From Screenshots to Hierarchical Code: Android GUI Layout Code
Generation via Multi-Agent LL.Ms

Anonymous ACL submission

Abstract

Ul-to-Code systems have achieved strong per-
formance in web interfaces, yet generating
structured Android GUI code remains chal-
lenging due to layout complexity. We pro-
pose a framework that converts Android screen-
shots into hierarchical code through multi-
agent LLMs. The framework begins with GUI
component recognition, extracting both local
component information and global layout struc-
ture. The LLM is then guided to generate code
for each component in context, ensuring con-
sistency and modularity. To improve code qual-
ity, we introduce a feedback-driven refinement
stage that leverages structural similarity met-
rics for iterative enhancement. We evaluate
our approach on subsets of Rico datasets. Re-
sults show that our method significantly outper-
forms Pix2Code, direct prompting, and chain-
of-thought prompting strategies. Our find-
ings highlight the effectiveness of layout-aware
prompting and structured refinement for accu-
rate Android GUI code generation.

1 Introduction

Recent years have witnessed increasing interest in
automatically generating user interface (UI) code
from visual designs or screenshots, known as the
Ul-to-Code task. This automation streamlines de-
velopment by reducing the manual effort of trans-
lating mockups into code. In the web domain, re-
search has progressed rapidly—from early neural
models to modern prompt-based approaches. The
seminal PIX2CODE model (Beltramelli, 2017) first
showed that end-to-end deep learning could gener-
ate UI code for web, i0S, and Android platforms
from a single screenshot. More recently, Wan et
al. (Wan et al., 2024) demonstrated that segmenting
a webpage and prompting an LLM on each region
improves visual similarity by 14% over holistic
prompting. Despite such advances in web Ul gen-
eration, the Android Ul-to-Code problem remains

underexplored and presents distinct structural chal-
lenges.

Android GUI code generation poses unique chal-
lenges due to the structured and deeply nested
nature of layout definitions in XML. Unlike
HTML, Android layouts rely on containers such as
Relativelayout and ConstraintLayout, which
require precise spatial reasoning and are not di-
rectly renderable without an IDE or emulator. This
limits the use of visual feedback and image-based
losses common in web UI generation. Moreover,
paired screenshot—XML data is scarce. While
datasets like Rico (Deka et al., 2017a) provide
view hierarchies, they lack exact layout anno-
tations. Prior efforts (Chen et al., 2018) con-
structed large-scale datasets via automated app
exploration, but such resources remain limited.
These factors—structural complexity and data
scarcity—have constrained progress in Android
Ul-to-code compared to the web domain.

Despite its challenges, early work established
the feasibility of data-driven GUI code gener-
ation. PIX2CODE (Beltramelli, 2017) framed
the task as sequence-to-sequence translation, us-
ing a CNN-RNN architecture to convert screen-
shots into platform-specific code. On Android,
UI2CoDE (Chen et al., 2018) learned to predict lay-
out hierarchies from design images without hand-
crafted rules, leveraging a large corpus of screen-
shot-layout pairs collected via automated app ex-
ploration. More recent systems, including both
commercial tools and academic prototypes, ex-
plore prompting large language models (LLMs)
with Ul images or descriptions. However, one-shot
prompting often leads to missing elements, incor-
rect hierarchies, or hallucinated structures—issues
especially pronounced in Android XML genera-
tion. These limitations highlight the need for more
structured and guided generation strategies.

A promising direction for Ul-to-code genera-
tion is to leverage large language model (LLM)

agents that decompose the task into structured sub-
tasks and solve it hierarchically. Unlike single-pass
models, LLM agents can iteratively reason over
the interface, invoke specialized steps, and refine
intermediate outputs. Such multi-step planning im-
proves reliability by reducing hallucinations and
error accumulation (Yao et al., 2022). We argue
that Android UI generation, with its structural com-
plexity, benefits from this approach. By focusing
on one component or region at a time and incorpo-
rating feedback at each stage, the agent can main-
tain global layout coherence while systematically
generating XML code. This hierarchical process
aligns with the strengths of LLMs—contextual un-
derstanding and code generation—while introduc-
ing structure to mitigate their weaknesses.

