
From Screenshots to Hierarchical Code: Android GUI Layout Code
Generation via Multi-Agent LLMs

Anonymous ACL submission

Abstract001

UI-to-Code systems have achieved strong per-002
formance in web interfaces, yet generating003
structured Android GUI code remains chal-004
lenging due to layout complexity. We pro-005
pose a framework that converts Android screen-006
shots into hierarchical code through multi-007
agent LLMs. The framework begins with GUI008
component recognition, extracting both local009
component information and global layout struc-010
ture. The LLM is then guided to generate code011
for each component in context, ensuring con-012
sistency and modularity. To improve code qual-013
ity, we introduce a feedback-driven refinement014
stage that leverages structural similarity met-015
rics for iterative enhancement. We evaluate016
our approach on subsets of Rico datasets. Re-017
sults show that our method significantly outper-018
forms Pix2Code, direct prompting, and chain-019
of-thought prompting strategies. Our find-020
ings highlight the effectiveness of layout-aware021
prompting and structured refinement for accu-022
rate Android GUI code generation.023

1 Introduction024

Recent years have witnessed increasing interest in025

automatically generating user interface (UI) code026

from visual designs or screenshots, known as the027

UI-to-Code task. This automation streamlines de-028

velopment by reducing the manual effort of trans-029

lating mockups into code. In the web domain, re-030

search has progressed rapidly—from early neural031

models to modern prompt-based approaches. The032

seminal PIX2CODE model (Beltramelli, 2017) first033

showed that end-to-end deep learning could gener-034

ate UI code for web, iOS, and Android platforms035

from a single screenshot. More recently, Wan et036

al. (Wan et al., 2024) demonstrated that segmenting037

a webpage and prompting an LLM on each region038

improves visual similarity by 14% over holistic039

prompting. Despite such advances in web UI gen-040

eration, the Android UI-to-Code problem remains041

underexplored and presents distinct structural chal- 042

lenges. 043

Android GUI code generation poses unique chal- 044

lenges due to the structured and deeply nested 045

nature of layout definitions in XML. Unlike 046

HTML, Android layouts rely on containers such as 047

RelativeLayout and ConstraintLayout, which 048

require precise spatial reasoning and are not di- 049

rectly renderable without an IDE or emulator. This 050

limits the use of visual feedback and image-based 051

losses common in web UI generation. Moreover, 052

paired screenshot–XML data is scarce. While 053

datasets like Rico (Deka et al., 2017a) provide 054

view hierarchies, they lack exact layout anno- 055

tations. Prior efforts (Chen et al., 2018) con- 056

structed large-scale datasets via automated app 057

exploration, but such resources remain limited. 058

These factors—structural complexity and data 059

scarcity—have constrained progress in Android 060

UI-to-code compared to the web domain. 061

Despite its challenges, early work established 062

the feasibility of data-driven GUI code gener- 063

ation. PIX2CODE (Beltramelli, 2017) framed 064

the task as sequence-to-sequence translation, us- 065

ing a CNN–RNN architecture to convert screen- 066

shots into platform-specific code. On Android, 067

UI2CODE (Chen et al., 2018) learned to predict lay- 068

out hierarchies from design images without hand- 069

crafted rules, leveraging a large corpus of screen- 070

shot–layout pairs collected via automated app ex- 071

ploration. More recent systems, including both 072

commercial tools and academic prototypes, ex- 073

plore prompting large language models (LLMs) 074

with UI images or descriptions. However, one-shot 075

prompting often leads to missing elements, incor- 076

rect hierarchies, or hallucinated structures—issues 077

especially pronounced in Android XML genera- 078

tion. These limitations highlight the need for more 079

structured and guided generation strategies. 080

A promising direction for UI-to-code genera- 081

tion is to leverage large language model (LLM) 082

1



agents that decompose the task into structured sub-083

