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ABSTRACT

We devise a novel method for nowcasting implied volatility based on neural oper-
ators. Better known as implied volatility smoothing in the financial industry, now-
casting of implied volatility means constructing a smooth surface that is consistent
with the prices presently observed on a given option market. Option price data
arises highly dynamically in ever-changing spatial configurations, which poses
a major limitation to foundational machine learning approaches using classical
neural networks. While large models in language and image processing deliver
breakthrough results on vast corpora of raw data, in financial engineering the gen-
eralization from big historical datasets has been hindered by the need for consider-
able data pre-processing. In particular, implied volatility smoothing has remained
an instance-by-instance, hands-on process both for neural network-based and tra-
ditional parametric strategies. Our general operator deep smoothing approach,
instead, directly maps observed data to smoothed surfaces. We adapt the graph
neural operator architecture to do so with high accuracy on ten years of raw in-
traday S&P 500 options data, using a single model instance. The trained operator
adheres to critical no-arbitrage constraints and is robust with respect to subsam-
pling of inputs (occurring in practice in the context of outlier removal). We pro-
vide extensive historical benchmarks and showcase the generalization capability
of our approach in a comparison with classical neural networks and SVI, an indus-
try standard parametrization for implied volatility. The operator deep smoothing
approach thus opens up the use of neural networks on large historical datasets in
financial engineering.

1 INTRODUCTION

Options trading experienced phenomenal growth in recent years. In its 2023 trading volume re-
port (Cboe Global Markets, Inc., 2024), the CBOE announced the fourth consecutive year of record-
breaking volumes on its options exchanges, citing a record-breaking number of transactions for Eu-
ropean options on the S&P 500 index. European options are financial derivative contracts that give
their holder the right, but not the obligation, to either buy or sell an underlying asset at a predeter-
mined price (the strike) at a predetermined time (the expiry). An option specifying the right to buy
(respectively to sell) is called a Call (respectively Put) option. Options are traded on a wide range
of underlyings, including stocks, indices, currencies and commodities, and can be used to hedge
against or speculate on the price movements of the underlying asset.

A key concept in options trading is the so-called implied volatility, which transforms the nominal
price of an option into a conceptually and numerically convenient metric. The implied volatility
surface is the collection of implied volatilities as observed at a specific point in time, visualized in
three-dimensional space as a surface over the (strike, expiry)-domain. It provides an intuitive repre-
sentation of the current state of the options market and is crucial for hedging and risk management.
The extraction of a smooth surface from quoted option prices is called implied volatility smoothing
and allows to infer (or nowcast) theoretical option prices for interpolated strike values and expiry
times. It remains one of the key challenges in options trading.

Conventionally, implied volatility smoothing relies on parametric surfaces whose parameters are op-
timized based on the distance to observed prices while adhering to absence-of-arbitrage conditions,
which ensure the consistency of prices extrapolated from the smoothed surface. The development of
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such ad-hoc models for implied volatility traces back to SVI (Gatheral, 2004), which models implied
volatility slice-wise for each maturity and successfully captures its key features on Equity indices.
A continuous interpolation scheme for SVI slices was provided in Gatheral and Jacquier (2014),
yielding a full surface. Nowadays, sophisticated market makers employ custom parametrizations,
which can be considered proprietary trading secrets and reduce SVI to a benchmark role.

Regardless of the particular parametric surface model used, the conventional smoothing approach
boils down to the continued execution of a numerical optimization routine: A smoothed surface
expires as soon as quotes are updated (whenever markets move), necessitating the re-calibration of
parameters. Success and duration of this routine is sensitive to initial conditions, search heuristics,
and termination criteria, which exposes practitioners to considerable process uncertainties during
trading hours (or online). In response, we introduce a novel operator deep smoothing approach,
replacing the instance-by-instance optimization with a single evaluation of a neural network. This
greatly simplifies online calibration, at the upfront cost of training the network offline from histor-
ical data (in the spirit of Hernandez (2016); Horvath et al. (2021); Liu et al. (2019)). Our unique
use of neural operators (Kovachki et al., 2023) is fundamentally directed by the observation that
the raw inputs for volatility smoothing (the collections of observed volatilities) over time vary in
size and spatial arrangement: Options expire, new maturities and strikes become available, and the
coordinates of existing options evolve continuously in the domain of the implied volatility surface
(Figure 1b). This setting excludes classical neural networks – which required fixed-size inputs –
from direct application. Neural operators, instead, conceptualize observed data as point-wise dis-
cretizations of latent functions in implicit infinite-dimensional function spaces and are well suited
for the task.

Contributions We introduce operator deep smoothing, a general approach for discretization-
invariant data interpolation based on neural operators, and apply it to implied volatility smoothing.
Our technique transcends traditional parametric smoothing and directly maps observed volatilities
to smoothed surfaces. Comparable neural network based approaches are limited to certain option
markets (e.g. FX markets, where options by default spread out on fixed rectilinear grids, as relied
upon by Bergeron et al. (2021) for its VAE approach) or require data pre-processing (as in Cont
and Vuletić (2023), which achieves fixed rectilinear grids by linear interpolation of market values,
setting aside questions related to no-arbitrage constraints). Instead, our technique novelly adapts
the graph neural operator (GNO) architecture (Anandkumar et al., 2020) to consistently smooth in-
put data of any size and spatial arrangement. While neural operators have successfully been used
in Physics to numerically solve partial differential equations, our application is the first in finan-
cial engineering and highlights the values of their discretization-invariance properties, so far rather
under-explored. We employ our method on ten years of intraday S&P 500 options data, smoothing
more than 60 million volatility datapoints using a single model instance with around 100 thousand
trained parameters. We report errors that substantially improve on the SVI industry benchmark and
are highly competitive with Ackerer et al. (2020), which performs smoothing by training one classi-
cal neural network per volatility surface. We proceed to successfully demonstrate the generalization
capabilities of our model for end-of-day options data of the S&P 500 as well as three further major
US indices. No data from these three indices has been used for training.

We explore the technical implications of our method in Section 5. Here we discuss the broader
impact of our contributions:

• Operator Deep Smoothing for Implied Volatility – Our method massively simplifies volatility
smoothing, an area where effective methods mean competitive advantage and frequently remain
trade secrets. Therefore, we believe that our approach lowers the entry-barrier for effective volatility
smoothing even among industry professionals. Practitioners and researchers that are not directly
involved in options trading frequently employ rudimentary methods (SVI or linear/spline interpo-
lation). Here, our trained operator, served as a hands-off tool, could provide “cheap” and accurate
surfaces for use in downstream tasks. Ultimately, our method may be useful for all participants of
option markets. This includes the general public, whose trading in such markets has been increasing
substantially (Doherty et al., 2023) and which benefits from broadly accessible investment tools.
• Neural Operators for Discretization-Invariant Interpolation – Our operator deep smoothing ap-
proach constitutes the first application of neural operators for interpolation/extrapolation tasks and
paves the way to future research on the versatility of the discretization-invariance of neural operators
in industrial applications characterized by dynamic and spatially irregular data. At least in financial
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engineering, surfaces similar to the implied volatility surface (and higher-dimensional equivalents,
as for example the volatility cube) are ubiquitous. We expect our technique to be transferable and to
streamline and robustify engineers’ and researchers’ algorithms and data pipelines.

Literature Review The aforementioned SVI was developed for internal use at Merrill Lynch in
1999 and later advocated in Gatheral (2004). Its extension to surface-based SSVI in Gatheral and
Jacquier (2014) has been eagerly adopted by practitioners, which have since contributed to its robust
calibration and generalizations (Corbetta et al., 2019; Hendriks and Martini, 2017; Guo et al., 2016).
It was augmented in Ackerer et al. (2020) by a multiplicative neural network corrector, based on
guided network training by means of no-arbitrage soft constraints from Zheng (2018). The absence-
of-arbitrage conditions for implied volatility surfaces – providing safeguards for option pricing –
were formulated in Roper (2010), and we provide an equivalent formulation, based on Fukasawa
(2012); Lucic (2021), for practical purposes. In Chataigner et al. (2020) static arbitrage constraints
were used to perform option calibration (with an additional regularization technique), which can be
considered to be instance-by-instance smoothing of nominal price data. In Bergeron et al. (2021) a
classical VAE (variational autoencoder) was applied to implied volatility smoothing on FX markets,
where strikes of quoted options are tied to a fixed grid of deltas.1 This specificity of FX markets
allows the use of a conventional feedforward neural network based decoder. Recent option calibra-
tion approaches based on neural networks have been proposed in Baschetti et al. (2024); Hernandez
(2016); Horvath et al. (2021); Van Mieghem et al. (2023).

A comprehensive account on neural operators is given in Kovachki et al. (2023), unifying previous
research on different neural operator architectures and techniques (Anandkumar et al., 2020; Li
et al., 2020). Subsequent developments investigating the expressivity of these architectures as well
as their generalizations include Hao et al. (2023); Huang et al. (2024); Lanthaler et al. (2023); Li
et al. (2021); Lingsch et al. (2023); Tran et al. (2021).

Outline We review financial concepts and the challenges of implied volatility smoothing in Sec-
tion 2. In Section 3, we provide a review of neural operators (Section 3.1) and introduce our operator
deep smoothing approach for general interpolation tasks (Section 3.2). In Section 4, we perform ex-
periments for implied volatility smoothing of S&P 500 options data. Finally, Section 5 gathers
limitations as well as outlooks regarding the use of neural operators for interpolation purposes.

2 BACKGROUND: IMPLIED VOLATILITY

We consider a market of European options written on an underlying asset, which we observe at a
given instant T0, and denote the time-T forward price of the underlying asset by FT0,T .

