% SE-GUI: Enhancing Visual Grounding for GUI
Agents via Self-Evolutionary Reinforcement Learning

Xinbin Yuan'2* Jian Zhang?* Kaixin Li® Zhuoxuan Cai’ Lujian Yao?> Jie Chen?
Enguang Wang®>  Qibin Hou'®  Jinwei Chen? Peng-Tao Jiang® Bo Li*®

LVCIP, School of Computer Science, NKU 2vivo Mobile Communication Co., Ltd
3 National University of Singapore
yxb@mail.nankai.edu.cn, hougb @nankai.edu.cn, libra@vivo.com
Project page: https://github.com/YXB-NKU/SE-GUI

Abstract

Graphical User Interface (GUI) agents have made substantial strides in under-
standing and executing user instructions across diverse platforms. Yet, grounding
these instructions to precise interface elements remains challenging—especially
in complex, high-resolution, professional environments. Traditional supervised
fine-tuning (SFT) methods often require large volumes of diverse data and exhibit
weak generalization. To overcome these limitations, we introduce a reinforcement
learning (RL)-based framework that incorporates three core strategies: (1) seed
data curation to ensure high-quality training samples, (2) a dense policy gradi-
ent that provides continuous feedback based on prediction accuracy, and (3) a
self-evolutionary reinforcement finetuning mechanism that iteratively refines the
model using attention maps. With only 3k training samples, our 7B-parameter
model achieves state-of-the-art results among similarly sized models on three
grounding benchmarks. Notably, it attains 47.3% accuracy on the ScreenSpot-Pro
dataset—outperforming much larger models, such as UI-TARS-72B, by a margin
of 24.2%. These findings underscore the effectiveness of RL-based approaches
in enhancing GUI agent performance, particularly in high-resolution, complex
environments.

1 Introduction

Graphical User Interface (GUI) agents have become increasingly capable of executing user commands
across diverse platforms [1; 2]. Yet, a core challenge remains: accurately grounding natural language
instructions to the correct elements on the interface [3; 4; 5]. While Supervised Fine-Tuning (SFT)
has been proven to be effective in simple scenarios [6; 7; 8], it faces two major limitations: requiring
large volumes of diverse data and exhibiting weak generalization in complex and high-resolution
professional settings [9; 10].

To address these issues, reinforcement learning (RL) offers a promising alternative. Unlike SFT,
RL enables models to learn from structured and incremental feedback via reward functions, guiding
them toward more precise grounding. Among RL-based methods [11; 12; 13], Group Relative Policy
Optimization (GRPO) [13] stands out for its efficiency. It replaces heavy value models with a simple
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Figure 1: Performance comparison of various GUI agents on both the grounding benchmark
(ScreenSpot [18], ScreenSpot-v2 [7], ScreenSpot-Pro [4]) and the agent benchmark (Android_Control-
High [19], Android_Control-Low [19], OmniACT [20]). Our model, SE-GUI marked with a star,
demonstrates state-of-the-art performance against models with larger parameter counts.

rule-based reward system, reducing the computational burden. However, typical approaches [9; 10]
rely on binary (0/1) rewards, which are often sparse. Such sparsity impedes early-stage training,
as incorrect predictions commonly receive identical zero rewards, resulting in uniform advantage
estimates and limited gradient information for effective optimization.

Furthermore, recent studies [14; 15; 16] also emphasize the importance of training data quality for
RL-based methods, which is not explored for GUI tasks. However, grounding datasets are typically
collected through automated pipelines that extract data from noisy UI accessibility trees or raw
HTML, often without thorough verification [7; 6; 8; 17]. This process introduces significant noise,
including low-quality instructions (e.g., generic labels like <PushButton>) and bounding boxes
corresponding to elements that appear in the DOM but are not visually rendered in the UI. This raises
a critical question: How can we assess the quality of each training sample?

To investigate the above problem, we analyze model failures by examining layer attention across
the transformer architecture. We found two common patterns: In some cases, the model roughly
identifies the target region, but fails to localize it precisely; in others, it completely overlooks the
relevant area. These errors often stem from weak alignment between the instruction and the ground
truth location.

Motivated by these insights, we propose a Self-Evolutionary reinforcement fine-tuning algorithm
that leverages layer attention from a trained model to guide further learning. As grounding accuracy
improves, so does the quality of attention, enabling the model to iteratively supervise its own training.
At each stage, the best-performing model generates attention maps that inform the next iteration,
continuing until performance converges. We summarize our contributions as follows:

1. Seed Data Curation. We curate a 3,018-sample dataset by filtering out vague, inaccurate, or
overly simple tasks from a larger candidate pool. This ensures linguistic consistency and
balanced task complexity, promoting better generalization and stable performance across
scenarios.

