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Abstract

The task of text-to-SQL parsing, which aims at converting
natural language questions into executable SQL queries, has
garnered increasing attention in recent years. One of the
major challenges in text-to-SQL parsing is domain gener-
alization, i.e. , how to generalize well to unseen databases.
Recently, the pre-trained text-to-text transformer model,
namely T5, though not specialized for text-to-SQL pars-
ing, has achieved state-of-the-art performance on standard
benchmarks targeting domain generalization. In this work,
we explore ways to further augment the pre-trained T5
model with specialized components for text-to-SQL pars-
ing. Such components are expected to introduce struc-
tural inductive bias into text-to-SQL parsers thus improv-
ing model’s capacity on (potentially multi-hop) reasoning,
which is critical for generating structure-rich SQLs. To this
end, we propose a new architecture GRAPHIX-T5, a mixed
model with the standard pre-trained transformer model aug-
mented by specially-designed graph-aware layers. Exten-
sive experiments and analysis demonstrate the effectiveness
of GRAPHIX-T5 across four text-to-SQL benchmarks: SPI-
DER, SYN, REALISTIC and DK. GRAPHIX-T5 surpass all
other T5-based parsers with a significant margin, achiev-
ing new state-of-the-art performance. Notably, GRAPHIX-T5-
large reaches performance superior to the original T5-large by
5.7% on exact match (EM) accuracy and 6.6% on execution
accuracy (EX). This even outperforms the T5-3B by 1.2% on
EM and 1.5% on EX.

1 Introduction
Relational database, serving as an important resource for
users to make decision in many fields, such as health care,
sports, and entertainment, has emerged frequently because
of the big data era. It is efficient for data users to access the
information from databases via structured query language,

* Work done during an intern at Alibaba DAMO Academy.
† Corresponding authors are Reynold Cheng and Yongbin Li.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Nature Language Question:

Find the number of dog pets that are raised by female  students🧑💻

femalestudent

Student Sex

MOD

EM

HAS

Question
Column
Table
Desired Linking

Database:
Pets

PetID PetType Pet_age PetID StuID

Has_Pet Student
StuID Sex Age

SQL:
SELECT COUNT(*) FROM student AS T1 JOIN has_pet AS 
T2 ON T1.stuid = T2.stuid JOIN pets AS T3 ON T2.petid = 
T3.petid WHERE T1.sex = 'F' AND T3.pettype = 'dog' 

Figure 1: This is an illustration of cross-domain text-to-SQL
challenge. The link between the target column sex and the
token female is highly desired but extremely challeng-
ing for the model to capture. However, this dilemma can
be mitigated by a multi-hop reasoning path (female MOD−→
student

EM−→ Student
HAS−→ Sex).

e.g., SQL. Despite its effectiveness and efficiency, the com-
plex nature of SQLs leads to extremely expensive learning
efforts for non-technical users. Therefore, text-to-SQL (Cai
et al. 2018; Zelle and Mooney 1996; Xu, Liu, and Song
2017; Yu et al. 2018a; Yaghmazadeh et al. 2017), aiming to
convert natural language instructions or questions into SQL
queries, has attracted remarkable attention.

In this work, we explore the challenging cross-domain
setting where a text-to-SQL parser needs to achieve domain
generalization, i.e. , the ability to generalize to domains that
are unseen during training. Achieving this goal would, in
principle, contribute to a universal natural language interface
that allows users to interact with data in arbitrary domains.
The major challenge towards domain generalization (Wang
et al. 2020a; Cao et al. 2021; Wang et al. 2022; Cai et al.
2021; Hui et al. 2022) is that generating structure-rich SQLs
requires (potentially multi-hop) reasoning, i.e. the ability
to properly contextualize a user question against a given
database by considering many explicit relations (e.g., table-
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Figure 2: Graphical illustration of existing methods (a) RATSQL [pre-trained BERT-encoder → graph-based module → ran-
domly initialized decoder]. (b) T5 [pre-trained T5-encoder → pre-trained T5-decoder] and the proposed variant (c) GNN-
T5 [pre-trained T5-encoder → graph-based module → pre-trained T5-decoder] (d) GRAPHIX-T5 [semi-pre-trained graphix-
module → pre-trained T5-decoder].

column relations specified by database schema) and implicit
relations (e.g., whether a phrase refers to a column or table).
Figure 1 shows an introductory example of multi-hop rea-
soning in the text-to-SQL parsing and Figure 5 presents two
more detailed cases.