European Call Options The option market consists of a finite collection of European Call op-
tions,2 each identified by its expiry T ∈ (T0,∞) and its strike K ∈ (0,∞), and we write C(T,K)
for its (undiscounted) price. In practice, these are traded for fixed expiries T1, . . . , Tm; for each Ti,
only a finite range of strikes Ki

1, . . . ,K
i
ni

is available, typically widening as the expiry increases
(Figure 1).

Black-Scholes The Black-Scholes model is the simplest diffusive asset model and captures the
volatility of the underlying asset with a single parameter v ∈ (0,∞). Its popularity stems from
the closed-form expression it admits for the price of a European Call option with time-to-expiry
τ = T − T0 and log-moneyness k = log(K/FT0,T ):

BS(τ, k, v) = Φ (d1 (τ, k, v))− ek Φ (d2 (τ, k, v))

(in units of the time-T forward of the underlying). Here, Φ denotes the cumulative distribution
function of the standard Normal distribution, while

d1(τ, k, v) =
−k

v
√
τ
+

1

2
v
√
τ , d2(τ, k, v) =

−k

v
√
τ
− 1

2
v
√
τ . (1)

1Delta is the derivative of the price with respect to the underlying asset and is standard in FX strike quoting.
2In practice, market participants trade both Call and Put options, which are mathematically equivalent

through the well-known Put-Call parity. The latter thus allows to speak in terms of Call options only.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Implied Volatility While not able (any longer) to fit market data, the mathematical tractability of
the Black-Scholes model gave rise to the concept of implied volatility: Given a Call option with
price C(T,K), its implied volatility v(τ, k) is defined by C(T,K) = FT0,T BS(τ, k, v(τ, k)). By
using time-to-expiry/log-moneyness coordinates, implied volatility provides a universal way to con-
sistently compare the relative expensiveness of options of across different strikes, expiries, under-
lyings, and interest rate environments. Its characteristic shape helps traders make intuitive sense of
the instantaneous state of option markets relative to a (flat) Black-Scholes model baseline.

Implied Volatility Smoothing This refers to fitting a smooth surface v̂ : (0,∞) × R → (0,∞)
to a collection v = {v(τl, kl)}pl=1 of observed implied volatilities. Naive strategies such as cubic
interpolation are ill-fated: Surfaces generated by such interpolation rules will in general correspond
to Call option prices that are exploitable by so-called arbitrage, namely cost-less trading strategies
generating a guaranteed profit. In option markets, an arbitrage is called static when set up solely
from fixed positions in options and a dynamically (but a finite number of times) readjusted position
in the underlying. Beyond simple interpolations, practitioners have devised ad-hoc parametrizations
for implied volatility, in particular the aforementioned SVI, which are not expected to perfectly
match all reference prices. Instead, the model parameters are optimized with respect to an objective
function that measures market price discrepancy and includes penalization terms ruling out static
arbitrage. These penalization terms are commonly formulated on the basis of the following theorem,
which summarizes the shape constraints of the implied volatility surface (Gatheral and Jacquier,
2014; Lucic, 2021; Roper, 2010).
Theorem 2.1 (Volatility Validation). Let v̂ : (0,∞)× R → (0,∞) be continuous and satisfying

(i) Calendar arbitrage: For each k ∈ R, v̂(·, k)
√
· is non-decreasing and vanishes at the origin.

(ii) Strike arbitrage: For every τ > 0, the slice v̂τ = v̂(τ, ·) is of class C2 with

But(τ, ·, v̂τ , ∂kv̂τ , ∂2
k v̂τ ) ≥ 0 (2)

and lim supk↑∞
v̂2
τ (k)
k < 2

τ , where

But(τ, k, v0, v1, v2) =
(
1 + d1(τ, k, v0)v1

√
τ
) (

1 + d2(τ, k, v0)v1
√
τ
)
+ v0v2τ.

Then, (T,K) 7→ BS(τ, k, v̂(τ, k)) defines a Call price surface that is free from static arbitrage.

Condition 2.1(i) is equivalent to prices increasing in maturity (uncertain increases as time passes),
while Condition 2.1(ii) arises when computing the implied probability density fτ of the underlying:

fτ ( ·) =
φ(−d2(τ, · , v))

v
But(τ, · , v, ∂kv, ∂2

kv). (3)

Since a density needs to be non-negative, equation 3 explains why Condition 2.1(ii) above is re-
quired.

3 NEURAL OPERATORS FOR DISCRETIZATION-INVARIANT SMOOTHING

3.1 BACKGROUND: NEURAL OPERATORS

We provide full details about notations, terms, and additional context in Appendix A.

Philosophy The development of neural operators is based on the philosophy that observed data
a = {al}pl=1 arises as the evaluation of a latent function a : D → Rcin , defined on some domain
D ⊆ Rd, at a discretization π = {xl}pl=1 of D. That is, a = a|π , or

al = a(xl), l = 1, . . . , p. (4)

An input-output relationship of data a 7→ u is then ”really” described by an operator F : A → U
between function spaces A and U . Neural operators are abstract neural network architectures
F θ : A → U , with implementations that integrate equation 4 consistently across the variable dis-
cretization π.

4
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(a) Relative trading volume per quoted interval, averaged over S&P 500
dataset 2012-2021. Left: Rectangular domain w.r.t. time-to-expiry/log-
moneyness (99.9% of trading volume with maturities < 1 year). Right:
Rectangular domain w.r.t. transformed coordinates (96.6% of trading
volume while more evenly populated); boundary delineated in Left.

(b) Scatter plots of example
sets of option quotes v1,v2,v3.
Observed on 15.10.2012,
18.05.2017, and 04.01.2021,
respectively, at 10:50:00, each.

Figure 1: Spatial arrangement of option quotes in time-to-expiry/log-moneyness domain.

Technicalities We review the core concepts of neural operators from Kovachki et al. (2023). Let D
be a bounded domain in Rd and A and U be Banach spaces of functions mapping from D to Rcin

and Rcout , respectively. Neural operators are finitely parametrized mappings F θ : A → U with
universality for continuous target operators and with discretization-invariant implementations F̃ θ.
In the space C(A,U) topologized by uniform convergence on compacts, the architecture F θ is called
universal if {F θ}θ∈Θ is dense in C(A,U), with Θ the parameter set. An implementation of F θ is
an algorithm F̃ θ which accepts observed data a = a|π and outputs a function u ∈ U and is such that
F̃ θ
π ( ·) = F̃ θ( · |π) ∈ C(A,U). Now, F̃ θ is called discretization-invariant if limn↑∞ F̃ θ

π(n) = F θ in
C(A,U), given a discrete refinement3 of D.

Let K be a set of input functions, compact in A, and let ε > 0. In combination, universality and
discretization-invariance allow to posit the existence of parameters θ, such that for all a ∈ K,

∥F̃ θ(a|π)− F (a)∥U ≤ ε, (5)

irrespective of the particular discretization π given that the data a = a|π is scattered sufficiently
densely across D. The training of neural operators is analogous to the classical finite-dimensional
setting. It happens in the context of an implicit training distribution µ on the input space A and aims
at minimizing the generalization error

Rµ : θ 7→ Ea∼µ∥F̃ θ(a|π)− F (a)∥U , (6)

through the use of gradient descent methods applied to empirical estimates of equation 6. These esti-
mates are constructed from a training dataset D = {(a(i),u(i))}ni=1 of features a(i) = a(i)|π(i) and
labels u(i) = F (a(i))|π(i) on the basis of (mini) batching heuristics and are frequently transformed
or augmented by additional terms through the use of apposite loss functions.

3.2 OPERATOR DEEP SMOOTHING

Let v = {v(xl)}pl=1 be the collection of observed data, for example implied volatilities as in Sec-
tion 2. This notation silently adopts the neural operator philosophy, connecting the data point v(xl)
with coordinates xl, hinting at a latent function v : D → R giving rise to the observed values. The
smoothing or interpolation task consists of constructing an appropriately regular candidate v̂ for v
from the data v = v|π , with π = {x1, . . . , xp}. The operator deep smoothing approach uses a neural
operator F̃ θ, trained using historical data, to generate v̂ := F̃ θ(v). It fundamentally leverages the
discretization-invariance to produce consistent results even if the ”sensors” xl of the latent function v
continuously change in availability and/or location in the domain D. This is the situation for volatil-
ity smoothing, where the sensors xl = (τl, kl) are the (time-to-expiry, log-moneyness) coordinates

3A discrete refinement of D is a nested sequence (π(n))n∈N of discretizations of D for which for every
ε > 0, there exists N ∈ N such that {BRd(x, ε) : x ∈ π(N)} covers D.

5
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(a) Smoothed surface with input
volatility quotes (blue). δabs =
0.004, δspr(v̂,v) = 1.061.

(b) Slices of implied volatility (left) and implied density (right), scaled
by time-to-expiry. Left: Absence of crossings indicates absence of cal-
endar arbitrage. Right: Positivity indicates absence of butterfly arbi-
trage. In fact Lcal(θ,v) = 6.3× 10−6, Lbut(θ,v) = 0.

Figure 2: Operator deep smoothing of quotes v from 04.01.2021 at 10:50:00. Compare Figure 10.

of the quoted options, which – as noted in Section 1 and illustrated in Figure 1b – move with the
market, thus motivating the operator deep smoothing approach. We now describe the methodology
in more detail. For a first glance at the results we refer to Figure 2.

