
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

OPERATOR DEEP SMOOTHING FOR IMPLIED VOLATIL-
ITY

Anonymous authors
Paper under double-blind review

ABSTRACT

We devise a novel method for nowcasting implied volatility based on neural oper-
ators. Better known as implied volatility smoothing in the financial industry, now-
casting of implied volatility means constructing a smooth surface that is consistent
with the prices presently observed on a given option market. Option price data
arises highly dynamically in ever-changing spatial configurations, which poses
a major limitation to foundational machine learning approaches using classical
neural networks. While large models in language and image processing deliver
breakthrough results on vast corpora of raw data, in financial engineering the gen-
eralization from big historical datasets has been hindered by the need for consider-
able data pre-processing. In particular, implied volatility smoothing has remained
an instance-by-instance, hands-on process both for neural network-based and tra-
ditional parametric strategies. Our general operator deep smoothing approach,
instead, directly maps observed data to smoothed surfaces. We adapt the graph
neural operator architecture to do so with high accuracy on ten years of raw in-
traday S&P 500 options data, using a single model instance. The trained operator
adheres to critical no-arbitrage constraints and is robust with respect to subsam-
pling of inputs (occurring in practice in the context of outlier removal). We pro-
vide extensive historical benchmarks and showcase the generalization capability
of our approach in a comparison with classical neural networks and SVI, an indus-
try standard parametrization for implied volatility. The operator deep smoothing
approach thus opens up the use of neural networks on large historical datasets in
financial engineering.

1 INTRODUCTION

Options trading experienced phenomenal growth in recent years. In its 2023 trading volume re-
port (Cboe Global Markets, Inc., 2024), the CBOE announced the fourth consecutive year of record-
breaking volumes on its options exchanges, citing a record-breaking number of transactions for Eu-
ropean options on the S&P 500 index. European options are financial derivative contracts that give
their holder the right, but not the obligation, to either buy or sell an underlying asset at a predeter-
mined price (the strike) at a predetermined time (the expiry). An option specifying the right to buy
(respectively to sell) is called a Call (respectively Put) option. Options are traded on a wide range
of underlyings, including stocks, indices, currencies and commodities, and can be used to hedge
against or speculate on the price movements of the underlying asset.

A key concept in options trading is the so-called implied volatility, which transforms the nominal
price of an option into a conceptually and numerically convenient metric. The implied volatility
surface is the collection of implied volatilities as observed at a specific point in time, visualized in
three-dimensional space as a surface over the (strike, expiry)-domain. It provides an intuitive repre-
sentation of the current state of the options market and is crucial for hedging and risk management.
The extraction of a smooth surface from quoted option prices is called implied volatility smoothing
and allows to infer (or nowcast) theoretical option prices for interpolated strike values and expiry
times. It remains one of the key challenges in options trading.

Conventionally, implied volatility smoothing relies on parametric surfaces whose parameters are op-
timized based on the distance to observed prices while adhering to absence-of-arbitrage conditions,
which ensure the consistency of prices extrapolated from the smoothed surface. The development of

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

such ad-hoc models for implied volatility traces back to SVI (Gatheral, 2004), which models implied
volatility slice-wise for each maturity and successfully captures its key features on Equity indices.
A continuous interpolation scheme for SVI slices was provided in Gatheral and Jacquier (2014),
yielding a full surface. Nowadays, sophisticated market makers employ custom parametrizations,
which can be considered proprietary trading secrets and reduce SVI to a benchmark role.

Regardless of the particular parametric surface model used, the conventional smoothing approach
boils down to the continued execution of a numerical optimization routine: A smoothed surface
expires as soon as quotes are updated (whenever markets move), necessitating the re-calibration of
parameters. Success and duration of this routine is sensitive to initial conditions, search heuristics,
and termination criteria, which exposes practitioners to considerable process uncertainties during
trading hours (or online). In response, we introduce a novel operator deep smoothing approach,
replacing the instance-by-instance optimization with a single evaluation of a neural network. This
greatly simplifies online calibration, at the upfront cost of training the network offline from histor-
ical data (in the spirit of Hernandez (2016); Horvath et al. (2021); Liu et al. (2019)). Our unique
use of neural operators (Kovachki et al., 2023) is fundamentally directed by the observation that
the raw inputs for volatility smoothing (the collections of observed volatilities) over time vary in
size and spatial arrangement: Options expire, new maturities and strikes become available, and the
coordinates of existing options evolve continuously in the domain of the implied volatility surface
(Figure 1b). This setting excludes classical neural networks – which required fixed-size inputs –
from direct application. Neural operators, instead, conceptualize observed data as point-wise dis-
cretizations of latent functions in implicit infinite-dimensional function spaces and are well suited
for the task.

Contributions We introduce operator deep smoothing, a general approach for discretization-
invariant data interpolation based on neural operators, and apply it to implied volatility smoothing.
Our technique transcends traditional parametric smoothing and directly maps observed volatilities
to smoothed surfaces. Comparable neural network based approaches are limited to certain option
markets (e.g. FX markets, where options by default spread out on fixed rectilinear grids, as relied
upon by Bergeron et al. (2021) for its VAE approach) or require data pre-processing (as in Cont
and Vuletić (2023), which achieves fixed rectilinear grids by linear interpolation of market values,
setting aside questions related to no-arbitrage constraints). Instead, our technique novelly adapts
the graph neural operator (GNO) architecture (Anandkumar et al., 2020) to consistently smooth in-
put data of any size and spatial arrangement. While neural operators have successfully been used
in Physics to numerically solve partial differential equations, our application is the first in finan-
cial engineering and highlights the values of their discretization-invariance properties, so far rather
under-explored. We employ our method on ten years of intraday S&P 500 options data, smoothing
more than 60 million volatility datapoints using a single model instance with around 100 thousand
trained parameters. We report errors that substantially improve on the SVI industry benchmark and
are highly competitive with Ackerer et al. (2020), which performs smoothing by training one classi-
cal neural network per volatility surface. We proceed to successfully demonstrate the generalization
capabilities of our model for end-of-day options data of the S&P 500 as well as three further major
US indices. No data from these three indices has been used for training.

We explore the technical implications of our method in Section 5. Here we discuss the broader
impact of our contributions:

• Operator Deep Smoothing for Implied Volatility – Our method massively simplifies volatility
smoothing, an area where effective methods mean competitive advantage and frequently remain
trade secrets. Therefore, we believe that our approach lowers the entry-barrier for effective volatility
smoothing even among industry professionals. Practitioners and researchers that are not directly
involved in options trading frequently employ rudimentary methods (SVI or linear/spline interpo-
lation). Here, our trained operator, served as a hands-off tool, could provide “cheap” and accurate
surfaces for use in downstream tasks. Ultimately, our method may be useful for all participants of
option markets. This includes the general public, whose trading in such markets has been increasing
substantially (Doherty et al., 2023) and which benefits from broadly accessible investment tools.
• Neural Operators for Discretization-Invariant Interpolation – Our operator deep smoothing ap-
proach constitutes the first application of neural operators for interpolation/extrapolation tasks and
paves the way to future research on the versatility of the discretization-invariance of neural operators
in industrial applications characterized by dynamic and spatially irregular data. At least in financial

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

engineering, surfaces similar to the implied volatility surface (and higher-dimensional equivalents,
as for example the volatility cube) are ubiquitous. We expect our technique to be transferable and to
streamline and robustify engineers’ and researchers’ algorithms and data pipelines.

Literature Review The aforementioned SVI was developed for internal use at Merrill Lynch in
1999 and later advocated in Gatheral (2004). Its extension to surface-based SSVI in Gatheral and
Jacquier (2014) has been eagerly adopted by practitioners, which have since contributed to its robust
calibration and generalizations (Corbetta et al., 2019; Hendriks and Martini, 2017; Guo et al., 2016).
It was augmented in Ackerer et al. (2020) by a multiplicative neural network corrector, based on
guided network training by means of no-arbitrage soft constraints from Zheng (2018). The absence-
of-arbitrage conditions for implied volatility surfaces – providing safeguards for option pricing –
were formulated in Roper (2010), and we provide an equivalent formulation, based on Fukasawa
(2012); Lucic (2021), for practical purposes. In Chataigner et al. (2020) static arbitrage constraints
were used to perform option calibration (with an additional regularization technique), which can be
considered to be instance-by-instance smoothing of nominal price data. In Bergeron et al. (2021) a
classical VAE (variational autoencoder) was applied to implied volatility smoothing on FX markets,
where strikes of quoted options are tied to a fixed grid of deltas.1 This specificity of FX markets
allows the use of a conventional feedforward neural network based decoder. Recent option calibra-
tion approaches based on neural networks have been proposed in Baschetti et al. (2024); Hernandez
(2016); Horvath et al. (2021); Van Mieghem et al. (2023).

A comprehensive account on neural operators is given in Kovachki et al. (2023), unifying previous
research on different neural operator architectures and techniques (Anandkumar et al., 2020; Li
et al., 2020). Subsequent developments investigating the expressivity of these architectures as well
as their generalizations include Hao et al. (2023); Huang et al. (2024); Lanthaler et al. (2023); Li
et al. (2021); Lingsch et al. (2023); Tran et al. (2021).

Outline We review financial concepts and the challenges of implied volatility smoothing in Sec-
tion 2. In Section 3, we provide a review of neural operators (Section 3.1) and introduce our operator
deep smoothing approach for general interpolation tasks (Section 3.2). In Section 4, we perform ex-
periments for implied volatility smoothing of S&P 500 options data. Finally, Section 5 gathers
limitations as well as outlooks regarding the use of neural operators for interpolation purposes.

2 BACKGROUND: IMPLIED VOLATILITY

We consider a market of European options written on an underlying asset, which we observe at a
given instant T0, and denote the time-T forward price of the underlying asset by FT0,T .

European Call Options The option market consists of a finite collection of European Call op-
tions,2 each identified by its expiry T ∈ (T0,∞) and its strike K ∈ (0,∞), and we write C(T,K)
for its (undiscounted) price. In practice, these are traded for fixed expiries T1, . . . , Tm; for each Ti,
only a finite range of strikes Ki

1, . . . ,K
i
ni

is available, typically widening as the expiry increases
(Figure 1).