tasks and solve it hierarchically. Unlike single-pass084

models, LLM agents can iteratively reason over085

the interface, invoke specialized steps, and refine086

intermediate outputs. Such multi-step planning im-087

proves reliability by reducing hallucinations and088

error accumulation (Yao et al., 2022). We argue089

that Android UI generation, with its structural com-090

plexity, benefits from this approach. By focusing091

on one component or region at a time and incorpo-092

rating feedback at each stage, the agent can main-093

tain global layout coherence while systematically094

generating XML code. This hierarchical process095

aligns with the strengths of LLMs—contextual un-096

derstanding and code generation—while introduc-097

ing structure to mitigate their weaknesses.098

To address these challenges, we propose a layout-099

aware framework that transforms Android GUI100

screenshots into native XML code using a single101

large language model (LLM) guided by structured102

prompting. The process begins with GUI compo-103

nent recognition, which identifies individual UI el-104

ements and captures their spatial relationships. The105

LLM is then sequentially prompted to generate par-106

tial code for each component, conditioned on its107

local context and global layout. These fragments108

are composed into a complete XML hierarchy, pre-109

serving structural and visual fidelity. To further im-110

prove output quality, we introduce a reinforcement-111

style refinement stage, where feedback is used to112

iteratively correct omissions and structural errors.113

We evaluate our method on subsets of the Rico114

dataset (Deka et al., 2017a), and show that it signif-115

icantly outperforms traditional UI-to-code models116

and prompting-based LLM baselines in both struc-117

tural accuracy and component-level metrics. Our118

approach highlights how structured planning and it-119

erative prompting can enhance LLM capabilities in120

GUI code generation, bridging visual understand-121

ing with language-based reasoning for high-fidelity122

Android layout synthesis.123

2 Related Work124

2.1 UI-to-Code125

Early UI-to-code approaches relied on image126

processing and template-based heuristics. RE-127

MAUI (Nguyen et al., 2015) used OCR and com-128

puter vision to extract text, images, and compo-129

nents from app screenshots, reconstructing view hi-130

erarchies for Android UI generation. Sketch2Code131

applied similar techniques to hand-drawn wire-132

frames. While effective for simple designs, these 133

methods struggled with complex layouts due to 134

their reliance on hand-crafted rules and rigid 135

pipelines. 136

The introduction of deep learning marked a shift 137

to more generalizable models. PIX2CODE (Bel- 138

tramelli, 2017) pioneered end-to-end UI genera- 139

tion using a CNN encoder and sequence decoder, 140

achieving over 77% accuracy on synthetic datasets 141

across web, iOS, and Android. Chen et al. (Chen 142

et al., 2018) extended this to Android with a dataset 143

of 185k screenshot–code pairs and a CNN–RNN 144

architecture that captured layout hierarchies across 145

varied designs. ReDraw (Moran et al., 2018) com- 146

bined CNN-based classification with mining soft- 147

ware repositories to assemble structurally faithful 148

Android prototypes. 149

More recently, transformer-based models have 150

treated UI-to-code as a multimodal translation 151

task, mapping GUI images to structured outputs 152

such as HTML or JSON using self-attention (Liu 153

et al., 2021). Meanwhile, large LLMs have been 154

prompted with UI descriptions or screenshots to 155

generate code directly. However, one-shot prompt- 156

ing often fails on deep layouts or dense hierarchies. 157

Si et al. (Si et al., 2024) show that LLM perfor- 158

mance deteriorates as the number of UI elements 159

and nesting depth increase, especially in Android 160

settings. These limitations highlight the need for 161

layout-aware and stepwise generation strategies. 162

2.2 LLM Agents 163

Recent advances in LLM-based agent frameworks 164

have enabled complex, multi-step reasoning that 165

benefits structured generation tasks. Rather than 166

producing outputs in a single pass, LLM agents in- 167