Methodology Translating the smoothing task to an operator learning problem, we find that the
target operator is the (continuous) identity operator F = Fid : A ∋ v 7→ v ∈ U , with equal input
and output spaces A = U = C(D). The training dataset is the collection D = {v(i)} of historical
data (labels and features coincide), and we train a suitable neural operator architecture F̃ θ such that

|F̃ θ(v)(x)− v(x)| ≤ ε, for all x ∈ D, (7)

for some given error tolerance ε for the interpolation task, while v is the latent function of which
we observe v = v|π . Instead of minimizing empirical estimates of the ∞-norm ∥F̃ θ(v) − v∥U ,
however, we suggest a fitting loss based on the root mean square relative error,

Lfit(θ,v) :=

√√√√ 1

|π|
∑
x∈π

(
|F̃ θ(v)(x)− v(x)|

1 ∨ |v(x)|

)2

, (8)

for its smoothness and invariance to the scale of the data.4 Additional engineering techniques, such
as sub-sampling of inputs during training, are explored in our practical investigation in Section 4.

Practical Constraints Depending on the application, the smoothing task may be subject to con-
straints. For volatility smoothing, the smoothed surface v̂θ = F̃ θ(v) must be free of static arbitrage.
This is effectively enforced by augmenting the loss function with additional penalization terms,
moving away from a pure operator learning problem.5 This does not only promote the relevant
properties in the neural operator output but can also help define it when faced with sparsity of data
in the domain D (in this context see also Li et al. (2021)). From Theorem 2.1, these penaliza-
tion terms naturally motivate our choices of Lbut and Lcal. The strike arbitrage constraint 2.1(ii) is
handled via

Lbut(θ;v) =
∥∥∥(But( · , v̂θ, ∂kv̂θ, ∂2

k v̂
θ)− ε

)−∥∥∥
1
, (9)

where we ignore the asymptotic condition since our experiments are focused on the bounded do-
main D (Figure 1a). The inclusion of ε promotes strictly positive implied densities (we will use
ε = 10−3), while we choose the 1-norm to induce sparsity in the constraint violation. The calendar
arbitrage constraint 2.1(i) can be tackled analogously with

Lcal(θ;v) =
∥∥∥(∂τ [(τ, k) 7→ vθ(τ, k)

√
τ
]
− ε
)−∥∥∥

1
, (10)

where again we ignore the asymptotic condition since D is bounded away from zero time-to-expiry.
4Empirical estimates of ∞-norms and L2-norms are equivalent loss functions on finite-dimensional spaces.
5It is not the goal of volatility smoothing to learn the identity operator throughout the entire input space.
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Interpolating Graph Neural Operator Various neural operator architectures exist, mostly aris-
ing from the kernel integral transform framework of Kovachki et al. (2023). Most prominently,
these include Fourier neural operators (FNO), delivering state-of-the-art results on fixed grid data,
as well as graph neural operators (GNO), able to handle arbitrary mesh geometries (both reviewed
in Appendix A.1). While highly effective with documented universality, these neural operators
are not directly applicable for interpolation tasks as their layers include a pointwise-applied linear
transformation, which limits the output to the set of the input data locations. Dropping this local
transformation results in an architecture proved to retain universality Kovachki et al. (2023) and that
– at least for its implementation as a GNO – allows to interpolate functions. On the other hand, Lan-
thaler et al. (2023) proves universality for the architecture combining the local linear transformation
with a simple averaging operation, suggesting the fundamental importance of the collaboration of
local and non-local components for the expressivity of neural operators. This was noted in Kovachki
et al. (2023), for whom retaining the local components can be “beneficial in practice”, and confirmed
in our experiments, where a purely non-local architecture led to substantially reduced performance.

We therefore propose a new architecture for operator deep smoothing leveraging GNOs’ unique
ability to handle irregular mesh geometries. We use a purely non-local first layer (dropping the
pointwise linear transformation), and use it to produce hidden state at all required output locations,
enabling subsequent layers to retain their local transformations. Since GNOs do not theoretically
guarantee a smooth output, we augment the training with additional regularization terms such as
Lreg(θ;v) = ∥∆v̂θ∥2, with ∆ the Laplace operator, and provide a full description in Appendix B.

4 EXPERIMENTS

We detail our practical investigation of the operator deep smoothing approach for implied volatility.

4.1 MODEL TRAINING

Dataset and Splits We perform our numerical experiments using 20-minute intervals of CBOE
S&P 500 Index Option data from 2012 to 2021. The dataset amounts to a collection of 49089
implied volatility surfaces and just above 60 million individual volatility datapoints (after domain
truncation). We refer the reader to Appendix C.1 for full details on the preparation of the dataset. We
allocate the first nine years of data (2012 to 2020) to training, keeping 750 randomly drawn surfaces
for validation purposes, and use the final year of the dataset (2021) for testing. This yields a training
dataset Dtrain containing ntrain = 43442 surfaces, a validation dataset Dval containing nval = 750
surfaces and a test dataset Dtest with ntest = 4897 surfaces.

Data Transformation Motivated by Figure 1a, we transform time-to-expiry and log-moneyness
via ρ =

√
τ and z = k/ρ. Intuitively, this transformation converts the“natural” scaling of implied

volatility by the square root of time-to-expiry to a scaling of the input domain. From here on, we
consider the domain in these coordinates, setting D = (ρmin, ρmax) × (zmin, zmax) = (0.01, 1) ×
(−1.5, 0.5). In (τ, k)-coordinates, D becomes a cone-shaped region, that, on average, contains
96.6% of traded options (with time-to-expiry below one year) and, with respect to (ρ, z)-coordinates,
is more evenly populated, improving the numerics.

Model Configuration We remind that we rely on the interpolating graph neural operator intro-
duced in Section 3.2 and described in detail in Appendix B. The model hyperparameters (giving rise
to 102529 trainable parameters in total) were identified by manual experimentation and are detailed
in Appendix C.2. We perform ablations for the connectivity of the graph structure underlying the
graph neural operator (and thus for the tradeoff between expressivity and computational complexity
of our method) in Appendix C.6.

Loss Function We implement a Vega-weighted (see Appendix C.3) version of the fitting loss
Lfit from equation 8. We compute Lbut directly as equation 9 (in the transformed coordinates) on
a synthetic grid using finite differences. For Lcal, we implement a multiplicative version that is
invariant to the level of implied volatility. We provide a precise description in Appendix C.3, and
perform an ablation study for the weighting of the arbitrage terms in Appendix C.7

7
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Figure 3: Benchmark metrics (surface-averages, between lower and upper quartile) over training
period (computed from Dval) and testing period, as well as surface-averaged spread. Resampled,
monthly for training period and weekly for testing period.

Model Training We train the GNO over 500 epochs on the training dataset using the AdamW
optimizer with learning rate λ = 10−4 and weight decay rate β = 10−5, and use a pseudo batch size
of 64 by accumulating gradients. We randomly sub-sample the inputs v and randomize the grids
on which we compute the arbitrage losses. The training is performed in around 200 hours using a
NVIDIA Quadro RTX 6000 GPU. The validation loss is reported in Appendix C.3 in Table 2. Code
and trained model weights are provided in the supplementary material.

4.2 RESULTS

Evaluation Metrics Let v = {v(x)}x∈π be the collection of observed implied volatilties and v̂
the smoothed surface as produced by a given method. We measure absolute relative error:

δabs(v̂(x), v(x)) =
|v̂(x)− v(x)|

v(x)
.

The surface average of δabs(v̂,v) (we denote it by ⟨δabs⟩) is known as the mean absolute percentage
error (or MAPE). As in Corbetta et al. (2019), we moreover realize the importance of analyzing
the smoothing algorithm in terms of nominal price error relative to the size of the bid-ask spread
s(x) = BS±(x, vask(x))− BS±(x, vbid(x)).6 We define

δspr(v̂(x), v(x)) =
2

s(x)

∣∣BS±(x, v̂(x))− BS±(x, v(x))
∣∣.

Since we use simple mid reference prices, δspr(v̂(x), v(x)) ≤ 1 indicates that the prediction v̂(x) for
the option x lies within the bid-ask spread.

Evaluation and Model Finetuning During production use, the GNO would be retrained regularly
using the most recent available data. We emulate this procedure during our evaluation of the bench-
mark metrics over the test dataset Dtest (containing the year 2021): Following the evaluation of the
first month’s test data, the GNO is trained for 10 epochs on the test data just reviewed, with each
mini-batch augmented by an equal amount of data from the training dataset Dtrain. We repeat this,
progressively incorporating an additional month of data, until the entire dataset Dtest is assessed.
This finetuning-evaluation procedure takes circa 1.8 GPU hours per month.

6vbid(x) and vask(x) are the implied volatilities corresponding to Bid and Ask option prices while BS± is
the Black-Scholes formula for Call (resp. Put) options for positive (resp. negative) log-moneyness values:

BS±(τ, k, v) =

{
Φ(d1(τ, k, v))− ekΦ(d2(τ, k, v)), k > 0

ekΦ(−d2(τ, k, v))− Φ(−d1(τ, k, v)), k ≤ 0
.
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Figure 4: Average spatial distribution of benchmark metrics and arbitrage terms over Dtest.

Analysis It is apparent from Figure 3 that our operator deep smoothing approach substantially
improves on SVI’s smoothing capabilities, with respect to both δabs and δspr.7 Our approach, with
monthly finetuning, smooths the volatility surface with a MAPE of around 0.5%, while SVI fluctu-
ates between 1% and 2%. The various figures in Appendix D illustrate the qualitative improvements
of our method versus SVI. Moreover, our approach appears highly competitive with Ackerer et al.
(2020), which performs instance-by-instance volatility smoothing using classical neural networks
and reports a MAPE of around 1% for synthetically generated data.8 We reenact its backtesting for
the period Jan-Apr 2018 using our method and summarize the results in Table 5 in Appendix C.5.9

An important fact to consider when analyzing Figure 3 is the historical tightening of the bid-ask
spread (displayed in the third row), driven by increases in competition on the S&P 500 option
market. This explains why δspr is very small early in the training dataset, both for operator deep
smoothing and SVI, while δabs is large: Wide spreads make δspr more lenient an error metric but
are accompanied by noisier prices, necessitating greater need for correction by the smoothing algo-
rithm, in turn captured by δabs.10 This argumentation extends to spikes in the spread, which indicate
periods of market stress, and then allows to explain spikes in δabs.

