
KurTail : Kurtosis-based LLM Quantization

Anonymous ACL submission

Abstract001

One challenge of quantizing a large language002
model (LLM) is the presence of outliers.003
Outliers often make uniform quantization004
schemes less effective, particularly in extreme005
cases such as 4-bit quantization. We introduce006
KurTail, a new post-training quantization007
(PTQ) scheme that leverages Kurtosis-based008
rotation to mitigate outliers in the activations009
of LLMs. Our method optimizes Kurtosis as010
a measure of tailedness. This approach enables011
the quantization of weights, activations, and012
the KV cache in 4 bits. We utilize layer-wise013
optimization, ensuring memory efficiency.014
KurTail outperforms existing quantization015
methods, offering a 13.3% boost in MMLU016
accuracy and a 15.5% boost in Wiki perplexity017
compared to QuaRot (Ashkboos et al., 2024b).018
It also outperforms SpinQuant (Liu et al.,019
2024) with a 2.6% MMLU gain and reduces020
perplexity by 2.9%, all while reducing the021
training cost. For comparison, learning the022
rotation using SpinQuant for Llama3-70B023
requires at least four NVIDIA H100 80GB024
GPUs, whereas our method requires only a025
single GPU, making it more accessible.026

1 Introduction027

Large language models (LLMs) have advanced028

significantly in recent years, showcasing remark-029

able performance and capabilities. As these models030

grow in size and complexity, the computational031

cost required for their deployment and inference032

has increased dramatically. Furthermore, with new033

inference time methods (OpenAI, 2024; Guo et al.,034

2025), enhancing inference speed (tokens per sec-035

ond) is increasingly important. This has shifted036

the focus toward accelerating model performance037

while reducing memory and computational require-038

ments. An effective method to achieve this is post-039

training quantization (PTQ), which involves repre-040

senting model weights and/or activations in lower041

numerical precisions. PTQ can significantly reduce042

the memory footprint and computational overhead 043

and subsequently decrease latency and energy con- 044

sumption, which are especially beneficial for infer- 045

ence on resource-constrained edge devices. 046

Serving a model involves two stages of prefill- 047

ing and generation. During prefilling, the model 048

processes the input prompt and stores the internal 049

state, known as key-value (KV) caching. During 050

generation, tokens are produced auto-regressively. 051

Quantizing each stage offers distinct advantages 052

for improving inference efficiency. KV-cache quan- 053

tization reduces memory requirements and accel- 054

erates data movement, which enhances the gen- 055

eration stage, particularly in scenarios involving 056

long-context inference. Weight quantization, on the 057

other hand, reduces the memory footprint indepen- 058

dently, and when it is combined with activation 059

quantization, it also reduces the computational de- 060

mands. However, activation quantization presents 061

challenges due to large outliers in certain channels 062

(Dettmers et al., 2022; Xiao et al., 2023), which lim- 063

its the effectiveness of uniform integer quantization 064

as it destroys the dynamic range of the activations. 065

While channel-wise quantization can effectively ad- 066

dress this issue, the lack of hardware support makes 067

it computationally expensive in practice. Several 068

methods have been proposed to address this chal- 069

lenge. Dettmers et al. (2022) and Ashkboos et al. 070

(2023) advocate for mixed-precision computation 071

in which they store some of the channels in higher 072

precision and less sensitive channels in lower preci- 073

sion to balance accuracy and efficiency. Xiao et al. 074

(2023) introduces channel-wise scaling into the 075

layer normalization and the weights of linear layers. 076

Ashkboos et al. (2024b) proposed random rotation 077

which takes the advantage of the computational 078

invariance framework (Ashkboos et al., 2024a) to 079

mitigate the outliers problem. 080

We introduce KurTail – a novel approach to 081

mitigating activation outliers by applying learnable 082

1

rotations1 to the activations similar to SpinQuant083

(Liu et al., 2024). KurTail focuses on reducing the084

tail density of activations, captured by the Kurto-085

sis. Unlike SpinQuant which requires expensive086

end-to-end training of the model’s loss, we prove087

that layer-wise optimization of our Kurtosis loss088

is equivalent to end-to-end training. We perform089

layer-wise inference to cache activations, and then090

optimize the rotations based on the cache indepen-091

dently. As a result, KurTail can be implemented092

in a significantly more memory-efficient manner.093

For instance, while SpinQuant requires at least four094

NVIDIA H100 80GB GPUs to compute rotations095

for Llama3-70B, KurTail achieves the same with096

just a single GPU. Despite its lower computational097

requirements, KurTail outperforms existing meth-098

ods in terms of perplexity and zero-shot reasoning099

tasks. KurTail outperforms existing quantization100

methods with a 13.3% increase in MMLU accu-101

racy and a 15.5% decrease in Wiki perplexity com-102

pared to QuaRot(Ashkboos et al., 2024b). It also103

performs better than SpinQuant(Liu et al., 2024),104

achieving a 2.6% increase in MMLU accuracy and105

a 2.9% decrease in perplexity, all while reducing106

the cost of training the rotation. We also theoreti-107

cally shed light on why rotations are preferable to108

arbitrary linear transformations.109

2 Background110

Post Training Quantization. Previous work on111

post-training quantization fits into two main groups:112

weight-only quantization (Frantar et al., 2022; Lin113

et al., 2024; Egiazarian et al., 2024; Tseng et al.,114

2024) and weight-activation quantization (Xiao115

et al., 2023; Dettmers et al., 2022; Ashkboos et al.,116

2024b; Liu et al., 2024). In weight only quantiza-117

tion, the weight are projected into a lower preci-118

sion, such as 4 bits, 3 bits, or even less, and then119

de-quantized to higher precision before the actual120

computation, with all calculations still being done121

in high precision. Several studies (Xiao et al., 2023;122

Ashkboos et al., 2024b; Liu et al., 2024) attempted123

to introduce quantization methods for both weight124

and activation. They showed that uniform quantiz-125

ing is impractical for large language models since126

they suffer from large outliers. To address this issue,127

Dettmers et al. (2022) proposed a mixed-precision128

approach for handling outliers at higher precision.129

Others (Xiao et al., 2023; Lin et al., 2024) pro-130

posed trading outliers between weights and activa-131

1We use rotation to refer to any orthogonal transformation.

