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Abstract
Cartoon animal parsing aims to segment the body parts such as
heads, arms, legs and tails of cartoon animals. Different from pre-
vious parsing tasks, cartoon animal parsing faces new challenges,
including irregular body structures, abstract drawing styles and
diverse animal categories. Existing methods have difficulties when
addressing these challenges caused by the spatial and structural
properties of cartoon animals. To address these challenges, a novel
spatial learning and structural modeling network, named CAP-
Net, is proposed for cartoon animal parsing. It aims to address
the critical problems of spatial perception, structure modeling and
spatial-structural consistency learning. A spatial-aware learning
module integrates deformable convolutions to learn spatial features
of diverse cartoon animals. The multi-task edge and center point
prediction mechanism is incorporated to capture the intricate spa-
tial patterns. A structural modeling method is proposed to model
the complex structural representations of cartoon animals, which
integrates a graph neural network with a shape-aware relation
learning module. To mitigate the significant differences among
animals, a spatial and structural consistency learning strategy is
proposed to capture and learn feature correlations across different
animal species. Extensive experiments conducted on benchmark
datasets demonstrate the effectiveness of the proposed approach,
which outperforms the state-of-the-art methods.
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Figure 1: Cartoon animal parsing is challenging due to irregular
body structures, complex visual appearances, abstract drawing styles
and substantial variations among different categories. The signifi-
cant differences of cartoon animals across diverse species and indi-
viduals are caused by the abstract spatial and structural properties
of cartoon images.
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1 Introduction
Cartoon characters are important components of various multi-
media applications with their vivid, attractive and imaginative ex-
pressive capabilities. The cartoon-centric applications include the
metaverse, animated films, virtual reality and artistic creations. A
major category of cartoons is animals, which consist of a wide
range of diverse species such as reptiles, birds, mammals and fish.
They typically exhibit diverse, rich and complex body parts, such
as ears, limbs, wings and claws.

Cartoon animal parsing, an emerging frontier of cartoon ani-
mals, seeks to semantically delineate various body parts. It enhances
the comprehension of cartoon characters and makes progress in
cartoon-centric applications. Unfortunately, previous cartoon pars-
ing methods are proposed to parse anthropomorphic cartoon char-
acters [26] or single animal category like cartoon dog [33], which
exhibit more visual and structural consistency. On the contrary,
cartoon animals have significant diversity in visual appearances
and structures. As a result, techniques of cartoon parsing have un-
satisfactory performance in the domain of cartoon animal parsing,
which motivates this work.

Cartoon animal parsing is a challenging task due to the irregular
structures, complex appearances, abstract styles and various animal
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Figure 2: The framework of the proposed cartoon animal parsing network (CAPNet). It consists of spatial learning, structural modeling and
spatial-structural consistency learning. The spatial learning module captures the complex spatial patterns and the structural modeling branch
models the intricate structural features of cartoon animals. The spatial-structural consistency learning module addresses the challenges posed
by the significant diversity and complexity of cartoon animals by conducting consistency learning.

categories, which is illustrated in Fig. 1. Compared to real-world hu-
mans or animals, the body parts in cartoon animals usually demon-
strate inconsistent spatial and structural attributes. This includes
complex and uncertain spatial distributions of the center points and
edges of the body parts, and irregular structural shapes and sizes
of the semantic parts. The spatial and structural differences among
diverse cartoon animals are conspicuous even within the animals of
the same category. More specifically, the body parts of real-world
humans or animals possess consistent spatial and structural at-
tributes. The spatial patterns such as center point positions and
edge contexts of their body parts, or the structure properties like
the shapes and sizes of their semantic parts, are usually consistent.
However, when facing cartoon animals, the spatial distributions
of the center points and edges of the body parts, or the structural
shapes and sizes of the semantic parts, are not consistent due to the
abstract properties of cartoon images. Therefore, cartoon animal
parsing remains a challenging task.

Conventional human parsing methods have good performance
in extracting visual features and predicting pixel-wise labels for
human bodies. Although some approaches have incorporated atten-
tion mechanisms and graphical models to capture important spatial
cues and structural representations, they are designed for the real-
world human bodies, which have limited performance when facing
the abstract cartoon images. Cartoon parsing methods are proposed
to address the problems caused by the scale variations [33] and
irregular body structures [26] of cartoon images. Unfortunately, the
spatial learning and structural modeling of cartoon animal parsing
have not been fully explored.

In this paper, a novel spatial learning and structural modeling
network, named CAPNet, is proposed to alleviate the challenging
problems of cartoon animal parsing. The framework is illustrated
in Fig. 2. The cartoon animal image is fed into ConvNet [12] fol-
lowed by Pyramid Pooling Module (PPM) [46] to extract contextual
features. The spatial learning structure is designed to capture the
spatial patterns of the body parts, with deformable convolutions to
learn spatial features of irregular body parts. In addition, it predicts
the edges and center points of the body parts to obtain edge-aware

and center-aware spatial features. The structural modeling module
is designed to capture the intricate structures of cartoon animals.
A graph neural network (GNN) is employed to model the complex
structures of cartoon animals. A shape-aware relation learning net-
work is designed to learn the relations of the node features of GNN,
which considers the shape information during the structural mod-
eling. To integrate the spatial and structural features and achieve
consistency among diverse cartoon animals, a spatial-structural
consistency learning strategy based on cross-attention mechanism
is proposed. With the novel structures, CAPNet alleviates the chal-
lenges of spatial learning, structure modeling, and spatial-structural
consistency learning in cartoon animal parsing. Experiments con-
ducted on the cartoon animal parsing and cartoon parsing datasets
demonstrate the effectiveness of CAPNet, which outperforms the
state-of-the-art approaches. The contributions are listed as follows:
• A novel spatial learning and structural modeling network named
CAPNet is proposed for cartoon animal parsing, which addresses
the challenges of spatial learning, structure modeling, and spatial-
structural consistency learning.