Complementary to Figure 3, Figure 4 resolves the error metrics as well as the terms controlling the
absence of arbitrage spatially, averaged over time. δabs tends to be larger on the Call side (positive
log-moneyness), in accordance with Call option’s noisier prices (Call options experience less trading
than Put options). Moreover, we discern that, on average, the smoothed surfaces are completely free
of arbitrage (indicated by non-negativity).

Generalization To test the generalization capabilities of our approach, we procure end-of-day
options data for the S&P 500 (SPX), the NASDAQ-100 (NDX), the Dow Jones Industrial Average
(DJX), and the Russell 2000 (RUT) for the month of January 2021 from the OptionMetrics Ivy DB
US database, accessed by us through the Wharton Research Data Services (WRDS). We evaluate the
trained operator on the data for the month of January 2021 (right after the training period on the S&P
500 intraday data), and report the average error metrics δabs and δspr as well as the average arbitrage
losses Lcal and Lbut in Table 1. Firstly, our method maintains its performance on end-of-day S&P
500 data, validating the soundness of our approach: While end-of-day data is slightly different from
intraday data, our method still yields small error metrics and arbitrage-free prices. Secondly, the
method generalizes well to other indices. We want to stress the fact that our operator has solely been
trained on intraday S&P 500 data. Its accurate and virtually arbitrage-free output on end-of-day data
of other indices is a strong indicator of the robustness of our approach. We provide further example
plots for these datasets in Appendix D.3.

7We produce the SVI benchmark as described in Section E.
8Compare Table 1 of Ackerer et al. (2020). We note that Ackerer et al. (2020) does not perform a similar

restriction of the domain of the volatility surface.
9We emphasize the following aspects. First, the backtest involves dropping half of input datapoints for each

surface, and our trained operator continues to perform accurate smoothing, a strong indicator of the robustness
of our approach with respect to subsampling of inputs afforded by neural operator’s discretization invariance.
Second, while Ackerer et al. (2020) requires to train 61 neural networks to perform the backtest once, our
operator approach enables us to run 25 repetitions in around two minutes on a consumer grade laptop CPU,
which is the average time that it takes Ackerer et al. (2020) to train one network.

10This is visually discernible from a comparison of Figure 8 and Figure 10.
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Table 1: Average error metrics and arbitrage losses for end-of-day options data for US indices in
January 2021. The GNO has been trained solely on intraday S&P 500 data from before 2021.

SPX NDX DJX RUT

⟨δabs⟩ 0.00272 0.01057 0.01629 0.00885
⟨δspr⟩ 0.64423 1.53306 0.20736 1.03183
Lbut 6.41e-05 2.16e-04 1.61e-03 4.48e-06
Lcal 0.00000 0.00000 3.13e-08 0.00000

5 DISCUSSION

Summary We provide a novel method for implied volatility smoothing, resulting from an applica-
tion of our general operator deep smoothing approach for discretization-invariant data interpolation.
The approach leverages a graph neural operator to directly map given data – consistently across
size and spatial arrangement – to smoothed surfaces, transcending classical parametric smoothing
techniques. In the example of volatility smoothing, benefits include a massively simplified online
calibration process.

Learning from Large Datasets By moving the application of neural networks from the instance-
by-instance level (Ackerer et al., 2020) to the “operator level”, we leverage the information contained
in the entire training dataset for the smoothing of every single surface. In other words, our method
“unlocks” large historical options datasets for volatility smoothing. We argue that our substantial
outperformance against Ackerer et al. (2020) in the “Extrapolation-Test”-setting of the benchmark
detailed in Table 5 of Appendix C.5 owes to this circumstance.

Subsampling of Inputs The discretization-invariance of the GNO entails that our method is robust
with respect to subsampling of inputs. In practice, subsampling of inputs occurs in the context of
outlier removal. In the example of volatility smoothing, certain quotes may be determined spurious.
Simply removing anomalous datapoints from the input is compatible with our method (moreover,
we leverage this fact during operator training to improve generalization, compare Appendix C.3).

Compression Figure 3 makes the compression qualities of the operator deep smoothing approach
apparent: We compute the entire historical timeseries using a single GNO instance, with around
100 thousand parameters. Evaluating the SVI benchmark, on the other hand, requires 61454 model
instances (one per slice), or a total of 307270 parameters. A comparison with Ackerer et al. (2020),
which for each smoothed surface trains a new neural network of around 5085 parameters,11 is strik-
ing: Smoothing of the CBOE dataset 2012–2021 at its 20-minute interval frequency would require
more than 200 million parameters (more with rising frequency). At the same time, we expect our
GNO to perform accurate smoothing over the entire training period and beyond (with regular fine-
tuning), and our model instance remains fixed, even when moving to higher-frequency data.

Limitations and Perspectives Compared to ad-hoc volatility parametrizations like SVI, the oper-
ator deep smoothing approach loses interpretability of parameters, which for some practitioners may
be a stringent requirement. This disadvantage is generally shared by neural network based engineer-
ing solutions. Moreover, in some situations dimensionality reduction (even without interpretability
of parameters) may be a desirable additional feature that is not directly achieved by our operator
deep smoothing approach. Combining the VAE method (Bergeron et al., 2021) with our operator
deep smoothing approach could lead to further promising potential applications of neural opera-
tors. Huang et al. (2024) introduces neural mappings, which generalize neural operators to mixed
infinite-/finite-dimensionality for input or output spaces. This motivates a discretization-invariant
GNO-based encoder, fit to handle raw incoming market data, and a classical decoder to extend the
operator deep smoothing approach to a VAE-like architecture.

11Computed as the sum of 120 = 3 × 40 parameters for the input layer, three times 1640 = 41 × 40
parameters for the hidden layers, 41 parameters for the output layers, plus 4 additional parameters of the SSVI
prior and a scaling parameter.
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REPRODUCIBILITY

Primarily, we ensure reproducibility by providing the codebase and model weights used to produce
all results in this paper as part of the supplementary material. The codebase includes the data pro-
cessing components, the GNO architecture, the loss functions, the error metrics, the production of
the SVI benchmark, the notebooks used to train and evaluate the models (including hyperparam-
eters and data splits), as well as the notebooks to produce the plots and tables in this paper. The
full reproduction of results on intraday data (in particular of Figure 3) is contingent on access to the
proprietary CBOE options data, which we are not allowed to provide. In fact, we have stripped the
codebase from intermediate benchmarking artifacts that would expose the proprietary data (which
some notebooks for the plots rely on). The dataset can be purchased from CBOE, but is expensive.
The OptionMetrics end-of-day options data for the suite of indices considered in the final paragraph
of Section 4, on the other hand, is more readily and freely available to researchers with subscriptions
via the Wharton Research Data Services (WRDS) platform. The provided code allows to directly
reproduce the experimental results, in particular, Table 1 and the plots in Appendix D.3. To do so,
one would need to download the data from WRDS, persist it at prespecified location detailed in
the codebase, and then run the respective notebooks, which automatically load the trained model
weights.

To avoid any unclarities in our technique, the Pytorch implementation of our general graph neural
operator architecture follows the mathematical definition given in Appendix B as closely as possible.
Moreover, the concrete steps undertaken as part of our experiments are detailed in Appendix C:

• Appendix C.1 gives a summary of the processing of the options data.
• The hyperparameter configuration of our model finally employed in our experiments is detailed

in Appendix C.2.
• The loss functions and their weights are explicitly defined in Appendix C.3.
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A NEURAL OPERATORS

We give a review of the kernel integral transform neural operator framework of Kovachki et al.
(2023), and expand in more detail on its graph neural operator.

Notation and Terms Let A and U be input and output space of an operator learning problem, as
introduced in Section 3.1. Then, A and U are Banach spaces of functions D → Rcin and D →
Rcout , respectively, where D is a (bounded) domain in Rd. The mathematical analysis of neural
operators in Kovachki et al. (2023) summarized hereafter, as well as the definition of universality
and discretization-invariance in Section 3.1, make use of the following terms and notations.

In the context of Kovachki et al. (2023), a domain is a bounded and connected open set that is
topologically regular (in the sense that it is the interior of its closure). A domain D is Lipschitz if its
boundary locally is the graph of a Lipschitz continuous function defined on an open ball of Rd−1.
An open ball – for any metric space X = (X , d) – is the set

BX (x, ε) = {y ∈ X : d(y, x) < ε}.

A discrete refinement of X is a nested sequence (πn) of discretizations of X (finite subsets of X ),
such that for every ε > 0 there is N ∈ N such that {B(x, ε) : x ∈ πN} covers X .

We consider the space C(A,U) of continuous operators between A and U . C(A,U) is topologized
by uniform convergence on compact sets. With respect to this topology, a sequence (Fn)n∈N in
C(A,U) converges with limit F ∈ C(A,U), if, for every ε > 0 and every compact set K in A, it
holds

lim
n→∞

∥Fn − F∥∞,K = 0.

Here,
∥H∥∞,K = sup

a∈K
∥H(a)∥U , H ∈ C(A,U).