terleave reasoning with actions, decomposing tasks, 168

invoking tools, and refining results. 169

ReAct (Yao et al., 2022) exemplifies this ap- 170

proach by interleaving chain-of-thought reasoning 171

with tool-use actions, allowing models to plan steps 172

and fetch factual information when needed. Tool- 173

former (Schick et al., 2023) further demonstrated 174

that LLMs can self-supervise API calls (e.g., cal- 175

culators, search engines), enhancing zero-shot per- 176

formance by offloading sub-tasks to external tools. 177

These systems highlight how action-aware prompt- 178

ing improves reliability and reduces hallucinations. 179

Beyond tool invocation, agent frameworks like 180

AutoGPT and BabyAGI introduce autonomous 181

planning loops, where an LLM iteratively gener- 182

ates goals, executes actions, and evaluates progress 183

2



Figure 1: Overall framework of our hierarchical LLM-agent pipeline for Android GUI code generation. The system
first performs component-level recognition from GUI screenshots, then delegates structured code generation and
refinement to a team of collaborating agents.

toward a final objective. While powerful, these sys-184

tems also face issues such as error accumulation185

and objective drift (Gravitas, 2023).186

To address quality control, Self-Refine (Madaan187

et al., 2023) allows the same model to act as both188

generator and critic, refining its output through189

iterative self-feedback without additional training.190

This process improves result quality over one-shot191

generation across tasks.192

These agentic capabilities align closely with193

the demands of Android GUI code generation.194

Transforming a screenshot into nested, layout-195

constrained XML code requires visual interpreta-196

tion, structural planning, and iterative correction.197

LLM agents can decompose the task into man-198

ageable units (e.g., container-by-container), verify199

layout consistency, and refine outputs. We build200

on this paradigm to introduce an LLM-driven ap-201

proach for Android UI generation that incorporates202

planning and self-refinement to address the long-203

horizon nature of GUI layout synthesis.204

3 Problem Formulation205

We formalize the UI-to-Code task for Android206

GUIs as a conditional generation problem. The207

input is a screenshot image I of an Android appli-208

cation’s user interface. The output is a structured209

Android XML layout L that accurately reflects the210

visible UI hierarchy in I . The goal is to generate211

L′, a predicted layout code that approximates the212

ground-truth L∗ corresponding to I . Formally, the213

task is to learn a function f : I → L such that 214

L′ = argmaxL P(L | I). 215

3.1 Hierarchical Layout Tree 216

We represent L as a hierarchical layout tree T = 217

(V,E), where each node v ∈ V denotes a UI com- 218

ponent (e.g., Button, TextView), and each edge 219

e ∈ E encodes a parent–child relationship. This 220

tree structure naturally maps to XML nesting. For 221

instance, a LinearLayout with a Button and a 222

TextView corresponds to a parent node with two 223

children. 224

Let T ∗ = (V ∗, E∗) denote the ground-truth lay- 225

out tree, and T ′ = (V ′, E′) the tree derived from 226

generated code L′. While each node carries ad- 227

ditional attributes (e.g., size, color), we primarily 228

focus on the structural correctness of T ′ with re- 229

spect to T ∗ (Beltramelli, 2017). 230

3.2 Objective: Structural Similarity 231

Our objective is to minimize the structural discrep- 232

ancy between T ′ and T ∗. We use the tree edit 233

distance (TED) as the evaluation metric: 234

TED(T ′, T ∗) = min #operations to transform T ′ into T ∗, 235

where operations include node insertion, deletion, 236

and substitution. A lower TED indicates higher 237

structural fidelity. 238

3.3 Common Error Types 239

Despite recent progress, generated layouts fre- 240

quently contain structural errors. We identify three 241

3



Figure 2: Example of GUI component recognition. The system detects and localizes visual elements—such as
buttons, text fields, and icons—from the input screenshot, serving as the foundation for building a hierarchical
layout tree.

