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Abstract—In this paper we propose an approach to lexicon-
free recognition of text in scene images. Our approach relies
on a LSTM-based soft visual attention model learned from
convolutional features. A set of feature vectors are derived
from an intermediate convolutional layer corresponding to
different areas of the image. This permits encoding of spatial
information into the image representation. In this way, the
framework is able to learn how to selectively focus on different
parts of the image. At every time step the recognizer emits one
character using a weighted combination of the convolutional
feature vectors according to the learned attention model. Train-
ing can be done end-to-end using only word level annotations.
In addition, we show that modifying the beam search algorithm
by integrating an explicit language model leads to significantly
better recognition results. We validate the performance of
our approach on standard SVT, ICDAR’03 and MS-COCO
scene text datasets, showing state-of-the-art performance in
unconstrained text recognition.

1. Introduction

The increasing ability to capture images in any condition
and situation poses many challenges and opportunities for
extracting visual information from images. One such chal-
lenge is the detection and recognition of text “in the wild”.
Text in natural images is a high level semantic information
that can aid automatic image understanding and retrieval.

However, robust reading of text in uncontrolled environ-
ments is very different from text recognition in document
images and much more challenging due to multiple factors
such as difficult acquisition conditions, low resolution, font
variability, complex backgrounds, different lighting condi-
tions, blur, etc. Therefore, OCR techniques used in docu-
ment images do not generalize well to recognition of scene
text.

The problem of end-to-end scene text recognition is
usually divided in two different tasks: word detection and
word recognition. The goal of the word detection stage
is to generate bounding boxes around potential words in
the images. Subsequently, the words in these bounding
boxes are recognized in the word recognition stage. This
paper is focused on this second stage, word recognition.

Existing word recognition methods can be broadly divided
into dictionay-based methods, using some kind of predefined
lexicon to guide the recognition, and unconstrained methods,
able to recognize any word.

Dictionary-based scene text recognition. Traditionally,
scene text recognition systems use character recognizers
in a sequential way by localizing characters using a slid-
ing window [9], [12], [17] and then grouping responses
by arranging the character windows from left to right as
words. A variety of techniques have been used to classify
character bounding boxes, including random ferns [17], in-
teger programming [14] and Convolutional Neural Networks
(CNNs) [9]. These methods often use the lexical constraints
imposed by a fixed lexicon while grouping the character
hypotheses into words.

In contrast to sequential character recognizer models,
holistic fixed-length representations have been proposed
in [?], [1], [4], [8], [9], [13]. In [1], [4], [13], a holistic
signature derived from a set of training images is used to
learn a joint embedding space between images and words.
The first attempt using CNN features was made by Jaderberg
et al.in [9], where a sliding window over CNN features
is used for robust scene text recognition using a fixed
lexicon. Later, the same authors also proposed a fixed-length
representation [?] using convolutional features trained on a
synthetic dataset of 9 million images [8]

Unconstrained scene text recognition. Though most of
the works in scene text recognition focus on fixed-lexicon
recognition, a few attempts at unconstrained text recognition
have also been made.

Biassco et al.in [3] rely on sequential character clas-
sifiers. They use a massive number of annotated character
bounding boxes to learn character classifiers. Binarization
and sliding window methods are used to generate character
proposals followed by a text/background classifier. Finally,
character probabilities given by character classifiers are used
in a beam search to recognize words. They also integrate a
static character n-gram language model in every step of the
beam search to incorporate an underlying language model.

Though CNN models have achieved great success in
lexicon-based text recognition, word recognition in un-
constrained scenarios requires modeling the underlying



character-level language model. Jaderberg et al.in [6] pro-
posed to use two separate CNNs, one modeling character
unigram sequences and another n-gram language statistics.
They additionally use a Conditional Random Field to model
the interdependence of characters (n-grams). However, this
significantly increases the computational complexity. In ad-
dition, to detect the presence of character n-grams in word
images as neural activations, character n-grams are used as
output nodes, leading to a huge (10k output units for n=4)
output layer.