It is well known that this topology on C(A,U) is induced by the metric

ρ(F,G) =

∞∑
n=0

∥G− F∥∞,BC(A,U)(0,n)

1 ∨ ∥G− F∥∞,BC(A,U)(0,n)

, F,G,∈ C(A,U).

Therefore, the notion of density in C(A,U), as used to define universality of neural operators in
Section 3.1, is well defined.

A.1 KERNEL INTEGRAL NEURAL OPERATORS

Kernel Integral Transform Neural Operators and Universality A kernel integral transform
neural operator consists of the sequential application of:

1) A lifting layer

LP : [a : D → Rcin ] 7→ [h0 : D → Rc0 , h0(x) = P(a(x))],

given by the pointwise application of a function P : Rcin → Rc0 .
2) The forward propagation through J neural operator layers L0, . . . , LJ−1:

[h0 : D → Rc0 ]
L07−−→ [h1 : D → Rc1 ]

L17−−→ . . .
LJ−17−−−→ [hJ−1 : D → RcJ ];

each layer Lj operates as

hj+1(y) = σj

(
Wjhj(y) +

∫
D

κj(y, x)hj(x)dx+ bj(y)

)
, y ∈ D, (11)

where
• Wj ∈ Rcj+1×cj is a weight matrix applied pointwise,
• κj ∈ C(D × D,Rcj+1×cj ) is a kernel function parametrizing the integral transform and

subject to integrability conditions,
• The bias term bj is itself a function from D to Rcj+1 ,
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• σj is a classical neural network activation function.

3) A projection layer

LQ : [hJ : D → RcJ ] 7→ [u : D → Rcout , u(x) = Q(hJ(x))],

given by the pointwise application of a function Q : RcJ → Rcout .

In practice, all components (lifting, kernel functions, projection) are implemented as classical feed-
forward neural networks (FFNs). This neural operator architecture is universal in the following
sense.

Theorem A.1 (Universal Approximation; Theorem 11 of Kovachki et al. (2023)). Let D be a
(bounded) Lipschitz domain. Assume:

• A = W k1,p1(D) for k ∈ N≥0 and 1 ≤ p1 < ∞, or A = C(D).

• U = W k2,p2(D) for k ∈ N≥0 and 1 ≤ p2 < ∞, or U = C(D).

Then, a subset of kernel integral neural operators, with kernel functions and bias functions taken
from a suitable set of FNNs, is dense in C(A,U).

Discretization-Invariant Implementations Consider a neural operator F θ and let π = {xl}pl=1

be a discretization of D. To make sense of a basic discretization-invariant implementation for F θ,
associate with π a partition (D1, . . . , Dp) of D for which λd(Dl) > 0 and xl ∈ Dl for l = 1, . . . , p.
Here λd denotes the Lebesgue measure on Rd. Consider the following implementation of F θ (writ-
ten in terms of a single constituent layer L = (W,κ, b, σ)):

L̃(h|π)(y) = σ

(
Wh(y) +

p∑
l=1

κ(y, xl)h(xl)λd(Dl) + b(y)

)
, y ∈ D. (12)

Kovachki et al. (2023) establishes the following.

Theorem A.2 (Discretization Invariance; Theorem 8 of Kovachki et al. (2023)). Let F θ : A → U
be a kernel integral neural operator, where A and U both continuously embed into C(D). Then, the
implementation of F θ based on equation 12 is discretization-invariant as defined in Section 3.1.

equation 12 suggests the straightforward (quasi) Monte-Carlo inspired implementation

L̃(h|π)(y) = σ

(
Wh(y) +

λd(D)

|π|
∑
x∈π

κ(y, x)h(x) + b(y)

)
, y ∈ D. (13)

Most effectively, π is a low-discrepancy sequence in D.

A.2 GRAPH NEURAL OPERATORS

The curse of dimensionality makes the direct implementation equation 13 prohibitively expensive
in practice. Instead, Anandkumar et al. (2020) introduces graph neural operators (or, GNOs, for
short) which replace the kernel integral operation at the heart of the framework by a sum ap-
proximation and organizes the constituent terms using a directed graph structure: The discretiza-
tion π = {x1, . . . , xm} of the input data h = h|π is enriched with a directed graph structure
Gh = (V,E), allowing the following implementation F̃ θ of F θ:

L̃(h|π)(y) = σ

Wh(y) +
1

|Nin(y)|
∑

x∈Nin(y)

κ(y, x)h(x) + b(y)

 , y ∈ V. (14)

Here, Nin(y) is the set of so-called in-neighbors of y in the graph Gh: x ∈ Nin(y) iff (x, y) ∈ E. It
is clear that, to compute output at y, the point y must be included as a node into the graph Gh. On
the other hand, it is necessary to drop the local linear transformation with W if y is not part of the
input data locations π (compare our discussion in 3). It is important to reconcile the input and output
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locations of the layers when creating the graph structure to enable an efficient implementation using
message passing algorithms.

The graph structure can be meticulously adjusted to implement various complexity-reducing tech-
niques like Nyström approximation or integration domain truncation that effectively aim at a sys-
tematic reduction of the size of Nin(y); the naive implementation equation 12 is recovered for the
case of a complete directed graph (with self-loops) for which Nin(y) = π. Note that choosing Nin(y)
as a strict subset of π breaks the guaranteed smoothness in the GNO output.
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B INTERPOLATION GRAPH NEURAL OPERATOR

We detail our modifications of the GNO architecture.

Let v = {v(x)}x∈π be the given data.

Graph Construction Arguably part of the model architecture is the graph construction: Compile
the set πout = {yl}ql=0 of points y ∈ D at which to compute the smoothed surface v̂(y). During
operator training, this will be the set of input locations (to compute the fitting loss) as well as
any additional locations needed to compute auxiliary loss terms (the arbitrage losses Lbut(θ,v)) and
Lcal(θ,v) in the case of volatility smoothing). For each y ∈ πout, we construct the set of in-neighbors
from the set of input data locations:

Nin(y) ⊆ πin. (15)
In other words, we employ a Nyström approximation with nodes limited to the input data locations.
This is an important prerequisite to enable the use of the GNO architecture for interpolation tasks
(or, more generally phrased, allows us to employ kernel functions with input skip connections). We
set Gv = (πout, E), where

E =
⋃

y∈πout

{(x, y) : x ∈ Nin(y)}.

Forward Propagation Given Gv, we perform the first step of the forward propagation as follows:h̃0(x) = P0(v(x)), x ∈ πin

h1(y) = (σ0 ◦ Q0)
(
K(h̃0;v)(y) + b0

)
, y ∈ πout.

For the subsequent layers j = 1, . . . , J − 1, we then proceed using the classical scheme: h̃j(y) = Pj(hj(y)),

hj+1(y) = (σj ◦ Qj)
(
Wj h̃j(y) +Kj(h̃j ;v)(y) + bj

) , y ∈ πout.

In the above:

• Pj : Rcj → Rc̃j and Qj : Rc̃j+1 → Rcj+1 are layer-individual lifting and projection, in view of
A.1 implemented simply as FNNs.

• Wj ∈ Rc̃j+1×c̃j is a weight matrix (not present for j = 0), while bj ∈ Rc̃j+1 is a constant bias
term.

• Kj is the sum approximation of the kernel integral with kernel weight function κW
j : D2×Rc̃j ×

Rc0 → Rc̃j+1×c̃j and kernel bias function κb
j : D

2 × Rc̃j × Rc0 → Rc̃j+1 (both with state and
input skip connections):

Kj(h̃j ;v)(y) =
1

|Nin(y)|
∑

x∈Nin(y)

κW
j (y, x, h̃j(x); v(x))h̃j(x) + κb

j(y, x, h̃j(x); v(x)).

Both κW
j and κb

j are implemented as FNNs in our case, again to satisfy the requirements of A.1
and to keep things simple.

Note that omitting the local linear transformation in the first layer allows to extract the fist hidden
state h1(y) for all y ∈ πout from the lifted input h̃0, which is defined solely for the input locations x ∈
πin. Providing each layer with its own lifting and projection allows to separate the hidden channel
size c0, . . . , cJ from the the dimensions c̃0, . . . , c̃J of the space in which the integral transformation
is performed. Moreover, the individual lifting and projection help re-parametrize the state before
performing the integral transform (inspired by the succesful Transformer architecture), which allows
to keep the size of the kernel weight matrix low.
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C SUPPLEMENTARY INFORMATION: DATA, MODEL, TRAINING,
EVALUATION

This section contains additional information regarding our empirical study of the operator deep
smoothing method for implied volatility smoothing.

C.1 DATA

Data Source Our numerical experiments are based on the “Option Quotes” dataset product avail-
able for purchase from the CBOE. Our version of the dataset contains relevant data features for S&P
500 Index options for the years 2012 through 2021 and is summarized on a 20-minute interval basis.

Data Preparation We compute simple mids for options and underlying by averaging bid and
ask quotes and use this aggregate as a reference price for all our subsequent computations. We
calculate discount factors and forward prices from Put-Call parity using the industry standard tech-
nique based on linear regression. We compute time-to-expiry in units of one year as well as log-
moneyness as defined in Section 2. We extract implied volatilities using the py-vollib-vectorized
project available in the Python Package Index at the location https://pypi.org/project/
py-vollib-vectorized/. py-vollib-vectorized implements a vectorized version of Jäckel
(2015)’s Let’s-be-rational state-of-the-art method for computing implied volatility. We discard all
implied volatilities of in-the-money options, or, in other words, we compose our implied volatil-
ity surface from Put options for non-positive log-moneyness values and Call options for positive
log-moneyness values.

C.2 MODEL

We proceed to detail the hyperparameter configuration of the modified GNO architecture introduced
in Appendix B.