• To capture and learn the complex and inconsistent spatial pat-
terns in diverse cartoon animals, a spatial learning branch with
deformable convolutions and a multi-task prediction strategy is
designed, which enhances the spatial awareness of the network.

• To model the structural information and capture the intricate
structural relationships within cartoon animals, a structural mod-
eling branch is proposed with a graph neural network and a
shape-aware relation network.

• A spatial-structural consistency learning strategy is proposed
with a cross-attention mechanism, which aims to achieve consis-
tent learning among spatial and structural features and mitigates
the problems caused by the complexity and diversity of cartoon
animals.

• The proposed method achieves state-of-the-art performance on
the cartoon parsing datasets, which demonstrates the effective-
ness of the proposed spatial learning and structural modeling
network.
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2 Related Work
2.1 Human Parsing
The human parsing methods [4, 18, 31] have made significant
progress in recent years, with numerous approaches proposed to
parse body parts of humans.
Spatial Learning. Spatial information plays a crucial role in pars-
ing tasks by providing crucial information about the relative po-
sitions. It facilitates the recognition of complex and ambiguous
regions by considering the spatial distribution of the human body,
achieving more accurate parsing results. Previous methods [22, 42]
enhance the learning ability of spatial patterns by embedding a
pose estimation branch into the human parsing framework. MMAN
[21] improves the capability of capturing consistent spatial infor-
mation through local and global learning. CDGNet [20] learns the
spatial characteristics of the human body in horizontal and vertical
directions to improve the performance of human parsing. Overall,
the integration of spatial information enhances the performance of
human parsing algorithms.
Structural Modeling. In addition to spatial features, structural
information is also important for human parsing. To transcend
the limitations of conventional CNN-based approaches, previous
works have proposed structural modeling modules. These existing
approaches have integrated the prowess of convolutional neural
networks (CNNs) [12, 30] and graphical models [13, 19, 23, 28] to
extract visual features and model structural information. Previous
methods [35, 36] introduce graph neural networks (GNNs) to model
the regular structure of human body, leveraging the powerful struc-
tural reasoning ability of GNNs to achieve promising results in
human parsing. Some methods [17, 44] decompose and model the
human body with attention mechanisms [5, 15, 16, 37, 38, 40] to
learn and capture important structural information, improving the
performance of human parsing. However, these techniques are de-
signed for human parsing and they have limited performance when
facing the cartoon animal images with irregular body structures,
complex visual appearances, abstract drawing styles, and so on.

2.2 Cartoon Parsing
In recent years, there has been a growing interest in the field of
cartoon parsing. The traditional cartoon parsing approach [39] seg-
ments cartoon images into different regions using conventional
linear iterative clustering superpixels and adaptive region propaga-
tion merging techniques. However, it lacks semantic discrimination
for each segmented region. Recently, pioneering works [26, 33]
have adapted deep learning-based human parsing techniques to the
realm of anthropomorphic cartoon characters and cartoon dogs,
achieving commendable results. DFPNet [33] designs a dense multi-
scale pyramid network to capture multi-scale information of car-
toon dogs, addressing the scale issue in cartoon dog parsing. CPNet
[26] proposes a pixel and part correlation method to address the
irregularities of cartoon characters. By learning pixel-level and
part-level correlations, it identifies complex cartoon structures and
improve the performance of cartoon parsing. However, these meth-
ods have limitations since they primarily focus on human-like forms
or single-category cartoon characters such as dogs, ill-equipped to
appearance diversity and structural complexity in different cartoon
animals like alligators and butterflies.

Image ContoursCenter PointsParsing Results

Figure 3: Center points and contours of cartoon image.

3 Cartoon Animal Parsing
3.1 Framework
To alleviate the challenges of cartoon animal parsing, a novel spa-
tial learning and structural modeling network, named CAPNet, is
proposed to integrate spatial perception, structure modeling, and
spatial-structural consistency learning. The framework is illustrated
in Fig. 2. ConvNet [12] and Pyramid Pooling Module (PPM) [46] are
used to extract convolutional features. The spatial learning branch
introduces deformable convolutions to learn spatial information
related to the irregular body parts of cartoon images. It is aug-
mented by multi-task edge and center point prediction strategy,
which captures the edge-aware and center-aware spatial features.
The structural modeling branch employs a graph neural network
to model the complex cartoon animal structures. It designs a body
part relation learning network based on shape-aware convolution
and self-attention mechanism, which captures structural shape in-
formation and associates the node features of the body parts. The
captured spatial features and structural representations are seam-
lessly integrated with cross-attention mechanism, which achieves
consistency among the complex and diverse cartoon animals.

3.2 Spatial Learning
The spatial information is of great importance for cartoon animal
parsing. The distributions of the center points and edges of the
body parts are critical to delineate the spatial patterns of cartoon
animal images, which are illustrated in Fig. 3. To learn the intricate
spatial patterns, CAPNet integrates deformable convolutions to
transcend the rigid receptor fields of conventional convolution, cap-
turing spatial features of abstract cartoon images. It incorporates
multi-task edge and center point prediction strategy to capture
edge-aware and center-aware spatial features, which makes the net-
work adapt to the distortions and abstraction in spatial dimension.
The framework of the proposed spatial learning is illustrated in
Fig.4, in which the middle branch with deformable convolutions is
adopted to extract spatial features of irregular body parts. The edge
prediction module aims to capture discriminative representations
of contours, while the center point estimation part provides spatial
cues that facilitate the localization and delineation of body parts.