tions by introducing a re-scaling paradigm. Tseng 132

et al. (2024) introduced an incoherence processing 133

method using random rotation matrices and apply- 134

ing vector quantization on the weights for com- 135

pression, adding overhead to inference. QuaRot 136

(Ashkboos et al., 2024b) was inspired by Tseng 137

et al. (2024) and took advantage of the invariance 138

framework proposed by Ashkboos et al. (2024a) 139

introducing a rotation-based approach to compress 140

and remove outliers from the activation space us- 141

ing a random Hadamard rotation. Later, SpinQuant 142

(Liu et al., 2024) improves the results of QuaRot 143

(Ashkboos et al., 2024b) by optimizing some of 144

these rotations to minimize the cross-entropy loss 145

through end-to-end training. While SpinQuant im- 146

proves the results compared to QuaRot it suffers 147

from a high computational cost for learning the 148

rotations. We address this issue by introducing a 149

novel loss for learning the rotations. 150

Uniform Quantization for k-bit Precision. For 151

a given vector x, uniform integer quantization re- 152

duces its continuous range of values to a finite set 153

of discrete levels, enabling representation in lower 154

precision. In k-bit quantization, the value range 155

[xmin,xmax] is divided into 2k equal intervals. Each 156

element xi in x is mapped to its closest quantiza- 157

tion level by Q(xi) = round
(
xi−b
s

)
·s+b. Here s 158

is the scale factor or step size and b is the shift. The 159

values of s and b depend on the specific quantiza- 160

tion scheme. In symmetric quantization, the range 161

is assumed to be symmetric around zero. There- 162

fore, b = 0, and s = max(|xmax|,|xmin|)
2k−1−1

. In asymmet- 163

ric quantization, the range is not assumed to be 164

centered at zero and therefore, b = min(x), s = 165
xmax−xmin

2k−1
. Given x sampled from some distribution 166

the expected mean-squared error (MSE) between 167

the quantized and the original values is: 168

MSE(x, Q) = E
[
(x−Q(x))2

]
(1) 169

Definition 2.1. Quantization Sensitivity (Chmiel 170

et al., 2020) For a given distribution and sample 171

vector x, let s̃ denote the optimal quantization step 172

size where s̃ minimizes the quantization error, and 173

let Qs̃(x) represent the optimal quantizer. Quanti- 174

zation sensitivity Γ(x, ϵ) is defined as the increase 175

in the mean squared error (MSE) caused by a small 176

perturbation ϵ > 0 in the quantization step size s 177

around s̃, such that |s − s̃| = ϵ. Specifically, the 178

sensitivity is given by: 179

Γ(x, ϵ) = |MSE(x, s)− MSE(x, s̃)| (2) 180

2

Theorem 2.2. (Chmiel et al., 2020) Considering181

xU and xN be continuous random variables with182

uniform and normal distributions. Then, for any183

given ε > 0, the quantization sensitivity Γ(x, ε)184

satisfies Γ(xU , ε) < Γ(xN , ε).185

This theorem indicates that, compared to the typ-186

ical normal distribution, the uniform distribution187

is more robust to changes in the quantization step188

size s. Therefore, it becomes apparent that there189

is great benefit in adjusting the distribution of the190

activations and weight to get closer to uniform dis-191

tribution. This implies that the uniform distribution192

is a perfect fit for uniform quantization. It can also193

be shown that the optimal scaling s̃ for the uniform194

distribution is equal to s̃ = xmax−xmin
2k−1

. Chmiel et al.195

(2020) also show that the optimal step size for a196

uniform distribution closely approximates the most197

robust quantization (least sensitive step size).198

Kurtosis. Kurtosis is a statistical measure that199

describes the degree of tailedness in the distribution200

of a dataset. It helps determine whether the data201

have heavy or light tails compared to a normal202

distribution. Mathematically, Kurtosis is defined203

as the standardized fourth moment of a population204

around its mean, and it is calculated using205

κ =
E[(x− µ)4]

(E[(x− µ)2])2
=

µ4

σ4
(3)206

where µ is the mean, µ4 is the fourth moment about207

the mean, and σ is the standard deviation. The Kur-208

tosis of a normal distribution is 3. κ > 3 is charac-209

terized by heavy tails and a sharp peak, indicating210

greater tail density than a normal distribution (e.g.211

the Laplacian distribution). We have a shift of mass212

from the shoulders to both the tails and the cen-213

ter. On the contrary, κ < 3 is a sign of light tails214

and a flatter distribution (e.g. uniform or beta dis-215

tribution) caused by mass moving from the tails216

and center to the shoulders. Banner et al. (2019)217

demonstrate that deep neural network weights and218

activations typically follow Gaussian or Laplace219

distributions. Furthermore, Dettmers et al. (2022)220

identifies the presence of extreme outliers in LLM221

parameters, which are critical for maintaining per-222

formance. Our key insight is that distributions with223

outliers exhibit high kurtosis, which measures the224

presence of extreme values. Therefore, by optimis-225

ing the rotation to minimize the kurtosis we can226

bring the distribution closer to uniform. Uniform227

distribution is the desired distribution of the activa-228

tions and weights for uniform quantization (§ 2),229

so we aim to move the distribution closer to uni- 230

form. Kurtosis serves two purposes: to encourage 231

the distribution to resemble a uniform distribution, 232

and to reduce the outliers. Our loss function is: 233

Lκ =
1

L

L∑
i=1

|κ(
⊕N

j=1
aij)− κu| (4) 234

where
⊕

denotes the concatenation of the activa- 235

tion of all tokens at that layer and κu is the Kurtosis 236

of the uniform distribution. 237

2.1 Optimality of orthogonal transformations 238

There are two main reasons for using orthogonal 239

transformations. First, when fusing the initial rota- 240

tion R1, an orthogonal transformation is required 241

to maintain invariance with respect to RMSNorm 242

(see § 3), as shown by (Ashkboos et al., 2024b). In 243

principle some of the transformation (i.e R2) can 244

be any full rank matrix. We show that the quantiza- 245

tion error is upper bounded by its condition number 246

which is minimized for orthogonal transformations. 247

Lemma 2.3. The k-bit quantization error of X ∈
RN×M after a full rank transformation T is∥∥X −Q(XT)T−1

∥∥
F
≤ ∥X∥F

2k−1 − 1

√
NM ·cn(T)

where cn(T) is the condition number of T . 248

Corollary 2.4. The upper bound on the quantiza- 249

tion error is minimized when cn(T) = 1 and T is 250

(a scalar multiple of) an orthogonal matrix. 251

Intuitively, the quantization error of the trans- 252

formed activation is inversely related to the small- 253

est singular value of T . To avoid amplifying the 254

quantization error, it must not be smaller than one. 255

An orthogonal transformation, where all singular 256

values are equal to one, is well behaved. 257

2.2 End-to-End training 258

KurTail can be run layer-wise instead of end-to-end 259

resulting in a computational benefit. We prove that 260

end-to-end training and our layer-wise optimization 261

converge to the same solution for certain families 262

of models which include our current setting. 263

Proposition 2.5. Let H1,O1 = f(X,W1,R1), 264

and H2,O2 = g(O1;W2;R2) where f, g are pa- 265

rameterized by W1,R1 and W2,R2. Given func- 266

tional invariance of f and g, i.e. O1 = O′
1 for any 267

O′
1,H

′
1 = f(X,W1,R

′
1) and any orthogonal R′

1 268

(and similarly for g), and given that the total loss is 269

L(R1,R2) = L1(H1)+L2(H2), the independent 270

3

minimization of each loss results in the same op-271

timum as end-to-end: argminR1,R2 L(R1,R2) =272

(argminR1 L1(R1), argminR2 L2(f ;R2)), even273

though H2 implicitly depends on O1.274

Proposition 2.5 indicates that optimizing R1 and275

R2 end-to-end is equivalent to optimizing each276

separately since our loss and the model architecture277

satisfy the assumptions. Inductively, this holds for278

all layers. However, for the output of the MHSA279

and the FFN blocks we jointly optimize R1 using280

the activations from all layers by summing them281

since R1 shared across layers/losses (Fig. 3).282

Quantization Sensitivity. We evaluate our283

method by measuring activation sensitivity both284

before and after applying rotations optimized with285

Kurtosis. We expect that after applying these ro-286

tations, the activation distribution will be closer287

to uniform, resulting in better quantization robust-288

ness. We empirically measure the sensitivity of the289

activation distribution before and after applying290

the rotation. We utilize the Llama3.1 8-B model291

and apply two rotation techniques: one using a ran-292

dom Hadamard transformation and another using a293

Kurtosis-optimized rotation. First, we compute the294

optimal scaling (Chmiel et al., 2020) for activation295

quantization and then calculate the quantization296

sensitivity based on Definition 2.1.297

In Fig. 1, α indicates the fraction of the optimal298

step size used to analyze quantization sensitivity.299

The results show that the random Hadamard trans-300

formation reduces quantization sensitivity. Our301

Kurtosis-based method exhibits a bigger reduction302

in sensitivity, suggesting that it more effectively303

aligns the distribution with uniformity. Interest-304

ingly, we also observed that the sensitivity drop305

is strongest in the first layer compared to other lay-306

ers for both methods. In Fig. 1 we compare layer 1307

to layer 15, but this trend holds for deeper layers.308

0.75 1.00 1.25
α

0.00

0.02

0.04

Se
ns

iti
vi

ty

Layer 1

0.75 1.00 1.25
α

0.0

0.1

0.2
Layer 15

vanila hadamard kurtosis

Figure 1: Empirical sensitivity of the MHSA input distri-
bution across different rotations. α indicates the fraction
of the optimal step size, i.e. sensitivity with step α · s.