Black-Scholes The Black-Scholes model is the simplest diffusive asset model and captures the
volatility of the underlying asset with a single parameter v ∈ (0,∞). Its popularity stems from
the closed-form expression it admits for the price of a European Call option with time-to-expiry
τ = T − T0 and log-moneyness k = log(K/FT0,T):

BS(τ, k, v) = Φ (d1 (τ, k, v))− ek Φ (d2 (τ, k, v))

(in units of the time-T forward of the underlying). Here, Φ denotes the cumulative distribution
function of the standard Normal distribution, while

d1(τ, k, v) =
−k

v
√
τ
+

1

2
v
√
τ , d2(τ, k, v) =

−k

v
√
τ
− 1

2
v
√
τ . (1)

1Delta is the derivative of the price with respect to the underlying asset and is standard in FX strike quoting.
2In practice, market participants trade both Call and Put options, which are mathematically equivalent

through the well-known Put-Call parity. The latter thus allows to speak in terms of Call options only.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Implied Volatility While not able (any longer) to fit market data, the mathematical tractability of
the Black-Scholes model gave rise to the concept of implied volatility: Given a Call option with
price C(T,K), its implied volatility v(τ, k) is defined by C(T,K) = FT0,T BS(τ, k, v(τ, k)). By
using time-to-expiry/log-moneyness coordinates, implied volatility provides a universal way to con-
sistently compare the relative expensiveness of options of across different strikes, expiries, under-
lyings, and interest rate environments. Its characteristic shape helps traders make intuitive sense of
the instantaneous state of option markets relative to a (flat) Black-Scholes model baseline.

Implied Volatility Smoothing This refers to fitting a smooth surface v̂ : (0,∞) × R → (0,∞)
to a collection v = {v(τl, kl)}pl=1 of observed implied volatilities. Naive strategies such as cubic
interpolation are ill-fated: Surfaces generated by such interpolation rules will in general correspond
to Call option prices that are exploitable by so-called arbitrage, namely cost-less trading strategies
generating a guaranteed profit. In option markets, an arbitrage is called static when set up solely
from fixed positions in options and a dynamically (but a finite number of times) readjusted position
in the underlying. Beyond simple interpolations, practitioners have devised ad-hoc parametrizations
for implied volatility, in particular the aforementioned SVI, which are not expected to perfectly
match all reference prices. Instead, the model parameters are optimized with respect to an objective
function that measures market price discrepancy and includes penalization terms ruling out static
arbitrage. These penalization terms are commonly formulated on the basis of the following theorem,
which summarizes the shape constraints of the implied volatility surface (Gatheral and Jacquier,
2014; Lucic, 2021; Roper, 2010).
Theorem 2.1 (Volatility Validation). Let v̂ : (0,∞)× R → (0,∞) be continuous and satisfying

(i) Calendar arbitrage: For each k ∈ R, v̂(·, k)
√
· is non-decreasing and vanishes at the origin.

(ii) Strike arbitrage: For every τ > 0, the slice v̂τ = v̂(τ, ·) is of class C2 with

But(τ, ·, v̂τ , ∂kv̂τ , ∂2
k v̂τ) ≥ 0 (2)

and lim supk↑∞
v̂2
τ (k)
k < 2

τ , where

But(τ, k, v0, v1, v2) =
(
1 + d1(τ, k, v0)v1

√
τ
) (

1 + d2(τ, k, v0)v1
√
τ
)
+ v0v2τ.

Then, (T,K) 7→ BS(τ, k, v̂(τ, k)) defines a Call price surface that is free from static arbitrage.

Condition 2.1(i) is equivalent to prices increasing in maturity (uncertain increases as time passes),
while Condition 2.1(ii) arises when computing the implied probability density fτ of the underlying:

fτ (·) =
φ(−d2(τ, · , v))

v
But(τ, · , v, ∂kv, ∂2

kv). (3)

Since a density needs to be non-negative, equation 3 explains why Condition 2.1(ii) above is re-
quired.

3 NEURAL OPERATORS FOR DISCRETIZATION-INVARIANT SMOOTHING

3.1 BACKGROUND: NEURAL OPERATORS

We provide full details about notations, terms, and additional context in Appendix A.

Philosophy The development of neural operators is based on the philosophy that observed data
a = {al}pl=1 arises as the evaluation of a latent function a : D → Rcin , defined on some domain
D ⊆ Rd, at a discretization π = {xl}pl=1 of D. That is, a = a|π , or

al = a(xl), l = 1, . . . , p. (4)

An input-output relationship of data a 7→ u is then ”really” described by an operator F : A → U
between function spaces A and U . Neural operators are abstract neural network architectures
F θ : A → U , with implementations that integrate equation 4 consistently across the variable dis-
cretization π.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(a) Relative trading volume per quoted interval, averaged over S&P 500
dataset 2012-2021. Left: Rectangular domain w.r.t. time-to-expiry/log-
moneyness (99.9% of trading volume with maturities < 1 year). Right:
Rectangular domain w.r.t. transformed coordinates (96.6% of trading
volume while more evenly populated); boundary delineated in Left.

(b) Scatter plots of example
sets of option quotes v1,v2,v3.
Observed on 15.10.2012,
18.05.2017, and 04.01.2021,
respectively, at 10:50:00, each.

Figure 1: Spatial arrangement of option quotes in time-to-expiry/log-moneyness domain.

Technicalities We review the core concepts of neural operators from Kovachki et al. (2023). Let D
be a bounded domain in Rd and A and U be Banach spaces of functions mapping from D to Rcin

and Rcout , respectively. Neural operators are finitely parametrized mappings F θ : A → U with
universality for continuous target operators and with discretization-invariant implementations F̃ θ.
In the space C(A,U) topologized by uniform convergence on compacts, the architecture F θ is called
universal if {F θ}θ∈Θ is dense in C(A,U), with Θ the parameter set. An implementation of F θ is
an algorithm F̃ θ which accepts observed data a = a|π and outputs a function u ∈ U and is such that
F̃ θ
π (·) = F̃ θ(· |π) ∈ C(A,U). Now, F̃ θ is called discretization-invariant if limn↑∞ F̃ θ

π(n) = F θ in
C(A,U), given a discrete refinement3 of D.

Let K be a set of input functions, compact in A, and let ε > 0. In combination, universality and
discretization-invariance allow to posit the existence of parameters θ, such that for all a ∈ K,

∥F̃ θ(a|π)− F (a)∥U ≤ ε, (5)

irrespective of the particular discretization π given that the data a = a|π is scattered sufficiently
densely across D. The training of neural operators is analogous to the classical finite-dimensional
setting. It happens in the context of an implicit training distribution µ on the input space A and aims
at minimizing the generalization error

Rµ : θ 7→ Ea∼µ∥F̃ θ(a|π)− F (a)∥U , (6)

through the use of gradient descent methods applied to empirical estimates of equation 6. These esti-
mates are constructed from a training dataset D = {(a(i),u(i))}ni=1 of features a(i) = a(i)|π(i) and
labels u(i) = F (a(i))|π(i) on the basis of (mini) batching heuristics and are frequently transformed
or augmented by additional terms through the use of apposite loss functions.

3.2 OPERATOR DEEP SMOOTHING

Let v = {v(xl)}pl=1 be the collection of observed data, for example implied volatilities as in Sec-
tion 2. This notation silently adopts the neural operator philosophy, connecting the data point v(xl)
with coordinates xl, hinting at a latent function v : D → R giving rise to the observed values. The
smoothing or interpolation task consists of constructing an appropriately regular candidate v̂ for v
from the data v = v|π , with π = {x1, . . . , xp}. The operator deep smoothing approach uses a neural
operator F̃ θ, trained using historical data, to generate v̂ := F̃ θ(v). It fundamentally leverages the
discretization-invariance to produce consistent results even if the ”sensors” xl of the latent function v
continuously change in availability and/or location in the domain D. This is the situation for volatil-
ity smoothing, where the sensors xl = (τl, kl) are the (time-to-expiry, log-moneyness) coordinates

3A discrete refinement of D is a nested sequence (π(n))n∈N of discretizations of D for which for every
ε > 0, there exists N ∈ N such that {BRd(x, ε) : x ∈ π(N)} covers D.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) Smoothed surface with input
volatility quotes (blue). δabs =
0.004, δspr(v̂,v) = 1.061.

(b) Slices of implied volatility (left) and implied density (right), scaled
by time-to-expiry. Left: Absence of crossings indicates absence of cal-
endar arbitrage. Right: Positivity indicates absence of butterfly arbi-
trage. In fact Lcal(θ,v) = 6.3× 10−6, Lbut(θ,v) = 0.

Figure 2: Operator deep smoothing of quotes v from 04.01.2021 at 10:50:00. Compare Figure 10.

of the quoted options, which – as noted in Section 1 and illustrated in Figure 1b – move with the
market, thus motivating the operator deep smoothing approach. We now describe the methodology
in more detail. For a first glance at the results we refer to Figure 2.

Methodology Translating the smoothing task to an operator learning problem, we find that the
target operator is the (continuous) identity operator F = Fid : A ∋ v 7→ v ∈ U , with equal input
and output spaces A = U = C(D). The training dataset is the collection D = {v(i)} of historical
data (labels and features coincide), and we train a suitable neural operator architecture F̃ θ such that

|F̃ θ(v)(x)− v(x)| ≤ ε, for all x ∈ D, (7)

for some given error tolerance ε for the interpolation task, while v is the latent function of which
we observe v = v|π . Instead of minimizing empirical estimates of the ∞-norm ∥F̃ θ(v) − v∥U ,
however, we suggest a fitting loss based on the root mean square relative error,

Lfit(θ,v) :=

√√√√ 1

|π|
∑
x∈π

(
|F̃ θ(v)(x)− v(x)|

1 ∨ |v(x)|

)2

, (8)

for its smoothness and invariance to the scale of the data.4 Additional engineering techniques, such
as sub-sampling of inputs during training, are explored in our practical investigation in Section 4.