The Choice of In-Neighborhoods The construction of the in-neighborhood sets for the graph
neural operator is a crucial hyperparameter choice, fundamentally dictating the computation routes
(and thus complexity) of the forward pass of the model. We already explained in Appendix B that we
employ a Nyström approximation with subsampling from the input data nodes, to unlock the GNO
for interpolation tasks. Additionally, we employ truncation. Truncation limits the spatial extent
of the in-neighborhoods and is a way to incorporate information about the locality structure of the
learning task at hand directly into the graph neural operator architecture. Since implied volatility
smoothing requires limited global informational exchange along the time-to-expiry axis, we impose
the following restriction on the in-neighborhood sets Nin(y):

Nin(y) ⊆ Nin(y), (16)

where
Nin(ρy, zy) = {(ρl, zl) ∈ π : |ρl − ρy| ≤ ρ}

is the set of all available options (ρl, zl) contained in the slices with a time-to-expiry ρl close than ρ̄
to the time-to-expiry ρy of y. We explain our reasoning more precisely:

• The input data for volatility smoothing is not arbitrarily scattered over the (ρ, z)-domain, but
arranged as dense z-slices that are sparseley distributed along the ρ-axis (three examples are
pictured in Figure 1(b)). Condition 2.1(i) of Theorem 2.1 imposes monotonicity of the output
surface along the time-to-expiry axis. This constraint is inherently “local”: To generate a com-
pliant output surface, it is sufficient for the hidden states at a given output location to receive
information from their immediate neighboring slices.12 We computed the maximum distance
(with respect to ρ-coordinates) between slices over our entire dataset as ∆maxρ ≈ 0.269, which
is thus established as a lower bound for ρ̄, and finally explains our choice ρ̄ = 0.3. We note
that – because we use three hidden GNO layers (see below) – the domain of influence of each
input point finally is unrestricted: The compositional structure allows information to travel slice
to slice in steps of length ρ̄ = 0.3, which amounts to a total distance of 4 × 0.3 = 1.2. This

12A collection of slices that is monotonously increasing in pairs is montonously increasing as a whole.

18

https://pypi.org/project/py-vollib-vectorized/
https://pypi.org/project/py-vollib-vectorized/


972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

exceeds the size of the considered domain D = (ρmin, ρmax)× (zmin, zmax) in the direction of the
ρ-axis. It is therefore not motivated to increase the level of ρ̄.

• We do not perform a similar truncation in the direction of the log-moneyness axis. In particular,
this allows all points in any given slice to connect with each other indiscriminately, which in view
of the nonlinear shape constraint 2.1(ii) of Theorem 2.1 is motivated. Moreover, such truncation
would limit extrapolation distance in z-direction.

To concretely compute Nin(y) for given y on the basis of equation 16, we employ the following
low-discrepancy subsampling heuristic, parametrized by the hyperparameter K: First, we compute
Nin(y) and convert it to a sequence by sorting it by two-dimensional Euclidean distance to y in
ascending order. Of this sequence we take every k-th element, where k is the largest step size
such that the final number of nodes Nin(y) does not exceed K. This gives us Nin(y). Note that,
by sorting Nin(y) and performing a “sparse” selection, we promote low-discrepancy properties for
Nin(y), which intuitively aid the convergence properties of the kernel integrals.

The hyperparameter K, finally, constitutes an upper bound on the size of the Nin(y). It allows us to
control the computational complexity of the model, in a trade-off, of course, with the expressivity
of the GNO. After manual experimentation, we settle on a value of K = 50 and perform an ablation
study in Appendix C.6 to validate our choice.

GNO Layers and Kernels The below choices amount to a total number of 102529 trainable pa-
rameters.

• We employ three hidden layers and a channel size of 16: J = 4, and c1, c2, c3 = 16 (c0 and
cJ are determined as 1 by the scalar dimension of volatility data). We use GELU-activations for
the hidden layers and a Softplus-activation for the output layer (to ensure the positivity of the
smoothed surfaces): σ0, . . . , σJ−1 = GELU, and σJ = Softplus.

• We retain P0, . . . ,PJ−1 and QJ as single-hidden layer FNNs with 64 hidden nodes and GELU-
activations for the hidden layers. The remaining lifting and projections remain unutilized. In
particular, c̃0, . . . , c̃J = 16.

• We implement the kernel weight and bias functions as two-hidden layer FNNs with 64 hidden
nodes and GELU-activations for the hidden layers.

C.3 TRAINING

Loss Function To ease notation we write v̂θ = F̃ θ(v). We implement a Vega-weighted version
of the fitting loss equation 8:

Lfit(θ;v) =

(
1

|πv|
∑
x∈πv

wV(x;v)
∣∣(v̂θ(x)− v(x))/v(x)

∣∣2)1/2

.

Here,

wV(x;v) =
V(x, v(x))

1
|π|
∑

x∈π V(x, v(x))
∨ 1,

where V(x, v(x)) is the Black-Scholes Vega, the sensitivity of the Black-Scholes option price with
respect to its volatility parameter:

V(ρ, z, v) = ∂vBS(τ, k, v) = φ(d1(τ, k, v))
√
τ . (17)

For the implementation of the no-arbitrage penalization terms Lbut and Lcal, we first generate dis-
cretizations πρ = {ρ1, . . . , ρm} and πz = {z1, . . . , zn} of [ρmin, ρmax] and [zmin, zmax]. We resolve
the derivative terms ∂zv

θ and ∂2
zv

θ on the synthetic rectilinear grid π = πρ × πz using (central)
finite differences. Then, we translate Lbut directly from equation 9 as

Lbut(θ;v, π) =
1

|π|
∑
x∈π

(
But(x; ṽθ(x),∆z,π ṽ

θ(x),∆2
z,π ṽ

θ(x))− ε
)−

,
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where But is made consistent with the transformed coordinates and we used obvious notation for
the finite differences. We use ε = 10−3. On the other hand, we enforce the monotonicity constraint
of Theorem 2.1 using

Lcal(θ;v, πρ, πz) =
1

mn

m∑
i=1

n∑
j=1

(
ṽθ(ρi+1, zj)

ṽθ(ρi, (ρi+1zj)/ρi)
− ρi

ρi+1
− ε

)−

.

Compared to a derivative based implementation, this implementation is independent of the scale and
– in our empirical experiments – has provided an improved signal. Since the Nyström approximation
employed by the graph neural operator (as well as the choice equation 16) break the guaranteed
smoothness of the operator output, we additionally introduce ∥∂2

ρ v̂
θ∥2 and ∥∂2

z v̂
θ∥2 as regularization

terms:

Lreg-ρ(θ;v, π) =

√
1

|π|
∑
x∈π

|∆2
ρ,π ṽ

θ(x)|2, Lreg-z(θ;v, π) =

√
1

|π|
∑
x∈π

|∆2
z,π ṽ

θ(x)|2.

We compose the final loss function as a weighted sum of all terms introduced:

L(θ;v, πρ, πz) =
∑



λfitLfit(θ;v),

λbutLbut(θ;v, πρ × πz),

λcalLcal(θ;v, πρ, πz),

λreg-ρLreg-ρ(θ;v, πρ × πz),

λreg-zLreg-z(θ;v, πρ × πz).

The specific weights are

λfit λcal λbut λreg-ρ λreg-z

1 10 10 0.01 0.01

The particular weighting of the individual terms has initially been retrieved by manual experimen-
tation, led by the findings of Ackerer et al. (2020). To additionally validate our choices, we perform
an ablation study in Appendix C.7.

Validation Loss Table 2 displays descriptive statistics of the validation losses.

Table 2: Validation loss.

mean std 1% 25% 50% 75% 99%

L 0.0591 0.0807 0.0351 0.0450 0.0506 0.0578 0.1489
Lfit 0.0182 0.0182 0.0066 0.0121 0.0162 0.0203 0.0479
Lbut 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Lcal 0.0001 0.0006 0.0000 0.0000 0.0000 0.0000 0.0001
Lreg-r 0.8567 2.4065 0.3280 0.4702 0.5788 0.7703 2.7578
Lreg-z 0.7610 0.1403 0.4815 0.6488 0.7590 0.8679 1.0812
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C.4 EVALUATION

Here we provide additional results to supplement our performance evaluation. Table 3 and Table 4
display descriptive statistics of our approach (OpDS) versus SVI. OpDS* refers to benchmarking
without monthly finetuning. Moreover, we include Figure 5 and Figure 7, which have been created
just like Figure 3 and Figure 4 but without monthly finetuning (OpDS*). Finally, Figure 6 shows
the average spatial distribution of benchmark metrics and arbitrage term over the training dataset,
which complements the same averages on the test dataset shown in Figure 4.

Table 3: Descriptive statistics for surface-MAPE’s ⟨δabs⟩ over Dval/Dtest.

mean std 1% 25% 50% 75% 99%

OpDS 0.009/0.005 0.007/0.001 0.003/0.003 0.006/0.004 0.008/0.005 0.010/0.005 0.021/0.007
OpDS* 0.009/0.007 0.007/0.001 0.003/0.003 0.006/0.07 0.008/0.007 0.010/0.008 0.021/0.012
SVI 0.021/0.015 0.006/0.002 0.007/0.010 0.016/0.013 0.020/0.014 0.025/0.016 0.034/0.020

Table 4: Descriptive statistics for surface-averages ⟨δspr⟩ over Dval/Dtest.

mean std 1% 25% 50% 75% 99%

OpDS 0.479/1.265 0.662/0.347 0.193/0.609 0.274/1.025 0.330/1.240 0.550/1.451 1.526/2.453
OpDS* 0.479/1.866 0.662/0.574 0.193/0.731 0.274/1.457 0.330/1.826 0.550/2.233 1.526/3.445
SVI 1.124/3.382 0.877/0.826 0.301/1.464 0.492/2.827 0.715/3.320 1.646/3.914 3.710/5.247
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Figure 5: OpDS*: Benchmark metrics (surface-averages, between quartiles Q1 and Q3) over train-
ing period (computed from validation dataset, resampled monthly) and testing period (resampled
every two days).