Figure 2: The input distribution of the MHSA blocks
in the LLaMA3-8B model is shown before and after
applying KurTail . Before rotation, some channels have
noticeable outliers, which can disrupt the data balance.
The rotated distribution allows for more accurate token-
wise qunatization.

3 KurTail 309

Placement of the Rotations. Following the com- 310

putational invariance theorem — as introduced by 311

Elhage et al. (2023); Ashkboos et al. (2024a) and 312

later utilized by QuaRot and SpinQuant — we 313

adopted a similar framework to transform the ac- 314

tivation functions at each layer. The placement 315

of rotations is illustrated in Fig. 3. This figure 316

depicts a single layer of a transformer model, 317

where each square represents a computation block. 318

The rotations are categorized into fusible rotations 319

(R1 and R2) and online rotations (R3, R4, and 320

R5). Fusible rotations do not add additional com- 321

putational costs during inference since they can 322

be merged with the model’s original parameters. 323

Specifically, we apply R1 to the left side of the 324

token embedding, Wo, and Wd within the MHSA 325

and FFN blocks, respectively. The inverse of R1 326

is applied to the right side of Wq, Wk, Wv in the 327

attention block, and Wup, Wgate in the FFN block. 328

Due to the residual connection, the exact same rota- 329

tion must also be applied across subsequent layers 330

(e.g., XR1+Y R1 in one layer and Y R1+X2R1 331

in the next). The second fusible rotation, R2, is 332

applied to the right side of Wv, with its inverse ap- 333

plied to the left side of Wo. This transformation im- 334

proves the distribution of KV-caches and can vary 335

across layers. The second group of rotations, R3, 336

R4, and R5, are online which minimally increase 337

the computational costs compared to the original 338

model but they improve the performance. To mit- 339

igate this, we utilize random Hadamard matrices, 340

which are computationally efficient, resulting in 341

minimal overhead. For R3, the transformation is 342

applied after each rotational positional encoding 343

4

XR1 RMSN R−1
1 Wk

R−1
1 Wq

R−1
1 WvR2

RoPE

RoPE

R3

R3

⊗ σ

+

⊗ R4 R−1
4 R−1

2 WoR1 Y R1 RMSN
R−1

1 Wup

R−1
1 Wgate Swish

⊙ R5 R−1
5 WdR1 X2R1

+

R1, R2: Fusible Rotations R3, R4, R5: Online Rotations 3 : Quantization

Figure 3: Diagram of a single-layer decoder network after applying rotations. Each block represents a computation
unit. Blocks containing both blue and black indicate that the rotation is fused into the network without adding extra
computation. In contrast, blocks with only the rotation signify additional computations during inference.

for queries and keys. Since the transpose of any or-344

thogonal matrix equals its inverse, there is no need345

to add the inverse matrix explicitly. During the com-346

putation of attention scores, the term QTK sim-347

plifies to QTRT
3 R3K, effectively nullifying the348

impact of the rotation. For R4, we introduce the349

transformation after applying the softmax scores350

to the values and add the inverse in the subsequent351

linear layer. Similarly, R5 is implemented in the352

FFN block using the same approach.353

Learning the Rotations. To discover the optimal354

rotations, we first run the vanilla model and store355

the inputs from both the MHSA and FFN blocks.356

Next, we create a small network consisting of357

a linear layer and an RMSNorm, designed to358

simulate the inputs of the MHSA and FFN blocks359

before quantization (Fig. 3). For optimization, we360

shuffle the stored input data from all transformer361

layers and both blocks and then train the rotation362

using Kurtosis loss. Since the optimization requires363

the rotations to remain within the orthogonal364

space, we use the Caley Adam (Li et al., 2020)365

optimizer to enforce this constraint. We train this366

small network for 100 iterations using 500 samples367

from the WikiText (Merity et al., 2016a) training368

set. In Table 7, we also did an ablation study on369

the different calibration size and datasets. After370

training, the resulting rotation is fused into the371

original network. For the R2, we apply a similar372

approach, but we removed the RMSNorm and just373

optimize the linear layer with the Kurtosis loss.374

Optimization in the Orthogonal Space. As dis-375

cussed in § 3, the transformation needs to be op-376

timized in the orthogonal space to be consistent377

with a computational invariance framework. There-378

fore, we optimize all of the transformation matri-379

ces within the Stiefel Manifold (Li et al., 2020)380

i.e., the space of orthonormal matrices, using Caley381

Stochastic Gradient Descent (SGD) or Caley Adam382

(Li et al., 2020). For more detailed see (Li et al., 383

2020). 384

Training Cost. While quantization make the 385

inference of large models feasible on consumer 386

GPUs, finding the optimal rotation still requires 387

substantial computational power. We address this 388

by avoiding end-to-end fine-tuning. Since each 389

multi-head attention and FFN is affected by R1, 390

end-to-end approaches like SpinQuant cannot op- 391

timize the rotation layer by layer, and directly op- 392

timizing R1 via gradient descent requires loading 393

the entire model, which is memory-intensive. Al- 394

though SpinQuant reduces training costs by elimi- 395

nating the need to store weight gradients and states, 396

it still requires loading the full model into GPU 397

memory. Our approach uses layer-wise inference, 398

which eliminates the need to load all the network 399

weight on the GPU at once. Then we store the acti- 400

vations for each layer. The we optimize the rotation 401

with a Kurtosis loss. This significantly lowers GPU 402

requirements—at most, a single NVIDIA H100 (or 403

A100) is needed for LLaMA 70B. 404

4 Setup 405

We developed KurTail using the Hugging Face 406

library (Wolf et al., 2019) integrated with the 407

PyTorch framework (Paszke et al., 2019) and 408

for evaluation we used EleutherAI evaluation 409

framework (Gao et al., 2024b). For learning the 410

transformation, we used 512 calibration samples 411

for all models, except Mixteral and LLAMA 70B 412

for which we use 256 calibration sample from 413

the WikiText (Merity et al., 2016a) training set, 414

each with a sequence length of 2048. For large 415

models, we used less samples since they have 416

more layers for which we can store the activations. 417

For storing the activations we used layer-wise 418

inference to reduce the GPU memory requirement. 419

For optimizing the rotation, we use Caley Adam 420

5

Table 1: Comparison of different quantization methods across various models. All the results are for 4 bit quantization
for Weight/Activation/KV-cache. Weights are quantized using GPTQ.