typical categories:242

• Element Omission: Missing components that243

are visible in I , such that V ′ ⊊ V ∗.244

• Element Distortion: Incorrect component245

type or attributes (e.g., misclassifying a246

TextView as a Button).247

• Incorrect Arrangement: Misplaced ele-248

ments due to wrong nesting or ordering, lead-249

ing to edge errors in E′.250

These issues degrade layout quality. Omission251

leads to missing nodes, distortion introduces se-252

mantic errors, and arrangement mistakes break hi-253

erarchy. Our method aims to reduce such discrep-254

ancies and produce a layout L′ where T ′ ≈ T ∗.255

4 Approach256

As illustrated in Figure 1, we propose a hierarchi-257

cal pipeline that generates native Android XML258

layout code from GUI screenshots via LLM agent259

collaboration. The framework consists of three260

main stages: component recognition, agent-based261

code generation, and reinforcement-based iterative262

refinement (Madaan et al., 2023). This design en-263

ables structured decomposition of the UI-to-code264

task and progressive improvement of output qual-265

ity.266

4.1 GUI Component Recognition 267

To extract a structured representation of the inter- 268

face, we design a dual-branch component recogni- 269

tion network that separately detects textual and non- 270

textual elements in Android GUI screenshots (Deka 271

et al., 2017b). This module provides the layout- 272

aware visual grounding for subsequent code gener- 273

ation, as illustrated in Figure 2. 274

Text Component Detection. We apply the 275

EAST detector (Zhou et al., 2017), a fast and ac- 276

curate FCN-based model for oriented scene text 277

detection. EAST directly predicts rotated bound- 278

ing boxes, making it well-suited for parsing struc- 279

tured textual elements (e.g., labels, prompts) in 280

GUI images. Compared with heavier models such 281

as CRAFT (Baek et al., 2019), EAST offers a good 282

balance of speed and precision for mobile UI do- 283

mains. 284

Non-Text Component Detection. We adopt 285

a structure-aware detection strategy inspired 286

by (Chen et al., 2020), focused on layout block 287

extraction and hierarchy reconstruction. The pro- 288

cess includes: 289

1. Block Segmentation: Convert input frame to 290

grayscale and apply flood-fill to extract uni- 291

form regions Ri. 292

2. Edge Map Generation: Compute structural 293

4



gradient magnitude Mgrad =
√
G2

x +G2
y and294

binarize to obtain component boundaries.295

3. Component Labeling: Extract connected296

components and record bounding boxes and297

center coordinates.298

4. Structure Refinement: Merge overlapping299

regions, filter out small components, and build300

parent-child relationships via spatial contain-301

ment.302

This network operates frame-independently and303

yields a hierarchical component tree T = (V,E)304

that reflects both the local geometry and global305

organization of the UI. It serves as the structural306

basis for downstream layout code generation.307

4.2 LLM Agent Collaboration308

To generate structured layout code from the compo-309

nent tree, we design a modular LLM agent frame-310

work where multiple specialized agents collaborate311

to complete the UI-to-code task. Inspired by multi-312

agent paradigms such as ReAct (Yao et al., 2022)313

and Toolformer (Schick et al., 2023), we assign314

distinct roles to agents that operate on subtrees and315

exchange intermediate outputs via shared memory.316

The agent system consists of three key modules:317

• Structure Agent: Traverses the initial com-318

ponent tree T init, enriching each node with319

contextual metadata such as container type,320

orientation, and depth.321

• Local Code Agent: For each subtree rooted322

at a UI component, generates XML code frag-323

ments based on localized spatial features, in-324

ferred widget types, and parent layout hints.325

• Assembly Agent: Aggregates code snip-326

pets from all local agents, merges them into327

a global layout, and performs consistency328

checks (e.g., tag closure, nesting order, miss-329

ing parents) to reconstruct a complete XML330

layout file.331

Each agent operates with partial knowledge of332

the layout tree but contributes collaboratively to a333

globally coherent solution. Intermediate messages334

(e.g., node annotations, XML templates) are passed335

through a shared memory buffer, enabling coordi-336

nation without central control. This decomposition337

reduces the complexity of one-shot generation and338

improves layout fidelity by embedding structural339

priors into the generation process.340

Algorithm 1: GUI Component Recogni-
tion Pipeline

Input: GUI image I ∈ RH×W×3

Output: Component set C, layout tree
T = (V,E)

