
Exploring the Practicality of Generative Retrieval on Dynamic Corpora

Anonymous ACL submission

Abstract

Benchmarking the performance of information001
retrieval (IR) is mostly conducted with a fixed002
set of documents (static corpora). However, in003
realistic scenarios, this is rarely the case and004
the documents to be retrieved are constantly005
updated and added. In this paper, we focus006
on conducting a comprehensive comparison be-007
tween two categories of contemporary retrieval008
systems, Dual Encoders (DE) and Generative009
Retrievals (GR), in a dynamic scenario where010
the corpora are updated. We also conduct an ex-011
tensive evaluation of computational and mem-012
ory efficiency, crucial factors for real-world de-013
ployment of IR systems handling vast and ever-014
changing document collections. Our results on015
the StreamingQA benchmark demonstrate that016
GR is more adaptable to evolving knowledge (+017
4 – 11%), robust in handling data with temporal018
information, and efficient in terms of inference019
FLOPs (ˆ2), indexing time (ˆ6), and memory020
(ˆ4). Our paper highlights the potential of GR021
for future use in practical IR systems.022

1 Introduction023

Transformer-based information retrieval (IR) mod-024

els play a vital role in advancing the field025

of semantic document search for information-026

seeking queries. Notably, Generative Retrieval027

(GR) (Petroni et al., 2019; De Cao et al., 2020;028

Wang et al., 2022; Bevilacqua et al., 2022; Tay et al.,029

2022; Zhou et al., 2022; Lee et al., 2022b,a; Sun030

et al., 2023; Li et al., 2023b) has recently gained a031

significant amount of recognition from the research032

community for its simplicity and high performance033

However, Dual Encoder (DE) (Gillick et al., 2018;034

Karpukhin et al., 2020a; Ni et al., 2021; Gao et al.,035

2022; Izacard et al., 2022; Ram et al., 2022) con-036

tinues to hold sway in practical IR systems. This037

contrast underscores the need for an investigation038

into their practical applicability. However, there is039

a lack of comprehensive comparison between DE040

and GR in real-world scenarios where knowledge 041

is continually evolving and efficiency is crucial. 042

To this end, we create a setup called Dy- 043

namic Information Retrieval (DynamicIR) where 044

we conduct an extensive analysis utilizing the 045

StreamingQA benchmark (Liška et al., 2022) of 046

four recent state-of-the-art retrieval models: SPI- 047

DER (Ram et al., 2022) and CONTRIEVER (Izacard 048

et al., 2022) for DE, and SEAL (Bevilacqua et al., 049

2022) and MINDER (Li et al., 2023b) for GR. In our 050

experimental setup, we explore both (1) indexing- 051

based update : updating only the index without any 052

further pretraining and (2) training-based update : 053

further pretraining the parameters on the new cor- 054

pora in addition to updating the index (as shown 055

in Figure 1). Furthermore, we perform extensive 056

comparison for the efficiency of each method, tak- 057

ing into consideration the floating-point operations 058

(FLOPs) (Kaplan et al., 2020) required for the infer- 059

ence, indexing time, inference latency, and storage 060

footprint. 061

The findings of our study reveal that GR demon- 062

strates superior practicality over DE in terms of 3 063

different components: adaptability, robustness, and 064

efficiency. (1) GR exhibits superior adaptability 065

to evolving corpus (Section 5.1). GR outperforms 066

DE, showcasing 4 – 11% greater adaptability in 067

indexing-based update and training-based update 068

with minimal signs of forgetting and notable ac- 069

quisition of new knowledge. (2) GR demonstrates 070

greater robustness in handling data with temporal 071

information (Section 5.2). While DE reveals a bias 072

towards lexical overlap of timestamps, showing sig- 073

nificant degradation (52.23% Ñ 17.40%) when re- 074

moving the timestamps, GR shows robust retrieval 075

performance. (3) GR requires lower indexing costs, 076

inference flops, and memory (Section 6). For infer- 077

ence flops, GR has Op1q complexity with respect 078

to the corpus size, requiring 2 times less computa- 079

tion per query compared to DE which has OpNq 080

complexity, where N represents the corpus size. 081

1

Figure 1: Structure of DynamicIR. This figure shows the training and inference processes for three setups in
DynamicIR. We differentiate each model by color. First, in StaticIR, (A) retrieval models are pretrained on Cinitial