Method Llama-2-7b Llama-2-13b Llama-3-8b
Wiki (↓) 0-shot (↑) MMLU (↑) Wiki (↓) 0-shot (↑) MMLU (↑) Wiki (↓) 0-shot (↑) MMLU (↑)

16-bit 5.5 64.1 42.1 4.9 66.5 52.7 6.1 67.2 63.2

GPTQ 9600.0s 38.9 23.8 3120.0 33.8 24.8 166.3 39.8 23.3
QuaRot 6.2 60.6 32.3 5.4 64.7 46.83 8.50 60.1 47.4

SpinQuant 6.0 61.0 34.8 5.2 64.8 47.8 7.4 63.8 56.2
Kurtail 5.9 61.3 32.9 5.2 65.2 49.1 7.2 64.6 57.3

Method Llama-3-70b Llama-3.2-1b Llama-3.2-3b
Wiki (↓) 0-shot (↑) MMLU (↑) Wiki (↓) 0-shot (↑) MMLU (↑) Wiki (↓) 0-shot (↑) MMLU (↑)

16-bit 2.8 73.1 76.3 9.75 54.9 37.9 7.8 62.7 54.8

GPTQ 452.7 45.5 23.2 108.9 38.0 24.9 178.3 40.3 24.8
QuaRot 6.19 65.1 62.9 17.4 49.0 23.8 10.1 56.1 42.0

SpinQuant 6.2 65.7 59.4 13.6 48.8 25.6 9.2 57.9 44.2
Kurtail 4.2 70.7 73.1 12.9 50.1 27.2 9.0 59.0 47.8

(Li et al., 2020) optimizer to find the rotation.421

For quantizing the activation, we used per-token422

dynamic symmetric quantization, where a single423

scale was applied to each row, and all values were424

clipped using a quantile of 0.98 in all experiments.425

For the KV-caches, we employed asymmetric quan-426

tization. For the Weight quantization, we use round-427

to-nearest (RTN), and GPTQ (Frantar et al., 2022),428

using per-column (or per-channel) symmetric quan-429

tization. For GPTQ quantization, we uses 128 cal-430

ibration samples from the WikiText, each with a431

sequence length of 2048. Learning the transforma-432

tion and Transforming LLAMA3-70B with KurTail433

on an NVIDIA H100 GPU took around one hour434

which compare the SpinQuant it uses significantly435

less memory (4 A100 GPU and 2 hours).436

Models We evaluate KurTail on the LLAMA-2437

(Touvron et al., 2023), LLAMA-3 (Dubey et al.,438

2024), Phi-model family (Abdin et al., 2024) on439

both language generation and zero-shot tasks. We440

further also target the mixture of experts model441

Mixtral (Jiang et al., 2024).442

Inference Speed-up. KurTail’s contribution fo-443

cuses on a novel approach to learning the rotation444

and given the architectural similarity with Spin-445

Quant and Quarot, we did not re-implement the446

low-level kernel for 4-bit matrix multiplication, as447

similar speedup results are expected. All results448

are based on simulated quantization; however, the449

real quantization will yield the same downstream450

performance.451

Evaluation Setting. To compare the perfor-452

mance of the model after quantization, we report453

the perplexity (PPL) score on the WikiText (Mer-454

ity et al., 2016b) test set. While perplexity is a 455

standard measure of language modeling perfor- 456

mance, it may not be sufficient for evaluating the 457

model’s effectiveness after quantization. Therefore, 458

we report the result for zero-shot reasoning as well. 459

We assess performance using the lm-evaluation- 460

harness (Gao et al., 2024a), testing the models on 461

eight tasks: BoolQ (Clark et al., 2019), HellaSwag 462

(Zellers et al., 2019), OpenBookQA(OBQA) (Mi- 463

haylov et al., 2018), PIQA (Bisk et al., 2020), SIQA 464

(Sap et al., 2019), WinoGrande (Sakaguchi et al., 465

2021), ARC-Easy, and ARC-Challenge (Boratko 466

et al., 2018) reporting the average performance 467

across all eight tasks (0-shot), we also provide the 468

performance on each task in § C. Additionally, 469

to assess the model on more complex tasks, we 470

benchmark its language comprehension and gen- 471

eral understanding using the MMLU benchmark 472

(Hendrycks et al., 2021) and for mathematical rea- 473

soning we utilize MathQA (Amini et al., 2019). We 474

report the average performance in Table 1. 475

5 Results 476

To evaluate KurTail we focus on 4-bit quantization 477

for weights, activations and KV-cache, which is a 478

challenging bit-width for LLM quantization. Ta- 479

ble 1 shows a summary where "0-shot" means the 480

average performance over 8 tasks of common sense 481

reasoning. For weight quantization we used GPTQ 482

(Frantar et al., 2022). We also provide each task 483

performance in Table 2 and and for all model in § C. 484

We report the detailed performance of each tasks 485

in § C. To demonstrate that our method outper- 486

forms previous works independently of the weight 487

quantization technique, we alos provide results for 488

6

Table 2: Performance comparison of various models with 4 bits W/A/KV-cache quantization in common sense
reasoning tasks. All the weight are quantized using GPTQ.

Model Method ARC-C ARC-E BoolQ HellaSwag OBQA PIQA SIQA WinoGrande AVG

Llama-2-7B

Vanilla 46.2 74.5 77.8 76.0 44.2 79.1 46.1 69.1 64.1
Quarot 41.6 70.6 73.2 72.1 41.2 76.9 44.0 65.2 60.6

SpinQuant 43.6 71.3 73.8 73.2 40.4 76.0 44.1 65.4 61.0
Kurtail 43.1 72.0 72.0 73.2 41.2 76.6 45.6 66.8 61.3

Llama-3-8B

Vanilla 53.4 77.8 81.4 79.2 45.0 80.8 47.2 72.6 67.2
Quarot 42.1 69.0 72.1 71.5 41.2 74.9 44.3 65.5 60.1

SpinQuant 48.0 75.4 75.8 75.4 43.8 77.5 45.0 69.2 63.8
Kurtail 48.2 75.4 79.2 76.4 43.6 78.4 45.8 70.0 64.6

Llama-3-70B

Vanilla 65.0 86.6 85.4 85.0 48.2 84.3 50.5 79.9 73.1
Quarot 53.0 74.8 81.2 77.7 42.0 78.2 45.7 68.4 65.1

SpinQuant 52.0 77.3 81.7 75.6 43.8 78.8 43.4 72.8 65.7
Kurtail 59.2 82.7 83.9 83.3 46.6 83.5 49.7 76.6 70.7

round-to-nearest (RTN) in § C. Additionally, to489

show that our method is effective on LLM families490

beyond the LLaMA family, we present results on491

the Phi-3 model in Table 3.492

Table 3: Performance on Phi-3-mini-4k-instruct.

Method Wiki(↓) 0-shot(↑) MMLU(↑)

16 bit 6.01 0.69 70.75

Quarot 8.46 0.61 56.01
KurTail 7.13 0.66 63.61

For all of the result we have better perplexity in493

all of the models compared to previous methods.494

At the same time, our method is significantly better495

that SpinQuant and QuaRot in downstream tasks.496

We provide further results for mixture of experts497

models in Table 4. We also provide results for math498

reasoning in Table 5.499

Experiment on Mixture of Experts Given the500

growing popularity of the Mixture of Experts501

(MoE) models, we also explore the idea of applying502

rotation within the mixture of experts. For this pur-503

pose, we utilize Mixtral (Jiang et al., 2024), which504

employs the exact same attention block. However,505

for the mixture of experts component, we apply506

rotation across all the experts. Table 4 presents507

the results for 4-bit quantization, where we used508

rounding to the nearest value. In principle, other509

quantization methods, such as GPTQ, HQQ (Badri510

and Shaji, 2023), and similar approaches, can also511

be employed to further enhance performance.512

Evaluating Mathematical Reasoning. To ex-513

plore more complex reasoning tasks, we further514

Table 4: Performance comparison of different quantiza-
tion methods for Mixtral-8x7B. All results correspond
to 4-bit quantization for weights, activations, and KV-
cache. RTN is used for weight quantization.