2. Group Relative Policy Optimization with Dense Point Reward. To combat sparse rewards, we
designed a continuous reward mechanism that evaluates the proximity between predictions
and ground truth. This provides smoother feedback, enabling the model to learn from
near-misses and gradually refine its grounding behavior.

3. Self-Evolutionary Reinforcement Fine-Tuning. We implement an iterative learning loop,
where attention maps serve as intermediate supervision signals. These maps highlight which
visual tokens the model attends to for each instruction, helping align its focus with relevant
interface elements over time.

We evaluate our SE-GUI on six diverse grounding and agent benchmarks across desktop, mobile,
and web environments. As illustrated in Fig. 1, SE-GUI achieves state-of-the-art performance, most
notably attaining 47.3% accuracy on the challenging ScreenSpot-Pro benchmark, surpassing the
previous best (UI-TARS-72B) by 24.2% at 7B parameter scale with only 3k training samples. These



results demonstrate the effectiveness of our RL-based approach for grounding in complex GUI
environments.

2 Related Work

2.1 GUI Agents

GUI agents, as a specialized class of autonomous Al systems, have rapidly evolved with the advent of
large foundation models such as LLMs and vision-language models (VLMs) [21; 22; 23], enabling
them to interact with graphical user interfaces in increasingly sophisticated ways. Unlike traditional
programmatic agents that rely on API calls or internal code access, GUI agents [24; 25; 26; 27; 28]
simulate human-like interactions through mouse clicks, keyboard inputs, and visual perception,
offering greater flexibility in automating tasks across diverse platforms. Early approaches [29]
focused on structured representations like HTML code, but recent advancements [6; 8; 7] demonstrate
superior performance when agents directly process visual forms of GUISs, leveraging high-resolution
encoders and unified vision-language interfaces . Systems like AppAgent [24; 25], and CogAgent [26]
have pioneered this field by enhancing GUI comprehension and interaction precision, while newer
frameworks such as UI-TARS [30] and AgentS2 [3] introduce modular architectures and generalist-
specialist designs for improved task planning and cross-platform generalization. Despite these strides,
challenges remain, particularly in grounding accuracy and data efficiency, as highlighted by methods
like UGround [6] and OS-Atlas [7]. However, the reliance on supervised fine-tuning (SFT) poses
limitations in scalability and adaptability, motivating the exploration of advanced learning paradigms
to overcome the need for vast labeled datasets and improve generalization to unseen interfaces.

2.2 Reinforcement Learning

Reinforcement Learning (RL) has emerged as a transformative approach in the domain of GUI
agents [9; 10], leveraging rule-based reward functions to guide model behavior and enhance perfor-
mance. Frameworks like DeepSeek-R1 [23] have demonstrated the efficacy of RL in tasks such as
mathematical reasoning and code generation, with subsequent studies [31; 32] extending its applica-
tion to multimodal models for visual tasks, including image classification and object detection. as
to the application of Reinforcement Fine-Tuning (RFT) in gui tasks. UI-R1 [9] and GUI-R1 [10]
represents a pioneering effort in this direction, showcasing the potential of RFT to improve action
prediction accuracy and grounding in GUI environments, even with limited data. These developments
highlight RL’s adaptability and scalability, positioning it as a promising paradigm for future inno-
vations in intelligent GUI agent. However, these approaches typically rely on binary (0/1) rewards,
which are often sparse. Such sparsity impedes early-stage training, as incorrect predictions com-
monly receive identical zero rewards, resulting in uniform advantage estimates and limited gradient
information for effective optimization. So, how to design better RL algorithms remains a question
worth exploring.

3 Method

In this section, we describe our proposed framework SE-GUI. It comprises three key components as
shown in Fig. 2. First, we introduce a data filtering strategy aimed at constructing a clean training
set, addressing the need for high-quality data in RL. Second, to mitigate the problem of sparse binary
reward signals, we introduce a dense point reward mechanism to guide the model more effectively
towards the target even when initial predictions are imprecise. Finally, we propose a self-evolutionary
training strategy that iteratively refines the model and data with an attention-based filtering method.

3.1 Seed Data Curation

Our work commences with the collection of diverse open-source grounding datasets including
ShowUI [33], UGround [6] and AriaUI [17]. This leads to approximately 300k examples of grounding
data encompassing desktop, web, and mobile platforms. These datasets are primarily created through
automated pipelines, which often introduce noise, such as inaccurate or off-screen bounding boxes.
To address these issues and ensure high training quality, we implemented a three-fold filtering strategy
to construct a cleaner and more reliable seed dataset:
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Figure 2: Overview of the SE-GUI Framework. Given high-level instructions and the corresponding
screenshots, SE-GUI generates multiple candidate responses and is optimized via GRPO using
verifiable rewards as feedback signals. The updated model is then leveraged to identify high-quality
samples in the training set, which yields cleaner learning signal for subsequent iterations. This
iterative process enables SE-GUI to progressively improve itself by refining its predictions and
training data.
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Instruction quality. We use regular expressions to remove low-quality entries such as raw python ob-
ject names. We then employ a multi-modal large language model to score the remaining samples(The
prompt is provided in appendix), evaluating the clarity of the instruction, its alignment with the UI
elements, and potential ambiguity.