Practical Constraints Depending on the application, the smoothing task may be subject to con-
straints. For volatility smoothing, the smoothed surface v̂θ = F̃ θ(v) must be free of static arbitrage.
This is effectively enforced by augmenting the loss function with additional penalization terms,
moving away from a pure operator learning problem.5 This does not only promote the relevant
properties in the neural operator output but can also help define it when faced with sparsity of data
in the domain D (in this context see also Li et al. (2021)). From Theorem 2.1, these penaliza-
tion terms naturally motivate our choices of Lbut and Lcal. The strike arbitrage constraint 2.1(ii) is
handled via

Lbut(θ;v) =
∥∥∥(But(· , v̂θ, ∂kv̂θ, ∂2

k v̂
θ)− ε

)−∥∥∥
1
, (9)

where we ignore the asymptotic condition since our experiments are focused on the bounded do-
main D (Figure 1a). The inclusion of ε promotes strictly positive implied densities (we will use
ε = 10−3), while we choose the 1-norm to induce sparsity in the constraint violation. The calendar
arbitrage constraint 2.1(i) can be tackled analogously with

Lcal(θ;v) =
∥∥∥(∂τ [(τ, k) 7→ vθ(τ, k)

√
τ
]
− ε
)−∥∥∥

1
, (10)

where again we ignore the asymptotic condition since D is bounded away from zero time-to-expiry.
4Empirical estimates of ∞-norms and L2-norms are equivalent loss functions on finite-dimensional spaces.
5It is not the goal of volatility smoothing to learn the identity operator throughout the entire input space.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Interpolating Graph Neural Operator Various neural operator architectures exist, mostly aris-
ing from the kernel integral transform framework of Kovachki et al. (2023). Most prominently,
these include Fourier neural operators (FNO), delivering state-of-the-art results on fixed grid data,
as well as graph neural operators (GNO), able to handle arbitrary mesh geometries (both reviewed
in Appendix A.1). While highly effective with documented universality, these neural operators
are not directly applicable for interpolation tasks as their layers include a pointwise-applied linear
transformation, which limits the output to the set of the input data locations. Dropping this local
transformation results in an architecture proved to retain universality Kovachki et al. (2023) and that
– at least for its implementation as a GNO – allows to interpolate functions. On the other hand, Lan-
thaler et al. (2023) proves universality for the architecture combining the local linear transformation
with a simple averaging operation, suggesting the fundamental importance of the collaboration of
local and non-local components for the expressivity of neural operators. This was noted in Kovachki
et al. (2023), for whom retaining the local components can be “beneficial in practice”, and confirmed
in our experiments, where a purely non-local architecture led to substantially reduced performance.

We therefore propose a new architecture for operator deep smoothing leveraging GNOs’ unique
ability to handle irregular mesh geometries. We use a purely non-local first layer (dropping the
pointwise linear transformation), and use it to produce hidden state at all required output locations,
enabling subsequent layers to retain their local transformations. Since GNOs do not theoretically
guarantee a smooth output, we augment the training with additional regularization terms such as
Lreg(θ;v) = ∥∆v̂θ∥2, with ∆ the Laplace operator, and provide a full description in Appendix B.

4 EXPERIMENTS

We detail our practical investigation of the operator deep smoothing approach for implied volatility.

4.1 MODEL TRAINING

Dataset and Splits We perform our numerical experiments using 20-minute intervals of CBOE
S&P 500 Index Option data from 2012 to 2021. The dataset amounts to a collection of 49089
implied volatility surfaces and just above 60 million individual volatility datapoints (after domain
truncation). We refer the reader to Appendix C.1 for full details on the preparation of the dataset. We
allocate the first nine years of data (2012 to 2020) to training, keeping 750 randomly drawn surfaces
for validation purposes, and use the final year of the dataset (2021) for testing. This yields a training
dataset Dtrain containing ntrain = 43442 surfaces, a validation dataset Dval containing nval = 750
surfaces and a test dataset Dtest with ntest = 4897 surfaces.

Data Transformation Motivated by Figure 1a, we transform time-to-expiry and log-moneyness
via ρ =

√
τ and z = k/ρ. Intuitively, this transformation converts the“natural” scaling of implied

volatility by the square root of time-to-expiry to a scaling of the input domain. From here on, we
consider the domain in these coordinates, setting D = (ρmin, ρmax) × (zmin, zmax) = (0.01, 1) ×
(−1.5, 0.5). In (τ, k)-coordinates, D becomes a cone-shaped region, that, on average, contains
96.6% of traded options (with time-to-expiry below one year) and, with respect to (ρ, z)-coordinates,
is more evenly populated, improving the numerics.

Model Configuration We remind that we rely on the interpolating graph neural operator intro-
duced in Section 3.2 and described in detail in Appendix B. The model hyperparameters (giving rise
to 102529 trainable parameters in total) were identified by manual experimentation and are detailed
in Appendix C.2. We perform ablations for the connectivity of the graph structure underlying the
graph neural operator (and thus for the tradeoff between expressivity and computational complexity
of our method) in Appendix C.6.

Loss Function We implement a Vega-weighted (see Appendix C.3) version of the fitting loss
Lfit from equation 8. We compute Lbut directly as equation 9 (in the transformed coordinates) on
a synthetic grid using finite differences. For Lcal, we implement a multiplicative version that is
invariant to the level of implied volatility. We provide a precise description in Appendix C.3, and
perform an ablation study for the weighting of the arbitrage terms in Appendix C.7

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 3: Benchmark metrics (surface-averages, between lower and upper quartile) over training
period (computed from Dval) and testing period, as well as surface-averaged spread. Resampled,
monthly for training period and weekly for testing period.

Model Training We train the GNO over 500 epochs on the training dataset using the AdamW
optimizer with learning rate λ = 10−4 and weight decay rate β = 10−5, and use a pseudo batch size
of 64 by accumulating gradients. We randomly sub-sample the inputs v and randomize the grids
on which we compute the arbitrage losses. The training is performed in around 200 hours using a
NVIDIA Quadro RTX 6000 GPU. The validation loss is reported in Appendix C.3 in Table 2. Code
and trained model weights are provided in the supplementary material.

4.2 RESULTS

Evaluation Metrics Let v = {v(x)}x∈π be the collection of observed implied volatilties and v̂
the smoothed surface as produced by a given method. We measure absolute relative error:

δabs(v̂(x), v(x)) =
|v̂(x)− v(x)|

v(x)
.

The surface average of δabs(v̂,v) (we denote it by ⟨δabs⟩) is known as the mean absolute percentage
error (or MAPE). As in Corbetta et al. (2019), we moreover realize the importance of analyzing
the smoothing algorithm in terms of nominal price error relative to the size of the bid-ask spread
s(x) = BS±(x, vask(x))− BS±(x, vbid(x)).6 We define

δspr(v̂(x), v(x)) =
2

s(x)

∣∣BS±(x, v̂(x))− BS±(x, v(x))
∣∣.

Since we use simple mid reference prices, δspr(v̂(x), v(x)) ≤ 1 indicates that the prediction v̂(x) for
the option x lies within the bid-ask spread.

Evaluation and Model Finetuning During production use, the GNO would be retrained regularly
using the most recent available data. We emulate this procedure during our evaluation of the bench-
mark metrics over the test dataset Dtest (containing the year 2021): Following the evaluation of the
first month’s test data, the GNO is trained for 10 epochs on the test data just reviewed, with each
mini-batch augmented by an equal amount of data from the training dataset Dtrain. We repeat this,
progressively incorporating an additional month of data, until the entire dataset Dtest is assessed.
This finetuning-evaluation procedure takes circa 1.8 GPU hours per month.

6vbid(x) and vask(x) are the implied volatilities corresponding to Bid and Ask option prices while BS± is
the Black-Scholes formula for Call (resp. Put) options for positive (resp. negative) log-moneyness values:

BS±(τ, k, v) =

{
Φ(d1(τ, k, v))− ekΦ(d2(τ, k, v)), k > 0

ekΦ(−d2(τ, k, v))− Φ(−d1(τ, k, v)), k ≤ 0
.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 4: Average spatial distribution of benchmark metrics and arbitrage terms over Dtest.

Analysis It is apparent from Figure 3 that our operator deep smoothing approach substantially
improves on SVI’s smoothing capabilities, with respect to both δabs and δspr.7 Our approach, with
monthly finetuning, smooths the volatility surface with a MAPE of around 0.5%, while SVI fluctu-
ates between 1% and 2%. The various figures in Appendix D illustrate the qualitative improvements
of our method versus SVI. Moreover, our approach appears highly competitive with Ackerer et al.
(2020), which performs instance-by-instance volatility smoothing using classical neural networks
and reports a MAPE of around 1% for synthetically generated data.8 We reenact its backtesting for
the period Jan-Apr 2018 using our method and summarize the results in Table 5 in Appendix C.5.9

An important fact to consider when analyzing Figure 3 is the historical tightening of the bid-ask
spread (displayed in the third row), driven by increases in competition on the S&P 500 option
market. This explains why δspr is very small early in the training dataset, both for operator deep
smoothing and SVI, while δabs is large: Wide spreads make δspr more lenient an error metric but
are accompanied by noisier prices, necessitating greater need for correction by the smoothing algo-
rithm, in turn captured by δabs.10 This argumentation extends to spikes in the spread, which indicate
periods of market stress, and then allows to explain spikes in δabs.

Complementary to Figure 3, Figure 4 resolves the error metrics as well as the terms controlling the
absence of arbitrage spatially, averaged over time. δabs tends to be larger on the Call side (positive
log-moneyness), in accordance with Call option’s noisier prices (Call options experience less trading
than Put options). Moreover, we discern that, on average, the smoothed surfaces are completely free
of arbitrage (indicated by non-negativity).

Generalization To test the generalization capabilities of our approach, we procure end-of-day
options data for the S&P 500 (SPX), the NASDAQ-100 (NDX), the Dow Jones Industrial Average
(DJX), and the Russell 2000 (RUT) for the month of January 2021 from the OptionMetrics Ivy DB
US database, accessed by us through the Wharton Research Data Services (WRDS). We evaluate the
trained operator on the data for the month of January 2021 (right after the training period on the S&P
500 intraday data), and report the average error metrics δabs and δspr as well as the average arbitrage
losses Lcal and Lbut in Table 1. Firstly, our method maintains its performance on end-of-day S&P
500 data, validating the soundness of our approach: While end-of-day data is slightly different from
intraday data, our method still yields small error metrics and arbitrage-free prices. Secondly, the
method generalizes well to other indices. We want to stress the fact that our operator has solely been
trained on intraday S&P 500 data. Its accurate and virtually arbitrage-free output on end-of-day data
of other indices is a strong indicator of the robustness of our approach. We provide further example
plots for these datasets in Appendix D.3.

7We produce the SVI benchmark as described in Section E.
8Compare Table 1 of Ackerer et al. (2020). We note that Ackerer et al. (2020) does not perform a similar

restriction of the domain of the volatility surface.
9We emphasize the following aspects. First, the backtest involves dropping half of input datapoints for each

surface, and our trained operator continues to perform accurate smoothing, a strong indicator of the robustness
of our approach with respect to subsampling of inputs afforded by neural operator’s discretization invariance.
Second, while Ackerer et al. (2020) requires to train 61 neural networks to perform the backtest once, our
operator approach enables us to run 25 repetitions in around two minutes on a consumer grade laptop CPU,
which is the average time that it takes Ackerer et al. (2020) to train one network.