Method Mixtral-8x7B

Wiki (↓) 0-shot (↑) MMLU (↑)

16-bit 3.8 71.2 68.8

RTN 909.0 35.4 23.0
QuaRot 8.7 55.7 36.8
Kurtail 6.5 59.4 44.8

evaluate the performance of the quantized model 515

on tasks involving mathematical reasoning in Ta- 516

ble 5 by reporting results on the MathQA (Amini 517

et al., 2019) dataset. MathQA is a benchmark de- 518

signed to test problem-solving and quantitative 519

reasoning abilities. The dataset consists of real- 520

world mathematical problems covering topics such 521

as arithmetic, algebra, probability, and geometry. 522

Each problem is accompanied by a natural lan- 523

guage description, multiple-choice answers, and an 524

annotated solution program that outlines the rea- 525

soning steps required to reach the correct answer. 526

In Table 5, we compare KurTail with QuaRot, and 527

the results show that KurTail outperforms QuaRot. 528

This additional observation suggests that optimiz- 529

ing the rotations can also enhance performance on 530

math reasoning tasks. 531

Ablation Study on the Calibration Dataset We 532

also investigate the impact of the calibration dataset 533

on performance. To this end, we modify the cali- 534

bration data to optimize the rotation using different 535

7

Table 5: Comparison of different quantization meth-
ods across various for mathematical reasoning on
MathQA. All results are reported for 4-bit quantiza-
tion of W/A/KV-cache. For weight quantization, we use
GPTQ.

Model MathQA Acc (%)

16-bit QuaRot KurTail

LLaMA-2-7B 28.24 26.70 26.77
LLaMA-2-13B 31.76 28.81 30.35
LLaMA-2-70B 38.39 33.97 35.68

LLaMA-3-8B 40.30 31.36 34.71
LLaMA-3-70B 51.79 35.54 45.76

LLaMA-3.2-1B 28.94 25.29 26.00
LLaMA-3.2-3B 34.67 30.75 30.52

Phi-3-mini 39.93 31.89 34.81

datasets. Specifically, we conduct experiments us-536

ing PTB (Marcus et al., 1993), C4 (Raffel et al.,537

2020), WikiText (Merity et al., 2016b), and Al-538

paca (Taori et al., 2023). Additionally, we create539

a combined dataset by sampling equally from all540

four sources. For each experiment, we sample 512541

instances and report the results for Llama-3.2 3B.542

Table 6: Performance on different calibration datasets.

Cal Dataset Wiki(↓) 0-shot(↑) MMLU(↑)

Quarot 10.1 56.1 42.0

Wikitext-2 9.0 59.05 47.76
C4 9.1 59.24 47.75
Alpaca 9.3 59.68 47.34
PTB 9.2 58.60 48.33
Combined 9.0 59.79 48.75

Table 6 presents the findings. Interestingly, all543

dataset variations outperform the non-training544

method Quarot. Moreover, we observe lower per-545

plexity on WikiText when using other datasets for546

calibration. The best performance on the MMLU547

task is achieved with the PTB dataset, while the548

best results for common sense reasoning tasks are549

obtained using the Alpaca dataset. The combined550

dataset yields the best overall performance across551

all tasks while it uses the exact same number of552

samples (512 sentences).553

In Table 7, we explore different calibration sam-554

ple sizes for learning the rotations and their impact555

on the model’s performance in downstream tasks. 556

In this study, we used our combined dataset and 557

the Llama 3.2 3B model. As shown in Table 6, we 558

observe a trend toward improvement as the sam- 559

ple size increases, although performance tends to 560

saturate around a sample size of 512. 561

Table 7: Effect of different calibration size.

Cal Size Wiki(↓) 0-shot(↑) MMLU(↑)

128 9.11 59.24 47.85
256 9.12 58.85 47.47
512 9.09 59.79 48.75
1024 9.08 59.43 49.02

6 Conclusion 562

We introduced KurTail – a novel technique for 563

learning orthogonal transformations that rotate the 564

activation distribution to address the outlier prob- 565

lem. KurTail effectively reduces quantization sensi- 566

tivity and minimizes quantization error by tackling 567

important challenges, such as the outlier issue, and 568

overcomes the limitations of previous approaches. 569

Compared to QuaRot, which uses non-learnable 570

rotation, and SpinQuant, which requires substantial 571

computational resources for learning rotations, Kur- 572

Tail provides a more efficient and robust solution. 573

We further provide theoretical insights into why 574

layer-wise optimization yields the same results as 575

end-to-end training, and why orthogonal transfor- 576

mations are a suitable choice of matrix space for 577

learning the transformation. Finally, these results 578

highlight KurTail ’s ability to deliver efficiency and 579

high performance across large-scale language mod- 580

els. 581

Limitations In this work, we only focuses on dy- 582

namic per-token quantization for activations, which 583

offers flexibility but does not fully exploit the poten- 584

tial of static tensor-wise quantization. Static quanti- 585

zation, which precomputes scaling factors for im- 586

proved efficiency, could further optimize inference 587

speed and memory usage. However, it requires care- 588

ful calibration, which we leave for future work. 589

References 590

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed 591
Awadallah, Ammar Ahmad Awan, Nguyen Bach, 592
Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat 593
Behl, et al. 2024. Phi-3 technical report: A highly 594

8

capable language model locally on your phone, 2024.595
URL https://arxiv. org/abs/2404.14219.596

Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-597
Kedziorski, Yejin Choi, and Hannaneh Hajishirzi.598
2019. Mathqa: Towards interpretable math word599
problem solving with operation-based formalisms.600
arXiv preprint arXiv:1905.13319.601

Saleh Ashkboos, Maximilian L Croci, Marcelo Gen-602
nari do Nascimento, Torsten Hoefler, and James Hens-603
man. 2024a. Slicegpt: Compress large language mod-604
els by deleting rows and columns. arXiv preprint605
arXiv:2401.15024.606

Saleh Ashkboos, Ilia Markov, Elias Frantar, Tingxuan607
Zhong, Xincheng Wang, Jie Ren, Torsten Hoefler,608
and Dan Alistarh. 2023. Towards end-to-end 4-bit609
inference on generative large language models. arXiv610
preprint arXiv:2310.09259.611

Saleh Ashkboos, Amirkeivan Mohtashami, Maximil-612
ian L Croci, Bo Li, Pashmina Cameron, Martin Jaggi,613
Dan Alistarh, Torsten Hoefler, and James Hensman.614
2024b. Quarot: Outlier-free 4-bit inference in rotated615
llms. arXiv preprint arXiv:2404.00456.616

Hicham Badri and Appu Shaji. 2023. Half-quadratic617
quantization of large machine learning models.618

Ron Banner, Yury Nahshan, Elad Hoffer, and Daniel619
Soudry. 2019. Post-training 4-bit quantization of con-620
volution networks for rapid-deployment. Preprint,621
arXiv:1810.05723.622

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng623
Gao, and Yejin Choi. 2020. Piqa: Reasoning about624
physical commonsense in natural language. In Pro-625
ceedings of the AAAI Conference on Artificial Intelli-626
gence, volume 34, pages 7432–7439.627