Figure 6: OpDS: Average spatial distribution of benchmark metrics and arbitrage term over train
dataset.

Figure 7: OpDS*: Average spatial distribution of benchmark metrics and arbitrage terms over test
dataset (non-finetuned model).
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C.5 COMPARISON TO CLASSICAL NEURAL NETWORKS

We reproduce the experiment underlying Table 1 of Ackerer et al. (2020) using our operator deep
smoothing approach. Given observed option quotes, it involves dropping 50% of datapoints, and
then measuring the MAPE of the smoothed surface at retained datapoints (“Train”) as well as
dropped datapoints (“Test”). “Interpolate” and “Extrapolate” are different settings dictating how
exactly the datapoints which to drop are selected (for details refer to Ackerer et al. (2020)). The
experiment is performed on end-of-day S&P 500 data in the period from January to April 2018 and
averaged percentiles are reported. Table 5 reproduces the relevant row of Table 1 of Ackerer et al.
(2020) (“DS”) as well as our results averaged over 25 repetitions (“OpDS”).

Table 5: Backtesting results (⟨δabs⟩, i.e. MAPE) of Operator Deep Smoothing vs. Deep Smoothing
(“DS”; taken from [2]); quantiles in %, Jan-Apr 2018 end-of-day SPX data.

Interpolation Extrapolation

Train Test Train Test

λ q05 q50 q95 q05 q50 q95 q05 q50 q95 q05 q50 q95

OpDS 10 0.5 0.7 1.0 0.5 0.7 1.1 0.5 0.7 1.0 0.7 0.9 1.3
DS 10 0.5 0.7 1.2 0.5 0.8 1.2 0.4 0.6 0.9 1.2 1.7 2.4

C.6 ABLATION: NYSTRÖM APPROXIMATION

We explore the impact of our hyperparameter choice K = 50 introduced in Appendix C.2, control-
ling the size of the Nyström approximation of the integral kernels. We perform an ablation study by
resuming training of our trained GNO for the additional values for K = 3, 5, 10, 20, 30, 40 as well
as K = 60, 70. We focus on the data D2018 of the period Jan-Apr 2018, and perform two additional
training runs starting from our final GNO-checkpoint (trained for 500 epochs on Dtrain) as follows:

• 20 epochs each for K = 40, 30, 20, 10, 5, 3, in this order. We plan to understand how low K can
be for our method to still produce meaningful results.

• 20 epochs each for K = 60, 70, in this order. We plan to understand how much additional
information the GNO can extract by increasing the value of K.

Descriptive statistics for losses and evaluation metrics over D2018 itself are printed in Table 6 and
Table 7. We can read from Table 7 that increasing K does not significantly improve performance for
either δfit or δspr. The mean values for both metrics remain relatively stable for K > 50, suggesting
diminishing returns with larger K (or, in view of the slightly increasing tendency, the need for
additional training). On the other hand, reducing K below its original value of 50 leads to gradual
degradation in performance. It is expected that very small K-values, especially K < 10, result in
substantially poorer performance, but it is noteworthy that the progression is quite graceful. Table 6
paints a similar picture for the fitting loss term Lfit, while the auxiliary loss terms slightly increase as
K incrases. We argue that the increased expressivity awarded by larger values of K leads to slightly
more irregular surfaces, and thus to slightly increased arbitrage loss terms. Finally, we argue that
our choice of K = 50 is validated, where decreasing K is a reasonable strategy when computational
resources are scarce and accuracy requirements are not too stringent.
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Table 6: Loss terms over D2018 for different values of K, after training for 20 additional epochs on
D2018.

mean std 1% 25% 50% 75% 99%

L 3 0.1113 0.0934 0.0577 0.0819 0.0978 0.1174 0.3771
5 0.1008 0.1022 0.0499 0.0714 0.0849 0.1018 0.3074
10 0.0914 0.1220 0.0412 0.0635 0.0742 0.0885 0.2739
20 0.0854 0.1484 0.0371 0.0580 0.0669 0.0799 0.2802
30 0.0852 0.1834 0.0360 0.0561 0.0650 0.0776 0.2916
40 0.0890 0.2341 0.0367 0.0561 0.0647 0.0779 0.3511
50 0.0906 0.2416 0.0388 0.0564 0.0644 0.0782 0.4900
60 0.0930 0.2956 0.0371 0.0555 0.0644 0.0773 0.5752
70 0.0889 0.2293 0.0371 0.0556 0.0642 0.0773 0.4404

Lfit 3 0.0639 0.0346 0.0237 0.0462 0.0575 0.0739 0.2017
5 0.0484 0.0243 0.0195 0.0369 0.0466 0.0557 0.1428
10 0.0354 0.0188 0.0132 0.0283 0.0340 0.0402 0.0681
20 0.0264 0.0168 0.0102 0.0202 0.0245 0.0294 0.0638
30 0.0234 0.0167 0.0088 0.0171 0.0215 0.0258 0.0785
40 0.0220 0.0169 0.0084 0.0157 0.0200 0.0238 0.0963
50 0.0207 0.0174 0.0084 0.0147 0.0183 0.0221 0.1122
60 0.0215 0.0186 0.0083 0.0150 0.0192 0.0230 0.1236
70 0.0217 0.0181 0.0081 0.0152 0.0195 0.0234 0.1218

Lbut 3 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0001
5 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000
10 0.0002 0.0035 0.0000 0.0000 0.0000 0.0000 0.0001
20 0.0003 0.0079 0.0000 0.0000 0.0000 0.0000 0.0000
30 0.0005 0.0117 0.0000 0.0000 0.0000 0.0000 0.0001
40 0.0008 0.0163 0.0000 0.0000 0.0000 0.0000 0.0002
50 0.0009 0.0168 0.0000 0.0000 0.0000 0.0000 0.0010
60 0.0012 0.0216 0.0000 0.0000 0.0000 0.0000 0.0004
70 0.0008 0.0155 0.0000 0.0000 0.0000 0.0000 0.0005

Lcal 3 0.0000 0.0006 0.0000 0.0000 0.0000 0.0000 0.0001
5 0.0001 0.0006 0.0000 0.0000 0.0000 0.0000 0.0001
10 0.0001 0.0007 0.0000 0.0000 0.0000 0.0000 0.0000
20 0.0001 0.0007 0.0000 0.0000 0.0000 0.0000 0.0001
30 0.0001 0.0007 0.0000 0.0000 0.0000 0.0000 0.0003
40 0.0001 0.0007 0.0000 0.0000 0.0000 0.0000 0.0004
50 0.0001 0.0008 0.0000 0.0000 0.0000 0.0000 0.0005
60 0.0001 0.0008 0.0000 0.0000 0.0000 0.0000 0.0009
70 0.0001 0.0008 0.0000 0.0000 0.0000 0.0000 0.0009

Lreg-ρ 3 1.1568 2.4882 0.3534 0.5468 0.6905 1.0271 6.9051
5 1.3544 3.0528 0.3823 0.5419 0.7105 1.1629 8.1210
10 1.4194 3.3473 0.3897 0.5763 0.8204 1.2643 8.6570
20 1.4614 3.2880 0.3676 0.6552 0.8875 1.3222 9.0101
30 1.5008 3.3752 0.3790 0.7009 0.9327 1.3734 8.8143
40 1.5716 3.5193 0.4026 0.7334 0.9835 1.4533 9.2937
50 1.5256 3.5376 0.4661 0.7785 1.0336 1.4189 9.2313
60 1.5924 3.6494 0.4175 0.7514 1.0053 1.4776 9.4071
70 1.5610 3.4815 0.3999 0.7508 0.9877 1.4551 8.8669

Lreg-z 3 0.7183 0.0900 0.4913 0.6589 0.7346 0.7832 0.8723
5 0.7134 0.0788 0.5375 0.6597 0.7193 0.7649 0.8887
10 0.7240 0.0773 0.5572 0.6623 0.7260 0.7773 0.8966
20 0.7413 0.1010 0.5583 0.6585 0.7384 0.8171 0.9738
30 0.7476 0.1177 0.5362 0.6563 0.7420 0.8326 1.0086
40 0.7545 0.1404 0.5280 0.6516 0.7467 0.8425 1.0482
50 0.7616 0.1523 0.5270 0.6533 0.7586 0.8520 1.0745
60 0.7593 0.1647 0.5255 0.6517 0.7542 0.8463 1.0617
70 0.7624 0.1489 0.5286 0.6538 0.7585 0.8552 1.0720
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Table 7: Evaluation metrics over D2018 for different values of K, after training for 20 additional
epochs on D2018.