From the modeling perspective, there are two critical di-
mensions along which we can differentiate current text-to-
SQL parsers. The first is how to effectively imbue rela-
tional structures (both explicit and implicit) in the form of
graphs into neural networks, and the second is how to take
the most advantage of pre-trained models (e.g.T5 (Raffel
et al. 2020)). These two dimensions are inter-connected and
form a spectrum of methods. On one end of the spectrum,
PICARD (Scholak, Schucher, and Bahdanau 2021) uses
the original pre-trained T5 model by linearizing database
schemas into sequences, hoping that T5 can successfully
capture the underlying relational structures. On the other
end of the spectrum, RAT-SQL (Wang et al. 2020a) only uti-
lizes pre-trained encoders (e.g., BERT (Devlin et al. 2019))
and explicitly captures desired relations via specialized
relation-aware models. However, more powerful encoder-
decoder based pre-trained models are not exploited in this
framework, but relational structures are accommodated at
most. In this work, we explore the cross zone where the
encoder-decoder based pre-trained models (specifically T5)
and relation-aware encodings are deeply coupled in favor of
better domain generalization. We first observe that naively
adding a relational graph-based module in the middle of T5,
resulting in a ‘T5-encoder → graph-based module → T5-
decoder architecture’ (see also Figure 2(c), namely GNN-
T5), does not work very well on standard benchmarks. Pre-
sumably, the deficiency comes from the middle graph-based
modules breaking the original information flow inside T5.

In order to address this problem, we present a novel ar-

chitecture called GRAPHIX-T5 that is capable of effectively
modelling relational structure information while maintain-
ing the powerful contextual encoding capability of the pre-
trained T5. First, we design a GRAPHIX layer that simul-
taneously encodes a mixture of semantic and structural in-
formation. Concretely, hidden states of inputs composed by
questions and databases are modeled by contextualized se-
mantic encoding, and the structural representation is injected
in each transformer layer using a relational GNN block
that enhances multi-hop reasoning through message passing
(Fang et al. 2020; Velickovic et al. 2018) to capture explicit
and implicit relations. Second, we construct a new encoder
by stacking the GRAPHIX layers and replacing the origi-
nal T5 encoder. In each GRAPHIX layer, the parameters of
the semantic block are still initialized by T5, in an attempt
to maintain the contextualized encoding power of the pre-
training. In contrast to the severed GNN-T5 (Figure 2.(c)),
the GRAPHIX-T5 (Figure 2.(d)) will allow intensive interac-
tion between semantic and structure from the starting layers.

We empirically show the effectiveness of GRAPHIX-T5
on several cross-domain text-to-SQL benchmarks, i.e. , SPI-
DER, SYN, DK and REALISTIC. On these datasets, the
proposed model achieves new state-of-the-art performance,
substantially outperforming all existing models by large
margins. Specifically, GRAPHIX-T5-large surprisingly beats
the vanilla T5-3B. Furthermore, we verified that GRAPHIX-
T5 can also achieve the significant improvement in the low-
resource and compositional generalization obviously thanks
to the introduction of structural bias.

2 Task Formulation and Notations
2.1 Task Definition
Given a natural language question Q =

{
q1, ..., q|Q|

}
with

its corresponding database schemas D = ⟨C, T ⟩, where C =
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{
c1, ..., c|C|

}
and T =

{
t1, ..., t|T |

}
represent columns and

tables, |C| and |T | refer to the number of columns and tables
in each database respectively. The goal of text-to-SQL is to
generate the corresponding SQL query y.

2.2 Vanilla T5 Architecture
Model Inputs The most canonical and effective format of
inputs to T5 performing text-to-SQL task is PeteShaw (Shaw
et al. 2021), which unifies natural language questions Q and
database schema D as a joint sequence as shown:

x = [q1, ..., q|Q| | Dname |t1 : ct11 , ..., ct1|C||...|t|T | : c
t|T |
1 , ..., c

t|T |
|C| |∗],

(1)
where qi is ith token in the question, tj represents jth table
in the D, and c

tj
k refers to the kth column in the jth table.