To address these challenges, we propose a layout-
aware framework that transforms Android GUI
screenshots into native XML code using a single
large language model (LLM) guided by structured
prompting. The process begins with GUI compo-
nent recognition, which identifies individual UI el-
ements and captures their spatial relationships. The
LLM is then sequentially prompted to generate par-
tial code for each component, conditioned on its
local context and global layout. These fragments
are composed into a complete XML hierarchy, pre-
serving structural and visual fidelity. To further im-
prove output quality, we introduce a reinforcement-
style refinement stage, where feedback is used to
iteratively correct omissions and structural errors.

We evaluate our method on subsets of the Rico
dataset (Deka et al., 2017a), and show that it signif-
icantly outperforms traditional Ul-to-code models
and prompting-based LLM baselines in both struc-
tural accuracy and component-level metrics. Our
approach highlights how structured planning and it-
erative prompting can enhance LLM capabilities in
GUI code generation, bridging visual understand-
ing with language-based reasoning for high-fidelity
Android layout synthesis.

2 Related Work
2.1 Ul-to-Code

Early Ul-to-code approaches relied on image
processing and template-based heuristics. RE-
MAUI (Nguyen et al., 2015) used OCR and com-
puter vision to extract text, images, and compo-
nents from app screenshots, reconstructing view hi-
erarchies for Android UI generation. Sketch2Code
applied similar techniques to hand-drawn wire-

frames. While effective for simple designs, these
methods struggled with complex layouts due to
their reliance on hand-crafted rules and rigid
pipelines.

The introduction of deep learning marked a shift
to more generalizable models. PIX2CODE (Bel-
tramelli, 2017) pioneered end-to-end UI genera-
tion using a CNN encoder and sequence decoder,
achieving over 77% accuracy on synthetic datasets
across web, 10S, and Android. Chen et al. (Chen
et al., 2018) extended this to Android with a dataset
of 185k screenshot—code pairs and a CNN-RNN
architecture that captured layout hierarchies across
varied designs. ReDraw (Moran et al., 2018) com-
bined CNN-based classification with mining soft-
ware repositories to assemble structurally faithful
Android prototypes.

More recently, transformer-based models have
treated Ul-to-code as a multimodal translation
task, mapping GUI images to structured outputs
such as HTML or JSON using self-attention (Liu
et al., 2021). Meanwhile, large LLMs have been
prompted with UI descriptions or screenshots to
generate code directly. However, one-shot prompt-
ing often fails on deep layouts or dense hierarchies.
Si et al. (Si et al., 2024) show that LLM perfor-
mance deteriorates as the number of Ul elements
and nesting depth increase, especially in Android
settings. These limitations highlight the need for
layout-aware and stepwise generation strategies.

2.2 LLM Agents

Recent advances in LLM-based agent frameworks
have enabled complex, multi-step reasoning that
benefits structured generation tasks. Rather than
producing outputs in a single pass, LLM agents in-
terleave reasoning with actions, decomposing tasks,
invoking tools, and refining results.

ReAct (Yao et al., 2022) exemplifies this ap-
proach by interleaving chain-of-thought reasoning
with tool-use actions, allowing models to plan steps
and fetch factual information when needed. Tool-
former (Schick et al., 2023) further demonstrated
that LLMs can self-supervise API calls (e.g., cal-
culators, search engines), enhancing zero-shot per-
formance by offloading sub-tasks to external tools.
These systems highlight how action-aware prompt-
ing improves reliability and reduces hallucinations.

Beyond tool invocation, agent frameworks like
AutoGPT and BabyAGI introduce autonomous
planning loops, where an LLM iteratively gener-
ates goals, executes actions, and evaluates progress

GUI Recognition Control Extraction l
T
List i | TextComponent | | —
; Recognition :
Item 1 : :
' ~— —_—
Item 2 —
LTy
Item 3 H :
em Non-Text P —> Actor
Screenshot Recognition :
~— @@

GUI bounding boxes

Critic

Figure 1: Overall framework of our hierarchical LLM-agent pipeline for Android GUI code generation. The system
first performs component-level recognition from GUI screenshots, then delegates structured code generation and

refinement to a team of collaborating agents.

toward a final objective. While powerful, these sys-
tems also face issues such as error accumulation
and objective drift (Gravitas, 2023).