In contrast to the above strategies our approach neither
recognizes individual characters in the word image nor uses
any holistic representation to recognize the word. It rather
uses a LSTM-based visual attention model on top of CNN
features (based on [18]) to focus attention on relevant parts
of the image at every step and infer a character present in
the image (see figure 1). Thus, the system does not require
explicit character segmentation and is able to recognize
any word, without the help of any predefined dictionary.
The visual attention model can be trained using only word
bounding boxes and does not need explicit character bound-
ing boxes at training time.

Recently, visual attention models have gained a lot of
attention and have been used for machine translation [2],
image captioning [18] and also text recognition [10]. In
[18] the attention model is combined with an LSTM on
top of CNN features. The LSTM outputs one caption word
at every step focusing on a specific part of the image driven
by the attention model. In our work, we mainly follow
this attention model, adapted to the particular case of text
recognition. Although the work of [10] also makes use of
a soft attention model for text recognition in wild, there
are significant differences with respect our work. Firstly,
their model relies on Recursive CNN features to model the
dependencies between characters. Instead we use traditional,
much simpler CNN features and it is the visual attention
model which learns to selectively attend to parts of the
image and the dependencies between them. Secondly, Lee
et al. [10] used the features from the fully connected layer,
while we use features from an earlier convolutional layer,
thus preserving the local spatial characteristics of the image
and reducing the model complexity. This also allows the
model to focus on a subset of features corresponding to
certain area of the image and learn the underlying inter-
dependencies. Thirdly, we used LSTM instead of RNN
which has been shown to learn long term dependencies
better than traditional RNNs.
Our contributions with respect to the state-of-the-art.
In summary the contributions of our work are:

• We introduce a LSTM-based visual attention model
on top of CNN features for unconstrained scene text
recognition. This model is able to selectively attend
to specific parts of word images, allowing it to model
inter-character dependencies as needed and thus to
implicitly model the underlying language.

• We show that weak explicit language models (in the
form of prefix probabilities) can significantly boost
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Figure 1. Overall scheme of the proposed recognition framework. Given a
cropped word image, a set of spatially localized features are obtained using
a CNN. Then, an LSTM decoder is combined with an attention model to
generate the sequence of characters. At every time step the attention model
weights the set of feature vectors to make the LSTM focus on a specific
part of the image.

the final recognition result without having to resort
to a fixed lexicon. For that, We modify the beam
search to take into account the language model.
Additionaly, the beam search can also incorporate
a lexicon whenever it is available.

• We experimentally validate that our approach with
weak language modeling outperforms the state-of-
the-art in unconstrained scene text recognition and
performs comparably to lexicon-based approaches
with a model complexity lower than similar ap-
proaches.

The rest of the paper is organized as follows. In Section
2, we present our attention-based recognition approach and
3. In Section 4 we experimentally validate the model on
a variety of standard and public benchmark datasets. We
conclude in Section 5 with a summary of our contributions
and a discussion of future research directions.

2. Visual attention for scene text recognition

Our recognition approach is based on an encoder-
decoder framework for sequence to sequence learning. An
overall scheme of the framework is illustrated in figure 2.
The encoder takes an image of a cropped word as input and
encodes this image as a sequence of convolutional features.
The attention model in between the encoder and the decoder
drives, at every step, the focus of attention of the decoder
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Figure 2. The proposed Encoder-decoder framework with attention model.

towards a specific part of the sequence of features. Then,
an LSTM-based decoder generates a sequence of alpha-
numeric symbols as output, one at every time step, termi-
nating when a special stop symbol is output by the LSTM.
Below we describe the details of each of the components of
the framework.

Encoder: The encoder uses a convolutional neural network
to extract a set of features from the image. Specifically, we
make use of the CNN model proposed by Jaderberg et al. [?]
for scene text recognition – however we do not use the
fully connected layer as a fixed-length representation as it
is common in previuos works. Instead, we take the features
produced by the last convolutional layer. In this way we
can produce a set of feature vectors, each of them linked
to a specific spatial location of the image through its corre-
sponding receptive field. This preserves spatial information
about the image and reduces model complexity. Through
the attention model, the decoder is able to use this spatial
information to selectively focus on the most relevant parts
of the image at every step.