Bounding box accuracy. Many original annotations are misaligned or include irrelevant components.
To correct this, we train a bounding box quality scorer based on the Qwen2.5-VL-7B model. This
scorer is fine-tuned on a curated set of high-quality bounding boxes from our collected 100k web
pages as positive examples and randomly positioned ones as negatives, allowing it to effectively filter
out inaccurate annotations.

Task difficulty. We utilize the Qwen2.5-VL-7B base model to conduct zero-shot testing on each
data point, generating 8 output results for each instruction. If all results are correct, the data point is
considered too simple and filtered out.

After applying these three filtering steps, we curated a final set of 3,018 high-quality samples, which
we refer to as SE-GUI-3k.

3.2 Group Relative Policy Optimization with Dense Point Reward

In our RL training process, the model generates a set of N potential position predictions
{01,09,...,0n}. Each response is evaluated by format reward and point reward {ry,ro,...,7x}.
These rewards are then normalized to calculate the relative advantage of each response. The relative
quality A; of the i-th response is computed as

r; — Mean({ry,ro,...,7n}) )
Std({’l"l, ro,... ,’/’N})

where Mean and Std are the mean and standard deviation of the rewards. This normalization step

ensures that responses are compared within the context of the group, allowing model to better capture

nuanced differences between candidates. Policy updates are further constrained by minimizing the
KL divergence between the updated and reference models, ensuring stable RL learning.

A=

However, during early-stage training, incorrect predictions are common. If we rely solely on binary
rewards (e.g., success or failure), the resulting advantage estimates tend to be uniform, providing



limited gradient signals for effective learning. To address the issue of sparse reward feedback, we
introduce a dense point reward mechanism. This reward R, is calculated by comparing the predicted

click point (z,y) with the ground truth bounding box gt*®* = [z1,y1, 22, y2]. The calculation
formula is as follows:
A y ity
d=\/(+ -5+ = 2
(v 5w) +(F-%7) @
10+ (1- d>2 if{”"‘gxﬁx%
R, = de“‘ N<y<y 3)
(1 — d:ax) , otherwise

where H and W are image width and height, respectively, d means the normalized distance between
the click point and the center point of the ground truth bounding box and d,,, is the normalized
maximum distance between the center point of the ground truth bounding box and the four vertices
of the image. Essentially, this formula assigns a reward R, based on whether a predicted point (z, y)
lies within a bounding box and its normalized distance from the box’s center. If the point is inside
the box (i.e., z; < x < xp and y; < y < 1»), the base reward is 1.0, and an additional decay term
reduces the reward as the point moves farther from the center. If the point is outside the box, the
reward only depends on the normalized distance between the point and the box center.

Finally, following previous works [34; 23; 32], we introduce format rewards during training to
evaluate whether the generated output adheres to the expected output format. The final response
reward is composed of format rewards and point rewards, defined as: R, = Ry + B Rpoint, Where
Ry represents the format reward, Rpyin represents the point reward, and « and 3 are weighting
parameters, respectively.

3.3 Self-Evolutionary Reinforcement Fine-Tuning

The proposed algorithm, SE-RFT (Self-Evolutionary Reinforcement Fine-Tuning), outlines a prin-
cipled approach to iteratively improving a vision-language GUI agent through attention-guided
self-supervision. We begin by training an initial model using seed data. In each subsequent training
iteration, the model from the previous round is used to generate attention maps for the current training
samples. To do this, we generate the model’s output sequence and collect self-attention weights
from the decoder across all transformer layers. Subsequently, the attention vector for each generated
token is normalized, retaining only the components related to the visual tokens. Next, an average is
computed across all layers to obtain an aggregated token-to-vision attention weight matrix. Finally,
these attention values are projected back onto the original image resolution to produce spatial attention
maps. These attention maps highlight the visual tokens on which the current instruction focuses.

If an attention map fails to focus appropriately on the correct Ul element, it may indicate that the
model lacks relevant prior knowledge or that the sample presents a challenge beyond the model’s
current capacity. We found that such cases frequently lead to inaccurate localization.