K mean std 1% 25% 50% 75% 99%

⟨δabs⟩ 3 0.0414 0.0232 0.0159 0.0289 0.0376 0.0473 0.1427
5 0.0323 0.0140 0.0127 0.0242 0.0310 0.0379 0.0898
10 0.0230 0.0093 0.0081 0.0178 0.0221 0.0270 0.0500
20 0.0166 0.0078 0.0064 0.0127 0.0156 0.0194 0.0473
30 0.0145 0.0079 0.0053 0.0106 0.0135 0.0169 0.0529
40 0.0135 0.0083 0.0051 0.0098 0.0126 0.0152 0.0562
50 0.0127 0.0087 0.0050 0.0092 0.0116 0.0138 0.0571
60 0.0132 0.0101 0.0048 0.0093 0.0120 0.0145 0.0628
70 0.0133 0.0095 0.0048 0.0093 0.0121 0.0148 0.0622

⟨δspr⟩ 3 3.7755 4.9387 0.8977 1.4838 2.0117 3.2423 24.8441
5 2.7120 3.3901 0.6315 1.1012 1.4551 2.4550 18.7650
10 1.8229 2.4049 0.4316 0.7320 0.9282 1.7497 12.9783
20 1.2243 1.6054 0.3171 0.4991 0.6227 1.1353 7.7893
30 0.9980 1.2846 0.2787 0.4229 0.5180 0.9376 5.6118
40 0.9307 1.2340 0.2742 0.3907 0.4768 0.8775 5.1398
50 0.8634 1.1477 0.2627 0.3639 0.4356 0.8218 4.4631
60 0.9012 1.2789 0.2647 0.3710 0.4483 0.8584 5.2339
70 0.9038 1.2559 0.2607 0.3773 0.4570 0.8498 5.2972

C.7 ABLATION: WEIGHTING OF ARBITRAGE PENALTIES

To assess the impact of weighting of the arbitrage penalties in the loss function, we perform the
following experiment: We resume training of our trained GNO for 20 additional epochs on the
full training dataset Dtrain, varying the weights λcal and λfit of Lcal and Lbut. More precisely, we
equally weight both terms Lcal and Lbut at the values λarb = 0, 1, 10, 100, 1000, 10000 (we include
the original value λarb = 10 to maintain a fair baseline). We start each training run from our final
GNO-checkpoint (trained for 500 epochs on Dtrain with λarb = 10). The results are reported in
Table 8 and Table 9, and we make the following observations:

• The particular choices λarb affect the achieved loss terms in the expected ways. For a value of
λarb > 10 all traces of the arbitrage penalties vanish from the table. At the same time, however,
accuracy (as measured by Lfit, δabs, and δrel) suffers. For choices λarb < 10, it is possible to
read a non-zero average for the calendar loss from the table. For λarb = 1000 and λarb. At the
same time, however, accuracy (as measured by Lfit, δabs, δrel) suffers. Our choice λarb = 10 is
validated: λarb = 1 or even λarb = 0 do not seem to unlock substantial additional accuracy of the
GNO. If there is a small effect, it comes at a cost of increased arbitrage in the smoothed surfaces,
as measured by Lcal and Lbut.

• λcal has a counter-regularizing effect in ρ-direction, and we suspect overfitting of the monotonic-
ity constraint. Lbut, instead, remains stable for all values. Practitioners will be aware that the
calendar arbitrage constraint is usually more demanding than the butterfly arbitrage constraint.
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Table 8: Loss terms over Dval for different values of λarb, after training for 20 additional epochs on
Dtrain.

λarb mean std 1% 25% 50% 75% 99%

L 0 0.0577 0.0750 0.0341 0.0441 0.0499 0.0567 0.1312
1 0.0575 0.0733 0.0344 0.0441 0.0497 0.0568 0.1375
10 0.0583 0.0774 0.0351 0.0446 0.0501 0.0573 0.1452
100 0.0581 0.0599 0.0352 0.0456 0.0511 0.0580 0.1358
1000 0.0617 0.0658 0.0380 0.0480 0.0535 0.0609 0.1474
10000 0.1304 0.0802 0.0825 0.1023 0.1148 0.1381 0.2793

Lfit 0 0.0180 0.0181 0.0066 0.0118 0.0160 0.0202 0.0457
1 0.0181 0.0182 0.0063 0.0118 0.0162 0.0202 0.0435
10 0.0182 0.0181 0.0065 0.0120 0.0164 0.0204 0.0469
100 0.0195 0.0315 0.0069 0.0123 0.0165 0.0206 0.0497
1000 0.0225 0.0479 0.0088 0.0136 0.0177 0.0218 0.0529
10000 0.0603 0.0669 0.0287 0.0401 0.0474 0.0652 0.1369

Lbut 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001
10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
100 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Lcal 0 0.0001 0.0006 0.0000 0.0000 0.0000 0.0000 0.0001
1 0.0001 0.0006 0.0000 0.0000 0.0000 0.0000 0.0001
10 0.0000 0.0006 0.0000 0.0000 0.0000 0.0000 0.0001
100 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000
1000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Lreg-ρ 0 0.8019 2.1876 0.3091 0.4490 0.5489 0.7329 2.8897
1 0.7925 2.1203 0.3102 0.4410 0.5395 0.7268 2.9587
10 0.8236 2.2886 0.3301 0.4578 0.5573 0.7476 2.6687
100 0.7756 1.2831 0.3332 0.4866 0.5858 0.7758 3.4684
1000 0.8216 0.8114 0.3927 0.5394 0.6450 0.8389 3.5378
10000 2.0534 0.7765 1.2892 1.6319 1.8667 2.2504 5.5746

Lreg-z 0 0.7621 0.1394 0.4876 0.6498 0.7599 0.8690 1.0786
1 0.7633 0.1390 0.4876 0.6506 0.7596 0.8695 1.0829
10 0.7572 0.1379 0.4793 0.6477 0.7529 0.8619 1.0702
100 0.7596 0.1409 0.4909 0.6512 0.7554 0.8649 1.0812
1000 0.7467 0.1339 0.4903 0.6442 0.7414 0.8494 1.0558
10000 0.7507 0.1462 0.5013 0.6365 0.7422 0.8278 1.1014
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Table 9: Evaluation metrics over Dval for different values of λarb, after training for 20 additional
epochs on Dtrain.

mean std 1% 25% 50% 75% 99%

⟨δabs⟩ 0 0.0108 0.0097 0.0045 0.0073 0.0098 0.0122 0.0265
1 0.0109 0.0100 0.0042 0.0071 0.0098 0.0122 0.0262
10 0.0110 0.0091 0.0044 0.0073 0.0101 0.0125 0.0260
100 0.0121 0.0217 0.0046 0.0074 0.0101 0.0125 0.0276
1000 0.0139 0.0291 0.0057 0.0086 0.0109 0.0134 0.0302
10000 0.0388 0.0360 0.0182 0.0265 0.0315 0.0419 0.0923

⟨δspr⟩ 0 0.6138 1.0777 0.2218 0.3130 0.3728 0.7277 1.9947
1 0.6039 1.0790 0.2221 0.3062 0.3685 0.7026 1.9557
10 0.6186 1.0552 0.2200 0.3080 0.3775 0.7475 2.1704
100 0.7241 2.7257 0.2227 0.3137 0.3797 0.7378 2.4623
1000 0.9303 4.1817 0.2399 0.3480 0.4265 0.9299 2.8245
10000 3.1238 7.3292 0.5128 0.8566 1.3404 3.6653 14.2364
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D ADDITIONAL PLOTS

D.1 EXAMPLE PLOTS

We plot the results of operator deep smoothing (OpDS) vs. SVI on example inputs. To aid the visual
clarity of our plots, we display only every third market datapoint.

Figure 8: Smoothing of quotes v ∈ Dval from 20.07.2012 at 10:50:00.
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Figure 9: Smoothing of quotes v ∈ Dval from 21.10.2016 at 13:10:00.
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Figure 10: Smoothing of quotes v ∈ Dtrain from 04.01.2021 at 10:50:00.
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D.2 MONTHLY BREAKDOWN OF SPATIAL DISTRIBUTIONS OF BENCHMARK METRICS ON
TEST DATASET

Figure 11: Average spatial distribution of δabs on Dtest for OpDS with monthly finetuning, per month.
Blank cells indicate that no data was available for the particular region in the respective month.
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Figure 12: Average spatial distribution of δfit on Dtest for OpDS with monthly finetuning, per month.
Blank cells indicate that no data was available for the particular region in the respective month.
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D.3 EXAMPLE PLOTS: OPTION METRICS END-OF-DAY US INDEX OPTIONS DATA

Figure 13: Smoothing of SPX end-of-day data from 07.01.2021. Every third datapoint displayed.
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Figure 14: Smoothing of NDX end-of-day data from 07.01.2021. Every second datapoint displayed.
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Figure 15: Smoothing of DJX end-of-day data from 07.01.2021. Every datapoint displayed.
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Figure 16: Smoothing of RUT end-of-day data from 07.01.2021. Every datapoint displayed.

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

E SVI

SVI, originally devised by Gatheral (Gatheral, 2004), stands for Stochastic Volatility Inspired and
is a low-dimensional parametrization for implied volatility slices (namely for each maturity). It
captures the key features of implied volatility of Equity indices, and has become the industry-wide
benchmark for implied volatility smoothing on such markets. Its ”raw” variant parametrizes the
”slice” of implied volatility at a given time-to-expiry τ as follows:

v̂τ (k) =

√√√√a+ b
(
ρ(k −m) +

√
(k −m)2 + σ2

)
τ

, for all k ∈ R,

where a, b, k,m, σ are real parameter values.

Calibration While stylistically accurate, SVI does not easily guarantee absence of static arbitrage
opportunities, and several authors have investigated this issue (Gatheral and Jacquier, 2014; Martini
and Mingone, 2022; Mingone, 2022; Martini and Mingone, 2023). To produce our SVI benchmark
we therefore rely on the constrained SLSQP optimizer provided by the SciPy scientific computing
package for Python, with the mean square error objective, a positivity constraint and the constraint
equation 2 (computed in closed form), and the following parameter bounds:

a ∈ R, b ∈ [0, 1], ρ ∈ [−1, 1], m ∈ [−1.5, 0.5], σ ∈ [10−8, 2].

We ignore the calendar arbitrage condition.
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