Thus, given an input image of a cropped word, the
encoder generates a set of feature vectors:

Ψ = {xi : i = 1 . . .K}, (1)
where xi denotes the feature vector corresponding to ith

part of the image. Each xi corresponds to a spatial location
in the image and contains the activations of all feature maps
at that location in the last convolutional layer of the CNN.

Attention model: For the attention model, we adapt the
soft attention model of [18] for image captioning, originallly
introduced by [2] for neural machine translation. In [18]
slightly better results are obtained using the hard version
of the model that focuses, at every time step, on a single
feature vector. However, we argue that, in the case of text
recognition, the soft version is more appropriate since a
single character will usually span more than one spatial cell
of the image corresponding to each of the feature vectors.
The soft version of the model can combine several feature
vectors with different weights into the final representation.

As shown in figure 2, the attention model generates,
at every time step t, a vector ẑt that will is the input to
the LSTM decoder. This vector ẑt can be expressed as a
weighted combination of the set Ψ of feature vectors xi
extracted from the image:

ẑt =

K∑
i=1

βt,ixi (2)

Thus, the vector ẑt encodes the relative importance of
each part of the image in order to predict the next character
for the underlying word. At every time step t, and for
each location i a positive weight βt,i is assigned such that∑

(βi) = 1. These weights are obtained as the softmax
output of a Multi Layer Perpectron (denoted as Φ) using the
set of feature vectors Ψ and the hidden state of the LSTM
decoder at the previous time step, ht−1. More formally:

αti = Φ (xi, ht−1) (3)

βti =
exp (αti)∑K

j=1 exp (αt,j)
(4)

This model is smooth and differentiable and thus it can be
learned using standard back propagation.

Decoder: Our decoder is a Long Short Term Memory
(LSTM) network [5] which produces one symbol from the
given symbol set L, at every time step. The output of the
LSTM is a vector yt of |L| character probabilities which
represents the probability of emitting each of the characters
in the symbol set L at time t. It depends on the output vector
of the soft attention model ẑt, the hidden state at previous
step ht−1 and the output of the LSTM at previous step yt−1.
We follow the notation introduced in [18] where the network
is described by: it

ft
ot
gt

 =

 σ
σ
σ

tanh

T

 Eyt−1

ht−1

ẑt

 (5)

ct = ft � ct−1 + it � gt (6)
ht = ot � tanh (ct) , (7)

where T is the matrix of weights learned by the network and
it, ft, ct, ot, and ht are the input, forget, memory, output
and hidden state of the LSTM, respectively. In the above
definition, � denotes the element-wise multiplication and
E is an embedding of the output character probabilities
that is also learned by the network. σ and tanh denote the
activation functions that are applied after the multiplication
by the matrix of weights

Finally, to compute the output character probability yt,
a deep output layer is added that takes as input the character
probability at the previous step, the current LSTM hidden
state, and the current feature vector. The output character
probability is:

P (yt|Ψ, yt−1) ∼ exp (L0 (Eyt−1 + Lhht + Lzẑt)) (8)
where L0, Lh and Lz are the parameters of the deep output
layer that are learned using back-propagation.



3. Inference

We use beam search over LSTM outputs to perform
word inference. We first introduce the basic procedure, and
then describe how we extend it to incorporate language
models.

3.1. The basic inference procedure

Once the model is trained, we use a beam search to
approximately maximize the following score function over
every possible word: w = [c1, . . . , cn]:

S (w, x) =

N∑
t=1

log (P (ct|ct−1)) , (9)

where cn is a special symbol signifying the end of a word,
which immediately stops the beam search.