Taking this into account, we propose to guide the loss function with the attention maps. If attention
maps cannot correctly attend to the target UI element, these data may lead to incorrect guidance
during training, hindering model optimization. To address this, we set the loss for these data points to
zero, ensuring that they do not negatively impact the training process. The formula below is used to
compute whether the attention map is devoted to the correct target UI element.

1a if Ppeak A Pglobal
0, otherwise

f(attn, gt*, ) = { )

where attn means the spatial attention maps, 7 is the filtering threshold, Fe.x indicates if there exists
any significant activation point in the target region:

Preak =1 ( max attn[s, j] > T) , (5)

(4,9) €lz1,22] X [y1,Y2]



and Pjopa indicates if the average attention weight in the target region is higher than the global
average:

m

T2 Y2 1 —1W-=1

Z Z attn[s, j] H attn[z, j] | , (6)

1=x1 j=y1 i j=0

Pylobal = 1
global Hgtht

I
o

where Hy and Wy, are grounding truth bounding box width and height, respectively. First, Ppeax
checks if there exists at least one significant activation point within the target region by verifying
if any pixel’s attention weight exceeds a given threshold 7. Second, Pyjopa €nsures that the average
attention weight within the target region is higher than the global average attention weight across the
entire attention map. Together, these criteria ensure that the attention mechanism not only highlights
specific points within the target area but also prioritizes the region as a whole compared to the rest of
the map. The final loss function is as follows:

Wg(at|8t)

71'old(at|5t)

L(0) = f(attn, gt®* 1) x E; | — Ay + v - KL[7owa(+|s¢), mo (-|s0)] | (7)

where 7 (a¢|s:) means the current policy, moq(a+|s¢) means the old policy. The advantage function
Ay measures the relative value of an action, guiding the optimization process. Additionally, the
hyperparameter y controls the influence of the KL divergence term, KL[moa(+|s¢), mg(-|s¢)], which
penalizes large deviations between the old and new policies, thereby maintaining training stability.

4 Experiments

4.1 Implementation Details

For Reinforcement finetuning, we use the QwenVL2.5-3B/7B [35] model as the base model and train
ten epochs. The a, 3, 7y, T used in the formula are set as 1, 2, 0.004, and 0.2, respectively. During
inference, to ensure fairness, we apply a unified and simple prompt across all benchmarks under zero-
shot configurations. All experiments are conducted using 8 xNVIDIA A100-80G GPUs. We evaluate
our model on six benchmarks that cover grounding and agents on three different platforms, including
ScreenSpot [18], ScreenSpot-v2 [7], ScreenSpot-Pro [4], AndroidControl-Low [19], AndroidControl-
High [19] and OmniAct[20]. Following UGround [6], we use two commonly adopted metrics
for GUI agents in evaluation: click point prediction accuracy, and step success rate, denoted as
Grounding, and SR, respectively. In more detail, Grounding evaluates the performance of GUI
grounding in downstream tasks. Besides, SR represents the step-wise success rate, where a step is
deemed successful only if both the predicted action and its associated arguments (e.g., point for click
actions and input text for type actions) are correct.

4.2 [Experimental Results

We here evaluate our SE-GUI model by comparing it with current state-of-the-art (SOTA) models on
various tasks including GUI grounding tasks, GUI low-level tasks, and GUI high-level tasks.

Grounding capability. We evaluate the grounding capability of SE-GUI using ScreenSpot [18],
ScreenSpot-v2 [7] and ScreenSpot-Pro [4]. ScreenSpot and ScreenSpot-v2 assesses GUI grounding
performance across mobile, desktop, and web platforms, while ScreenSpot-Pro focuses on high-
resolution professional environments, featuring expert-annotated tasks spanning 23 applications, five
industries, and three operating systems.

As shown in Tab. 1, compared to the previous SOTA model UI-TARS-72B, which is trained with
large-scale data using supervised finetuning (SFT), our SE-GUI-7B achieves 8.5% improvement
using only 0.2% of the data (3K vs. 14M). Furthermore, compared to the base models Qwen2.5-VL-
7B and the SFT-trained Qwen2.5-VL-7B models using the same dataset, the RFT-based SE-GUI
demonstrates much better performance in GUI grounding tasks. Moreover, the results in Tab. 3
reveals that SE-GUI-7B achieves 88.2% on ScreenSpot and 90.25% on ScreenSpot-v2, respectively.
This highlights the effectiveness of our method in leveraging small-scale datasets to achieve significant
performance improvements, which demonstrates its potential as a data-efficient and scalable approach
for model training in resource-constrained environments.



Table 1: Performance comparison of different agent models across various task categories based
on Text, Icon, and Average scores on ScreenSpot-Pro. Results marked in bold represent the best
performance, and those underlined indicate the second-best performance.