∗ is the special column token in the database. Dname is the
name of each database.

Encoder-Decoder Training Mechanism Following
(Shaw et al. 2021), T5 (Raffel et al. 2020) adopt an
encoder-decoder mechanism to generate SQLs. First, the
bi-directional encoder learns the hidden state h of input x,
then the decoder generates SQLs based on h as:

h = EncΘ (x) ; y = DecΥ(h), (2)

where Θ and Υ refers to parameters of the encoder and de-
coder, and h connects the encoder and decoder. The model
is initialized with pretrained T5 parameters and optimized as
the following objective.

max
Θ,Υ

log pΘ,Υ(y | x) =
|y|∑
i=1

log pΘ,Υ (yi | y1:i−1, x) , (3)

where x, y indicates the input and output tokens respectively
and |y| is the max length of generation SQL.

3 Proposed Approach: GRAPHIX-T5
3.1 Model Inputs
Contextual Encoding We continue to take both questions
and database schemas as depicted in Eq. (1) to encode the
contextual information through the original T5.

Graph Construction The joint input questions and
schemas can be displayed as a heterogeneous graph G =
⟨V ,R⟩ consisting of three types of nodes V = Q∪C∪T and
multiple types of relations R = r1, ..., r|R|, where each ri
refers to a one-hop relation between nodes and a multi-hop
relation rk is defined as a composition of one-hop relations:
rk = r1 ◦r2 · · · ◦ rI as shown in the Figure 1, where I refers
to the length of each rk. Inspired by (Wang et al. 2020a; Cao
et al. 2021; Qin et al. 2022b; Hui et al. 2022), we enumerated
a list of pre-defined relations to connect nodes. The relation
sets can be divided into three main categories:

• Schema relations: FOREIGN-KEY, PRIMARY-KEY, and
SAME-TABLE pertain to the particular explicit schema
relations that the original T5 cannot obtain from linear
inputs.

Document_id

Paragraph_text

files

ids

content

ARG

MOD

text

Documents
MOD

PARTIAL-MATCH

PARTIAL-MATCH

content

files

text

Paragraph_text

Document_id

Document

NO-MATCH
content

files

text

Paragraph_text

Document_id

Document

Bridge Node

*

(a) No-Match Mode (b) Bridge Node Mode

Figure 3: Figure shows the circumstances when entities in
the question are hard to string-match the schema items. (a) is
the strategy to solve this case by NO-MATCH Mode, which
fully connects schema nodes with all token nodes. (b) is our
solution to add a bridge node to link the question and schema
nodes via less number of edges.

• Schema linking relations: EXACT-MATCH, PARTIAL-
MATCH, and VALUE-MATCH are implicit linking rela-
tions between question and schema nodes. A new type of
relation BRIDGE is introduced.

• Question relations: MODIFIER and ARGUMENT are im-
plicit dependency relations between tokens in a question.

NO-MATCH Mode vs. BRIDGE Mode Previous works
(Cao et al. 2021; Hui et al. 2022) through adding the dummy
edges called NO-MATCH indicate that the there are question
tokens and the schema tokens, which should be correlated
but cannot be linked due to existing string-matched rules.
However, as shown in Figure 3, NO-MATCH may lead to
an over-smoothing problem (Chen et al. 2020a) since they
bring out too many noisy neighbors to compute the attention
score. Suppose there exists A tokens for the question and B
schema items that are semantically relevant but not linked
by the rule, the number of edges need to be linked as NO-
MATCH is A×B. In contrast, we leverage the special token
* as a bridge node, allowing all schema nodes to be reached
from the question token nodes by decreasing the number of
edges drastically from A×B to A+B.

3.2 Graphix-Layer
The GRAPHIX layer is designed to integrate semantic infor-
mation obtained from each transformer block with structural
information of a relational graph neural network (GNN)
block.