The beam search keeps track at every step of the top
N most probable sequences of characters. For every active
branch of the beam search, given the previous character of
the sequence, ct−1, the output character probability yt of
the LSTM is used to obtain P (ct|ct−1) for all characters ct
in the symbol set L.

3.2. Incorporating language models and Lexicon

Text is a strongly contextual. There are some strict
constraints imposed by the grammar of the language. For
example any word in English cannot carry more than two
consecutive occurrences of any alphabet letter. Leveraging
such knowledge can positively impact the final recogni-
tion output. Although the LSTM implicitly learns some
dependences between consecutive characters, we show that
adding an explicit language model that takes into account
longer dependencies gives a significant boost to recognition
accuracy.

In this work we use a standard n-gram based language
model during inference to leverage the language prior. The
character n-gram model gives probability of a character
conditioned on k previous characters, where k is a parameter
of the model:

Θ (ck|ck−1, ck−2..., c1) =
# (c1c2...ck−1)

# (ckck...ck)
, (10)

where, #(c1, . . . cn) is the number of occurrences of a
particular substring in a training corpus.

Finally, the score function in equation 9 can be modified
to take the n-gram language model into account as:

S (w, x) =

N∑
t=1

log (P (ct|ct−1))

+ α log Θ (wt|wt−1, wt−2..., w1) (11)
At every step we fix the parameter k of the language

model to the number of previously generated characters in
order to take into account the longest possible sequence.

Although our method is originally designed for uncon-
strained text recognition, it can also leverage a lexicon
whenever available. The use of a lexicon D can be integrated
by modifying the beam search so that all active sequences

that do not correspond to any valid word are automatically
removed from the beam.

This can be efficiently implemented by storing the lexi-
con in a trie structure and automatically removing from the
beam search any alternative that do not correspond to any
partial branch of the trie.

4. Experimental Results

4.1. Datasets and experimental protocols

We evaluate the performance of the proposed method
using the following standard datasets.
Street View Text (SVT) dataset: this dataset contains
647 cropped word images downloaded from Google Street
View. Results using the predefined lexicons defined by Wang
et al.in [17] of 50 words for each image refereed as SVT-50.
ICDAR’03 text dataset: this dataset dataset contains 251
full images and 860 cropped word images [15]. We used
the same protocol as [1], [10], [17] and evaluate cropped
word images for which the groundtruth text contains only
alphanumeric characters and contains at least three charac-
ters.
MSCOCO [16] text Dataset: This is a recently published

dataset. This dataset is also challenging as none of the
images are captured specifically with text recognition in
mind. Also this dataset is much bigger than previous scene
text datasets.
Synth90k text dataset: this dataset is used only for

training [8]. It contains 9 million synthetically-generated text
images. We use the official partition for training as in other
works like [10].
Evaluation protocol: We use the standard evaluation
protocol adopted in most previous work on text recognition
in scene images [6], [10], [17]. The accepted metric is word
level accuracy in percentage. SVT and ICDAR’03 are used
for evaluation. For lexicon-based recognition, we used the
same set of 50 for all images in for SVT and ICDAR’03
dataset, as proposed buy Wang et al. [17].
Implementation details: The CNN encoder used in this
work is the Dictnet model by Jaderberg et al. [8]. Their
deep convolutional network consists of four convolutional
layers and two fully connected layers. In this work we used
features from the last convolutional layer. Thus, the feature
map used is of size 4 × 13 and therefore, the LSTM takes
input in the form of 52× 512.

For lexicon-based recognition when we do not use the
lexicon-based inference explained in section 3.2. Instead,
we take the output of unconstrained recognition and find
the closest word in the lexicon using the Levenshtein
edit distance. For lexicon-based inference in unsconstrained
datasets (SVT and ICDAR’03) we use the 90k-words lexi-
con provided by Jaderberg et al.in [8]. The explicit language
model is also learned using this 90k word lexicon.