10This is visually discernible from a comparison of Figure 8 and Figure 10.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 1: Average error metrics and arbitrage losses for end-of-day options data for US indices in
January 2021. The GNO has been trained solely on intraday S&P 500 data from before 2021.

SPX NDX DJX RUT

⟨δabs⟩ 0.00272 0.01057 0.01629 0.00885
⟨δspr⟩ 0.64423 1.53306 0.20736 1.03183
Lbut 6.41e-05 2.16e-04 1.61e-03 4.48e-06
Lcal 0.00000 0.00000 3.13e-08 0.00000

5 DISCUSSION

Summary We provide a novel method for implied volatility smoothing, resulting from an applica-
tion of our general operator deep smoothing approach for discretization-invariant data interpolation.
The approach leverages a graph neural operator to directly map given data – consistently across
size and spatial arrangement – to smoothed surfaces, transcending classical parametric smoothing
techniques. In the example of volatility smoothing, benefits include a massively simplified online
calibration process.

Learning from Large Datasets By moving the application of neural networks from the instance-
by-instance level (Ackerer et al., 2020) to the “operator level”, we leverage the information contained
in the entire training dataset for the smoothing of every single surface. In other words, our method
“unlocks” large historical options datasets for volatility smoothing. We argue that our substantial
outperformance against Ackerer et al. (2020) in the “Extrapolation-Test”-setting of the benchmark
detailed in Table 5 of Appendix C.5 owes to this circumstance.

Subsampling of Inputs The discretization-invariance of the GNO entails that our method is robust
with respect to subsampling of inputs. In practice, subsampling of inputs occurs in the context of
outlier removal. In the example of volatility smoothing, certain quotes may be determined spurious.
Simply removing anomalous datapoints from the input is compatible with our method (moreover,
we leverage this fact during operator training to improve generalization, compare Appendix C.3).

Compression Figure 3 makes the compression qualities of the operator deep smoothing approach
apparent: We compute the entire historical timeseries using a single GNO instance, with around
100 thousand parameters. Evaluating the SVI benchmark, on the other hand, requires 61454 model
instances (one per slice), or a total of 307270 parameters. A comparison with Ackerer et al. (2020),
which for each smoothed surface trains a new neural network of around 5085 parameters,11 is strik-
ing: Smoothing of the CBOE dataset 2012–2021 at its 20-minute interval frequency would require
more than 200 million parameters (more with rising frequency). At the same time, we expect our
GNO to perform accurate smoothing over the entire training period and beyond (with regular fine-
tuning), and our model instance remains fixed, even when moving to higher-frequency data.

Limitations and Perspectives Compared to ad-hoc volatility parametrizations like SVI, the oper-
ator deep smoothing approach loses interpretability of parameters, which for some practitioners may
be a stringent requirement. This disadvantage is generally shared by neural network based engineer-
ing solutions. Moreover, in some situations dimensionality reduction (even without interpretability
of parameters) may be a desirable additional feature that is not directly achieved by our operator
deep smoothing approach. Combining the VAE method (Bergeron et al., 2021) with our operator
deep smoothing approach could lead to further promising potential applications of neural opera-
tors. Huang et al. (2024) introduces neural mappings, which generalize neural operators to mixed
infinite-/finite-dimensionality for input or output spaces. This motivates a discretization-invariant
GNO-based encoder, fit to handle raw incoming market data, and a classical decoder to extend the
operator deep smoothing approach to a VAE-like architecture.

11Computed as the sum of 120 = 3 × 40 parameters for the input layer, three times 1640 = 41 × 40
parameters for the hidden layers, 41 parameters for the output layers, plus 4 additional parameters of the SSVI
prior and a scaling parameter.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY

Primarily, we ensure reproducibility by providing the codebase and model weights used to produce
all results in this paper as part of the supplementary material. The codebase includes the data pro-
cessing components, the GNO architecture, the loss functions, the error metrics, the production of
the SVI benchmark, the notebooks used to train and evaluate the models (including hyperparam-
eters and data splits), as well as the notebooks to produce the plots and tables in this paper. The
full reproduction of results on intraday data (in particular of Figure 3) is contingent on access to the
proprietary CBOE options data, which we are not allowed to provide. In fact, we have stripped the
codebase from intermediate benchmarking artifacts that would expose the proprietary data (which
some notebooks for the plots rely on). The dataset can be purchased from CBOE, but is expensive.
The OptionMetrics end-of-day options data for the suite of indices considered in the final paragraph
of Section 4, on the other hand, is more readily and freely available to researchers with subscriptions
via the Wharton Research Data Services (WRDS) platform. The provided code allows to directly
reproduce the experimental results, in particular, Table 1 and the plots in Appendix D.3. To do so,
one would need to download the data from WRDS, persist it at prespecified location detailed in
the codebase, and then run the respective notebooks, which automatically load the trained model
weights.

To avoid any unclarities in our technique, the Pytorch implementation of our general graph neural
operator architecture follows the mathematical definition given in Appendix B as closely as possible.
Moreover, the concrete steps undertaken as part of our experiments are detailed in Appendix C:

• Appendix C.1 gives a summary of the processing of the options data.
• The hyperparameter configuration of our model finally employed in our experiments is detailed

in Appendix C.2.
• The loss functions and their weights are explicitly defined in Appendix C.3.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

REFERENCES

Ackerer, D., Tagasovska, N., and Vatter, T. (2020). Deep smoothing of the implied volatility surface.
In Advances in NeurIPS, volume 33, pages 11552–11563.

Anandkumar, A., Azizzadenesheli, K., Bhattacharya, K., Kovachki, N., Li, Z., Liu, B., and Stuart,
A. (2020). Neural operator: Graph kernel network for partial differential equations. ICLR 2020
Workshop on Integration of Deep Neural Models and Differential Equations.

Baschetti, F., Bormetti, G., and Rossi, P. (2024). Deep calibration with random grids. Quantitative
Finance, pages 1–23.

Bergeron, M., Fung, N., Hull, J., and Poulos, Z. (2021). Variational autoencoders: A hands-off
approach to volatility. arXiv:2102.03945.

Cboe Global Markets, Inc. (2024). Cboe GLOBAL MARKETS REPORTS TRADING VOLUME
FOR DECEMBER AND FULL YEAR 2023. Technical report, Cboe Global Markets, Inc.

Chataigner, M., Crépey, S., and Dixon, M. (2020). Deep local volatility. Risks, 8(3):82.

Cont, R. and Vuletić, M. (2023). Simulation of Arbitrage-Free Implied Volatility Surfaces. Applied
Mathematical Finance, 30(2):94–121.

Corbetta, J., Cohort, P., Laachir, I., and Martini, C. (2019). Robust calibration and arbitrage-free
interpolation of SSVI slices. Decisions in Economics and Finance, 42(2):665–677.

Doherty, K., Almeida, I., and Popina, E. (2023). Options Are the Hottest Trade on Wall Street.
Bloomberg.com.

Fukasawa, M. (2012). The normalizing transformation of the implied volatility smile. Mathematical
Finance, 22(4):753–762.

Gatheral, J. (2004). A parsimonious arbitrage-free implied volatility parameterization with applica-
tion to the valuation of volatility derivatives. Presentation at Global Derivatives & Risk Manage-
ment, Madrid.

Gatheral, J. and Jacquier, A. (2014). Arbitrage-free SVI volatility surfaces. Quantitative Finance,
14(1):59–71.

Guo, G., Jacquier, A., Martini, C., and Neufcourt, L. (2016). Generalized arbitrage-free SVI volatil-
ity surfaces. SIAM Journal on Financial Mathematics, 7(1):619–641.

Hao, Z., Wang, Z., Su, H., Ying, C., Dong, Y., Liu, S., Cheng, Z., Song, J., and Zhu, J. (2023).
GNOT: A general neural operator transformer for operator learning. In International Conference
on Machine Learning, pages 12556–12569. PMLR.

Hendriks, S. and Martini, C. (2017). The extended SSVI volatility surface. SSRN 2971502.

Hernandez, A. (2016). Model calibration with neural networks. SSRN:2812140.

Horvath, B., Muguruza, A., and Tomas, M. (2021). Deep learning volatility: a deep neural net-
work perspective on pricing and calibration in (rough) volatility models. Quantitative Finance,
21(1):11–27.

Huang, D. Z., Nelsen, N. H., and Trautner, M. (2024). An operator learning perspective on
parameter-to-observable maps. arXiv:2402.06031.

Jäckel, P. (2015). Let’s be rational. Wilmott, 2015(75):40–53.

Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhattacharya, K., Stuart, A., and Anandkumar,
A. (2023). Neural operator: Learning maps between function spaces with applications to PDEs.
Journal of Machine Learning Research, 24(89):1–97.

Lanthaler, S., Li, Z., and Stuart, A. M. (2023). The nonlocal neural operator: Universal approxima-
tion. arXiv:2304.13221.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., and Anandkumar, A.
(2020). Fourier neural operator for parametric partial differential equations. arXiv:2010.08895.

Li, Z., Zheng, H., Kovachki, N., Jin, D., Chen, H., Liu, B., Azizzadenesheli, K., and Anandkumar,
A. (2021). Physics-informed neural operator for learning partial differential equations. ACM/JMS
Journal of Data Science.

Lingsch, L. E., Michelis, M. Y., de Bezenac, E., Perera, S. M., Katzschmann, R. K., and Mishra, S.
(2023). A structured matrix method for nonequispaced neural operators. arXiv:2305.19663.

Liu, S., Borovykh, A., Grzelak, L. A., and Oosterlee, C. W. (2019). A neural network-based frame-
work for financial model calibration. Journal of Mathematics in Industry, 9(1):9.

Lucic, V. (2021). Normalizing volatility transforms and parameterization of volatility smile.
SSRN:3835233.

Martini, C. and Mingone, A. (2022). No arbitrage SVI. SIAM Journal on Financial Mathematics,
13(1):227–261.

Martini, C. and Mingone, A. (2023). Refined analysis of the no-butterfly-arbitrage domain for SSVI
slices. Journal of Computational Finance, 27(2).

Mingone, A. (2022). No arbitrage global parametrization for the eSSVI volatility surface. Quanti-
tative Finance, 22(12):2205–2217.