To address quality control, Self-Refine (Madaan
et al., 2023) allows the same model to act as both
generator and critic, refining its output through
iterative self-feedback without additional training.
This process improves result quality over one-shot
generation across tasks.

These agentic capabilities align closely with
the demands of Android GUI code generation.
Transforming a screenshot into nested, layout-
constrained XML code requires visual interpreta-
tion, structural planning, and iterative correction.
LLM agents can decompose the task into man-
ageable units (e.g., container-by-container), verify
layout consistency, and refine outputs. We build
on this paradigm to introduce an LLM-driven ap-
proach for Android UI generation that incorporates
planning and self-refinement to address the long-
horizon nature of GUI layout synthesis.

3 Problem Formulation

We formalize the Ul-to-Code task for Android
GUIs as a conditional generation problem. The
input is a screenshot image I of an Android appli-
cation’s user interface. The output is a structured
Android XML layout L that accurately reflects the
visible UI hierarchy in I. The goal is to generate
L', a predicted layout code that approximates the
ground-truth L* corresponding to /. Formally, the

task is to learn a function f : I — L such that
L' = argmaxy P(L | I).

3.1 Hierarchical Layout Tree

We represent L as a hierarchical layout tree T =
(V, E), where each node v € V' denotes a UI com-
ponent (e.g., Button, TextView), and each edge
e € F encodes a parent—child relationship. This
tree structure naturally maps to XML nesting. For
instance, a LinearLayout with a Button and a
TextView corresponds to a parent node with two
children.

Let T* = (V*, E*) denote the ground-truth lay-
out tree, and 77 = (V’, E’) the tree derived from
generated code L’. While each node carries ad-
ditional attributes (e.g., size, color), we primarily
focus on the structural correctness of 7" with re-
spect to T (Beltramelli, 2017).

3.2 Objective: Structural Similarity

Our objective is to minimize the structural discrep-
ancy between 7" and T*. We use the tree edit
distance (TED) as the evaluation metric:

TED(T', T*) = min #operations to transform 7"

where operations include node insertion, deletion,
and substitution. A lower TED indicates higher
structural fidelity.

3.3 Common Error Types

Despite recent progress, generated layouts fre-
quently contain structural errors. We identify three

into 7%,

%
<

Continue >

)

>

v
>
©

Initial Setup

>
b 50

Start date of your last period

10 Feb 2017

Continue

Figure 2: Example of GUI component recognition. The system detects and localizes visual elements—such as
buttons, text fields, and icons—from the input screenshot, serving as the foundation for building a hierarchical

layout tree.

typical categories:

* Element Omission: Missing components that
are visible in I, such that V/ C V*.

* Element Distortion: Incorrect component
type or attributes (e.g., misclassifying a
TextView as a Button).

* Incorrect Arrangement: Misplaced ele-
ments due to wrong nesting or ordering, lead-
ing to edge errors in E’.

These issues degrade layout quality. Omission
leads to missing nodes, distortion introduces se-
mantic errors, and arrangement mistakes break hi-
erarchy. Our method aims to reduce such discrep-
ancies and produce a layout I’ where T" ~ T™*.

4 Approach

As illustrated in Figure 1, we propose a hierarchi-
cal pipeline that generates native Android XML
layout code from GUI screenshots via LLM agent
collaboration. The framework consists of three
main stages: component recognition, agent-based
code generation, and reinforcement-based iterative
refinement (Madaan et al., 2023). This design en-
ables structured decomposition of the Ul-to-code
task and progressive improvement of output qual-

1ty.

4.1 GUI Component Recognition

To extract a structured representation of the inter-
face, we design a dual-branch component recogni-
tion network that separately detects textual and non-
textual elements in Android GUI screenshots (Deka
et al., 2017b). This module provides the layout-
aware visual grounding for subsequent code gener-
ation, as illustrated in Figure 2.