The parameter α (see equation 11) to weight the lan-
guage model with respect to LSTM character probability is



empirically established. In our experiments we found the
best results with α between 0.25 to 0.3

4.2. Baseline performance analysis

In this section we analyze the impact on performance of
all the components of the proposed model. We start with a
baseline that consists of a simple one layer LSTM network
as decoder, without any attention or explicit language model.
As we are interested mainly in the impact of the attention
model, we use a simple version in which CNN features from
the encoder are fed to the LSTM only at the first time step.
At every step the output character is determined based on
the output of the previous step and the previous hidden state.

In an effort to evaluate each of our contributions, we
trained the baseline system and our model with exactly the
same training data. For this purpose we randomly sampled
one million training samples from the Synth90k [8] dataset.
For validation we used 300,000 samples randomly taken
from the same synth90K dataset.

We present the results for each of the component of
the framework as described above in Table 1. The attention
model outperforms the baseline by a significant margin
(around 7%). Also these results confirm the advantage of
using an explicit language model in addition to the implicit
conditional character probabilities learned by the LSTM
model. Using the language model improves accuracy in an-
other 7%. We also see that further constraining the inference
wih a dictionary does not improve the result much, probably
because the language model is learned from the same 90K
dictionary proposed by Jaderberg et al.in [8].

In comparison with other related works on unconstrained
text recognition, it is noteworthy that with only one million
training samples our complete framework can learn a better
model than Jaderberg et al. [6] and obtain results that are
close to other state-of-the-art methods that are using the
whole 9 million sample training dataset (see table 2).

Methods SVT
Baseline (LSTM-no attention) 61.7
Proposed (LSTM + attention model) 68.16
Proposed (LSTM + attention model + LM) 75.57
Proposed (LSTM + attention model+LM+dict) 76.04

TABLE 1. IMPACT OF THE DIFFERENT COMPONENTS OF OUR
FRAMEWORK WITH RESPECT TO THE BASELINE. WE COMPARE THE

BASELINE (LSTM WITH NO ATTENTION MODEL) WITH ALL THE
VARIANTS OF THE PROPOSED METHOD

4.3. Comparison with state of the art

In this section we will compare our result with other
related works on scene text recognition. The results of this
comparison are shown in table 2 for SVT and ICDAR’03
and 3 for COCO dataset. First, we will discuss results on
unconstrained text recognition which is the main focus of
our work. Then, we will analyze results for lexicon-based
recognition.

Unconstrained text recognition: apart from our method
Jaderberg et al. [6], Lee et al. [10] and Bissaccco et al.
[3] are the only methods which are capable of perform-
ing totally unconstrained recognition of scene text. Among
these methods, our visual attention based model performs
significantly better than Bissacco et al. [3] and Jaderberg
et al. [6] in both SVT and ICDAR’03 datasets. Our model
also performs as good as Lee et al. [10] in SVT dataset
and outperforms them by 3% in ICDAR’03 dataset, which
is significant given the high recognition rates.

If we further compare our model with that of Lee et al.
[10], that also uses different variants of RNN architectures
and an attention model on top of CNN features, we find
that they use recursive CNN features. They report that
this gives an 8% increase in accuracy over the baseline.
This success is due to the recurrent nature of the CNN
feature which implicitly model the conditional probability
of character sequences.using recursive CNN performs better
than the traditional convolutional feature. However, the RNN
architecture they use improves only 4% over the baseline.
In contrast our method rely on traditional CNN features
(which can possibly encodes the presence of individual
characters as shown in [6] from lower convolutional layer
preserving local spatial characteristics, which reduces the
complexity of the model. In addition, as reported in table 1,
our combination of LSTM and soft attention model achieves
a much larger margin, 14%, over the baseline. Theses results
show that a combination of local convolutional features
using the context based attention attention performs better
or comparable to the previous state-of-the- art results.