Michael Boratko, Harsh Padigela, Deepak Mikkilineni,628
Pavan Yuvraj, Rajarshi Das, Andrew McCallum,629
Mihai Chang, Achille Fokoue, Pavan Kapanipathi,630
Nicholas Mattei, et al. 2018. Arc: A machine reading631
comprehension dataset for reasoning over science632
text. In Proceedings of the 2018 Conference on Em-633
pirical Methods in Natural Language Processing,634
pages 1414–1423.635

Brian Chmiel, Ron Banner, Gil Shomron, Yury Nahshan,636
Alex Bronstein, Uri Weiser, et al. 2020. Robust quan-637
tization: One model to rule them all. Advances in neu-638
ral information processing systems, 33:5308–5317.639

Christopher Clark, Kenton Lee, Ming-Wei Chang,640
Tom Kwiatkowski, Michael Collins, and Kristina641
Toutanova. 2019. Boolq: Exploring the surprising642
difficulty of natural yes/no questions. arXiv preprint643
arXiv:1905.10044.644

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke645
Zettlemoyer. 2022. Gpt3. int8 (): 8-bit matrix mul-646
tiplication for transformers at scale. Advances in647
Neural Information Processing Systems, 35:30318–648
30332.649

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 650
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 651
Akhil Mathur, Alan Schelten, Amy Yang, Angela 652
Fan, et al. 2024. The llama 3 herd of models. arXiv 653
preprint arXiv:2407.21783. 654

Vage Egiazarian, Andrei Panferov, Denis Kuznedelev, 655
Elias Frantar, Artem Babenko, and Dan Alistarh. 656
2024. Extreme compression of large language 657
models via additive quantization. arXiv preprint 658
arXiv:2401.06118. 659

Nelson Elhage, Robert Lasenby, and Christopher Olah. 660
2023. Privileged bases in the transformer residual 661
stream. Transformer Circuits Thread. 662

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and 663
Dan Alistarh. 2022. Gptq: Accurate post-training 664
quantization for generative pre-trained transformers. 665
arXiv preprint arXiv:2210.17323. 666

Leo Gao, Stella Biderman, Hailey Schoelkopf, Lintang 667
Sutawika, et al. 2024a. Lessons from the trenches on 668
reproducible evaluation of language models. arXiv 669
preprint arXiv:2405.14782. 670

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, 671
Sid Black, Anthony DiPofi, Charles Foster, Laurence 672
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, 673
Kyle McDonell, Niklas Muennighoff, Chris Ociepa, 674
Jason Phang, Laria Reynolds, Hailey Schoelkopf, 675
Aviya Skowron, Lintang Sutawika, Eric Tang, An- 676
ish Thite, Ben Wang, Kevin Wang, and Andy Zou. 677
2024b. A framework for few-shot language model 678
evaluation. 679

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, 680
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, 681
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In- 682
centivizing reasoning capability in llms via reinforce- 683
ment learning. arXiv preprint arXiv:2501.12948. 684

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, 685
Mantas Mazeika, Dawn Song, and Jacob Steinhardt. 686
2021. Measuring massive multitask language under- 687
standing. arXiv preprint arXiv:2009.03300. 688

Albert Q. Jiang, Alexandre Sablayrolles, Antoine 689
Roux, Arthur Mensch, Blanche Savary, Chris 690
Bamford, Devendra Singh Chaplot, Diego de las 691
Casas, Emma Bou Hanna, Florian Bressand, Gi- 692
anna Lengyel, Guillaume Bour, Guillaume Lam- 693
ple, Lélio Renard Lavaud, Lucile Saulnier, Marie- 694
Anne Lachaux, Pierre Stock, Sandeep Subramanian, 695
Sophia Yang, Szymon Antoniak, Teven Le Scao, 696
Théophile Gervet, Thibaut Lavril, Thomas Wang, 697
Timothée Lacroix, and William El Sayed. 2024. Mix- 698
tral of experts. Preprint, arXiv:2401.04088. 699

Jun Li, Li Fuxin, and Sinisa Todorovic. 2020. Effi- 700
cient riemannian optimization on the stiefel man- 701
ifold via the cayley transform. arXiv preprint 702
arXiv:2002.01113. 703

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei- 704
Ming Chen, Wei-Chen Wang, Guangxuan Xiao, 705

9

https://mobiusml.github.io/hqq_blog/
https://mobiusml.github.io/hqq_blog/
https://mobiusml.github.io/hqq_blog/
https://arxiv.org/abs/1810.05723
https://arxiv.org/abs/1810.05723
https://arxiv.org/abs/1810.05723
https://transformer-circuits.pub/2023/privileged-bases
https://transformer-circuits.pub/2023/privileged-bases
https://transformer-circuits.pub/2023/privileged-bases
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2401.04088

Xingyu Dang, Chuang Gan, and Song Han. 2024.706
Awq: Activation-aware weight quantization for on-707
device llm compression and acceleration. Proceed-708
ings of Machine Learning and Systems, 6:87–100.709

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge710
Soran, Dhruv Choudhary, Raghuraman Krishnamoor-711
thi, Vikas Chandra, Yuandong Tian, and Tijmen712
Blankevoort. 2024. Spinquant–llm quantization with713
learned rotations. arXiv preprint arXiv:2405.16406.714

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann715
Marcinkiewicz. 1993. Building a large annotated716
corpus of english: The penn treebank. Computational717
Linguistics, 19(2):313–330.718

Stephen Merity, Caiming Xiong, James Bradbury, and719
Richard Socher. 2016a. Pointer sentinel mixture mod-720
els. arXiv preprint arXiv:1609.07843.721

Stephen Merity, Caiming Xiong, James Bradbury, and722
Richard Socher. 2016b. Pointer sentinel mixture723
models. arXiv preprint arXiv:1609.07843.724

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish725
Sabharwal. 2018. Openbookqa: Fact-based open726
book question answering. In Proceedings of the 2018727
Conference on Empirical Methods in Natural Lan-728
guage Processing, pages 268–277.729

OpenAI. 2024. Learning to reason with730
llms. https://openai.com/index/731
learning-to-reason-with-llms. Accessed:732
2025-01-30.733

Adam Paszke, Sam Gross, Francisco Massa, Adam734
Lerer, James Bradbury, Gregory Chanan, Trevor735
Killeen, Zeming Lin, Natalia Gimelshein, Luca736
Antiga, et al. 2019. Pytorch: An imperative style,737
high-performance deep learning library. Advances in738
neural information processing systems, 32.739

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine740
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,741
Wei Li, and Peter J. Liu. 2020. Exploring the lim-742
its of transfer learning with a unified text-to-text743
transformer. Journal of Machine Learning Research,744
21(140):1–67.745

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhaga-746
vatula, and Yejin Choi. 2021. Winogrande: An ad-747
versarial winograd schema challenge at scale. In748
Proceedings of the AAAI Conference on Artificial749
Intelligence, volume 34, pages 8732–8740.750

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan751
Le Bras, and Yejin Choi. 2019. Social iqa: Com-752
monsense reasoning about social interactions. In753
Proceedings of the 2019 Conference on Empirical754
Methods in Natural Language Processing and the 9th755
International Joint Conference on Natural Language756
Processing (EMNLP-IJCNLP), pages 4463–4473.757

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann758
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,759

and Tatsunori B. Hashimoto. 2023. Stanford al- 760
paca: An instruction-following llama model. https: 761
//github.com/tatsu-lab/stanford_alpaca. 762

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 763
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 764
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 765
Bhosale, et al. 2023. Llama 2: Open founda- 766
tion and fine-tuned chat models. arXiv preprint 767
arXiv:2307.09288. 768