// Text Component Detection (EAST)
1 Ctext ← EAST(I)
// Non-Text Component Detection

(Structure-Aware)
2 Convert I to grayscale image G ;
3 B ← FloodFill(G, ϵ) ; // Block

segmentation
4 Compute gradients Gx, Gy and

Mgrad =
√

G2
x +G2

y ;

5 Apply threshold τ to obtain binary map
Mbin ;

6 Extract connected components Cnon-text
from Mbin ;

7 Merge overlapping/adjacent regions based
on IoU ;

8 Filter out regions with area < Amin ;
// Hierarchical Tree Construction

9 C ← Ctext ∪ Cnon-text ;
10 Initialize tree T = (V,E) with virtual root

node ;
11 foreach ci ∈ C do
12 foreach cj ∈ C, j ̸= i do
13 if Contained(cj , ci) and no ck

satisfies cj ⊂ ck ⊂ ci then
14 Add edge (ci → cj) to E

15 if ci has no parent then
16 Add edge (root→ ci) to E

17 return C, T

4.3 Reinforcement-Based Iterative 341

Optimization 342

Although the initial layout prediction L′ produced 343

by the LLM agent system often captures the overall 344

structure, it may still contain semantic or hierarchi- 345

cal errors—such as missing components, misnest- 346

ing, or incorrect widget types. To address these 347

issues, we adopt a self-refinement loop that itera- 348

tively improves L′ through reward-guided revision. 349

After generating an initial layout L′, we evalu- 350

ate its quality using structural and component-level 351

metrics, including Tree Edit Distance (TED), token- 352

level accuracy, and widget-level precision/recall. 353

We define a reward function R(L′) ∈ [0, 1] to 354

5



quantify its similarity to the ground truth layout355

L∗, combining multiple metrics:356

R(L′) = λ1·TED(T ′, T ∗)−1+λ2·F1widget(L
′, L∗)357

+ λ3 · Acctoken(L
′, L∗), (1)358

where λ1 + λ2 + λ3 = 1 are hyperparameters.359

The layout is then passed back into the agent360

loop with a feedback summary, containing struc-361

tured error descriptions (e.g., “Button X missing”,362

“Incorrect parent for TextView Y”). Each agent uses363

this signal to revise its assigned region, producing364

an updated layout L′
t+1. The process repeats for a365

fixed number of iterations or until convergence:366

L′
t+1 = Refine(L′

t, Feedback(L
′
t, L

∗)).367

This iterative refinement mimics recent self-368

feedback frameworks (Madaan et al., 2023), en-369

abling agents to learn from their own errors with-370

out additional supervision. In practice, we observe371

that even two refinement steps significantly boost372

structural accuracy and component recall.373

5 Experiment374

We conduct comprehensive experiments to evaluate375

the effectiveness of our hierarchical LLM-agent376

framework for Android GUI code generation. This377

section details the experimental setup—including378

datasets, evaluation metrics, and baselines—as well379

as the results and analysis that demonstrate the380

advantages of our approach.381

5.1 Dataset382

Unlike HTML, Android XML layouts cannot be383

rendered or compiled in isolation without integra-384

tion into an app environment. Consequently, we385

reformulate the generation task as predicting a hi-386