Formally, given features 𝑋 ∈ R𝐶×𝐻×𝑊 generated by PPM mod-
ule [46], 𝑋𝑑 is the output of the deformable convolutions with 𝑋 as
input. 𝐶 refers to the number of channels, 𝐻 and𝑊 denote height
and width of the feature maps. The edge features 𝑋𝑒 are generated
by an edge predictor consisting of 5 convolutional layers, with shal-
low and deep features of the backbone used as inputs [18, 27]. To
generate center-aware spatial features 𝑋ℎ , 𝑋 is fed into a heat map
decoder consisting of 2 deconvolution layers. 𝑋𝑑 is then fed into
a channel attention module [15], aiming to build the connections
of feature maps in 𝑋𝑑 . The channel attention-based refinement
bridges the gap among the edge prediction task, the center point
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Figure 4: The framework of spatial learning.

prediction task, and the parsing task. It is formulated as,

𝑊𝑐 = 𝑆𝑖𝑔(𝐶𝑜𝑛𝑣 (𝑀𝑝 (𝑋𝑑 ))) (1)
𝑋𝑐
𝑑
= 𝑋𝑑 ⊕𝑊𝑐 ⊙ 𝑋𝑑 , 𝑋𝑐𝑒 = 𝑋𝑒 ⊕𝑊𝑐 ⊙ 𝑋𝑒 , 𝑋𝑐ℎ = 𝑋ℎ ⊕𝑊𝑐 ⊙ 𝑋ℎ (2)

where𝑊𝑐 denotes channel attention weights. 𝑆𝑖𝑔(·) denotes sig-
moid operation.𝐶𝑜𝑛𝑣 (·) means convolution operation.𝑀𝑝 (·) refers
to global max pooling. ⊕ and ⊙ denote element-wise addition and
multiplication, respectively.

The proposed approach leverages a spatial attention mechanism
[38] to effectively integrate the complementary spatial features
from the edge prediction and center point prediction branches.
The enriched spatial features are transferred to the parsing branch.
This enables the parsing branch to obtain discriminative spatial
cues captured by the auxiliary tasks. The synergistic integration
of multi-task spatial features, mediated by attention-based fusion,
helps the network learn important spatial cues in cartoon images.
It is formulated as follows:

𝑊𝑠𝑒 = 𝑆𝑖𝑔(𝐶𝑜𝑛𝑣 (𝐶𝑎𝑡 [𝑀𝑎𝑥 (𝑋𝑐𝑒 ), 𝐴𝑣𝑔(𝑋𝑐𝑒 )])) (3)
𝑊𝑠ℎ = 𝑆𝑖𝑔(𝐶𝑜𝑛𝑣 (𝐶𝑎𝑡 [𝑀𝑎𝑥 (𝑋𝑐

ℎ
), 𝐴𝑣𝑔(𝑋𝑐

ℎ
)])) (4)

𝑋
𝑠𝑝
𝑒 = 𝑋𝑐

𝑑
⊕ 𝑋𝑐

𝑑
⊙𝑊𝑠𝑒 , 𝑋

𝑠𝑝

ℎ
= 𝑋𝑐

𝑑
⊕ 𝑋𝑐

𝑑
⊙𝑊𝑠ℎ (5)

where𝑊𝑠𝑒 and𝑊𝑠ℎ indicate the spatial attention weights from
edge-aware features and center-aware features, respectively.𝐶𝑎𝑡 (·)
denotes concatenation operation.𝑀𝑎𝑥 (·) and 𝐴𝑣𝑔(·) are the func-
tions aggregating salient spatial features by computing max and
average values alongside the channel dimension, respectively.

Finally, the edge features 𝑋𝑐𝑒 , the center point features 𝑋𝑐ℎ , the
edge-aware parsing features 𝑋𝑠𝑝𝑒 and the canter-aware parsing
features 𝑋𝑠𝑝

ℎ
are integrated to obtain the spatial-aware parsing

features. It is formulated as,

𝑋𝑠𝑝 = 𝐶𝑎𝑡 [𝑋𝑐𝑒 , 𝑋𝑐ℎ , 𝑋
𝑠𝑝
𝑒 , 𝑋

𝑠𝑝

ℎ
] (6)

Through the integration of deformable convolutions and multi-
task predictions, the network learns spatial awareness. This is in-
dispensable to address the parsing problem caused by the complex
spatial distributions of cartoon animals.

3.3 Structural Modeling
The structural information, including the structural shapes and
relations of the body parts, is also important for cartoon animal
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Figure 5: The framework of structural modeling.

parsing. To model the complex structural features that character-
ize cartoon animals, the structural modeling module is designed.
CAPNet designs a shape-aware graph neural network to model
graphical representations of cartoon animals. The graph neural
network is adopted to construct the structures of cartoon animals
and capture the relations among the body parts. The shape convolu-
tions are utilized to capture shape information for the graph nodes.
Moreover, a self-attention mechanism is adopted to associate the
graph nodes with shape information.

The framework of the structure modeling is illustrated in Fig. 5.
CAPNet leverages the shape-aware GNN to construct and refine a
graphical representation G = (V, E), whereV denotes the set of
nodes corresponding to body parts, and E encodes the structural
relationships of these nodes. The shape-aware GNN operates by
updating the node representations of the body parts through a
message passing scheme.