We provide the results on the COCO text dataset in
Table 3: Being this the most recenlty released dataset in
this domain, there are no published results that could be
comparable with our work. To make a valid comparison we
used two neural network based approaches by M. Jaderberg
et. al. [9] as they have made their models available online.
We also fine-tuned the models on COCO dataset which leads
to significant improvement (last row in Table 3). We can
see that our simplest model is comparable to Jaderberg’s
results while including the explicit language model leads to
a significant improvement by a large margin.
Lexicon-based recognition For SVT-50 we can observe
that our method obtain a similar result than the best of the
methods [8] specifically designed to work in a lexicon-based
scenario. Comparing with methods for unsconstrained text
recognition, only the method of Leeet al. [10] outperforms
our best setting. But as we have already discussed, part of
this better performance can be explained by the use of the
more complex recursive CNN features.

Concerning ICDAR’03-50 and ICDAR’03-full, our re-
sults, although do not beat current state of the art are very
competitive and comparable to the best performing methods.

5. Conclusions

In this paper we proposed an LSTM-based visual at-
tention model for scene text recognition. The model uses



Methods SVT-50 SVT ICDAR’03-50 ICDAR’03-full ICDAR’03
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Almazan et al. [1] 89.2 - - - -
Lee et al. [11] 80.0 - 88.0 76.0 -
Yao et al. [19] 75.9 - 88.5 80.3 -
Rodriguez-Serrano et al. [13] 70.0 - - - -
Jaderberg et al. [7] 86.1 - 96.2 91.5 -
Su and Luet al. [] 83.0 - 92.0 82.0 -
Gordo et al. [4] 90.7 - - - -
*DICT Jaderberg et al. [8] 95.4 80.7 98.7 98.6 93.1

U
nc

on
st

ra
in

ed Bissacco et al. [3] 90.4 78.0 - - -
Jaderberget al. [6] 93.2 71.7 97.8 97.0 89.6
Lee et al. [10] 96.3 80.7 97.9 97.0 88.7
Proposed (LSTM + attention model) 91.7 75.1 93.4 91.0 89.3
Proposed (LSTM + attention model + LM) 95.2 80.4 95.7 94.1 92.6
Proposed (LSTM + attention model+LM+dict) 95.4 - 96.2 95.7 -

TABLE 2. SCENE TEXT RECOGNITION ACCURACY. “50”AND “FULL” DENOTE THE LEXICON SIZE USED FOR CONSTRAINED TEXT RECOGNITION AS
DEFINED IN [17]. RESULTS ARE DIVIDED INTO LEXICON-BASED AND UNCONSTRAINED (LEXICON-FREE) APPROACHES. *DICT [8] IS NOT

LEXICON-FREE DUE TO INCORPORATING GROUND-TRUTH LABELS DURING TRAINING.

Methods Accuracy
Charnet [9] 24.72
Dictnet [9] 26.79
Proposed (LSTM + attention model) 24.11
Proposed (LSTM + attention model+LM) 33.67
Proposed (LSTM + attention model+LM+FT) 43.86

TABLE 3. PERFORMANCE OF OUR METHODS ON RECENTLY RELEASED
COCO-TEXT DATASET, WE COMPARE DIFFERENT VARIANTS OF OUR

METHOD USING ONLY THE ATTENTION MODEL, INTEGRATING EXPLICIT
LANGUAGE MODEL AND ALSO FINE TUNING THE MODEL ON COCO

TEXT DATASET ).

convolutional features from a standard CNN as input to an
LSTM network that selectively attends to parts of the image
at each time step in order to recognize words without re-
sorting to a fixed lexicon. We also propose a modified beam
search strategy that is able to incorporate weak language
models (n-grams) to improve recognition accuracy. Experi-
mental results demonstrate that our approach outperforms or
performs comparably to state-of-the-art approaches that use
lexicons to constrain inferred output words. Experimental
results shows that context plays a important part in case of
real data, thus using a explicit language model always helps
to improve the result.

In future we can extend the attention model for the text
detection task, which will lead to an end-to-end framework
for text recognition from images. Moreover, in our current
framework convolutional features are taken from one single
layer, which can lead to poorer results when the text is
either too big or too small. This can be dealt with combining
features from multiple layers.
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