CAD Dev Creative Scientific Office (01 Avg.
Model Text Icon Text Icon Text Icon Text Icon Text Icon Text Icon Text Icon Avg.
Proprietary Models
GPT-40 [36] 20 00 1.3 00 10 00 21 00 1.1 00 00 00 13 0.0 08

Claude Computer Use [37] 14.5 3.7 22.0 39 259 3.4 339 158 30.1 16.3 11.0 45 234 7.1 17.1

General Open-source Models

Qwen2.5-VL-3B [22] 9.1 73 22.1 14 268 2.1 382 7.3 339151 103 1.1 23.6 3.8 16.1
Qwen2.5-VL-7B [22] 16.8 1.6 46.8 4.1 359 7.7 493 7.3 525 20.8 374 6.7 389 7.1 268
GUI-specific Models

CogAgent-18B [1] 7.1 3.1 149 0.7 9.6 0.0 222 1.8 13.0 00 5.6 0.0 12.0 0.8 7.7
Aria-UI [17] 76 16 162 0.0 237 2.1 27.1 64 203 19 47 0.0 17.1 2.0 11.3
OS-Atlas-7B [38] 122 47 33.1 14 28.8 2.8 375 7.3 339 57 27.1 45 28.1 40 189
ShowUI-2B [33] 25 00 169 14 9.1 0.0 132 73 153 7.5 103 22 108 2.6 7.7
UGround-7B [39] 142 1.6 26,6 2.1 27.3 2.8 319 2.7 31.6 11.3 17.8 0.0 25.0 2.8 165
UGround-V1-7B [39] 15.8 1.2 519 2.8 475 9.7 57.6 145 60.5 13.2 383 7.9 452 8.1 31.1
UI-R1-3B [40] 11.2 63 227 4.1 273 3.5 424 11.8 322 11.3 13.1 45 249 64 178
GUI-R1-3B [10] 264 7.8 33.8 48 409 56 61.8 173 53.6 17.0 28.1 5.6 - - -

GUI-R1-7B [10] 239 63 494 4.8 389 84 556 11.8 58.7 264 42.1 169 - - -

UI-TARS-2B [2] 17.8 47 474 4.1 429 6.3 569 173 503 17.0 21.5 5.6 39.6 84 27.7
UI-TARS-7B [2] 20.8 9.4 584 12.4 50.0 9.1 63.9 31.8 63.3 20.8 30.8 16.9 47.8 16.2 35.7
UI-TARS-72B [2] 18.8 12.5 629 17.2 57.1 154 64.6 209 63.3 26.4 42.1 15.7 50.9 17.6 38.1
Ours

SE-GUI-3B 38.1 12.5

55.8 7.6 47.0 49 61.8 164 599 24.5 40.2 12.4 504 11.8 35.9
SE-GUI-7B 51.3 42.2 68.2 19.3 57.6 9.1 75.0 28.2 78.5 43.4 49.5 25.8 63.5 21.0 47.3

Table 2: Step accuracy on AndroidControl over 500 random actions from the test split. Baseline
results are from [19]. Note that previous work are trained on AndroidControl and GUIACT, while
our methods in the zero-shot setting are only trained on grounding data.

AndroidControl_High AndroidControl Low OmniACT

Planner  Grounding Grounding SR Grounding SR AS
Supervised Setting

GPT-40  SeeClick [18] - 394 - 472 29.6
GPT-40  UGroundV1-7B [6] - 48.4 - 62.4 32.8
Zero-shot Setting

GPT-40  Qwen2.5-VL-7B [35] 31.6 36.0 62.6 58.0 24.1
GPT-40 SE-GUI-7B 65.6 52.8 79.6 68.2 34.4

Agent evaluation. We evaluate our method, SE-GUI, on three challenging GUI agent benchmarks:
AndroidControl_High, AndroidControl_Low and OmniACT. The AndroidControl benchmark [19]
consists of 15K tasks across 833 Android apps. Each task contains a sequence of actions grounded
in screenshots and ally trees, with both high-level intents and optional low-level step-by-step
instructions. Following the evaluation protocol in [6], we randomly sample 500 steps from the test
split and report step-wise accuracy (SR), where a step is considered correct only if all predicted
actions and arguments match the ground truth. As shown in Table 2, SE-GUI-7B significantly
outperforms all baselines across both task settings. In the low-level setting, where each step includes
a fine-grained instruction, SE-GUI achieves 52.8% accuracy, outperforming GPT-40 (39.4%) and
UGround-V1 (48.4%). In the high-level setting, where only the task goal is given, SE-GUI achieves
68.2%, a +5.8% improvement over the strongest baseline, UGround-V1 (62.4%). Notably, unlike
prior methods such as UGround-V1 and SeeClick, which are trained on AndroidControl and GUIACT,
SE-GUI is trained purely on grounding data, yet generalizes effectively to both task regimes.