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr 769
Kuleshov, and Christopher De Sa. 2024. Quip#: 770
Even better llm quantization with hadamard in- 771
coherence and lattice codebooks. arXiv preprint 772
arXiv:2402.04396. 773

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 774
Chaumond, Clement Delangue, Anthony Moi, Pierric 775
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, 776
and Jamie Brew. 2019. Huggingface’s transformers: 777
State-of-the-art natural language processing. CoRR, 778
abs/1910.03771. 779

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, 780
Julien Demouth, and Song Han. 2023. Smoothquant: 781
Accurate and efficient post-training quantization for 782
large language models. In International Conference 783
on Machine Learning, pages 38087–38099. PMLR. 784

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali 785
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a 786
machine really finish your sentence? In Proceedings 787
of the 57th Annual Meeting of the Association for 788
Computational Linguistics, pages 4791–4800. 789

10

https://openai.com/index/learning-to-reason-with-llms
https://openai.com/index/learning-to-reason-with-llms
https://openai.com/index/learning-to-reason-with-llms
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771

A Proofs790

Lemma A.1. The quantization error after trans-791

formation is bounded with
∥∥X −Q(xT)T−1

∥∥
F
≤792

c
2

√
NM

∥∥T 1
∥∥
2

∥∥T−1
∥∥
2
= c

2

√
NMκ(T), where793

T is the transformation and c is a constant depends794

on X and κ(T) is the condition number of matrix795

T .796

Proof of Lemma 2.3797

We aim to bound the quantization error defined798

as
∥∥X −Q(XT)T−1

∥∥
F

. To do so, we use the799

fact that X = XTT−1:800

E =
∥∥X −Q(XT)T−1

∥∥
F

=
∥∥XTT−1 −Q(XT)T−1

∥∥
F
.

(5)801

Applying the sub-multiplicative property of the802

Frobenius norm (i.e., ∥AB∥F ≤ ∥A∥2 ∥B∥F), we803

obtain:804

∥∥XTT−1 −Q(XT)T−1
∥∥
F
≤

∥XT −Q(XT)∥F ·
∥∥T−1

∥∥
2
.

(6)805

We now focus on bounding the quantization er-806

ror term ∥XT −Q(XT)∥F . Under uniform quan-807

tization, each entry of the quantization error is808

bounded by ∆
2 , where ∆ =

maxij |(XT)ij |
2k−1−1

is the809

quantization step size. Therefore, the Frobenius810

norm can be bounded by:811

∥XT −Q(XT)∥F ≤
√
NM · ∆

2
, (7)812

where N and M are the number of rows and813

columns of XT , respectively.814

Combining Eq. 6 and Eq. 7, we get:815

∥∥X −Q(XT)T−1
∥∥
F
≤

√
NM · ∆

2
·
∥∥T−1

∥∥
2
.

(8)
816

To bound ∆, we use the fact that the maximum817

absolute value of elements in XT satisfies:818

max
ij

|(XT)ij | ≤ ∥XT ∥2 ≤ ∥X∥2 · ∥T ∥2 . (9)819

Substituting this into the expression for ∆, we820

obtain:821

∆ ≤
∥X∥2 · ∥T ∥2
2k−1 − 1

.822

Finally, substituting this into Eq. 8, we conclude: 823

∥∥X −Q(XT)T−1
∥∥
F
≤

∥X∥2
2k−1 − 1

·
√
NM · ∥T ∥2 ·

∥∥T−1
∥∥
2
=

∥X∥2
2k−1 − 1

·
√
NM · cn(T),

(10) 824

where cn(T) = ∥T ∥2 ·
∥∥T−1

∥∥
2

denotes the 825

condition number of T . 826

Proposition A.2. Let H1,O1 = f(X,W1,R1), 827

and H2,O2 = g(O1;W2;R2) where f, g are pa- 828

rameterized by W1,R1 and W2,R2. Given func- 829

tional invariance of f and g, i.e. O1 = O′
1 for any 830

O′
1,H

′
1 = f(X,W1,R

′
1) and any orthogonal R′

1 831

(and similarly for g), and given that the total loss is 832

L(R1,R2) = L1(H1)+L2(H2), the independent 833

minimization of each loss results in the same op- 834

timum as end-to-end: argminR1,R2 L(R1,R2) = 835

(argminR1 L1(R1), argminR2 L2(f ;R2)), even 836

though H2 implicitly depends on O1. 837

Proof of Proposition 2.5 838

The proof is also intuitive since, condition 1 im- 839

plies that the arguments to Li are constants w.r.t. 840

Rj . Condition 2 implies Li depends only on Ri. 841

Thus, L(R1, R2) = L1(R1) + L2(f ;R2), which 842

is separable. 843

B Evaluation of KurTail on Channel 844

Outliers. 845

To demonstrate that the learned rotation by KurTail 846

reduces the degree of tailedness in the distribution, 847

we visualize the inputs of multi-head self-attention 848

(MHSA) and feed-forward network (FFN) blocks 849

of layer 15 in Llama3-8B. In Fig. 2, we compare 850

the input distribution once without rotation and 851

once with KurTail learned rotation. Additionally, 852

we highlight the maximum value for each token 853

with a gray surface above each token. As shown, 854

KurTail effectively mitigates outliers in activation 855

quantization. 856

In dynamic per-token quantization, the maxi- 857

mum value of a token’s vector plays a critical role 858

in determining the quantization step size and range. 859

Larger maximum values increase the quantization 860

range, which results in larger quantization steps 861

and greater precision loss. Alternatively, reducing 862

the maximum value allows for smaller quantization 863

steps, which result in more efficient representation 864

of token values with minimal degradation of infor- 865

mation. Therefore, lowering the maximum values 866

11

across tokens is directly connected to overall quan-867

tization error and model performance. To evaluate868

how well different methods achieve this goal, we869

measure the success rate of our proposed method,870

KurTail , compared to its un-rotated counterpart871

(baseline vector) and an alternative rotation method,872

QuaRot. A “success” is defined as a case where the873

maximum value of a token’s vector after applying a874

benchmark rotation method (KurTail or QuaRot) is875

smaller than that of the baseline vector. The success876

rate is defined as the percentage of tokens where877

the benchmarked rotated version achieves this re-878

duction. In Table 8, we present the average success879

rates for LLAMA3-8B. KurTail consistently pro-880

duces smaller maximum values across all layers,881

samples, and tokens, achieving a higher success882

rate compared to the baseline vector in nearly all883

cases. Additionally, it outperforms QuaRot in ap-884

proximately 63.29% in MSHA, 62.99% in FFN on885

average.886

Table 8: The success rate of benchmark over baseline.

Baseline Benchmark Success Rate (%)

M
H

SA

Vanilla KurTail 99.74%
Vanilla QuaRot 99.43%
QuaRot KurTail 63.29%

FF
N

Vanilla KurTail 99.96%
Vanilla QuaRot 99.96%
QuaRot KurTail 62.99%

C Further Evaluation887

In this section, we provide a more detailed eval-888

uation of all tasks and more models. We present889

results for 4-bit quantization of weights, activations,890

and the KV-cache. Table 9 reports the performance891

of each MMLU task under 4-bit quantization for892

weights, activations, and the KV-cache. We use the893

GPTQ quantization algorithm for weight quantiza-894

tion in this experiment. Similarly, using the same895

setup, we evaluate common-sense reasoning tasks,896

as shown in Table 10. Finally, we report the per-897

formance of common-sense reasoning tasks using898

RTN quantization for weights in Table 11.899

Table 9: Performance comparison of different models
using various methods across different domains.