Roper, M. (2010). Arbitrage free implied volatility surfaces. https://www.maths.usyd.
edu.au/u/pubs/publist/preprints/2010/roper-9.pdf.

Tran, A., Mathews, A., Xie, L., and Ong, C. S. (2021). Factorized Fourier neural operators.
arXiv:2111.13802.

Van Mieghem, L., Papapantoleon, A., and Papazoglou-Hennig, J. (2023). Machine learning for
option pricing: an empirical investigation of network architectures. arXiv:2307.07657.

Zheng, Y. (2018). Machine Learning and Option Implied Information. PhD Thesis, Imperial College
London.

13

https://www.maths.usyd.edu.au/u/pubs/publist/preprints/2010/roper-9.pdf
https://www.maths.usyd.edu.au/u/pubs/publist/preprints/2010/roper-9.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A NEURAL OPERATORS

We give a review of the kernel integral transform neural operator framework of Kovachki et al.
(2023), and expand in more detail on its graph neural operator.

Notation and Terms Let A and U be input and output space of an operator learning problem, as
introduced in Section 3.1. Then, A and U are Banach spaces of functions D → Rcin and D →
Rcout , respectively, where D is a (bounded) domain in Rd. The mathematical analysis of neural
operators in Kovachki et al. (2023) summarized hereafter, as well as the definition of universality
and discretization-invariance in Section 3.1, make use of the following terms and notations.

In the context of Kovachki et al. (2023), a domain is a bounded and connected open set that is
topologically regular (in the sense that it is the interior of its closure). A domain D is Lipschitz if its
boundary locally is the graph of a Lipschitz continuous function defined on an open ball of Rd−1.
An open ball – for any metric space X = (X , d) – is the set

BX (x, ε) = {y ∈ X : d(y, x) < ε}.

A discrete refinement of X is a nested sequence (πn) of discretizations of X (finite subsets of X),
such that for every ε > 0 there is N ∈ N such that {B(x, ε) : x ∈ πN} covers X .

We consider the space C(A,U) of continuous operators between A and U . C(A,U) is topologized
by uniform convergence on compact sets. With respect to this topology, a sequence (Fn)n∈N in
C(A,U) converges with limit F ∈ C(A,U), if, for every ε > 0 and every compact set K in A, it
holds

lim
n→∞

∥Fn − F∥∞,K = 0.

Here,
∥H∥∞,K = sup

a∈K
∥H(a)∥U , H ∈ C(A,U).

It is well known that this topology on C(A,U) is induced by the metric

ρ(F,G) =

∞∑
n=0

∥G− F∥∞,BC(A,U)(0,n)

1 ∨ ∥G− F∥∞,BC(A,U)(0,n)

, F,G,∈ C(A,U).

Therefore, the notion of density in C(A,U), as used to define universality of neural operators in
Section 3.1, is well defined.

A.1 KERNEL INTEGRAL NEURAL OPERATORS

Kernel Integral Transform Neural Operators and Universality A kernel integral transform
neural operator consists of the sequential application of:

1) A lifting layer

LP : [a : D → Rcin] 7→ [h0 : D → Rc0 , h0(x) = P(a(x))],

given by the pointwise application of a function P : Rcin → Rc0 .
2) The forward propagation through J neural operator layers L0, . . . , LJ−1:

[h0 : D → Rc0]
L07−−→ [h1 : D → Rc1]

L17−−→ . . .
LJ−17−−−→ [hJ−1 : D → RcJ];

each layer Lj operates as

hj+1(y) = σj

(
Wjhj(y) +

∫
D

κj(y, x)hj(x)dx+ bj(y)

)
, y ∈ D, (11)

where
• Wj ∈ Rcj+1×cj is a weight matrix applied pointwise,
• κj ∈ C(D × D,Rcj+1×cj) is a kernel function parametrizing the integral transform and

subject to integrability conditions,
• The bias term bj is itself a function from D to Rcj+1 ,

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

• σj is a classical neural network activation function.

3) A projection layer

LQ : [hJ : D → RcJ] 7→ [u : D → Rcout , u(x) = Q(hJ(x))],

given by the pointwise application of a function Q : RcJ → Rcout .

In practice, all components (lifting, kernel functions, projection) are implemented as classical feed-
forward neural networks (FFNs). This neural operator architecture is universal in the following
sense.

Theorem A.1 (Universal Approximation; Theorem 11 of Kovachki et al. (2023)). Let D be a
(bounded) Lipschitz domain. Assume:

• A = W k1,p1(D) for k ∈ N≥0 and 1 ≤ p1 < ∞, or A = C(D).

• U = W k2,p2(D) for k ∈ N≥0 and 1 ≤ p2 < ∞, or U = C(D).

Then, a subset of kernel integral neural operators, with kernel functions and bias functions taken
from a suitable set of FNNs, is dense in C(A,U).

Discretization-Invariant Implementations Consider a neural operator F θ and let π = {xl}pl=1

be a discretization of D. To make sense of a basic discretization-invariant implementation for F θ,
associate with π a partition (D1, . . . , Dp) of D for which λd(Dl) > 0 and xl ∈ Dl for l = 1, . . . , p.
Here λd denotes the Lebesgue measure on Rd. Consider the following implementation of F θ (writ-
ten in terms of a single constituent layer L = (W,κ, b, σ)):

L̃(h|π)(y) = σ

(
Wh(y) +

p∑
l=1

κ(y, xl)h(xl)λd(Dl) + b(y)

)
, y ∈ D. (12)

Kovachki et al. (2023) establishes the following.

Theorem A.2 (Discretization Invariance; Theorem 8 of Kovachki et al. (2023)). Let F θ : A → U
be a kernel integral neural operator, where A and U both continuously embed into C(D). Then, the
implementation of F θ based on equation 12 is discretization-invariant as defined in Section 3.1.

equation 12 suggests the straightforward (quasi) Monte-Carlo inspired implementation

L̃(h|π)(y) = σ

(
Wh(y) +

λd(D)

|π|
∑
x∈π

κ(y, x)h(x) + b(y)

)
, y ∈ D. (13)

Most effectively, π is a low-discrepancy sequence in D.

A.2 GRAPH NEURAL OPERATORS

The curse of dimensionality makes the direct implementation equation 13 prohibitively expensive
in practice. Instead, Anandkumar et al. (2020) introduces graph neural operators (or, GNOs, for
short) which replace the kernel integral operation at the heart of the framework by a sum ap-
proximation and organizes the constituent terms using a directed graph structure: The discretiza-
tion π = {x1, . . . , xm} of the input data h = h|π is enriched with a directed graph structure
Gh = (V,E), allowing the following implementation F̃ θ of F θ:

L̃(h|π)(y) = σ

Wh(y) +
1

|Nin(y)|
∑

x∈Nin(y)

κ(y, x)h(x) + b(y)

 , y ∈ V. (14)

Here, Nin(y) is the set of so-called in-neighbors of y in the graph Gh: x ∈ Nin(y) iff (x, y) ∈ E. It
is clear that, to compute output at y, the point y must be included as a node into the graph Gh. On
the other hand, it is necessary to drop the local linear transformation with W if y is not part of the
input data locations π (compare our discussion in 3). It is important to reconcile the input and output

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

locations of the layers when creating the graph structure to enable an efficient implementation using
message passing algorithms.

The graph structure can be meticulously adjusted to implement various complexity-reducing tech-
niques like Nyström approximation or integration domain truncation that effectively aim at a sys-
tematic reduction of the size of Nin(y); the naive implementation equation 12 is recovered for the
case of a complete directed graph (with self-loops) for which Nin(y) = π. Note that choosing Nin(y)
as a strict subset of π breaks the guaranteed smoothness in the GNO output.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B INTERPOLATION GRAPH NEURAL OPERATOR

We detail our modifications of the GNO architecture.

Let v = {v(x)}x∈π be the given data.

Graph Construction Arguably part of the model architecture is the graph construction: Compile
the set πout = {yl}ql=0 of points y ∈ D at which to compute the smoothed surface v̂(y). During
operator training, this will be the set of input locations (to compute the fitting loss) as well as
any additional locations needed to compute auxiliary loss terms (the arbitrage losses Lbut(θ,v)) and
Lcal(θ,v) in the case of volatility smoothing). For each y ∈ πout, we construct the set of in-neighbors
from the set of input data locations:

Nin(y) ⊆ πin. (15)
In other words, we employ a Nyström approximation with nodes limited to the input data locations.
This is an important prerequisite to enable the use of the GNO architecture for interpolation tasks
(or, more generally phrased, allows us to employ kernel functions with input skip connections). We
set Gv = (πout, E), where

E =
⋃

y∈πout

{(x, y) : x ∈ Nin(y)}.

Forward Propagation Given Gv, we perform the first step of the forward propagation as follows:h̃0(x) = P0(v(x)), x ∈ πin

h1(y) = (σ0 ◦ Q0)
(
K(h̃0;v)(y) + b0

)
, y ∈ πout.

For the subsequent layers j = 1, . . . , J − 1, we then proceed using the classical scheme: h̃j(y) = Pj(hj(y)),

hj+1(y) = (σj ◦ Qj)
(
Wj h̃j(y) +Kj(h̃j ;v)(y) + bj

) , y ∈ πout.

In the above:

• Pj : Rcj → Rc̃j and Qj : Rc̃j+1 → Rcj+1 are layer-individual lifting and projection, in view of
A.1 implemented simply as FNNs.

• Wj ∈ Rc̃j+1×c̃j is a weight matrix (not present for j = 0), while bj ∈ Rc̃j+1 is a constant bias
term.

• Kj is the sum approximation of the kernel integral with kernel weight function κW
j : D2×Rc̃j ×

Rc0 → Rc̃j+1×c̃j and kernel bias function κb
j : D

2 × Rc̃j × Rc0 → Rc̃j+1 (both with state and
input skip connections):

Kj(h̃j ;v)(y) =
1

|Nin(y)|
∑

x∈Nin(y)

κW
j (y, x, h̃j(x); v(x))h̃j(x) + κb

j(y, x, h̃j(x); v(x)).

Both κW
j and κb

j are implemented as FNNs in our case, again to satisfy the requirements of A.1
and to keep things simple.