In the structure modeling, 𝑋 is processed to node features with a
convolutional layer to adjust channel dimension and a split opera-
tion to split the features into node features 𝑋𝑛𝑜𝑑𝑒 ∈ R |V |×𝑐×𝐻×𝑊 .
|V| denotes the number of nodes and |V| × 𝑐 = 𝐶 . The adjacency
matrix is calculated to establish connections between neighboring
semantic parts. CAPNet leverages Message Passing Neural Net-
work (MPNN) [9] to model the correlations among nodes. MPNN
is structured into two stages: message passing and readout. CAP-
Net designs a shape-ware relation network as the message-passing
function for cartoon animal features, aiming to connect different
nodes with the guidance of shape information. For every node 𝑣 ,
the message passing gathers messages𝑚𝑣 from its neighbors N𝑣 ,
which is formulated as,

𝑚𝑣 =
∑︁

𝑢∈N𝑣

𝑀 (𝑋𝑢
𝑛𝑜𝑑𝑒

, 𝑋 𝑣
𝑛𝑜𝑑𝑒

) (7)

where 𝑋 𝑣
𝑛𝑜𝑑𝑒

and 𝑋𝑢
𝑛𝑜𝑑𝑒

are elements of 𝑋𝑛𝑜𝑑𝑒 .𝑀 (·) is the message
function used to collect part relations.𝑀 (·) is formulated as follows:

𝑀 (𝑋𝑢
𝑛𝑜𝑑𝑒

, 𝑋 𝑣
𝑛𝑜𝑑𝑒

) = 𝜙 (𝐶𝑎𝑡 [𝑋𝑢
𝑛𝑜𝑑𝑒

, 𝑋 𝑣
𝑛𝑜𝑑𝑒

]) (8)

where 𝜙 denotes the shape-ware relation learning network.
The proposed shape-aware relation learning network leverages

the information association capability of self-attention, which cap-
tures the long-range dependencies of the body parts. It distinguishes
itself by incorporating shape-aware convolutions to perceive geo-
metric shapes and utilizing prior geometric information. By com-
bining self-attention with shape-aware convolution and geometric
priors, the method aims to capture both long-range dependencies
and salient structural representations effectively.

The framework of the shape-aware relation network is illustrated
in Fig. 5, which takes the graph nodes as inputs. The graph nodes
are fed into three shape-aware convolutions with kernel size of 3,
which aims to capture shape information. The vanilla convolution
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layer is defined as,

𝑋𝑣𝑎𝑛𝑖𝑙𝑙𝑎 = 𝐶𝑜𝑛𝑣 (𝑊𝐾 , 𝑋𝑢,𝑣𝑐𝑎𝑡 ) (9)

where𝑋𝑢,𝑣𝑐𝑎𝑡 = 𝐶𝑎𝑡 [𝑋𝑢𝑛𝑜𝑑𝑒 , 𝑋
𝑣
𝑛𝑜𝑑𝑒

].𝑊𝐾 denotes the learnable weights
of kernels in a convolution layer.

CAPNet employs the shape-aware convolution [1] to replace the
vanilla convolution in the shape-aware relation network, which
aims to capture shape information. It is formulated as,

𝑋
𝑄
𝑠𝑐 = 𝑆𝐶 (𝑊𝐾 ,𝑊𝐵,𝑊𝑆 , 𝑋𝑢,𝑣𝑐𝑎𝑡 ) = 𝐶𝑜𝑛𝑣 (𝑊𝐾 ,𝑊𝐵^𝑋𝐵 +𝑊𝑆 ∗ 𝑋𝑆 )

(10)

where 𝑆𝐶 (·) denotes shape convolution. ^ and ∗ are base-product
and shape-product operator [1], respectively. 𝑋𝑢,𝑣𝑐𝑎𝑡 is decomposed
into two components: 𝑋𝐵 and 𝑋𝑆 . 𝑋𝐵 is the mean of 𝑋𝑢,𝑣𝑐𝑎𝑡 and
𝑋𝑆 = 𝑋

𝑢,𝑣
𝑐𝑎𝑡 −𝑋𝐵 is the relative features of 𝑋𝑢,𝑣𝑐𝑎𝑡 .𝑊𝐵 and𝑊𝑆 are two

learnable weights to separately consume 𝑋𝐵 and 𝑋𝑆 . Similarly, 𝑋𝐾𝑠𝑐
and 𝑋𝑉𝑠𝑐 are computed as the keys and values for the self-attention
module, respectively.

The shape-aware structure learning process is defined as,

𝑀 (𝑋𝑢
𝑛𝑜𝑑𝑒

, 𝑋 𝑣
𝑛𝑜𝑑𝑒

) = 𝑆𝑒𝑙 𝑓 𝐴𝑡𝑡𝑒𝑛(𝑋𝑄𝑠𝑐 , 𝑋𝐾𝑠𝑐 , 𝑋𝑉𝑠𝑐 ) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐴 +𝐺)𝑋𝑉𝑠𝑐
(11)

where𝐺 is initialized and learned as [14]. The difference is that the
geometric priors of CAPNet are applied for the global feature maps.
𝐴 is the attention maps calculated from 𝑋

𝑄
𝑠𝑐 and 𝑋𝐾𝑠𝑐 [8, 32].