Model Method Human Other STEM S-Sci AVG

Llama-2-7B

Vanilla 39.8 47.3 34.2 47.3 42.1
Quarot 31.1 35.7 29.9 34.1 32.7

SpinQuant 33.9 38.5 29.5 37.5 34.8
Kurtail 32.3 35.0 29.8 34.4 32.9

Llama-2-13B

Vanilla 47.9 59.4 42.3 61.2 52.7
Quarot 42.7 52.3 38.2 54.1 46.8

SpinQuant 43.5 53.1 39.1 55.4 47.8
Kurtail 45.3 54.0 40.4 56.6 49.1

Llama-3-8B

Vanilla 55.0 70.8 53.7 73.2 63.2
Quarot 42.1 52.9 39.8 54.9 47.4

SpinQuant 49.8 63.3 46.8 65.0 56.2
Kurtail 50.2 64.5 49.1 65.6 57.3

Llama-3-70B

Vanilla 67.7 81.5 69.2 86.7 76.3
Quarot 55.3 68.5 53.7 74.1 62.9

SpinQuant 50.7 67.0 51.9 68.1 59.4
Kurtail 65.2 79.1 63.9 84.2 73.1

Llama-3.2-1B

Vanilla 35.3 41.3 33.9 41.3 38.0
Quarot 25.4 26.9 24.4 25.4 25.5

SpinQuant 25.4 27.6 24.2 25.3 25.6
Kurtail 26.5 28.8 26.0 27.3 27.2

Llama-3.2-3B

Vanilla 49.0 63.1 45.5 62.9 55.1
Quarot 38.5 47.3 35.3 46.7 42.0

SpinQuant 37.0 49.4 39.9 50.5 44.2
Kurtail 44.8 53.4 39.5 53.4 47.8

12

Table 10: Performance comparison of various models with 4 bits W/A/KV-cache quantization in common sense
reasoning tasks. All the weight are quantized using GPTQ.

Model Method ARC-C ARC-E BoolQ HellaSwag OBQA PIQA SIQA WinoGrande AVG

Llama-2-7B

Vanilla 46.2 74.5 77.8 76.0 44.2 79.1 46.1 69.1 64.1
Quarot 41.6 70.6 73.2 72.1 41.2 76.9 44.0 65.2 60.6

SpinQuant 43.6 71.3 73.8 73.2 40.4 76.0 44.1 65.4 61.0
Kurtail 43.1 72.0 72.0 73.2 41.2 76.6 45.6 66.8 61.3

Llama-2-13B

Vanilla 49.2 77.5 80.6 79.4 45.2 80.5 47.4 72.1 66.5
Quarot 47.3 73.9 77.8 76.6 44.4 78.7 44.1 69.8 64.1

SpinQuant 49.0 76.3 78.2 77.1 42.8 79.3 46.3 69.5 64.8
Kurtail 48.1 75.4 79.7 77.4 45.0 79.0 45.6 71.2 65.2

Llama-3-8B

Vanilla 53.4 77.8 81.4 79.2 45.0 80.8 47.2 72.6 67.2
Quarot 42.1 69.0 72.1 71.5 41.2 74.9 44.3 65.5 60.1

SpinQuant 48.0 75.4 75.8 75.4 43.8 77.5 45.0 69.2 63.8
Kurtail 48.2 75.4 79.2 76.4 43.6 78.4 45.8 70.0 64.6

Llama-3-70B

Vanilla 65.0 86.6 85.4 85.0 48.2 84.3 50.5 79.9 73.1
Quarot 53.0 74.8 81.2 77.7 42.0 78.2 45.7 68.4 65.1

SpinQuant 52.0 77.3 81.7 75.6 43.8 78.8 43.4 72.8 65.7
Kurtail 59.2 82.7 83.9 83.3 46.6 83.5 49.7 76.6 70.7

Llama-3.2-1B

Vanilla 36.2 60.4 63.9 63.6 37.2 74.6 43.0 60.5 54.9
Quarot 30.0 51.4 59.1 54.0 34.2 66.7 39.6 57.1 49.0

SpinQuant 32.3 51.8 59.3 55.4 30.4 67.7 38.6 54.7 48.8
Kurtail 31.1 52.9 60.7 56.4 36.4 68.6 40.5 54.3 50.1

Llama-3.2-3B

Vanilla 46.0 71.7 73.2 73.6 43.0 77.5 47.0 69.7 62.7
Quarot 38.6 59.0 65.9 66.5 35.8 74.4 43.1 65.2 56.1

SpinQuant 38.9 64.8 68.0 69.1 39.4 74.9 45.1 62.9 57.9
Kurtail 42.2 66.7 69.8 68.8 39.8 75.6 44.8 64.6 59.0

Table 11: Performance comparison of various models with 4 bits W/A/KV-cache quantization in common sense
reasoning tasks. All the weights are quantized using RTN.

Model Method ARC-C ARC-E BoolQ HellaSwag OBQA PIQA SIQA Winogrande AVG

Llama-2-7B
Vanilla 46.2 74.5 77.8 76.0 44.2 79.1 46.1 69.1 64.1
Quarot 35.2 62.4 69.0 62.6 33.4 71.7 40.9 60.2 54.4
Kurtail 39.0 64.9 69.8 64.7 39.2 74.1 42.1 62.2 57.0

Llama-2-13B
Vanilla 49.2 77.5 80.6 79.4 45.2 80.5 47.4 72.1 66.5
Quarot 41.4 68.2 73.2 71.2 41.6 76.3 41.1 66.1 59.9
Kurtail 44.2 70.3 74.7 72.5 40.4 77.5 45.9 70.2 62.0

Llama-2-70B
Vanilla 57.4 81.1 83.8 83.8 48.8 82.8 49.2 78.0 70.6
Quarot 50.5 76.8 80.0 78.4 44.0 79.9 46.0 72.9 66.1
Kurtail 51.3 76.6 80.9 81.0 46.4 81.7 46.8 76.2 67.6

Llama-3-8B
Vanilla 53.4 77.8 81.4 79.2 45.0 80.8 47.2 72.6 67.2
Quarot 31.1 51.6 55.7 62.0 31.6 66.3 40.1 59.0 49.7
Kurtail 38.1 61.1 72.5 69.3 36.8 72.9 41.9 66.1 57.3

Llama-3-70B
Vanilla 65.0 86.6 85.4 85.0 48.2 84.3 50.5 80.0 73.1
Quarot 20.6 31.3 58.5 28.4 25.4 55.0 33.2 50.7 37.9
Kurtail 23.0 37.8 48.5 33.9 29.8 61.8 36.6 51.6 40.4

Llama-3.2-1B
Vanilla 36.2 60.4 63.9 63.6 37.2 74.6 43.0 60.5 54.9
Quarot 27.4 33.9 39.1 36.2 30.0 56.9 34.7 53.0 38.9
Kurtail 28.7 37.2 38.8 42.9 31.6 60.0 35.7 57.5 41.5

Llama-3.2-3B
Vanilla 46.0 71.7 73.2 73.6 43.0 77.5 47.0 69.7 62.7
Quarot 33.1 50.3 41.8 56.3 31.8 67.8 39.8 56.8 47.2
Kurtail 37.4 56.6 48.0 62.1 36.6 71.3 40.5 60.4 51.6

13

	Introduction
	Background
	Optimality of orthogonal transformations
	End-to-End training

	KurTail
	Setup
	Results
	Conclusion
	Proofs
	Evaluation of KurTail on Channel Outliers.
	Further Evaluation