Note that omitting the local linear transformation in the first layer allows to extract the fist hidden
state h1(y) for all y ∈ πout from the lifted input h̃0, which is defined solely for the input locations x ∈
πin. Providing each layer with its own lifting and projection allows to separate the hidden channel
size c0, . . . , cJ from the the dimensions c̃0, . . . , c̃J of the space in which the integral transformation
is performed. Moreover, the individual lifting and projection help re-parametrize the state before
performing the integral transform (inspired by the succesful Transformer architecture), which allows
to keep the size of the kernel weight matrix low.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C SUPPLEMENTARY INFORMATION: DATA, MODEL, TRAINING,
EVALUATION

This section contains additional information regarding our empirical study of the operator deep
smoothing method for implied volatility smoothing.

C.1 DATA

Data Source Our numerical experiments are based on the “Option Quotes” dataset product avail-
able for purchase from the CBOE. Our version of the dataset contains relevant data features for S&P
500 Index options for the years 2012 through 2021 and is summarized on a 20-minute interval basis.

Data Preparation We compute simple mids for options and underlying by averaging bid and
ask quotes and use this aggregate as a reference price for all our subsequent computations. We
calculate discount factors and forward prices from Put-Call parity using the industry standard tech-
nique based on linear regression. We compute time-to-expiry in units of one year as well as log-
moneyness as defined in Section 2. We extract implied volatilities using the py-vollib-vectorized
project available in the Python Package Index at the location https://pypi.org/project/
py-vollib-vectorized/. py-vollib-vectorized implements a vectorized version of Jäckel
(2015)’s Let’s-be-rational state-of-the-art method for computing implied volatility. We discard all
implied volatilities of in-the-money options, or, in other words, we compose our implied volatil-
ity surface from Put options for non-positive log-moneyness values and Call options for positive
log-moneyness values.

C.2 MODEL

We proceed to detail the hyperparameter configuration of the modified GNO architecture introduced
in Appendix B.

The Choice of In-Neighborhoods The construction of the in-neighborhood sets for the graph
neural operator is a crucial hyperparameter choice, fundamentally dictating the computation routes
(and thus complexity) of the forward pass of the model. We already explained in Appendix B that we
employ a Nyström approximation with subsampling from the input data nodes, to unlock the GNO
for interpolation tasks. Additionally, we employ truncation. Truncation limits the spatial extent
of the in-neighborhoods and is a way to incorporate information about the locality structure of the
learning task at hand directly into the graph neural operator architecture. Since implied volatility
smoothing requires limited global informational exchange along the time-to-expiry axis, we impose
the following restriction on the in-neighborhood sets Nin(y):

Nin(y) ⊆ Nin(y), (16)

where
Nin(ρy, zy) = {(ρl, zl) ∈ π : |ρl − ρy| ≤ ρ}

is the set of all available options (ρl, zl) contained in the slices with a time-to-expiry ρl close than ρ̄
to the time-to-expiry ρy of y. We explain our reasoning more precisely:

• The input data for volatility smoothing is not arbitrarily scattered over the (ρ, z)-domain, but
arranged as dense z-slices that are sparseley distributed along the ρ-axis (three examples are
pictured in Figure 1(b)). Condition 2.1(i) of Theorem 2.1 imposes monotonicity of the output
surface along the time-to-expiry axis. This constraint is inherently “local”: To generate a com-
pliant output surface, it is sufficient for the hidden states at a given output location to receive
information from their immediate neighboring slices.12 We computed the maximum distance
(with respect to ρ-coordinates) between slices over our entire dataset as ∆maxρ ≈ 0.269, which
is thus established as a lower bound for ρ̄, and finally explains our choice ρ̄ = 0.3. We note
that – because we use three hidden GNO layers (see below) – the domain of influence of each
input point finally is unrestricted: The compositional structure allows information to travel slice
to slice in steps of length ρ̄ = 0.3, which amounts to a total distance of 4 × 0.3 = 1.2. This

12A collection of slices that is monotonously increasing in pairs is montonously increasing as a whole.

18

https://pypi.org/project/py-vollib-vectorized/
https://pypi.org/project/py-vollib-vectorized/

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

exceeds the size of the considered domain D = (ρmin, ρmax)× (zmin, zmax) in the direction of the
ρ-axis. It is therefore not motivated to increase the level of ρ̄.

• We do not perform a similar truncation in the direction of the log-moneyness axis. In particular,
this allows all points in any given slice to connect with each other indiscriminately, which in view
of the nonlinear shape constraint 2.1(ii) of Theorem 2.1 is motivated. Moreover, such truncation
would limit extrapolation distance in z-direction.

To concretely compute Nin(y) for given y on the basis of equation 16, we employ the following
low-discrepancy subsampling heuristic, parametrized by the hyperparameter K: First, we compute
Nin(y) and convert it to a sequence by sorting it by two-dimensional Euclidean distance to y in
ascending order. Of this sequence we take every k-th element, where k is the largest step size
such that the final number of nodes Nin(y) does not exceed K. This gives us Nin(y). Note that,
by sorting Nin(y) and performing a “sparse” selection, we promote low-discrepancy properties for
Nin(y), which intuitively aid the convergence properties of the kernel integrals.

The hyperparameter K, finally, constitutes an upper bound on the size of the Nin(y). It allows us to
control the computational complexity of the model, in a trade-off, of course, with the expressivity
of the GNO. After manual experimentation, we settle on a value of K = 50 and perform an ablation
study in Appendix C.6 to validate our choice.

GNO Layers and Kernels The below choices amount to a total number of 102529 trainable pa-
rameters.

• We employ three hidden layers and a channel size of 16: J = 4, and c1, c2, c3 = 16 (c0 and
cJ are determined as 1 by the scalar dimension of volatility data). We use GELU-activations for
the hidden layers and a Softplus-activation for the output layer (to ensure the positivity of the
smoothed surfaces): σ0, . . . , σJ−1 = GELU, and σJ = Softplus.

• We retain P0, . . . ,PJ−1 and QJ as single-hidden layer FNNs with 64 hidden nodes and GELU-
activations for the hidden layers. The remaining lifting and projections remain unutilized. In
particular, c̃0, . . . , c̃J = 16.

• We implement the kernel weight and bias functions as two-hidden layer FNNs with 64 hidden
nodes and GELU-activations for the hidden layers.

C.3 TRAINING

Loss Function To ease notation we write v̂θ = F̃ θ(v). We implement a Vega-weighted version
of the fitting loss equation 8:

Lfit(θ;v) =

(
1

|πv|
∑
x∈πv

wV(x;v)
∣∣(v̂θ(x)− v(x))/v(x)

∣∣2)1/2

.

Here,

wV(x;v) =
V(x, v(x))

1
|π|
∑

x∈π V(x, v(x))
∨ 1,

where V(x, v(x)) is the Black-Scholes Vega, the sensitivity of the Black-Scholes option price with
respect to its volatility parameter:

V(ρ, z, v) = ∂vBS(τ, k, v) = φ(d1(τ, k, v))
√
τ . (17)

For the implementation of the no-arbitrage penalization terms Lbut and Lcal, we first generate dis-
cretizations πρ = {ρ1, . . . , ρm} and πz = {z1, . . . , zn} of [ρmin, ρmax] and [zmin, zmax]. We resolve
the derivative terms ∂zv

θ and ∂2
zv

θ on the synthetic rectilinear grid π = πρ × πz using (central)
finite differences. Then, we translate Lbut directly from equation 9 as

Lbut(θ;v, π) =
1

|π|
∑
x∈π

(
But(x; ṽθ(x),∆z,π ṽ

θ(x),∆2
z,π ṽ

θ(x))− ε
)−

,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

where But is made consistent with the transformed coordinates and we used obvious notation for
the finite differences. We use ε = 10−3. On the other hand, we enforce the monotonicity constraint
of Theorem 2.1 using

Lcal(θ;v, πρ, πz) =
1

mn

m∑
i=1

n∑
j=1

(
ṽθ(ρi+1, zj)

ṽθ(ρi, (ρi+1zj)/ρi)
− ρi

ρi+1
− ε

)−

.

Compared to a derivative based implementation, this implementation is independent of the scale and
– in our empirical experiments – has provided an improved signal. Since the Nyström approximation
employed by the graph neural operator (as well as the choice equation 16) break the guaranteed
smoothness of the operator output, we additionally introduce ∥∂2

ρ v̂
θ∥2 and ∥∂2

z v̂
θ∥2 as regularization

terms:

Lreg-ρ(θ;v, π) =

√
1

|π|
∑
x∈π

|∆2
ρ,π ṽ

θ(x)|2, Lreg-z(θ;v, π) =

√
1

|π|
∑
x∈π

|∆2
z,π ṽ

θ(x)|2.

We compose the final loss function as a weighted sum of all terms introduced:

L(θ;v, πρ, πz) =
∑



λfitLfit(θ;v),

λbutLbut(θ;v, πρ × πz),

λcalLcal(θ;v, πρ, πz),

λreg-ρLreg-ρ(θ;v, πρ × πz),

λreg-zLreg-z(θ;v, πρ × πz).

The specific weights are

λfit λcal λbut λreg-ρ λreg-z

1 10 10 0.01 0.01

The particular weighting of the individual terms has initially been retrieved by manual experimen-
tation, led by the findings of Ackerer et al. (2020). To additionally validate our choices, we perform
an ablation study in Appendix C.7.

Validation Loss Table 2 displays descriptive statistics of the validation losses.

Table 2: Validation loss.

mean std 1% 25% 50% 75% 99%

L 0.0591 0.0807 0.0351 0.0450 0.0506 0.0578 0.1489
Lfit 0.0182 0.0182 0.0066 0.0121 0.0162 0.0203 0.0479
Lbut 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Lcal 0.0001 0.0006 0.0000 0.0000 0.0000 0.0000 0.0001
Lreg-r 0.8567 2.4065 0.3280 0.4702 0.5788 0.7703 2.7578
Lreg-z 0.7610 0.1403 0.4815 0.6488 0.7590 0.8679 1.0812

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

C.4 EVALUATION

Here we provide additional results to supplement our performance evaluation. Table 3 and Table 4
display descriptive statistics of our approach (OpDS) versus SVI. OpDS* refers to benchmarking
without monthly finetuning. Moreover, we include Figure 5 and Figure 7, which have been created
just like Figure 3 and Figure 4 but without monthly finetuning (OpDS*). Finally, Figure 6 shows
the average spatial distribution of benchmark metrics and arbitrage term over the training dataset,
which complements the same averages on the test dataset shown in Figure 4.