and finetuned on the query-document pairs Rinitial. During inference (B), they perform retrieval only with the
indexed Cinitial. Second, in Indexing-based Update, (C) we use the same retriever developed from StaticIR and
conduct an inference with the indexed Cinitial and Cnew. Lastly, in Training-based Update, (D) we take the pretrained
model on Cinitial in StaticIR and continually pretrain it on Cnew. Subsequently, it is finetuned on the combination of
Rinitial and R1

new. (E) Using the updated retrieval model, we conduct an inference with the indexed Cinitial and Cnew.

Regarding indexing, DE necessitates re-indexing082

each time whenever the model is updated. Nonethe-083

less, the indexing time itself is 6 times longer than084

GR. In terms of storage footprint, GR requires 4085

times less storage by storing the knowledge in its086

internal parameters.087

2 Related Work088

Temporal Information Retrieval. Temporal089

information retrieval (Kanhabua and Anand, 2016)090

has long been a subject of interest in the field of091

information retrieval. However, despite significant092

work on the temporal updating of language models093

(Dhingra et al., 2022), there has been limited focus094

on temporal information retrieval since the rise095

of transformer-based models like BERT (Devlin096

et al., 2019) that offer robust contextualized em-097

beddings. One potential reason is the prohibitive098

computational cost associated with storing the099

updated entire document embedding made by100

DE. Recently, (Metzler et al., 2021) underscored101

the importance of the efficient implementation102

of incremental learning in search models. With103

the advent of GR, we argue that this challenge104

warrants renewed attention.105

106

107

Dual Encoder. DE (Lee et al., 2019; Karpukhin108

et al., 2020b) refers to a set of model architectures109

where we project the query and document indi-110

vidually into a fixed sized embedding. Through 111

contrastive learning, the projected embeddings of 112

positive documents are learned to be close to the 113

query and negative documents to be far away. Some 114

works try to train the model in an unsupervised fash- 115

ion with contrastive learning. (Izacard et al., 2022; 116

Lee et al., 2019; Sachan et al., 2023). Although 117

external modules such as FAISS (Johnson et al., 118

2019), and ANCE (Xiong et al., 2020) can help 119

the efficiency of those models in inference time, 120

these types of models still fall into the limitation 121

that model-dependent embedding dumps need to 122

be made in an asynchronous fashion. 123

Generative Retrieval. GR initially emerges with 124

the work of (De Cao et al., 2020), in which an 125

encoder-decoder model retrieves a document by 126

generating the title of the document from a given 127

query. (Tay et al., 2022) introduces DSI that 128

produces a document ID as the output sequence. 129

(Wang et al., 2022) and (Zhuang et al., 2022) apply 130

query generation, improving DSI’s performance 131

significantly. Rather than mapping to simple num- 132

bers for document identifiers, other works explore 133

generating the content itself from documents as 134

identifiers, such as spans (Bevilacqua et al., 2022), 135

sentences or paragraphs (Lee et al., 2022b), or 136

a mixture of titles, queries, and spans (Li et al., 137

2023b). Other works focus on the broader applica- 138

tion of GR, such as multi-hop reasoning (Lee et al., 139

2022b), contextualization of token embeddings of 140

2

Type Split Count

Query-Doc pairs
Rinitial (2007 – 2019) 99,402

R1
new (2020) 90,000

Evaluation
Qinitial (2007 – 2019) 2,000

Qnew (2020) 3,000

Qtotal (2007 – 2020) 5,000

Corpus
Cinitial (2007 – 2019) 43,832,416

Cnew (2020) 6,136,419

Ctotal (2007 – 2020) 49,968,835

Tokens
Initial (2007 – 2019) 7.33B

New (2020) 1.04B

Total (2007 – 2020) 8.37B

Tokens per passage
Initial (2007 – 2019) 169.7

New (2020) 167.1

Total (2007 – 2020) 167.5

Table 1: Statistics of the StreamingQA dataset modified
for our setup. # Tokens is the total number of words
separated by space in each passage.