With the gatheredmessage𝑚𝑣 , the node feature𝑋 𝑣𝑛𝑜𝑑𝑒 is updated
as,

𝑋 𝑣𝑢𝑝 = 𝐶𝑜𝑛𝑣𝐺𝑅𝑈 (𝑋 𝑣
𝑛𝑜𝑑𝑒

,𝑚𝑣) (12)

where 𝐶𝑜𝑛𝑣𝐺𝑅𝑈 [29] is adopted as update function. In the read-
out process, the node features are combined and projected into
segmentation features as,

𝑋𝑠𝑡 = 𝐶𝑜𝑛𝑣 (𝐶𝑎𝑡 [𝑋 0
𝑢𝑝 , 𝑋

1
𝑢𝑝 , ..., 𝑋

|V |−1
𝑢𝑝 ]) (13)

By integrating the GNN-based structure modeling and shape-
aware relation learning, the network captures the intricate struc-
tural information of diverse cartoon animals. This is of great im-
portance to delineate the complex and diverse body parts.

3.4 Spatial-Structural Consistency Learning
The body parts of cartoon animals exhibit substantial variations
across different animal categories, which are usually caused by
the complex and inconsistent spatial and structural characteristics.
Therefore, a novel spatial-structural consistency learning (SSCL)
mechanism is proposed to seamlessly integrate the spatial and struc-
tural features, achieving consistency among the spatial and struc-
tural dimensions. SSCL employs the cross-attention mechanism to
correlate the spatial and structural features. It learns a consistent
feature representation by fully utilizing the complementary spatial
and structural information. Specifically, the spatial information is
employed as the queries, while the structural information serves as
the keys. The rationale behind this design is to exploit the query-
key matching mechanism, which aims to learn the correspondences
between spatial and structural features. For diverse cartoon animals,
their spatial and structural characteristics may vary significantly.
The cross-attention mechanism can adaptively adjust the fusion

weights between these two modalities, effectively capturing the cor-
relations between spatial and structural information. This results
in a more consistent feature representation that better encapsulates
the holistic characteristics of the cartoon animals.

In the consistency learning, the spatial features 𝑋𝑠𝑝 are treated
as the queries, the structural features 𝑋𝑠𝑡 are used as the keys, and
the concatenated features 𝑋𝑐𝑎𝑡 = 𝑐𝑎𝑡 [𝑋𝑠𝑝 , 𝑋𝑠𝑡 ] as the values. The
consistency learning is formulated as follows:

𝑄 = 𝑋𝑠𝑝𝑊𝑞, 𝐾 = 𝑋𝑠𝑡𝑊𝑘 , 𝑉 = 𝑋𝑐𝑎𝑡𝑊𝑣 (14)
𝑋𝑓 𝑢𝑠𝑒𝑑 = 𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡𝑒𝑛(𝑄,𝐾,𝑉 ) (15)

where𝑊𝑞,𝑊𝑘 ,𝑊𝑣 are learnable weights from convolution layers.
Through this aggregation mechanism, a fused feature represen-
tation 𝑋𝑓 𝑢𝑠𝑒𝑑 that incorporates consistent spatial and structural
information is obtained.

3.5 Loss Functions
The objective function of this paper consists of parsing loss, center
point loss and edge loss. The parsing loss is set to predict the
segmentation results. The center point loss is used to predict the
center points of the body parts. The edge loss is utilized to predict
the edges of the body parts. The objective function is defined as,

L𝑎𝑙𝑙 = L𝑝𝑎𝑟𝑠𝑖𝑛𝑔 + L𝑠𝑝𝑎𝑡𝑖𝑎𝑙 + L𝑒𝑑𝑔𝑒 (16)

where L𝑒𝑑𝑔𝑒 [20, 27] denotes the weighted cross-entropy loss be-
tween the detected edge map and the binary edge label map.

The parsing loss is defined as,

L𝑝𝑎𝑟𝑠𝑖𝑛𝑔 = − 1
𝑀

∑︁𝑀

𝑖

∑︁𝑁

𝑛
𝑔𝑖𝑛𝑙𝑜𝑔𝑝𝑖𝑛 (17)

where 𝑔𝑖𝑛 denotes the ground truth label of the 𝑛-th body part
on the 𝑖-th pixel and 𝑝𝑖𝑛 is the related prediction result. 𝑀 is the
number of pixels in the image. 𝑁 is the number of classes.

The center point loss [10, 26] is defined as,

L𝑠𝑝𝑎𝑡𝑖𝑎𝑙 =
1
𝑁

∑︁𝑁

𝑛

∑︁
𝑥,𝑦

∥𝐻𝑛 (𝑥,𝑦) −𝐺𝑛 (𝑥,𝑦)∥2 (18)

where 𝐻𝑛 (𝑥,𝑦) represents the predicted result for the 𝑛-th center
point of the 𝑛-th body part at the pixel location (𝑥,𝑦). 𝐺𝑛 (𝑥,𝑦) is
the ground truth.

The proposed method alleviates the problems caused by the
complexity and diversity in the cartoon animal domain with the
above objective function.