Table 3: Descriptive statistics for surface-MAPE’s ⟨δabs⟩ over Dval/Dtest.

mean std 1% 25% 50% 75% 99%

OpDS 0.009/0.005 0.007/0.001 0.003/0.003 0.006/0.004 0.008/0.005 0.010/0.005 0.021/0.007
OpDS* 0.009/0.007 0.007/0.001 0.003/0.003 0.006/0.07 0.008/0.007 0.010/0.008 0.021/0.012
SVI 0.021/0.015 0.006/0.002 0.007/0.010 0.016/0.013 0.020/0.014 0.025/0.016 0.034/0.020

Table 4: Descriptive statistics for surface-averages ⟨δspr⟩ over Dval/Dtest.

mean std 1% 25% 50% 75% 99%

OpDS 0.479/1.265 0.662/0.347 0.193/0.609 0.274/1.025 0.330/1.240 0.550/1.451 1.526/2.453
OpDS* 0.479/1.866 0.662/0.574 0.193/0.731 0.274/1.457 0.330/1.826 0.550/2.233 1.526/3.445
SVI 1.124/3.382 0.877/0.826 0.301/1.464 0.492/2.827 0.715/3.320 1.646/3.914 3.710/5.247

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 5: OpDS*: Benchmark metrics (surface-averages, between quartiles Q1 and Q3) over train-
ing period (computed from validation dataset, resampled monthly) and testing period (resampled
every two days).

Figure 6: OpDS: Average spatial distribution of benchmark metrics and arbitrage term over train
dataset.

Figure 7: OpDS*: Average spatial distribution of benchmark metrics and arbitrage terms over test
dataset (non-finetuned model).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

C.5 COMPARISON TO CLASSICAL NEURAL NETWORKS

We reproduce the experiment underlying Table 1 of Ackerer et al. (2020) using our operator deep
smoothing approach. Given observed option quotes, it involves dropping 50% of datapoints, and
then measuring the MAPE of the smoothed surface at retained datapoints (“Train”) as well as
dropped datapoints (“Test”). “Interpolate” and “Extrapolate” are different settings dictating how
exactly the datapoints which to drop are selected (for details refer to Ackerer et al. (2020)). The
experiment is performed on end-of-day S&P 500 data in the period from January to April 2018 and
averaged percentiles are reported. Table 5 reproduces the relevant row of Table 1 of Ackerer et al.
(2020) (“DS”) as well as our results averaged over 25 repetitions (“OpDS”).

Table 5: Backtesting results (⟨δabs⟩, i.e. MAPE) of Operator Deep Smoothing vs. Deep Smoothing
(“DS”; taken from [2]); quantiles in %, Jan-Apr 2018 end-of-day SPX data.

Interpolation Extrapolation

Train Test Train Test

λ q05 q50 q95 q05 q50 q95 q05 q50 q95 q05 q50 q95

OpDS 10 0.5 0.7 1.0 0.5 0.7 1.1 0.5 0.7 1.0 0.7 0.9 1.3
DS 10 0.5 0.7 1.2 0.5 0.8 1.2 0.4 0.6 0.9 1.2 1.7 2.4

C.6 ABLATION: NYSTRÖM APPROXIMATION

We explore the impact of our hyperparameter choice K = 50 introduced in Appendix C.2, control-
ling the size of the Nyström approximation of the integral kernels. We perform an ablation study by
resuming training of our trained GNO for the additional values for K = 3, 5, 10, 20, 30, 40 as well
as K = 60, 70. We focus on the data D2018 of the period Jan-Apr 2018, and perform two additional
training runs starting from our final GNO-checkpoint (trained for 500 epochs on Dtrain) as follows:

• 20 epochs each for K = 40, 30, 20, 10, 5, 3, in this order. We plan to understand how low K can
be for our method to still produce meaningful results.

• 20 epochs each for K = 60, 70, in this order. We plan to understand how much additional
information the GNO can extract by increasing the value of K.

Descriptive statistics for losses and evaluation metrics over D2018 itself are printed in Table 6 and
Table 7. We can read from Table 7 that increasing K does not significantly improve performance for
either δfit or δspr. The mean values for both metrics remain relatively stable for K > 50, suggesting
diminishing returns with larger K (or, in view of the slightly increasing tendency, the need for
additional training). On the other hand, reducing K below its original value of 50 leads to gradual
degradation in performance. It is expected that very small K-values, especially K < 10, result in
substantially poorer performance, but it is noteworthy that the progression is quite graceful. Table 6
paints a similar picture for the fitting loss term Lfit, while the auxiliary loss terms slightly increase as
K incrases. We argue that the increased expressivity awarded by larger values of K leads to slightly
more irregular surfaces, and thus to slightly increased arbitrage loss terms. Finally, we argue that
our choice of K = 50 is validated, where decreasing K is a reasonable strategy when computational
resources are scarce and accuracy requirements are not too stringent.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 6: Loss terms over D2018 for different values of K, after training for 20 additional epochs on
D2018.

mean std 1% 25% 50% 75% 99%

L 3 0.1113 0.0934 0.0577 0.0819 0.0978 0.1174 0.3771
5 0.1008 0.1022 0.0499 0.0714 0.0849 0.1018 0.3074
10 0.0914 0.1220 0.0412 0.0635 0.0742 0.0885 0.2739
20 0.0854 0.1484 0.0371 0.0580 0.0669 0.0799 0.2802
30 0.0852 0.1834 0.0360 0.0561 0.0650 0.0776 0.2916
40 0.0890 0.2341 0.0367 0.0561 0.0647 0.0779 0.3511
50 0.0906 0.2416 0.0388 0.0564 0.0644 0.0782 0.4900
60 0.0930 0.2956 0.0371 0.0555 0.0644 0.0773 0.5752
70 0.0889 0.2293 0.0371 0.0556 0.0642 0.0773 0.4404

Lfit 3 0.0639 0.0346 0.0237 0.0462 0.0575 0.0739 0.2017
5 0.0484 0.0243 0.0195 0.0369 0.0466 0.0557 0.1428
10 0.0354 0.0188 0.0132 0.0283 0.0340 0.0402 0.0681
20 0.0264 0.0168 0.0102 0.0202 0.0245 0.0294 0.0638
30 0.0234 0.0167 0.0088 0.0171 0.0215 0.0258 0.0785
40 0.0220 0.0169 0.0084 0.0157 0.0200 0.0238 0.0963
50 0.0207 0.0174 0.0084 0.0147 0.0183 0.0221 0.1122
60 0.0215 0.0186 0.0083 0.0150 0.0192 0.0230 0.1236
70 0.0217 0.0181 0.0081 0.0152 0.0195 0.0234 0.1218

Lbut 3 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0001
5 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000
10 0.0002 0.0035 0.0000 0.0000 0.0000 0.0000 0.0001
20 0.0003 0.0079 0.0000 0.0000 0.0000 0.0000 0.0000
30 0.0005 0.0117 0.0000 0.0000 0.0000 0.0000 0.0001
40 0.0008 0.0163 0.0000 0.0000 0.0000 0.0000 0.0002
50 0.0009 0.0168 0.0000 0.0000 0.0000 0.0000 0.0010
60 0.0012 0.0216 0.0000 0.0000 0.0000 0.0000 0.0004
70 0.0008 0.0155 0.0000 0.0000 0.0000 0.0000 0.0005

Lcal 3 0.0000 0.0006 0.0000 0.0000 0.0000 0.0000 0.0001
5 0.0001 0.0006 0.0000 0.0000 0.0000 0.0000 0.0001
10 0.0001 0.0007 0.0000 0.0000 0.0000 0.0000 0.0000
20 0.0001 0.0007 0.0000 0.0000 0.0000 0.0000 0.0001
30 0.0001 0.0007 0.0000 0.0000 0.0000 0.0000 0.0003
40 0.0001 0.0007 0.0000 0.0000 0.0000 0.0000 0.0004
50 0.0001 0.0008 0.0000 0.0000 0.0000 0.0000 0.0005
60 0.0001 0.0008 0.0000 0.0000 0.0000 0.0000 0.0009
70 0.0001 0.0008 0.0000 0.0000 0.0000 0.0000 0.0009

Lreg-ρ 3 1.1568 2.4882 0.3534 0.5468 0.6905 1.0271 6.9051
5 1.3544 3.0528 0.3823 0.5419 0.7105 1.1629 8.1210
10 1.4194 3.3473 0.3897 0.5763 0.8204 1.2643 8.6570
20 1.4614 3.2880 0.3676 0.6552 0.8875 1.3222 9.0101
30 1.5008 3.3752 0.3790 0.7009 0.9327 1.3734 8.8143
40 1.5716 3.5193 0.4026 0.7334 0.9835 1.4533 9.2937
50 1.5256 3.5376 0.4661 0.7785 1.0336 1.4189 9.2313
60 1.5924 3.6494 0.4175 0.7514 1.0053 1.4776 9.4071
70 1.5610 3.4815 0.3999 0.7508 0.9877 1.4551 8.8669

Lreg-z 3 0.7183 0.0900 0.4913 0.6589 0.7346 0.7832 0.8723
5 0.7134 0.0788 0.5375 0.6597 0.7193 0.7649 0.8887
10 0.7240 0.0773 0.5572 0.6623 0.7260 0.7773 0.8966
20 0.7413 0.1010 0.5583 0.6585 0.7384 0.8171 0.9738
30 0.7476 0.1177 0.5362 0.6563 0.7420 0.8326 1.0086
40 0.7545 0.1404 0.5280 0.6516 0.7467 0.8425 1.0482
50 0.7616 0.1523 0.5270 0.6533 0.7586 0.8520 1.0745
60 0.7593 0.1647 0.5255 0.6517 0.7542 0.8463 1.0617
70 0.7624 0.1489 0.5286 0.6538 0.7585 0.8552 1.0720

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 7: Evaluation metrics over D2018 for different values of K, after training for 20 additional
epochs on D2018.