retriever (Lee et al., 2022a), auto-encoder approach141

for better generalization (Sun et al., 2023), and giv-142

ing ranking signals (Li et al., 2023a). Our work143

employs GR that utilizes document content as iden-144

tifiers for temporal information retrieval.145

3 Dynamic Information Retrieval146

3.1 DynamicIR Task Setup147

Adapting the retrieval models to evolving corpora148

over time is crucial to better align with real-world149

scenarios. In order to evaluate the adaptability150

of retrievers, we create a setup called Dynamic151

Information Retrieval (DynamicIR). As depicted in152

Figure 1, our experimental setup includes three ap-153

proaches: (1) StaticIR, where the retriever is trained154

on the initial corpus, (2) Indexing-based updates,155

incorporating the index of newly arrived documents156

into the existing index without further training on157

the new corpus; and (3) Training-based updates,158

where the retriever is continually pretrained on the159

new corpus, along with updating the index.160

To conduct these experiments, we assume that161

we have an initial corpus Cinitial and a newly162

introduced corpus Cnew, and datasets of query-163

document pairs Rinitial and R1
new from Cinitial and164

Cnew, respectively. Unlike Rinitial, R1
new consists165

of pseudo-queries, which are generated from Cnew166

using docT5 (detailed explanation is in Section167

3.2). Moreover, we assess the retrieval perfor-168

mance with two types of evaluation sets, Qinitial169

and Qnew, where the answers to the questions are170

within Cinitial and Cnew, respectively. Each set is 171

employed to assess the forgetting of initial knowl- 172

edge and the acquisition of new knowledge. 173

StaticIR. In this part, we focus on retrieving doc- 174

uments only from Cinitial. The training process 175

begins with pretraining the model on Cinitial, fol- 176

lowed by finetuning it with Rinitial. We evaluate it 177

only on Qinitial with pre-indexed Cinitial. 178

Indexing-based Update. In this update setup, 179

we incorporate the new corpus to the retrieval mod- 180

els by updating only the index without any param- 181

eter updates. Since we utilize a retrieval model 182

trained in StaticIR, this updating approach is quick 183

and straightforward. We evaluate the retriever on 184

Qinitial and Qnew with pre-indexed Cinitial and Cnew. 185

Training-based Update. In this advanced 186

setup for update, we take the model pretrained 187

on Cinitial and continually pretrain it on Cnew. 188

Subsequently, we finetune it using a combination 189

of datasets, Rinitial and R1
new. Like indexing-based 190

updates, we evaluate the updated retrieval model on 191

Qinitial and Qnew with pre-indexed Cinitial and Cnew. 192

193

In DynamicIR, we highlight the importance of 194

striking a balance between retaining existing knowl- 195

edge (McCloskey and Cohen, 1989; Kirkpatrick 196

et al., 2017) and incorporating new information. 197

We also highly focus on computational and mem- 198

ory efficiency, since the practical applications like 199

search engines handle vast and ever-changing col- 200

lections of web documents, which is directly re- 201

lated with the practicality. 202

3.2 Benchmark 203

To evaluate the performance of retrieval mod- 204

els in a dynamic scenario, we employ STREAM- 205

INGQA (Liška et al., 2022) designed for temporal 206

knowledge updates. StreamingQA is the bench- 207

mark that includes both the timestamps of question 208

asked time and document publication dates, which 209

is critical for considering the temporal dynamics. 210

The temporal information is prepended to the text 211

in the format of ‘Today is Wednesday, May 6, 2020. 212

[question]’ for question, and ‘Thursday, February 213

7, 2019. [document text]’ for documents (Liška 214

et al., 2022). The dataset spans 14 years and in- 215

cludes over 50 million passages, surpassing the 216

content size of Wikipedia, which comprises 21 mil- 217

lion passages, by over 2ˆ. 218