4 Experiments
4.1 Datasets and Evaluation Metrics
CASet. To evaluate the proposedmethods, a cartoon animal parsing
dataset called CASet is collected from the Internet and annotated.
It contains 2,643 images of cartoon animals. The dataset is divided
into 1,718 images for training, 262 images for validation and 663
images for testing. The images are annotated according to differ-
ent body parts, which include 9 categories: head, body, wing, tail,
left arm, right arm, left leg, right leg, and a background class. The
dataset comprises a wide range of cartoon animal categories, in-
cluding 52 classes such as ant, horse, monkey and penguin. Each
category contains dozens of cartoon images. The 52 animal cate-
gories are listed as follows: alligator, antelope, ant, bee, butterfly,
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Figure 6: Visualizations of CASet.

cat, chameleon, chicken, chimpanzee, cicada, cockroach, cow, crab,
deer, dinosaur, dog, dragonfly, duck, dung beetle, elephant, fly, frog,
fox, gecko, giant panda, giraffe, hawk, hippopotamus, horse, human,
lion, lizard, mantis, monkey, mosquito, mouse, ostrich, penguin,
pigeon, pig, polar bear, rabbit, scorpion, sheep, shrimp, sloth, spider,
squirrel, tiger, turtle, vulture and wolf.
CartoonSet. The CartoonSet dataset [26] consists of 2,229 cartoon
images. Among these images, 1,530 are used for training, 510 for
testing, and 189 for validation. This dataset encompasses a wide
range of cartoon styles, including drawings of children, illustrations
with brief strokes, and animated characters. Each image contains
detailed annotations of 24 classes for the body parts.
Cartoon dog. The Cartoon dog dataset [33] has 965 images of di-
verse cartoon dogs. It is divided into 773 images for training and 192
images for testing. The Cartoon dog dataset provides annotations
of eight classes for the cartoon images.
LIP. The LIP dataset [10] is a human parsing dataset containing
50,462 single-person images. It is divided into 30,462 images for
training, 10,000 for testing, and an additional 10,000 for validation.
19 classes of the body parts of humans are annotated.
Evaluation Metrics. Following previous studies [20, 25, 26, 33],
Mean Intersection over Union (Mean IoU) is adopted as the evalua-
tion metric. It computes the average intersection-over-union ratio
between predicted body parts and ground truth. Moreover, Mean
Accuracy (Mean Acc.) is utilized for per-class accuracy calculation,
and Pixel Accuracy (Pixel Acc.) measures the accuracy of correctly
predicted pixels.

4.2 Implementation Details
To implement the proposed CAPNet, a ResNet-101 backbone [12]
with PPM [46] and DeepLabv3+ decoder [3] is used as the base-
line model. Stochastic Gradient Descent (SGD) is employed as the
optimizer with a momentum of 0.9 and a weight decay of 5e-4.
Following previous works [2, 8, 24, 43], CAPNet employs the “poly”
learning rate strategy, defined as 𝑙𝑟 = 𝑙𝑟𝑖𝑛𝑖𝑡 × (1− 𝐶𝑛

𝑇𝑛
)𝑝𝑜𝑤𝑒𝑟 , where

𝑙𝑟 and 𝑙𝑟𝑖𝑛𝑖𝑡 are the current learning rate and the base learning
rate, respectively. 𝑝𝑜𝑤𝑒𝑟 = 0.9. 𝐶𝑛 and 𝑇𝑛 represent the current
iteration number and the total iteration number, respectively. For
data augmentation, CAPNet applies random left-right flipping with
a 0.5 probability and random scaling strategy.

For a fair comparison on CASet, all methods are trained with a
batch size of 8 and image size of 384×384. The number of training
epochs is 150. For the compared methods, other train settings are
kept the same as their original papers. For CartoonSet, CAPNet is
trained with 150 epochs. The learning rate is 7e-3 and the training
size of images is 384×384. For Cartoon dog dataset, CAPNet uses a

Table 1: Comparison on CASet.

Method Pixel Acc. Mean Acc. Mean IoU
DeepLabV3+ [3] 93.71 80.05 69.74
DFPNet [33] 94.38 80.81 70.74
CE2P [27] 94.30 81.07 70.81
HHP [36] 94.08 80.23 70.84
SCHP [18] 94.37 82.24 72.32
CDGNet [20] 94.56 83.02 73.43
CPNet [26] 94.67 83.28 73.58
CAPNet (Ours) 94.86 84.33 74.57

learning rate of 3e-3, and the training images are resized to 384×384.
The number of the training epochs is 300. All methods undergo
single-scale evaluation on CASet, CartoonSet, and Cartoon dog
datasets. For LIP dataset, CAPNet is trained with a learning rate of
7e-3. The training images are resized to 473×473. The number of
the training epochs is 150. For a fair comparison, CAPNet utilizes
the multi-scale evaluation approach [18, 20, 36] for the LIP dataset.

4.3 Comparisons with the State-of-the-Art
Approaches

To evaluate the performance of the proposed method, it is com-
pared with the state-of-the-art cartoon parsing and human parsing
methods. The comparison results are listed in Table 1. The general
semantic segmentation method DeepLabV3+ [3] lacks dedicated
modules for cartoon animal parsing. Accordingly, its performance
is limited. Human parsing methods such as CDGNet [20], CE2P
[27], and SCHP [18] focus on spatial information extraction and la-
bel noise learning, which improves the accuracy of cartoon animal
parsing. But they ignore the modeling and learning of structural in-
formation, which limits the performance. HHP considers structural
information modeling but overlooks spatial information learning.
Moreover, when capturing spatial and structural information, they
mainly consider the simple spatial patterns and regular structures of
the human body, without taking into account the abstract and irreg-
ular properties of cartoon animals. DFPNet [33] is used for cartoon
dog parsing with a dense pyramid learning structure to address the
multi-scale problem in cartoon parsing. But its performance is lim-
ited when facing the challenges posed by cartoon animal parsing.
CPNet [26] improves the segmentation of the irregular structures
of cartoon characters using pixel and part correlation learning
strategy. However, it focuses on independent cartoon characters
and has limited generalization ability when segmenting diverse
cartoon animals. Overall, these existing methods ignore the intrin-
sic differences between cartoon animals and real-world humans.
The distinctions between cartoon animals and common cartoon
characters are also not noticed. As a result, they have difficulties
in cartoon animal parsing. To address the challenges in cartoon
animal parsing, CAPNet captures the important spatial information
and complex structural context by introducing the spatial learning
method and structural modeling approach. It deeply explores the
essential characteristics of cartoon characters by associating the
spatial and structural features, achieving consistency among diverse
and complex cartoon animals. The proposed method achieves the
highest results on CASet, outperforming the compared methods.