K mean std 1% 25% 50% 75% 99%

⟨δabs⟩ 3 0.0414 0.0232 0.0159 0.0289 0.0376 0.0473 0.1427
5 0.0323 0.0140 0.0127 0.0242 0.0310 0.0379 0.0898
10 0.0230 0.0093 0.0081 0.0178 0.0221 0.0270 0.0500
20 0.0166 0.0078 0.0064 0.0127 0.0156 0.0194 0.0473
30 0.0145 0.0079 0.0053 0.0106 0.0135 0.0169 0.0529
40 0.0135 0.0083 0.0051 0.0098 0.0126 0.0152 0.0562
50 0.0127 0.0087 0.0050 0.0092 0.0116 0.0138 0.0571
60 0.0132 0.0101 0.0048 0.0093 0.0120 0.0145 0.0628
70 0.0133 0.0095 0.0048 0.0093 0.0121 0.0148 0.0622

⟨δspr⟩ 3 3.7755 4.9387 0.8977 1.4838 2.0117 3.2423 24.8441
5 2.7120 3.3901 0.6315 1.1012 1.4551 2.4550 18.7650
10 1.8229 2.4049 0.4316 0.7320 0.9282 1.7497 12.9783
20 1.2243 1.6054 0.3171 0.4991 0.6227 1.1353 7.7893
30 0.9980 1.2846 0.2787 0.4229 0.5180 0.9376 5.6118
40 0.9307 1.2340 0.2742 0.3907 0.4768 0.8775 5.1398
50 0.8634 1.1477 0.2627 0.3639 0.4356 0.8218 4.4631
60 0.9012 1.2789 0.2647 0.3710 0.4483 0.8584 5.2339
70 0.9038 1.2559 0.2607 0.3773 0.4570 0.8498 5.2972

C.7 ABLATION: WEIGHTING OF ARBITRAGE PENALTIES

To assess the impact of weighting of the arbitrage penalties in the loss function, we perform the
following experiment: We resume training of our trained GNO for 20 additional epochs on the
full training dataset Dtrain, varying the weights λcal and λfit of Lcal and Lbut. More precisely, we
equally weight both terms Lcal and Lbut at the values λarb = 0, 1, 10, 100, 1000, 10000 (we include
the original value λarb = 10 to maintain a fair baseline). We start each training run from our final
GNO-checkpoint (trained for 500 epochs on Dtrain with λarb = 10). The results are reported in
Table 8 and Table 9, and we make the following observations:

• The particular choices λarb affect the achieved loss terms in the expected ways. For a value of
λarb > 10 all traces of the arbitrage penalties vanish from the table. At the same time, however,
accuracy (as measured by Lfit, δabs, and δrel) suffers. For choices λarb < 10, it is possible to
read a non-zero average for the calendar loss from the table. For λarb = 1000 and λarb. At the
same time, however, accuracy (as measured by Lfit, δabs, δrel) suffers. Our choice λarb = 10 is
validated: λarb = 1 or even λarb = 0 do not seem to unlock substantial additional accuracy of the
GNO. If there is a small effect, it comes at a cost of increased arbitrage in the smoothed surfaces,
as measured by Lcal and Lbut.

• λcal has a counter-regularizing effect in ρ-direction, and we suspect overfitting of the monotonic-
ity constraint. Lbut, instead, remains stable for all values. Practitioners will be aware that the
calendar arbitrage constraint is usually more demanding than the butterfly arbitrage constraint.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 8: Loss terms over Dval for different values of λarb, after training for 20 additional epochs on
Dtrain.

λarb mean std 1% 25% 50% 75% 99%

L 0 0.0577 0.0750 0.0341 0.0441 0.0499 0.0567 0.1312
1 0.0575 0.0733 0.0344 0.0441 0.0497 0.0568 0.1375
10 0.0583 0.0774 0.0351 0.0446 0.0501 0.0573 0.1452
100 0.0581 0.0599 0.0352 0.0456 0.0511 0.0580 0.1358
1000 0.0617 0.0658 0.0380 0.0480 0.0535 0.0609 0.1474
10000 0.1304 0.0802 0.0825 0.1023 0.1148 0.1381 0.2793

Lfit 0 0.0180 0.0181 0.0066 0.0118 0.0160 0.0202 0.0457
1 0.0181 0.0182 0.0063 0.0118 0.0162 0.0202 0.0435
10 0.0182 0.0181 0.0065 0.0120 0.0164 0.0204 0.0469
100 0.0195 0.0315 0.0069 0.0123 0.0165 0.0206 0.0497
1000 0.0225 0.0479 0.0088 0.0136 0.0177 0.0218 0.0529
10000 0.0603 0.0669 0.0287 0.0401 0.0474 0.0652 0.1369

Lbut 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001
10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
100 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Lcal 0 0.0001 0.0006 0.0000 0.0000 0.0000 0.0000 0.0001
1 0.0001 0.0006 0.0000 0.0000 0.0000 0.0000 0.0001
10 0.0000 0.0006 0.0000 0.0000 0.0000 0.0000 0.0001
100 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000
1000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Lreg-ρ 0 0.8019 2.1876 0.3091 0.4490 0.5489 0.7329 2.8897
1 0.7925 2.1203 0.3102 0.4410 0.5395 0.7268 2.9587
10 0.8236 2.2886 0.3301 0.4578 0.5573 0.7476 2.6687
100 0.7756 1.2831 0.3332 0.4866 0.5858 0.7758 3.4684
1000 0.8216 0.8114 0.3927 0.5394 0.6450 0.8389 3.5378
10000 2.0534 0.7765 1.2892 1.6319 1.8667 2.2504 5.5746

Lreg-z 0 0.7621 0.1394 0.4876 0.6498 0.7599 0.8690 1.0786
1 0.7633 0.1390 0.4876 0.6506 0.7596 0.8695 1.0829
10 0.7572 0.1379 0.4793 0.6477 0.7529 0.8619 1.0702
100 0.7596 0.1409 0.4909 0.6512 0.7554 0.8649 1.0812
1000 0.7467 0.1339 0.4903 0.6442 0.7414 0.8494 1.0558
10000 0.7507 0.1462 0.5013 0.6365 0.7422 0.8278 1.1014

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 9: Evaluation metrics over Dval for different values of λarb, after training for 20 additional
epochs on Dtrain.

mean std 1% 25% 50% 75% 99%

⟨δabs⟩ 0 0.0108 0.0097 0.0045 0.0073 0.0098 0.0122 0.0265
1 0.0109 0.0100 0.0042 0.0071 0.0098 0.0122 0.0262
10 0.0110 0.0091 0.0044 0.0073 0.0101 0.0125 0.0260
100 0.0121 0.0217 0.0046 0.0074 0.0101 0.0125 0.0276
1000 0.0139 0.0291 0.0057 0.0086 0.0109 0.0134 0.0302
10000 0.0388 0.0360 0.0182 0.0265 0.0315 0.0419 0.0923

⟨δspr⟩ 0 0.6138 1.0777 0.2218 0.3130 0.3728 0.7277 1.9947
1 0.6039 1.0790 0.2221 0.3062 0.3685 0.7026 1.9557
10 0.6186 1.0552 0.2200 0.3080 0.3775 0.7475 2.1704
100 0.7241 2.7257 0.2227 0.3137 0.3797 0.7378 2.4623
1000 0.9303 4.1817 0.2399 0.3480 0.4265 0.9299 2.8245
10000 3.1238 7.3292 0.5128 0.8566 1.3404 3.6653 14.2364

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

D ADDITIONAL PLOTS

D.1 EXAMPLE PLOTS

We plot the results of operator deep smoothing (OpDS) vs. SVI on example inputs. To aid the visual
clarity of our plots, we display only every third market datapoint.

Figure 8: Smoothing of quotes v ∈ Dval from 20.07.2012 at 10:50:00.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Figure 9: Smoothing of quotes v ∈ Dval from 21.10.2016 at 13:10:00.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Figure 10: Smoothing of quotes v ∈ Dtrain from 04.01.2021 at 10:50:00.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

D.2 MONTHLY BREAKDOWN OF SPATIAL DISTRIBUTIONS OF BENCHMARK METRICS ON
TEST DATASET

Figure 11: Average spatial distribution of δabs on Dtest for OpDS with monthly finetuning, per month.
Blank cells indicate that no data was available for the particular region in the respective month.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Figure 12: Average spatial distribution of δfit on Dtest for OpDS with monthly finetuning, per month.
Blank cells indicate that no data was available for the particular region in the respective month.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

D.3 EXAMPLE PLOTS: OPTION METRICS END-OF-DAY US INDEX OPTIONS DATA

Figure 13: Smoothing of SPX end-of-day data from 07.01.2021. Every third datapoint displayed.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Figure 14: Smoothing of NDX end-of-day data from 07.01.2021. Every second datapoint displayed.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Figure 15: Smoothing of DJX end-of-day data from 07.01.2021. Every datapoint displayed.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Figure 16: Smoothing of RUT end-of-day data from 07.01.2021. Every datapoint displayed.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

E SVI

SVI, originally devised by Gatheral (Gatheral, 2004), stands for Stochastic Volatility Inspired and
is a low-dimensional parametrization for implied volatility slices (namely for each maturity). It
captures the key features of implied volatility of Equity indices, and has become the industry-wide
benchmark for implied volatility smoothing on such markets. Its ”raw” variant parametrizes the
”slice” of implied volatility at a given time-to-expiry τ as follows:

v̂τ (k) =

√√√√a+ b
(
ρ(k −m) +

√
(k −m)2 + σ2

)
τ

, for all k ∈ R,

where a, b, k,m, σ are real parameter values.

Calibration While stylistically accurate, SVI does not easily guarantee absence of static arbitrage
opportunities, and several authors have investigated this issue (Gatheral and Jacquier, 2014; Martini
and Mingone, 2022; Mingone, 2022; Martini and Mingone, 2023). To produce our SVI benchmark
we therefore rely on the constrained SLSQP optimizer provided by the SciPy scientific computing
package for Python, with the mean square error objective, a positivity constraint and the constraint
equation 2 (computed in closed form), and the following parameter bounds:

a ∈ R, b ∈ [0, 1], ρ ∈ [−1, 1], m ∈ [−1.5, 0.5], σ ∈ [10−8, 2].

We ignore the calendar arbitrage condition.

37

	Introduction
	Background: Implied Volatility
	Neural Operators for Discretization-Invariant Smoothing
	Background: Neural Operators
	Operator Deep Smoothing

	Experiments
	Model Training
	Results

	Discussion
	Neural Operators
	Kernel Integral Neural Operators
	Graph Neural Operators

	Interpolation Graph Neural Operator
	Supplementary Information: Data, Model, Training, Evaluation
	Data
	Model
	Training
	Evaluation
	Comparison to Classical Neural Networks
	Ablation: Nyström approximation
	Ablation: Weighting of Arbitrage Penalties

	Additional Plots
	Example Plots
	Monthly Breakdown of Spatial Distributions of Benchmark Metrics on Test Dataset
	Example Plots: Option Metrics End-Of-Day US Index Options Data

	SVI