Text Component Detection. We apply the
EAST detector (Zhou et al., 2017), a fast and ac-
curate FCN-based model for oriented scene text
detection. EAST directly predicts rotated bound-
ing boxes, making it well-suited for parsing struc-
tured textual elements (e.g., labels, prompts) in
GUI images. Compared with heavier models such
as CRAFT (Baek et al., 2019), EAST offers a good
balance of speed and precision for mobile Ul do-
mains.

Non-Text Component Detection. We adopt
a structure-aware detection strategy inspired
by (Chen et al., 2020), focused on layout block
extraction and hierarchy reconstruction. The pro-
cess includes:

1. Block Segmentation: Convert input frame to
grayscale and apply flood-fill to extract uni-
form regions R;.

2. Edge Map Generation: Compute structural

gradient magnitude Mgrq = /G2 + G2 and

binarize to obtain component boundaries.

3. Component Labeling: Extract connected
components and record bounding boxes and
center coordinates.

4. Structure Refinement: Merge overlapping
regions, filter out small components, and build
parent-child relationships via spatial contain-
ment.

This network operates frame-independently and
yields a hierarchical component tree ' = (V, E)
that reflects both the local geometry and global
organization of the UL It serves as the structural
basis for downstream layout code generation.

4.2 LLM Agent Collaboration

To generate structured layout code from the compo-
nent tree, we design a modular LLM agent frame-
work where multiple specialized agents collaborate
to complete the Ul-to-code task. Inspired by multi-
agent paradigms such as ReAct (Yao et al., 2022)
and Toolformer (Schick et al., 2023), we assign
distinct roles to agents that operate on subtrees and
exchange intermediate outputs via shared memory.

The agent system consists of three key modules:

* Structure Agent: Traverses the initial com-
ponent tree 7', enriching each node with
contextual metadata such as container type,
orientation, and depth.

* Local Code Agent: For each subtree rooted
at a Ul component, generates XML code frag-
ments based on localized spatial features, in-
ferred widget types, and parent layout hints.

* Assembly Agent: Aggregates code snip-
pets from all local agents, merges them into
a global layout, and performs consistency
checks (e.g., tag closure, nesting order, miss-
ing parents) to reconstruct a complete XML
layout file.

Each agent operates with partial knowledge of
the layout tree but contributes collaboratively to a
globally coherent solution. Intermediate messages
(e.g., node annotations, XML templates) are passed
through a shared memory buffer, enabling coordi-
nation without central control. This decomposition
reduces the complexity of one-shot generation and
improves layout fidelity by embedding structural
priors into the generation process.

Algorithm 1: GUI Component Recogni-
tion Pipeline

Input: GUI image I € R7xWx3
Output: Component set C, layout tree
T = (V,E)
// Text Component Detection (EAST)
1 Ciext < EAST(I)
// Non-Text Component Detection
(Structure-Aware)
2 Convert [to grayscale image G ;
3 B < FloodFill(G,e) ; // Block
segmentation
4 Compute gradients Gz, G, and

Mgrad = \/G% +G32, >

s Apply threshold 7 to obtain binary map
Min ;

¢ Extract connected components Cpon-text
from My, ;

7 Merge overlapping/adjacent regions based
on IoU ;

8 Filter out regions with area < Apjp ;

// Hierarchical Tree Construction

9 C < Crext U Chon-text 5

10 Initialize tree T' = (V, E) with virtual root
node ;

11 foreach ¢; € C do

12 foreach c; € C,j # i do

13 if Contained(c;, ¢;) and no cy,
satisfies c; C ¢, C c; then

14 | Addedge (¢; = ¢j)to E

15 if ¢; has no parent then

16 L Add edge (root — ¢;) to E

17 return C, T

4.3 Reinforcement-Based Iterative
Optimization

Although the initial layout prediction L’ produced
by the LLM agent system often captures the overall
structure, it may still contain semantic or hierarchi-
cal errors—such as missing components, misnest-
ing, or incorrect widget types. To address these
issues, we adopt a self-refinement loop that itera-
tively improves L’ through reward-guided revision.