Semantic Representation The semantic representations
of hidden states are firstly encoded by a Transformer
(Vaswani et al. 2017) block, which contains two important
components, including Multi-head Self-attention Network
(MHA) and Fully-connected Forward Network (FFN). In
the lth GRAPHIX Layer, the hidden states represent Hl

S ={
h
(l)
1 , . . . , h

(l)
N

}
, N is the max length of the inputs. MHA

at first maps query matrix Q ∈ Rm×dk , key and value ma-
trix K ∈ Rn×dk , V ∈ Rn×dv into an attention vector via
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self-attention mechanism as Eq. (4)

Attn(Q,K,V) = softmax

(
QKT

√
dk

)
V, (4)

in which m is the number of query vectors and n is the
number of key or value vectors. MHA executes the self-
attention over h heads with each head i being indepen-
dently parameterized by WQ

i ∈ Rdm×dk , WK
i ∈ Rdm×dk ,

WV
i ∈ Rdm×dv and mapping inputs into queries, key-value

pairs. Usually dk = dv = dm/h in the transformer blocks
of T5 and dm denotes the dimension of T5. Then MHA cal-
culates the attention outputs for each head and concatenate
them as following:

headi = Attn(QWQ
i ,KWK

i ,VWV
i ), (5)

MHA(H(l)
S ) = Concat (head1, · · · ,headh)W

O, (6)

Ĥ(l)
S = MHA(H(l)

S ), (7)

where WO ∈ Rdmh×dm is a trainable parameter matrix.
Semantic hidden states need to be acquired through another
component, i.e. , FFN, which is applied as Eq. (8).

FFN(Ĥ(l)
S ) = max

(
0, Ĥ(l)

S W1 + b1

)
W2 + b2, (8)

where linear weight matrices represent W1 ∈ Rdm×dff ,
W2 ∈ Rdff×dm respectively. Experimentally, larger dff is
preferred, which is usually set as dff = 4dm. Eventually,
the semantic hidden states are acquired after layer normal-
ization and residual connection as

H̃(l)
S = LayerNorm(Ĥ(l)

S + FFN(Ĥ(l)
S )), (9)

Structural Representation In each GRAPHIX Layer,
structural representations are produced through the rela-
tional graph attention network (RGAT) (Wang et al. 2020b)
over the pre-defined question-schema heterogeneous graph.
Formally, given initial node embedding1 einiti for ith node
and its jth neighbor einitj linked by specific types of rela-
tions, it can be computed through:

α⃗ij =
einiti W̃Q

(
einitj W̃K + ϕ (rij)

)⊤

√
dz

, (10)

αij = softmaxj (α⃗ij) , (11)

êiniti =
∑
j∈Ñi

αij

(
einitj W̃V + ϕ(rij)

)
, (12)

ê
(l)
i = LayerNorm(einiti + êiniti W̃O), (13)

ẽ
(l)
i = LayerNorm(ê

(l)
i + FFN(ê

(l)
i )), (14)

Then the output node embeddings are collected as Ẽ(l)
G ={

ẽ
(l)
1 , . . . , ẽ

(l)
N

}
, where W̃Q, W̃K , W̃V , W̃O ∈ Rd×d are

1Various initialization strategies could be implemented. In this
work, we initialized the node embeddings with their semantic rep-
resentations.

trainable parameters in the RGAT. ϕ(rij) is a mapping func-
tion that can produce a d-dim embedding representing for
each relation between ith node and jth node. More impor-
tantly, Ñi denotes the relational reception field, which is
equal to the number of how many neighbors of ith node that
RGAT will consider when updating representation of each
node via message passing.

Jointly Representation After computing representations
from both semantic and structural space, the lth GRAPHIX
Layer employs a mixture of semantic and structural infor-
mation to enable information integration as following:

H̃(l)
M = H̃(l)

S + Ẽ(l)
G , (15)

3.3 Graphix-T5
Here we present our entire GRAPHIX-T5 model formally.
The hidden states of the last layer of GRAPHIX-encoder can
be represented as:

h = EncΘ,Ψ (x,G) , (16)

where G is the question-schema heterogeneous graph, the Ψ
are the additional parameters of the RGAT, which are initial-
ized randomly. In order to preserve the pre-trained semantic
knowledge, we migrate parameters Θ from original T5 en-
coder as the initial parameters of semantic transformer block
of the GRAPHIX layer.

3.4 Training
Similar to original T5, we also follow a fine-tuning strategy.
The whole training framework is to optimize the following
log-likelihood.

max
Θ,Υ,Ψ

log pΘ,Υ,Ψ(y | x) =
|y|∑
i=1

log pΘ,Υ,Ψ (yi | y1:i−1, x,G) .