erarchical component tree from GUI screenshots.387

Our experiments are conducted on a manually388

curated subset of the Rico dataset (Deka et al.,389

2017b), which provides paired screenshots and390

view hierarchies from real-world Android appli-391

cations. While Rico is widely used, it contains392

known annotation errors. We therefore reference393

two improved derivatives—Fixco and Clay—that394

offer structural corrections. Additionally, UI2Code395

contributes supplemental screenshot–layout pairs,396

and DeclarUI provides unlabeled GUI images. For397

consistency and annotation quality, our main evalu-398

ation is based on a hand-verified Rico subset, with399

supplementary tests on Clay.400

5.2 Evaluation Metrics 401

Since Android XML layouts cannot be directly 402

rendered or visually compared, we adopt structure- 403

aware automatic metrics to evaluate the generated 404

layout code. Specifically, we report five comple- 405

mentary metrics: 406

• BLEU (Papineni et al., 2002): Measures n- 407

gram overlap between the predicted XML and 408

the ground-truth code. 409

• Tree Edit Distance (TED): Quantifies the 410

structural similarity between the predicted lay- 411

out tree and the reference hierarchy. Lower is 412

better. 413

• Precision: The proportion of correctly pre- 414

dicted components among all predicted ones. 415

• Recall: The proportion of correctly predicted 416

components among all ground-truth compo- 417

nents. 418

• Accuracy: Token-level correctness of the gen- 419

erated XML layout. 420

These metrics collectively capture both struc- 421

tural fidelity and semantic correctness of the pre- 422

dicted layouts. 423

5.3 Baselines 424

We compare our approach against three representa- 425

tive baselines spanning both traditional and LLM- 426

based paradigms: 427

• Pix2Code (Beltramelli, 2017): A pioneer- 428

ing CNN-RNN model that generates UI code 429

from a single screenshot. It serves as a classi- 430

cal data-driven baseline for UI-to-code gener- 431

ation. 432

• Direct Prompting (GPT-4o 1-shot): The 433

screenshot and task instruction are fed directly 434

into GPT-4o in a single prompt, simulating the 435

upper-bound performance of zero-shot or one- 436

shot generation without decomposition. 437

• Chain-of-Thought Prompting: We prompt 438

GPT-4o using a step-by-step reasoning for- 439

mat to encourage structured layout generation, 440

testing the model’s ability to plan before pro- 441

ducing code. 442

All baselines are evaluated using the GPT-4o 443

model (release 2024-11-20) to ensure consistent 444

capacity across different prompting strategies. 445

6



Table 1: Main results on BLEU, Tree Edit Distance (TED), and component-level metrics. Higher BLEU, Precision,
Recall, and Accuracy are better; lower TED is better.

Method BLEU ↑ TED ↓ Precision ↑ Recall ↑ Accuracy ↑

Pix2Code 27.4 9.3 0.60 0.50 0.20
GPT-4 (Direct Prompt) 64.0 5.0 0.81 0.75 0.35
GPT-4 (CoT Prompt) 68.2 4.5 0.83 0.80 0.40
Ours (Full) 79.8 3.2 0.92 0.95 0.60