Table 3: Performances on various platforms (Mobile, Desktop, Web) on ScreenSpot and ScreenSpot-
v2. All experiments were conducted using raw screenshot information. Results marked in bold
represent the best performance, and those underlined indicate the second-best performance.

Model ScreenSpot Accuracy (%) ScreenSpot-v2 Accuracy (%)
Mobile  Desktop Web  Avg. Mobile Desktop Web  Avg.
Proprietary Models
GPT-40 [41] 21.9 17.8 9.4 18.8 22.5 222 124 20.1
General Open-source Models
Qwen2-VL-7B [22] 50.3 40.4 274 429 394 50.1 27.7 398
Qwen2.5-VL-3B [22] - - - 55.5 55.5 44.0 39.1 469
Qwen2.5-VL-7B [22] - - - 84.7 92.8 78.4 854  86.5
GUI-specific Models
CogAgent-18B [26] 57.8 31.6 40.1 474 50.6 51.6 54.1 528
SeeClick-7B [18] 68.1 48.8 41.8 534 51.8 65.5 40.7 539
OSAtlas-4B [7] 56.2 74.9 69.9 685 74.9 56.9 70.0 685
UGround-7B [6] 75.9 75.8 783 733 74.3 74.9 78.6 763
ShowUI-2B [33] 84.8 70.8 76.2  75.1 70.0 85.1 733 713
OSAtlas-7B [7] 85.0 78.8 845 825 78.3 85.5 838 833
Aguvis-7B [8] 86.9 824 84.7 84.4 89.6 86.8 849 873
UI-TARS-2B [2] 85.0 814 79.8 823 87.9 81.4 829 847
Ours
SE-GUI-7B 85.6 914 86.5 88.2 95.2 87.1 87.0 903

For desktop and web environments, we evaluate on the OmniACT dataset [42], which comprises 9,802
tasks spanning 38 applications and 27 websites on macOS, Windows, and Linux. Each task involves
generating a complete PyAutoGUI script based on a single screenshot. We follow the DetACT
pipeline for a fair comparison, but replace its multimodal detection modules with an MLLM-based
grounding system. Specifically, we prompt an MLLM to generate textual descriptions of target UL
elements, then use SE-GUI to predict their screen coordinates. These coordinates are composed into
scripts using the original prompts and retrieval setup of DetACT, including in-context demonstrations
selected by task similarity. On this benchmark, SE-GUI achieves an action score of 34.4, surpassing
all other baselines, including GPT-40 (29.6) and UGround-V1 (32.8). These results demonstrate
the strong generalization and grounding capabilities of SE-GUI in both mobile and desktop GUI
environments, even under zero-shot settings.

4.3 Ablation Study

Image resolution and data quality. To investigate the impact of image resolution and data quality
on GUI RFT, we conduct corresponding ablation experiments, with the results shown in Fig. 4(a)
and Tab. 5. When training on a filtered, higher quality version of the dataset, the model achieves a
4.45% increase in accuracy. In contrast, using unfiltered, lower-quality data significantly degrades
performance, reducing accuracy to just 31.31%. This highlights the importance of data quality in
supporting effective model learning. We further examine the effect of image resolution by varying
the maximum number of pixels from 1 million to 5 million. As the resolution increases, the model’s
ability to recognize small but critical Ul elements can be improved, leading to steady performance
gains. This suggests that higher-resolution inputs provide more detailed visual information, which is
especially valuable in complex and professional GUI tasks.

Due to computational constraints, our experiments are limited to a maximum of 5 million pixels.
However, the observed trend implies that further improvements in resolution may yield additional
performance benefits. Overall, these results emphasize the combined importance of clean, high-quality
data and high-resolution visual inputs in advancing GUI grounding capabilities.

The ablation on hyper parameters. As shown in Tab. 4, we observed that the relative weights of
the format reward and point reward have a noticeable impact on the final performance. Specifically,
setting the ratio of format reward to point reward to 1:1 leads to a slight performance drop. To address
this, we adjusted the weight ratio to 1:2 during training. We attribute this to the relative simplicity of



Table 4: Ablations for SE-GUI-7B on ScreenSpot-Pro. The left table ablates the reward weights and
v, while the right table ablates .

Reward Weight (« : B) ¥ Average T Average
1:1 1:2 0.04 0.004 0.4 0.3 0.2 0.1

v X v X 24.85 v X X X 42.95
v X X v 27.07 X v X X 43.87
X v v X 31.31 X X v X 44.78
X v X v 34.28 X X X v 43.51

(a) Pin Jack’s conversation. (b) Initiate a video call with Ash.