(17)

4 Experiment
4.1 Set Up
Datasets and Settings We conduct extensive experiments
on four challenging benchmarks for cross-domain text-to-
SQLs and two different training settings. (1) SPIDER (Yu
et al. 2018b) is a large-scale cross-domain text-to-SQL
benchmark. It contains 8659 training examples and 1034 de-
velopment examples, which covers 200 complex databases
across 138 domains. The testing set is not available for indi-
vidual review. (2) SYN (Gan et al. 2021a) replaces the sim-
ple string-matched question tokens or schema names with
their synonyms. (3) DK (Gan, Chen, and Purver 2021) re-
quires the text-to-SQL parsers to equip with the capability of
domain knowledge reasoning. (4) REALISTIC removes and
switches the obvious mentions of schema items in questions,
making it closer to the real scenarios. Furthermore, we also
test the compositional generalization ability of our model
on the SPIDER-SSP (Shaw et al. 2021) with three splits
from SPIDER: Spider-Length (split dataset based on vari-
ant lengths); Spider-TMCD (Target Maximum Compound
Divergence) and Spider-Template (split based on different
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MODEL EM EX

RAT-SQL + BERT ♡ 69.7 -
RAT-SQL + Grappa ♡ 73.9 -
GAZP + BERT 59.1 59.2
BRIDGE v2 + BERT 70.0 68.3
NatSQL + GAP 73.7 75.0
SMBOP + GRAPPA 74.7 75.0
LGESQL + ELECTRA ♡ 75.1 -
S2SQL + ELECTRA ♡ 76.4 -

T5-large 67.0 69.3
GRAPHIX-T5-large 72.7(↑ 5.7) 75.9(↑ 6.6)
T5-large + PICARD ♣ 69.1 72.9
GRAPHIX-T5-large + PICARD ♣ 76.6(↑ 7.5) 80.5(↑ 7.6)

T5-3B 71.5 74.4
GRAPHIX-T5-3B 75.6 (↑ 4.1) 78.2 (↑ 3.8)
T5-3B + PICARD ♣ 75.5 79.3
GRAPHIX-T5-3B + PICARD ♣ 77.1(↑ 1.6) 81.0(↑ 1.7)

Table 1: Exact match (EM) and execution (EX) accuracy (%)
on SPIDER development set. ♡ means the model does not
predict SQL values. ♣ means the model uses the constrained
decoding PICARD. ↑ is an absolute improvement.

parsing templates). Finally, the performances of GRAPHIX-
T5 on LOW-RESOURCE setting are evaluated on usage of
10%, 20%, 50% data separately.

Evaluation Metrics Following (Yu et al. 2018b), Exact
Match (EM) and Execution Accuracy (EX) are the two stan-
dard metrics we use to measure performance of our model.
EM can evaluate how much a generated SQL is comparable
to the gold SQL.

Implementation Details We implement our codes 2

mainly based on hugging-face transformers library (Wolf
et al. 2020) 3. We set the max input length as 1024, gen-
eration max length as 128, and batch size as 32. We also
adopt Adafactor (Shazeer and Stern 2018) as our primary
optimizer with a linear decayed learning rate of 5e-5. Dur-
ing the experiment, GRAPHIX layers are mainly injected
into the encoder to learn better representations for structural
generalization. We evaluate our effectiveness of GRAPHIX-
T5 across two main versions: T5-Large with approximately
800M parameters and T5-3B, with more than 3 Billion pa-
rameters literally. All experiments are conducted on one
NVIDIA Tesla A100, which is available for most research
centers.

Compared Methods Our model are compared mainly to
mainstream strong baseline models such as GNNSQL (Bo-
gin, Berant, and Gardner 2019), RATSQL (Wang et al.
2020a), GAZP (Zhong et al. 2020), BRIDEGE (Chen et al.
2020b), SMBOP (Rubin and Berant 2021), NatSQL (Gan
et al. 2021b), LGESQL (Cao et al. 2021), S2SQL (Hui et al.
2022) and T5+PICARD (Scholak, Schucher, and Bahdanau
2021) across the disparate datasets and settings.