5.4 Experiment Results and Discussions446

Main Results Table 1 presents a comparison447

between our method and several strong base-448

lines, including traditional UI-to-code models449

(e.g., Pix2Code) and recent LLM-based prompting450

strategies (direct and CoT). Across five key met-451

rics—BLEU, Tree Edit Distance (TED), Precision,452

Recall, and Accuracy—our approach consistently453

outperforms all competing methods.454

Our framework achieves the highest BLEU score455

(79.8), indicating strong token-level alignment with456

ground-truth code, and the lowest TED (3.2), re-457

flecting superior structural fidelity. Additionally, it458

yields the best component-level performance, re-459

covering 95% of UI elements (Recall) while main-460

taining 92% Precision.461

Analysis The performance gains can be at-462

tributed to two core design factors: (1) the use463

of GUI segmentation reduces visual clutter and464

improves component recognition, and (2) the multi-465

agent architecture promotes modular, context-466

aware code generation. Compared to one-shot467

prompting, our approach better preserves nested468

layouts and mitigates common errors such as ele-469

ment omission or misplacement. The refinement470

loop further enhances correctness by enabling iter-471

ative self-improvement based on structured feed-472

back.473

Summary These results demonstrate the effec-474

tiveness of hierarchical decomposition and agent-475

based cooperation in improving layout fidelity and476

component coverage. Our method achieves sub-477

stantial gains over both traditional and prompting-478

based baselines, establishing a new performance479

benchmark for Android GUI code generation.480

6 Conclusion481

We propose a hierarchical framework for Android482

GUI code generation from screenshots, powered483

by a team of collaborating LLM agents. Unlike484

prior approaches that rely on end-to-end models 485

or single-shot prompting, our method decomposes 486

the task into structured stages—component recog- 487

nition, agent-based layout generation, and iterative 488

refinement—enabling more accurate recovery of 489

UI hierarchies and better alignment with visual 490

input. Extensive experiments on Android GUI 491

benchmarks demonstrate that our approach signifi- 492

cantly outperforms classical models and prompting- 493

based LLM baselines across lexical, structural, and 494

component-level metrics. These results highlight 495

the effectiveness of structured decomposition and 496

multi-agent planning in bridging visual understand- 497

ing and code generation for mobile interfaces. 498

Limitations 499

Dependence on Proprietary LLM APIs. Our im- 500

plementation relies on commercial large language 501

model APIs (e.g., GPT-4) for code generation. This 502

dependence may limit deployment in offline or low- 503

resource settings, as access to internet-connected 504

and paid services is required. It also raises concerns 505

about reproducibility and long-term accessibility 506

in non-commercial or constrained environments. 507

Single-Screen Focus. The current system only 508

supports static, single-screen GUI screenshots. It 509

does not account for multi-screen navigation flows 510

or UI state transitions. As such, it is limited in mod- 511

eling dynamic behaviors commonly seen in real- 512

world applications, where UI logic spans across 513

multiple pages or components. Requirement for 514

Ground-Truth Supervision. The reinforcement- 515

based refinement step assumes access to ground- 516

truth labels, such as reference XML layouts. While 517

effective in controlled settings, this assumption 518

does not hold in real-world deployments where 519

annotated layouts are often unavailable, making 520

the refinement process less applicable in zero-shot 521

or unlabeled scenarios. 522

7



References523

Youngmin Baek, Bado Lee, Dongyoon Han, Sangdoo524
Yun, and Hwalsuk Lee. 2019. Character region525
awareness for text detection. In Proceedings of the526
IEEE Conference on Computer Vision and Pattern527
Recognition (CVPR).528

Tony Beltramelli. 2017. pix2code: Generating code529
from a graphical user interface screenshot. In arXiv530
preprint arXiv:1705.07962.531

Jieshan Chen, Mulong Xie, Zhenchang Xing, Chun-532
yang Chen, Xiwei Xu, Liming Zhu, and Guoqiang Li.533
2018. Object detection for graphical user interface:534
Old fashioned or deep learning or a combination?535
In Proceedings of the 28th ACM Joint Meeting on536
European Software Engineering Conference and Sym-537
posium on the Foundations of Software Engineering538
(ESEC/FSE).539

Jieshan Chen, Mulong Xie, Zhenchang Xing, Chun-540
yang Chen, Xiwei Xu, Liming Zhu, and Guoqiang Li.541
2020. Object detection for graphical user interface:542
Old fashioned or deep learning or a combination?543
In Proceedings of the 28th ACM Joint Meeting on544
European Software Engineering Conference and Sym-545
posium on the Foundations of Software Engineering546
(ESEC/FSE).547

Biplab Deka, Zifeng Huang, Kevin Franzen, John Hi-548
bschman, Michael Afergan, Yang Li, and Ranjitha549
Kumar. 2017a. Rico: A mobile app dataset for build-550
ing data-driven design applications. In Proceedings551
of the 30th Annual ACM Symposium on User Inter-552
face Software and Technology (UIST).553

Biplab Deka, Zifeng Huang, Kevin Franzen, John Hi-554
bschman, Michael Afergan, Yang Li, and Ranjitha555
Kumar. 2017b. Rico: A mobile app dataset for build-556
ing data-driven design applications. In Proceedings557
of the 30th Annual ACM Symposium on User Inter-558
face Software and Technology (UIST).559