Figure 3: Visualization of the model’s spatial attention on different samples.

learning format consistency; reducing its weight encourages the model to focus more on prediction
accuracy.

In addition, the KL divergence coefficient also influences model performance. Our experiments show
that a smaller KL divergence leads to better results. We hypothesize that a large KL term forces the
model to overly align with the reference policy, thereby limiting its capacity for exploratory learning.
Consequently, we set the KL divergence coefficient to 0.004 in our final experimental setup.

We also conducted detailed ablation studies on the attention map filtering threshold. When the
threshold is set too high, it may filter out samples with potential for reasoning. Conversely, when
the threshold is too low, it fails to provide effective supervisory guidance. Therefore, we selected a
threshold of 0.2.

The effectiveness of dense point reward function. To explore the impact of the coefficients for
format rewards and accuracy rewards in the reward function on the final performance, we conduct
relevant ablation experiments, as shown in Table 5. The results indicate that, compared to sparse
rewards, dense rewards bring a 4.21% improvement . This is because dense rewards allow the model
to receive more reward signals during the early stages of training, thus guiding the model to focus on
the correct positions of UI elements.

The effectiveness of self-evolutionary reinforcment fine-tuning. To investigate the impact of
self-evolutionary training on the final performance, we conducted relevant ablation experiments, as
shown in Fig. 4(b). The results indicate that the first-stage model, trained solely on the filtered dataset
SE-GUI-3k, achieved a performance of 39.97%. Subsequently, by leveraging the pre-trained model
from the first stage to generate attention maps for supervising the training of the second-stage model,
the performance improved by 3%. Continuing this process, where each subsequent stage utilizes the
previous stage’s model to generate attention maps for supervision, the third-stage model achieved
a performance of 46.55%. In the fourth stage, the improvement was minimal, indicating that the
model’s performance had largely converged.

Furthermore, we visualize the reward curves for each training stage to better illustrate the learning
dynamics. The curves are smoothed to clearly reveal the overall training trends and convergence
behavior. As shown in Fig. 4(c), with the progression of training, each subsequent stage in the
self-evolutionary process consistently achieves higher rewards compared to its predecessor. The final



Table 5: Ablations for data quality and reward function on ScreenSpot-Pro.

Data quality reward function CAD Dev Creative Scientific Office OS Avg.
original ~w/filtering sparse  dense
v X v X 146 264 28.6 40.1 426 143 271
v X X v 203 30.8 26.1 38.2 543 250 313
X v 4 X 14.8 31.1 35.8 50.0 513 255 358
X 4 X 4 364 345 323 47.6 578 291 40.0

stage’s reward curve closely aligns with that of the preceding stage, indicating that the model has
almost converged.

In addition, as shown in Fig. 4(d), we observe that on the ScreenSpot-Pro dataset, the previous
state-of-the-art model, UI-TARS-72B, performs poorly in certain specialized scenarios, with accuracy
dropping below 10%. In contrast, our model demonstrates strong generalization capabilities, achiev-
ing significant improvements in these challenging settings. Specifically, it boosts accuracy by nearly
40% on SolidWorks (SW) and Inventor (INV), which validates the effectiveness of our approach.
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Figure 4: More experiments. (a) Perfromance of SE-GUI-3B improves as max pixel increases. (b)
Performance in each training stage of self-evolutionary process. (c) The reward curves in each
training stage of SE-GUI-7B in self-evolutionary process. (d) Performance comparison between
UI-TARS-72B and our SE-GUI-7B in professional environments.
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Attention visualization. We present several visualizations of the model’s attention behavior. During
the visualization process, we compute the attention weights from the generated tokens to these visual
tokens. The attention values corresponding to the visual tokens are then mapped back to the original
image resolution, yielding a spatial attention map that reflects how the model attends to different
regions of the image. As shown in Fig. 3, given the user instruction "pin Jack’s conversation", the
model correctly attends to the upper-right region of the image. When prompted with the instruction
"initiate a video call with Jack," the attention map on the right fails to localize the ground truth region,
likely due to its inability to recognize the corresponding "video call” icon.

5 Conclusions and Limitations

Conclusions. In this work, we explore how to more effectively leverage reinforcement learning
to unlock the potential of large multimodal models as GUI Agents. Motivated by recent studies
that emphasize the importance of training data quality for RL-based methods, we employ a data
filtering strategy to curate a high-quality dataset, on which we train a base model. Building upon this,
we adopt a self-evolutionary reinforcement fine-tuning paradigm to progressively enhance model
performance. Our approach achieves state-of-the-art results across three grounding benchmarks. We
hope this study provides new insights for future research in the field of GUI Agents.