Table 2 gives the comparison results on the CartoonSet dataset.
CartoonSet is a cartoon parsing dataset containing diverse and
multi-style cartoon characters. Previous methods have a similar
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Table 2: Comparison on CartoonSet.

Method Pixel Acc. Mean Acc. Mean IoU
DeepLabV3+ [3] 87.28 63.42 50.12
DFPNet [33] 88.21 65.33 51.71
HHP [36] 87.51 64.42 51.98
CE2P [27] 88.06 66.55 52.90
CNIF [35] 87.74 66.01 53.21
CDGNet [20] 88.11 67.98 53.99
SCHP [18] 88.63 69.36 55.44
CPNet [26] 89.42 69.90 57.02
CAPNet (Ours) 89.51 70.83 57.61

Table 3: Comparison on Cartoon dog dataset.

Method Pixel Acc. Mean Acc. Mean IoU
Mask R-CNN [11] 89.21 57.78 50.56
CE2P [27] 92.63 76.43 65.32
DFPNet [33] 93.50 79.40 68.39
SCHP [18] 94.05 81.15 71.22
CDGNet [20] 94.09 80.03 71.44
CPNet [26] 94.32 82.60 72.28
CAPNet (Ours) 94.58 83.78 74.30

trend as in CASet. Overall, approaches using conventional deep
learning methods have relatively worse performance, for example,
DeepLabV3+ [3]. When structural representations are captured
with GNN, the performance is boosted, for example, HHP [36],
CNIF [35] and CPNet [26]. Methods like CE2P [27] and CDGNet
[20] incorporate the spatial information, including edges and class
distributions, which further improves the performance of cartoon
parsing. But when facing the irregularity and complexity of cartoon
characters, the performance of previous methods is limited. CAPNet
outperforms the state-of-the-art methods by learning the important
spatial cues like center points and contours, and crucial structural
shapes and relations of the body parts.

The results of different methods on the Cartoon dog dataset are
listed in Table 3. The Cartoon dog dataset contains cartoon dogs of
diverse styles and appearances, for which traditional segmentation
methods like Mask R-CNN [11] and human parsing approaches like
CE2P [27] are not well-suited. DFPNet [33] is proposed specifically
for cartoon dog parsing and improves the results, but it primarily
focuses on multi-scale feature learning. The performance is boosted
by CDGNet [20] with its class distribution learning module. SCHP
[18] further improves the results by proposing a self-correction
strategy to correct misclassified regions. CPNet [26] learns the ir-
regularity of cartoon characters, achieving better results. However,
these methods still overlook the unique spatial and structural char-
acteristics of diverse cartoon dogs, resulting in limited performance.
Compared to these methods, the proposed CAPNet leverages the es-
sential characteristics of cartoon dogs by focusing on the diversity
and complexity of cartoon images, which achieves the state-of-the-
art parsing results on the Cartoon dog dataset.

To evaluate the generalization ability of the proposed method for
human parsing, the comparison of different methods on LIP dataset
is listed in Table 4. LIP is a large-scale human parsing dataset that
is widely used [18, 20]. DeepLabV3+ [3], OCR (ResNet101) [41],
HRNetV2 [34] and OCR (HRNetV2-W48) [41] are common seman-
tic segmentation methods. They have limited performance on LIP
dataset due to the lack of specific components for human pars-
ing. HHP [36], SCHP [18], CDGNet [20] and similar approaches

Table 4: Comparison on LIP dataset.

Method Pixel Acc. Mean Acc. Mean IoU
DeepLabV3+ [3] n/a n/a 52.09
CE2P [27] 87.37 63.20 53.10
CorrPM [45] 87.68 67.21 55.33
OCR (ResNet101) [41] n/a n/a 55.60
HRNetV2 [34] n/a n/a 55.90
OCR (HRNetV2-W48) [41] n/a n/a 56.65
CPNet [26] 88.29 68.41 57.21
CNIF [35] 88.03 68.80 57.74
HHP [36] 89.05 70.58 59.25
SCHP [18] n/a n/a 59.36
CDGNet [20] 88.86 71.49 60.30
CAPNet (Ours) 88.40 68.80 57.57

Table 5: Effect of the proposed modules on CASet dataset. SLB:
Spatial Learning Branch. SMB: Structural modeling Branch. SSCL:
Spatial-Structural Consistency Learning.

Method Pixel Acc. Mean Acc. Mean IoU
Baseline 93.69 79.38 69.33
Baseline + SLB 94.56 82.54 72.24
Baseline + SMB 94.46 81.84 71.97
Baseline + SLB + SMB 94.82 83.52 74.04
Baseline + SLB + SMB + SSCL 94.86 84.33 74.57

are designed with specific modules tailored for human parsing,
achieving good performance in human parsing. Although CAPNet
is proposed for cartoon animal parsing, it achieves competitive
results on LIP dataset, outperforming the cartoon parsing method
CPNet [26] and most of the human parsing methods. The general
semantic segmentation methods such as HRNetV2 [34] and OCR
(HRNetV2-W48) [41], although have good performance on generic
datasets like Cityscapes [6], exhibiting limited results on the human
parsing task. Compared to these common segmentation methods,
CAPNet, which is designed for cartoon animal parsing, achieves bet-
ter results on LIP dataset. The competitive performance of CAPNet
on LIP dataset suggests that the proposed method is effective for
human parsing as well and demonstrates its generalization ability
from cartoon animal parsing to human parsing.