Significant Gravitas. 2023. Autogpt: An experimental560
open-source attempt to make gpt-4 fully autonomous.561
https://github.com/Torantulino/Auto-GPT.562

Yujian Liu, Yuxian Zhou, Xiangning Lin, Mu Li,563
Xu Sun, and Graham Neubig. 2021. Pico: Parameter-564
efficient image-to-code generation. In Proceedings565
of the 2021 Conference on Empirical Methods in566
Natural Language Processing (EMNLP).567

Aman Madaan, Xiang Lin, Satyapriya Singh, Xisen Liu,568
Huan Yu, Graham Neubig, Shinn Yao, and Pengfei569
Liu. 2023. Self-refine: Iterative refinement with self-570
feedback. arXiv preprint arXiv:2303.17651.571

Kevin Moran, Zhilei Lin, Carlos Bernal-Cardenas, and572
Denys Poshyvanyk. 2018. Machine learning-based573
prototyping of graphical user interfaces for mobile574
apps. In Proceedings of the 40th International Con-575
ference on Software Engineering (ICSE), pages 540–576
550.577

Anh Tuan Nguyen, Chris Piech, and Tien N. Nguyen. 578
2015. Remaui: Automatically extracting ui code 579
from mobile app screenshots. In Proceedings of the 580
2015 10th Joint Meeting on Foundations of Software 581
Engineering (ESEC/FSE), pages 72–83. 582

Kishore Papineni, Salim Roukos, Todd Ward, and Wei- 583
Jing Zhu. 2002. Bleu: a method for automatic evalu- 584
ation of machine translation. In Proceedings of the 585
40th Annual Meeting on Association for Computa- 586
tional Linguistics (ACL), pages 311–318. ACL. 587

Timo Schick, Arun Dwivedi-Yu, Saba Hosseini, 588
Frederik Raue, Rahul Singh, Antoine Bosselut, 589
Marc’Aurelio Ranzato, Tal Linzen, and Thomas 590
Scialom. 2023. Toolformer: Language models 591
can teach themselves to use tools. arXiv preprint 592
arXiv:2302.04761. 593

Bowen Si, Haoyu Zhang, Yutian Li, Chenguang Zhu, 594
Mu Li, and Wei Sun. 2024. Depth matters: Scaling 595
ui-to-code models to complex layouts. In Proceed- 596
ings of the 2024 Conference of the North American 597
Chapter of the Association for Computational Lin- 598
guistics (NAACL). 599

Xin Wan, Yufei Zhang, Jiahao Chen, and Zhiyuan Liu. 600
2024. Segment-then-prompt: Accurate web ui code 601
generation with layout-aware prompting. In Proceed- 602
ings of the 2024 Conference on Empirical Methods 603
in Natural Language Processing (EMNLP). 604

Shinn Yao, Jinyi Zhao, Dian Yu, Izhang Zhao, Kunwoo 605
Park, Esin Durmus, and Yejin Choi. 2022. React: 606
Synergizing reasoning and acting in language models. 607
arXiv preprint arXiv:2210.03629. 608

Xinyu Zhou, Cong Yao, He Wen, Yuzhi Wang, 609
Shuchang Zhou, Weiran He, and Jiajun Liang. 2017. 610
East: An efficient and accurate scene text detector. 611
In Proceedings of the IEEE Conference on Computer 612
Vision and Pattern Recognition (CVPR), pages 5551– 613
5560. 614

8

https://github.com/Torantulino/Auto-GPT

	Introduction
	Related Work
	UI-to-Code
	LLM Agents

	Problem Formulation
	Hierarchical Layout Tree
	Objective: Structural Similarity
	Common Error Types

	Approach
	GUI Component Recognition
	LLM Agent Collaboration
	Reinforcement-Based Iterative Optimization

	Experiment
	Dataset
	Evaluation Metrics
	Baselines
	Experiment Results and Discussions

	Conclusion