Limitations and future work. Due to hardware limitations, this paper explores only two model
scales: 3B and 7B. For the 7B model, we further constrained the maximum input resolution to 2
million pixels to limit the number of visual tokens, which may result in the loss of fine-grained details
in high-resolution images. Nevertheless, we believe that our method exhibits strong scalability and
generalization capabilities, and has the potential to achieve even better performance when applied to
larger models such as 32B or 72B.
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* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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Justification: We provide a thorough description of the details of our experiments in the
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* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.
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information about the statistical significance of the experiments?
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Justification: There is no reporting of error bars or statistical significance information.
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NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms to the NeurIPS Code of Ethics,
as outlined in the provided URL. The paper adheres to the ethical practices and guidelines
specified in the NeurIPS Code of Ethics during the research process.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: The paper solely emphasizes the positive societal impacts of the work per-
formed, omitting any discussion of potential negative consequences or societal drawbacks.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper thoroughly acknowledges and properly credits the creators or origi-
nal owners of assets, including code, data, and models, used in the research. Additionally, it

explicitly mentions and respects the licenses and terms of use associated with these assets,
ensuring ethical and legal compliance.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper curate a final set of 3,018 high-quality samples refered to as SE-
GUI-3k.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: We adopt Qwen2.5-vl as the base model in constructing our SE-GUL
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A  GRPO preliminary

Many rule-based RL works [43; 44; 45] adopt the Group Relative Policy Optimization (GRPO)
algorithm [13] for RL training. GRPO offers an alternative to commonly used Proximal Policy
Optimization (PPO) [12] by eliminating the need for a critic model. Instead, GRPO directly compares
a group of candidate responses to determine their relative quality.

In GRPO, given a task question, the model generates a set of IV potential responses {01, 02, ...,0n}.
Each response is evaluated by taking the corresponding actions and computing its reward
{r1,72,...,rn}. Unlike PPO, which relies on a single reward signal and a critic to estimate the
value function, GRPO normalizes these rewards to calculate the relative advantage of each response.
The relative quality A; of the i-th response is computed as

r; — Mean({r1,r2,...,7n})
Std({rl,’l“g, e ,’/‘N})

A= ®)

where Mean and Std represent the mean and standard deviation of the rewards, respectively. This
normalization step ensures that responses are compared within the context of the group, allowing
GRPO to better capture nuanced differences between candidates. Policy updates are further con-
strained by minimizing the KL divergence between the updated and reference models, ensuring stable
RL learning.

B More training details.

Due to resource constraints, during training on the 7B model, we limited the maximum input
resolution to 2 million pixels. We believe that increasing this limit could lead to further performance
improvements. Below, we present several representative prompts used during training, along with the
complete reward curves, as shown in Fig. 5.

Bounding box accuracy scoring prompt.

Analyze the provided cropped image from a screenshot to determine whether it contains a
single, valid, and visually complete UI element.

Criteria for validity:

- The image must contain exactly one Ul element. - The element must be entirely visible
within the cropped area, with no significant cut-off parts. - The image should not consist
solely of background, empty space, or meaningless fragments.

Response format:

Conclude with your final determination in a dedicated section:

Conclusion Yes (if the image contains a single, valid, and complete UI element) No (if it does
not meet the criteria)

Instruction quality scoring prompt.

Analyze whether the instruction text precisely identifies the UI element in the image based on:
1. Does the instruction EXACTLY match visible text/core function? 2. Could the instruction
confuse similar elements in context? 3. Does it clearly indicate the required action without
ambiguity?

Instruction to evaluate: instruction

Conclude with your final determination:

Conclusion Yes (if all criteria are met) No (if any criterion fails)
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Training Prompt.

You are a helpful assistant.
#Tools

You may call one or more functions to assist with the
user query.

You are provided with function signatures within
<tools></tools> XML tags:

<tools> {"type": "function", "function":
{"name_for_human": "computer_use", "name":
"computer_use", "description": "Use a mouse and

keyboard to interact with a computer, and take
screenshots. * This is an interface to a desktop GUI.
You do not have access to a terminal or applications
menu. You must click on desktop icons to start
applications. * Some applications may take time to
start or process actions, so you may need to wait and
take successive screenshots to see the results of
your actions. * The screen’s resolution is 1876x1036.
* Whenever you intend to move the cursor to click on
an element like an icon, you should consult a
screenshot to determine the coordinates of the
element before moving the cursor."}} </tools>

For each function call, return a json object with
function name and arguments within
<tool_call></tool_call> XML tags:

<tool_call>

{"name": <function-name>, "arguments": <args-json-object>}

</tool_call>

train/rewards/point_reward

0.5 train/global_step

1k 2k

Lad
==

Figure 5: Training curve of our SE-GUI-7B model.
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