After generating an initial layout L', we evalu-
ate its quality using structural and component-level
metrics, including Tree Edit Distance (TED), token-
level accuracy, and widget-level precision/recall.
We define a reward function R(L’) € [0,1] to

quantify its similarity to the ground truth layout
L*, combining multiple metrics:

R(L') = M- TED(T', T*) "'+ Ao Flyidger (L', L)

+)\3 'ACCtoken(LlyL*); (])

where A1 + Ao + A3 = 1 are hyperparameters.
The layout is then passed back into the agent
loop with a feedback summary, containing struc-
tured error descriptions (e.g., “Button X missing”,
“Incorrect parent for TextView Y”). Each agent uses
this signal to revise its assigned region, producing
an updated layout L ;. The process repeats for a
fixed number of iterations or until convergence:

t+1 = Refine(Ly, Feedback(Lj, L*)).

This iterative refinement mimics recent self-
feedback frameworks (Madaan et al., 2023), en-
abling agents to learn from their own errors with-
out additional supervision. In practice, we observe
that even two refinement steps significantly boost
structural accuracy and component recall.

5 Experiment

We conduct comprehensive experiments to evaluate
the effectiveness of our hierarchical LL.M-agent
framework for Android GUI code generation. This
section details the experimental setup—including
datasets, evaluation metrics, and baselines—as well
as the results and analysis that demonstrate the
advantages of our approach.

5.1 Dataset

Unlike HTML, Android XML layouts cannot be
rendered or compiled in isolation without integra-
tion into an app environment. Consequently, we
reformulate the generation task as predicting a hi-
erarchical component tree from GUI screenshots.

Our experiments are conducted on a manually
curated subset of the Rico dataset (Deka et al.,
2017b), which provides paired screenshots and
view hierarchies from real-world Android appli-
cations. While Rico is widely used, it contains
known annotation errors. We therefore reference
two improved derivatives—Fixco and Clay—that
offer structural corrections. Additionally, UI2Code
contributes supplemental screenshot—layout pairs,
and DeclarUI provides unlabeled GUI images. For
consistency and annotation quality, our main evalu-
ation is based on a hand-verified Rico subset, with
supplementary tests on Clay.

5.2 Evaluation Metrics

Since Android XML layouts cannot be directly
rendered or visually compared, we adopt structure-
aware automatic metrics to evaluate the generated
layout code. Specifically, we report five comple-
mentary metrics:

* BLEU (Papineni et al., 2002): Measures n-
gram overlap between the predicted XML and
the ground-truth code.

* Tree Edit Distance (TED): Quantifies the
structural similarity between the predicted lay-
out tree and the reference hierarchy. Lower is
better.

* Precision: The proportion of correctly pre-
dicted components among all predicted ones.

* Recall: The proportion of correctly predicted
components among all ground-truth compo-
nents.

* Accuracy: Token-level correctness of the gen-
erated XML layout.

These metrics collectively capture both struc-
tural fidelity and semantic correctness of the pre-
dicted layouts.

5.3 Baselines

We compare our approach against three representa-
tive baselines spanning both traditional and LLM-
based paradigms:

* Pix2Code (Beltramelli, 2017): A pioneer-
ing CNN-RNN model that generates Ul code
from a single screenshot. It serves as a classi-
cal data-driven baseline for Ul-to-code gener-
ation.

* Direct Prompting (GPT-40 1-shot): The
screenshot and task instruction are fed directly
into GPT-40 in a single prompt, simulating the
upper-bound performance of zero-shot or one-
shot generation without decomposition.

* Chain-of-Thought Prompting: We prompt
GPT-40 using a step-by-step reasoning for-
mat to encourage structured layout generation,
testing the model’s ability to plan before pro-
ducing code.

All baselines are evaluated using the GPT-40
model (release 2024-11-20) to ensure consistent
capacity across different prompting strategies.

Table 1: Main results on BLEU, Tree Edit Distance (TED), and component-level metrics. Higher BLEU, Precision,

Recall, and Accuracy are better; lower TED is better.