2https://github.com/AlibabaResearch/DAMO-ConvAI/tree/
main/graphix

3https://huggingface.co/

MODEL SYN DK REALISTIC

GNN 23.6 26.0 -
IRNet 28.4 33.1 -
RAT-SQL 33.6 35.8 -
RAT-SQL + BERT 48.2 40.9 58.1
RAT-SQL + Grappa 49.1 38.5 59.3
LGESQL + ELECTRA 64.6 48.4 69.2

T5-large 53.6 40.0 58.5
GRAPHIX-T5-large 61.1 (↑ 7.5) 48.6 (↑ 8.6) 67.3 (↑ 8.8)

T5-3B 58.0 46.9 62.0
GRAPHIX-T5-3B 66.9 (↑ 8.9) 51.2 (↑ 4.3) 72.4 (↑ 10.4)

Table 2: Exact match (EM) accuracy (%) on SYN, DK and
REALISTIC benchmark.

MODEL TEMPLATE LENGTH TMCD

T5-base 59.3 49.0 60.9
T5-3B 64.8 56.7 69.6
NQG-T5-3B 64.7 56.7 69.5

GRAPHIX-T5-3B 70.1 (↑ 5.4) 60.6 (↑ 3.9) 73.8 (↑ 4.3)

Table 3: Exact match (EM) accuracy (%) on compositional
dataset SPIDER-SSP.

4.2 Overall Performance
Results on SPIDER Table 1 displays the performance
of GRAPHIX-T5 and other competitive baseline models
on official SPIDER benchmark. First, we demonstrate that
GRAPHIX-T5-3B with a constrained decoding module PI-
CARD (Scholak, Schucher, and Bahdanau 2021) achieves
the state-of-the-art on this challenging text-to-SQL bench-
mark. Also, it is evident that GRAPHIX-T5 is vastly superior
to the vanilla T5 on large and 3B scales with a significant
margin. This indicates that the structural generalization ca-
pability of the GRAPHIX layer is crucial for T5, such a text-
to-text PLM to perform the text-to-SQL task.

Zero-shot Results on More Challenging Settings As
shown in the Table 2, we further demonstrate the robust-
ness of GRAPHIX-T5 when it confronts with more challeng-
ing and closer to realistic evaluations in SYN, DK, REAL-
ISTIC without any additional training. First of all, the re-
sults show that GRAPHIX-T5-3B outperforms other baseline
models across all three datasets. Furthermore, we observe
that GRAPHIX-T5-large and GRAPHIX-T5-3B surpass the
performance of vanilla T5-large and T5-3B with a clear mar-
gin, respectively. This demonstrates that vanilla T5 is hun-
gry for structural reasoning when dealing with more flexible
and complicated questions for text-to-SQLs from real-world
scenarios. And GRAPHIX can mitigate this problem.

Results on Compositional Generalization As shown in
Table 3, on SPIDER-SSP, the grammar-based inductive T5
model provided by (Shaw et al. 2021), named NQG-T5, has
no obvious advantages over vanilla T5, which indicates that
the grammar of natural language is not helpful to enhance T5
for compositional generation. However, GRAPHIX-T5 helps
the T5 gain the SQL knowledge and makes it less vulner-
able to these modifications through the effective fusion of

13080



MODEL
SPIDER SYN REALISTIC

easy medium hard extra all easy medium hard extra all easy medium hard extra all

T5-large 85.5 70.9 55.2 41.6 67.0 69.0 56.8 46.3 30.2 53.6 79.8 68.0 44.4 28.9 58.5
GRAPHIX-T5-large 89.9 78.7 59.8 44.0 72.6 75.8 67.5 50.6 33.1 61.1 88.1 77.3 50.5 40.2 67.3
T5-3B 89.5 78.3 58.6 40.4 71.6 74.2 64.5 48.0 27.8 58.0 85.3 73.4 46.5 27.8 62.0
GRAPHIX-T5-3B 91.9 81.6 61.5 50.0 75.6 80.6 73.1 52.9 44.6 66.9 93.6 85.7 52.5 41.2 72.4

Table 4: Exact matching (EM) accuracy by varying the levels of difficulty of the inference data on three main benchmarks.

