we need to show 773

P (⟨Eϕt(x),E(vp − vn)⟩ ≤ 0) ≤ P (|⟨Eϕt(x),E(vp − vn)⟩ − ⟨ϕt(x),vp − vn⟩| ≥ ϵ− δ) (15) 774
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An error event occurs when775

⟨Eϕt(x),E(vp − vn)⟩ ≤ 0 (16)776

=⇒ ⟨Eϕt(x),E(vp − vn)⟩ − ⟨ϕt(x),wp −wn⟩ ≤ −ϵ (17)777

=⇒ |⟨Eϕt(x),E(vp − vn)⟩ − ⟨ϕt(x),wp −wn⟩| ≥ ϵ (18)778

=⇒ |⟨Eϕt(x),E(vp − vn)⟩ − ⟨ϕt(x),vp − vn⟩| ≥ ϵ− δ (19)779

where the equation 19 is derived by Lemma 4:780

|⟨Eϕt(x),E(vp − vn)⟩ − ⟨ϕt(x),vp − vn⟩| (20)781

=|⟨Eϕt(x),E(vp − vn)⟩ − ⟨ϕt(x),wp −wn⟩+ ⟨ϕt(x),wp −wn⟩ − ⟨ϕt(x),vp − vn⟩| (21)782

≥|⟨Eϕt(x),E(vp − vn)⟩ − ⟨ϕt(x),wp −wn⟩| − |⟨ϕt(x),wp −wn⟩ − ⟨ϕt(x),vp − vn⟩| (22)783

≥ϵ− δ (23)784

The above shows that the event by equation 19 contains the event by equation 16, which completes the785

proof.786

Note: Luan et al. (2020) showed that there could be tighter bounds, but that doesn’t affect our analysis.787

Our goal is not to derive a tight bound, but to get the relation between the defined terms from the theoretical788

analysis.789

Proof of Theorem 3790

Proof. The Lemma 2 shows that791

P (Ei) ≤ 4 exp(−(ϵi − δ)2d

50
) ≤ 4 exp(−(ϵ− δ)2d

50
) (24)792

Apply an union bound on the error events {E1, E2, . . . , EMp},793

P (E1 ∪ . . . ∪ EMp) ≤
Mp∑
i=1

4 exp(−(ϵi − δ)2d

50
) (25)794

= 4Mp exp(−
(ϵ− δ)2d

50
) (26)795

796

When (ϵ−δ)2 ≥ 10
√

logMp

d , we have exp(− (ϵ−δ)2d
50 ) ≤ 1

4Mp
2 and therefore P (E1∪. . .∪EMp) ≤ 1

Mp
.797
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