Method BLEUT TED | Precision?T RecallT Accuracyt
Pix2Code 27.4 9.3 0.60 0.50 0.20
GPT-4 (Direct Prompt) 64.0 5.0 0.81 0.75 0.35
GPT-4 (CoT Prompt) 68.2 4.5 0.83 0.80 0.40
Ours (Full) 79.8 3.2 0.92 0.95 0.60

5.4 Experiment Results and Discussions

Main Results Table 1 presents a comparison
between our method and several strong base-
lines, including traditional Ul-to-code models
(e.g., Pix2Code) and recent LLM-based prompting
strategies (direct and CoT). Across five key met-
rics—BLEU, Tree Edit Distance (TED), Precision,
Recall, and Accuracy—our approach consistently
outperforms all competing methods.

Our framework achieves the highest BLEU score
(79.8), indicating strong token-level alignment with
ground-truth code, and the lowest TED (3.2), re-
flecting superior structural fidelity. Additionally, it
yields the best component-level performance, re-
covering 95% of Ul elements (Recall) while main-
taining 92% Precision.

Analysis The performance gains can be at-
tributed to two core design factors: (1) the use
of GUI segmentation reduces visual clutter and
improves component recognition, and (2) the multi-
agent architecture promotes modular, context-
aware code generation. Compared to one-shot
prompting, our approach better preserves nested
layouts and mitigates common errors such as ele-
ment omission or misplacement. The refinement
loop further enhances correctness by enabling iter-
ative self-improvement based on structured feed-
back.

Summary These results demonstrate the effec-
tiveness of hierarchical decomposition and agent-
based cooperation in improving layout fidelity and
component coverage. Our method achieves sub-
stantial gains over both traditional and prompting-
based baselines, establishing a new performance
benchmark for Android GUI code generation.

6 Conclusion

We propose a hierarchical framework for Android
GUI code generation from screenshots, powered
by a team of collaborating LLM agents. Unlike

prior approaches that rely on end-to-end models
or single-shot prompting, our method decomposes
the task into structured stages—component recog-
nition, agent-based layout generation, and iterative
refinement—enabling more accurate recovery of
UI hierarchies and better alignment with visual
input. Extensive experiments on Android GUI
benchmarks demonstrate that our approach signifi-
cantly outperforms classical models and prompting-
based LLM baselines across lexical, structural, and
component-level metrics. These results highlight
the effectiveness of structured decomposition and
multi-agent planning in bridging visual understand-
ing and code generation for mobile interfaces.

Limitations

Dependence on Proprietary LLM APIs. Our im-
plementation relies on commercial large language
model APIs (e.g., GPT-4) for code generation. This
dependence may limit deployment in offline or low-
resource settings, as access to internet-connected
and paid services is required. It also raises concerns
about reproducibility and long-term accessibility
in non-commercial or constrained environments.
Single-Screen Focus. The current system only
supports static, single-screen GUI screenshots. It
does not account for multi-screen navigation flows
or Ul state transitions. As such, it is limited in mod-
eling dynamic behaviors commonly seen in real-
world applications, where UI logic spans across
multiple pages or components. Requirement for
Ground-Truth Supervision. The reinforcement-
based refinement step assumes access to ground-
truth labels, such as reference XML layouts. While
effective in controlled settings, this assumption
does not hold in real-world deployments where
annotated layouts are often unavailable, making
the refinement process less applicable in zero-shot
or unlabeled scenarios.

References

Youngmin Baek, Bado Lee, Dongyoon Han, Sangdoo
Yun, and Hwalsuk Lee. 2019. Character region
awareness for text detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

Tony Beltramelli. 2017. pix2code: Generating code
from a graphical user interface screenshot. In arXiv
preprint arXiv:1705.07962.

Jieshan Chen, Mulong Xie, Zhenchang Xing, Chun-
yang Chen, Xiwei Xu, Liming Zhu, and Guoqgiang Li.
2018. Object detection for graphical user interface:
Old fashioned or deep learning or a combination?
In Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering

(ESEC/FSE).