MODEL EM EX

(a) RAT-SQL + BERT 69.7 -

(b) T5-large 67.0 69.3

(c) GNN-T5-large 51.6 54.5

(d) GRAPHIX-T5-large
w/ BRIDGE Mode 72.7 75.9
w/ NO-MATCH Mode 71.1 74.2
w/ DOUBLE-GRAPH 72.0 74.7

Table 5: Ablation study for the variant GNN + PLM tactics
on cross-domain text-to-SQLs, echoing Figure 2, (a) is RAT-
SQL, (b) is vanilla T5, (c) is GNN-T5 and (d) is GRAPHIX.
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Figure 4: The performance of the validation sets during the
convergence of GRAPHIX-T5 and GNN-T5 on SPIDER. It
can be clearly demonstrated that GNN-T5 has extremely un-
satisfactory performance, due to catastrophic forgetting.

structural information.

Results on Complex Queries As presented in Table 4,
we also compare the more precise performance results of
GRAPHIX-T5 to the vanilla T5 in four separate SQL diffi-
culty levels splitted by SPIDER officially, in order to bet-
ter comprehend the performance improvements. We observe
that GRAPHIX-T5 is more capable of handling harder text-
to-SQL cases, as illustrated in the Hard and Extra-hard
examples, indicating that structural bias training is benefi-
cial to hard text-to-SQL cases.

4.3 Ablation Study
As shown in Table 5, to better validate the function of each
component of GRAPHIX-T5, ablation studies are performed

in large version and expected to answer the following ques-
tions.

[1] How effective is BRIDGE MODE ? GRAPHIX-T5-
large with BRIDGE MODE can achieve the better perfor-
mance than with NO-MATCH Mode via reducing the num-
ber of noisy neighbors. It indicates that NO-MATCH mode
will greatly increase the number of noisy neighbors, re-
sulting in higher risk of over-smoothing issues (Chen et al.
2020a).

[2] Could GRAPHIX be incorporated into decoder ?
With DOUBLE-GRAPH means that GRAPHIX-T5 incorpo-
rate GRAPHIX layer into the both encoder and decoder. The
result reveals that adding GRAPHIX layers to the decoder
does not lead to any improvements. Since decoder is an auto-
regressive model, which only considers the history tokens
when generating the current token. However, GRAPHIX-
T5, which can forecast the information of future tokens by
global linking, may disrupt this characteristic leading to the
negative impact on the decoder. Therefore, we propose that
the best tactic is to only incorporate GRAPHIX layers into
the encoder.

[3] Is GRAPHIX superior than other architecture vari-
ants ? Echoing Figure 2, we access the performance of 4
categories of models using PLMs on SPIDER. According to
Table 5 (c), the performance of GNN-T5 has decreased by
roughly 20% when compared to GRAPHIX-T5, proving that
GNN-T5 meets the catastrophic forgetting problem (French
1999). Since the accuracy of the GNN-T5 continues to be
0 in the first thousands of steps and the performance de-
creases significantly from vanilla T5, as shown in Figure 4,
it is evident that all pre-trained knowledge from T5 would
be forgotten. In contrast, the result verifies the advantages
of GRAPHIX-T5 that can avoid catastrophic forgetting and
augment generalization capability.

4.4 Case Study
To illustrate the effectiveness of GRAPHIX qualitatively,
two examples are displayed in Figure 5, which are sam-
pled randomly from SYN. Figure 5 shows the compari-
son of predicted SQLs by vanilla T5-3B and GRAPHIX-
T5-3B. We can observe that GRAPHIX can generate correct
SQLs even in the hard scenarios. That is because that, even
with a small number of keywords overlapped, GRAPHIX-
T5 can accurately identify counterpart column or table ob-
jects and generate a high-quality SQL through multi-hop
reasoning and structural grounding. For example, in the first
case, vanilla T5-3B picks the incorrect columns paper id,
paper name, and paper description, which even
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Value-Match Belongs-To

ids

description

Documents
paper

name

document_name

document_id

document_description

Question：List paper IDs, paper names, and paper descriptions for all papers.
T5-3B：SELECT paper_id, paper_name, paper_description FROM documents

Graphix-T5-3B：SELECT document_id, document_name, document_description FROM documents