4.4 Ablation Studies
To validate the effectiveness of each module in CAPNet, ablation
studies are conducted. Table 5 gives the experimental results of
the proposed three modules: SLB (Spatial Learning Branch), SMB
(Structural Modeling Branch), and SSCL (Spatial-Structural Con-
sistency Learning). The baseline model, which lacks specialized
designs for cartoon animal parsing, has limited performance on
CASet dataset. When SLB module is added to learn spatial pat-
terns, a significant performance boost is obtained, which proves the
importance of spatial learning. With the SMB adopted, the perfor-
mance is substantially improved, which demonstrates the crucial
role of structural shape and relation modeling. The performance
is further enhanced by integrating the spatial features and struc-
tural contexts, which indicates the complementary nature of these
two types of information to collectively improve cartoon animal
parsing. SSCL is proposed to learn the consistency between spatial
cues and structural representations, which results in an additional
performance gain. This suggests that the integration and consis-
tency learning of the spatial and structural features is essential to
address the challenges in cartoon animal parsing.
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Figure 7: Visualizations of the state-of-the-art methods.
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Figure 8: Visualizations of different components.

Table 6: Effect of the deformable convolutions (DC), shape-aware
convolutions (SC), and geometry prior (GP). The symbol 𝑤/𝑜 means
without.

Method Pixel Acc. Mean Acc. Mean IoU
CAPNet 94.86 84.33 74.57
CAPNet (𝑤/𝑜 SC) 94.78 83.48 73.85
CAPNet (𝑤/𝑜 DC) 94.57 83.18 73.22
CAPNet (𝑤/𝑜 GP) 94.75 83.53 73.72

To effectively capture the spatial patterns and structural repre-
sentations of cartoon animals, CAPNet employs deformable convo-
lution [7], shape-aware convolution [1] and geometry prior [14].
Ablation studies are further conducted to demonstrate the effective-
ness of these components. The results of the ablation experiments
are listed in Table 6. As can be seen from the table, CAPNet without
the deformable convolution, shape-aware convolution or geometry
prior leads to a decline in performance, which indicates that these
components are effective for the network to capture and learn spa-
tial distributions and structural contexts. Deformable convolution,
with its unique convolution design, enables the network to learn
irregular shapes and structures. It enhances the ability of CAPNet
to capture spatial patterns of cartoon images. Shape-aware convo-
lution helps the network capture the shape information of the body
parts, which boosts the structural representation learning of CAP-
Net. The geometry prior strengthens the perception and learning
of the geometric structure of cartoon animals. The integration of
these components contributes to the state-of-the-art performance
of CAPNet in cartoon animal parsing by strengthening the learning
and modeling of the important spatial cues and structural contexts.

4.5 Qualitative Results
Fig. 7 showcases the parsing results of different methods on CASet
dataset. Compared to other methods, the proposed method has
better performance in segmenting various and intricate body parts
of cartoon animals such as crab and deer. The results demonstrate
that the proposed method has good generalization ability across
different styles and species of cartoon animals. The performance

Image
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Figure 9: Examples of failure cases.

of CAPNet in segmenting diverse and complex cartoon animals
is attributed to its capabilities of learning the spatial patterns and
modeling the structural representations of cartoon animals.

The visualization results of the proposed modules are illustrated
in Fig. 8. Due to the significant differences and complex structures
of the cartoon animals, the baseline model struggles to segment
the body parts. By incorporating the spatial learning and struc-
tural modeling method, the parsing results of cartoon animals are
noticeably improved. However, simply combining the spatial learn-
ing and structural modeling still leads to limited performance. By
leveraging the spatial-structural consistency learning to learn the
spatial and structural consistency, the performance of the network
is further improved, leading to more accurate parsing results for
cartoon animals.

Although CAPNet achieves promising performance for cartoon
animal parsing, there is still some space to improve. Currently,
it focuses on spatial learning and structural modeling of cartoon
animals. But it ignores the interference and influence of complex
backgrounds. When the backgrounds have similar colors, visual
appearances or textures to cartoon animals, CAPNet has difficulties
in capturing and learning the relationship between cartoon animals
and the complex backgrounds. As a result, it cannot distinguish
cartoon animals from complex backgrounds. Some failure examples
are illustrated in Fig. 9, which illustrate the limitations of CAPNet.

5 Conclusion
In this paper, a spatial learning and structural modeling network,
named CAPNet, tailored for cartoon animal parsing is introduced. It
addresses the challenges in spatial information learning, structural
representation modeling, as well as spatial-structural consistency
learning in cartoon animal parsing. The spatial-ware learning struc-
ture utilizes deformable convolutions to capture spatial features
of irregular body parts. In addition, it predicts edges and center
points of semantic parts to learn edge-aware and center-aware
spatial patterns. The structural modeling approach incorporates
GNN and shape-aware relation learning network to model intricate
structures. The spatial and structural consistency learning mod-
ule enhances feature representation consistency among dissimilar
cartoon animals, which demonstrates improved parsing accuracy.
In the future, the proposed method will be improved to address
the problems caused by complex backgrounds. The dataset will be
expanded to include more animal categories with more diverse and
intricate backgrounds.
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