Jieshan Chen, Mulong Xie, Zhenchang Xing, Chun-
yang Chen, Xiwei Xu, Liming Zhu, and Guogiang Li.
2020. Object detection for graphical user interface:
Old fashioned or deep learning or a combination?
In Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering
(ESEC/FSE).

Biplab Deka, Zifeng Huang, Kevin Franzen, John Hi-
bschman, Michael Afergan, Yang Li, and Ranjitha
Kumar. 2017a. Rico: A mobile app dataset for build-
ing data-driven design applications. In Proceedings
of the 30th Annual ACM Symposium on User Inter-
face Software and Technology (UIST).

Biplab Deka, Zifeng Huang, Kevin Franzen, John Hi-
bschman, Michael Afergan, Yang Li, and Ranjitha
Kumar. 2017b. Rico: A mobile app dataset for build-
ing data-driven design applications. In Proceedings
of the 30th Annual ACM Symposium on User Inter-
face Software and Technology (UIST).

Significant Gravitas. 2023. Autogpt: An experimental
open-source attempt to make gpt-4 fully autonomous.
https://github.com/Torantulino/Auto-GPT.

Yujian Liu, Yuxian Zhou, Xiangning Lin, Mu Li,
Xu Sun, and Graham Neubig. 2021. Pico: Parameter-
efficient image-to-code generation. In Proceedings
of the 2021 Conference on Empirical Methods in
Natural Language Processing (EMNLP).

Aman Madaan, Xiang Lin, Satyapriya Singh, Xisen Liu,
Huan Yu, Graham Neubig, Shinn Yao, and Pengfei
Liu. 2023. Self-refine: Iterative refinement with self-
feedback. arXiv preprint arXiv:2303.17651.

Kevin Moran, Zhilei Lin, Carlos Bernal-Cardenas, and
Denys Poshyvanyk. 2018. Machine learning-based
prototyping of graphical user interfaces for mobile
apps. In Proceedings of the 40th International Con-
ference on Software Engineering (ICSE), pages 540—
550.

Anh Tuan Nguyen, Chris Piech, and Tien N. Nguyen.
2015. Remaui: Automatically extracting ui code
from mobile app screenshots. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE), pages 72-83.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting on Association for Computa-
tional Linguistics (ACL), pages 311-318. ACL.

Timo Schick, Arun Dwivedi-Yu, Saba Hosseini,
Frederik Raue, Rahul Singh, Antoine Bosselut,
Marc’ Aurelio Ranzato, Tal Linzen, and Thomas
Scialom. 2023. Toolformer: Language models
can teach themselves to use tools. arXiv preprint
arXiv:2302.04761.

Bowen Si, Haoyu Zhang, Yutian Li, Chenguang Zhu,
Mu Li, and Wei Sun. 2024. Depth matters: Scaling
ui-to-code models to complex layouts. In Proceed-
ings of the 2024 Conference of the North American
Chapter of the Association for Computational Lin-
guistics (NAACL).

Xin Wan, Yufei Zhang, Jiahao Chen, and Zhiyuan Liu.
2024. Segment-then-prompt: Accurate web ui code
generation with layout-aware prompting. In Proceed-
ings of the 2024 Conference on Empirical Methods
in Natural Language Processing (EMNLP).

Shinn Yao, Jinyi Zhao, Dian Yu, Izhang Zhao, Kunwoo
Park, Esin Durmus, and Yejin Choi. 2022. React:
Synergizing reasoning and acting in language models.
arXiv preprint arXiv:2210.03629.

Xinyu Zhou, Cong Yao, He Wen, Yuzhi Wang,
Shuchang Zhou, Weiran He, and Jiajun Liang. 2017.
East: An efficient and accurate scene text detector.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 5551—
5560.

https://github.com/Torantulino/Auto-GPT

	Introduction
	Related Work
	UI-to-Code
	LLM Agents

	Problem Formulation
	Hierarchical Layout Tree
	Objective: Structural Similarity
	Common Error Types

	Approach
	GUI Component Recognition
	LLM Agent Collaboration
	Reinforcement-Based Iterative Optimization

	Experiment
	Dataset
	Evaluation Metrics
	Baselines
	Experiment Results and Discussions

	Conclusion