Muti-hop Path
paper ids document_id

paper description document_description

paper name document_name

Gold：SELECT document_id, document_name, document_description FROM documents

Question：How many French car manufacturers are there?
T5-3B：SELECT COUNT(*) FROM car_makers WHERE country = "France"

Graphix-T5-3B：

Gold：SELECT COUNT(*) FROM car_makers AS T1 JOIN countries AS T2 ON T1.country  
= T2.countryid WHERE T2.countryname = 'France';

French

car

manufacture

car_makers

countries

country

countryid

countryname

French countryname countries

French countryname country

Value-Match Foreign-Key
Muti-hop Path

SELECT COUNT(*) FROM car_makers AS T1 JOIN countries AS T2 ON T1.country  
= T2.countryid WHERE T2.countryname = "France"

countryid
Same-Table

Modifier

Modifier

Modifier

Partial-Match

Partial-Match

Partial-Match

Figure 5: Case study: two illustrative cases sampled randomly from SYN. It shows that multi-hop reasoning can help GRAPHIX-
T5 generate more correct SQLs in terms of semantic meanings and database schema structures.

don’t appear in the table documents. This implies that
vanilla T5-3B is unable to reach the target schema ele-
ments without the capability of structural grounding when
confronting challenging text-to-SQLs. Instead, GRAPHIX-
T5-3B can correspond the question entities to the correct
column names through multi-hop paths presented in the
Figure 5. In the second case, vanilla T5-3B misidentifies
the country as their target column, however, "France"
only appears in the column countryname of the table
countries. This suggests T5-3B is only able to generate
semantically valid SQLs, which fails to take into account
the real database structure. On contrary, GRAPHIX-T5 can
produce truly valid SQLs in terms of both questions and
databases via a successful mixture of semantic and structural
information during training.

5 Related Works
The basic principle of a cross-domain text-to-SQL parser
is to build an encoder to learn the representations of the
questions and schemas, while employing a decoder to gen-
erate SQLs with the information learnt in the encoder (Qin
et al. 2022a). In particular, IRNET (Guo et al. 2019) pro-
poses to design an encoder to learn the representations of
questions and schemas respectively via an attention-based
Bi-LSTM and a decoder to predict SQLs via encoded in-
termediate representations. Later, the graph-based encoders
have been successfully proved its effectiveness in text-to-
SQL tasks, for example, some works (Bogin, Berant, and
Gardner 2019; Chen et al. 2021) construct the schema graph
and enhance the representations of inputs. RATSQL (Wang
et al. 2020a), SDSQL (Hui et al. 2021b), LGESQL (Cao
et al. 2021), S2SQL (Hui et al. 2022) further improve struc-

tural reasoning through modelling relations between schema
and questions. R2SQL (Hui et al. 2021a), SCORE (Yu et al.
2021) and STAR (Cai et al. 2022) enhance structural reason-
ing for context-dependent text-to-SQL parsing. These works
are performed by the PLM independently building the se-
mantic features, followed by the graph-based module inject-
ing the structural information. However, such training strat-
egy is just effective to encoder-based PLMs (i.e. , BERT
(Devlin et al. 2019).

Recently, the text-to-text PLM T5 has been proven effec-
tiveness in text-to-SQL (Shaw et al. 2021; Qin et al. 2022c).
Besides, (Scholak, Schucher, and Bahdanau 2021) designs
a constrained decoding process, namely PICARD, to refuse
erroneous tokens during the beam-search phase. Xie et al.
(2022) further injects the knowledge from other structural
knowledge grounding tasks into T5 with multi-task to boost
performance on text-to-SQL. Despite effectiveness, these
methods still struggle to generate SQLs in the more chal-
lenging and complex scenarios without explicit and implicit
structural information.

6 Conclusion
In this paper, we proposed an effective architecture to boost
the capability of structural encoding of T5 cohesively while
keeping the pretrained T5’s potent contextual encoding abil-
ity. In order to achieve this goal, we designed a Graph-Aware
semi-pretrained text-to-text PLM, namely GRAPHIX-T5, to
augment the multi-hop reasoning for the challenging text-
to-SQL task. The results under the extensive experiments
demonstrate the effectiveness of GRAPHIX-T5, proving that
structural information is crucial for the current text-to-text
PLMs for complicated text-to-SQL cases.
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