3

Temporal Information. StreamingQA includes219

a corpus spanning from 2007 to 2020, along with a220

supervised dataset of question-document pairs cov-221

ering the years 2007 to 2019. In our work, Cinitial222

comprises articles from 2007 to 2019 and Cnew223

consists of articles from 2020. Regarding the su-224

pervised dataset, the questions in Rinitial are asked225

in the time range of 2007 to 2019 to query arti-226

cles from this period, and the questions in R1
new are227

asked in 2020 to query articles from 2020. Notably,228

all questions in the evaluation dataset Qinitial and229

Qnew are asked in 2020, beginning with the prefix230

‘Today is [Day], [Month Date] , 2020’, although231

they query articles from 2007 to 2019 (Cinitial) and232

2020 (Cnew), respectively.233

Pseudo-Queries for R1
new The original Stream-234

ingQA dataset lacks query-document pairs from235

Cnew, making it challenging to explore training-236

based updates. To address this, we generate ad-237

ditional 90,000 queries from Cnew. To make this,238

we employ a trained model similar to the one used239

in docT51 for query generation. The size of this240

additional dataset R1
new is similar to that of Rinitial.241

Examples of generated dataset are in Table 10 and242

details of the query construction are explained in243

Appendix A.5.244

4 Experimental setup245

4.1 Retrieval Models246

Dual-Encoder (DE) We select Spider (Ram247

et al., 2022) and Contriever (Izacard et al., 2022)248

as representative models for DE. Since our experi-249

ments include a pretraining stage to store the cor-250

pus itself, we use baselines that focus more on251

the pretraining methods. As Spider does not in-252

clude a method for the finetuning stage, we use253

DPR (Karpukhin et al., 2020a) and adhere to its254

original training scheme such as utilizing in-batch255

negative training. Implementation details of DE256

are in Appendix A.2.1.257

Generative Retrieval (GR) We select SEAL258

(Bevilacqua et al., 2022) that employs the sub-259

strings in a passage as document identifiers and260

MINDER (Li et al., 2023b) that uses a combination261

of the titles, substrings, and pseudo-queries as iden-262

tifiers. We choose the two as baselines since unlike263

other GR models using document IDs as identi-264

fiers (Tay et al., 2022; Wang et al., 2022), SEAL265

and MINDER can be more effective on updates of266

1https://github.com/castorini/docTTTTTquery

individual pieces of knowledge by autoregressively 267

generating the context using FM-index. FM-index 268

for constrained decoding provides information on 269

all documents in the corpus containing a specific 270

n-gram for every decoding step, thus allowing to 271

retrieve them (Bevilacqua et al., 2022). Implemen- 272

tation details of GR are in Appendix A.2.2. 273

4.2 Evaluation 274

We assess retrieval performance with three evalu- 275

ation dataset, Qinitial, Qnew, and Qtotal. First, we 276

evaluate the retention of initial knowledge by 2,000 277

questions that should be answered from the Cinitial. 278

Second, we assess the acquisition of new knowl- 279

edge by 3,000 questions that should be answered 280

from Cnew. Both sets of 5,000 questions are ran- 281

domly extracted from the entire evaluation data of 282

StreamingQA, maintaining the ratio (16.60%) of 283

each question type for initial knowledge and new 284

knowledge. Finally, we assess total performance 285

by calculating the unweighted average of the above 286

two performance. Furthermore, we measure com- 287

putational and memory efficiency to comprehen- 288

sively assess the practicality of retrieval models in 289

Section 6. 290

4.3 Metric 291

To assess the practicality of retrieval models, we 292

measure the retrieval performance along with the 293

efficiency of each models. For retrieval perfor- 294

mance, we report Hits@5 metric, which measures 295

whether the gold-standard passages is included 296

in the top 5 retrieved passages. Most document 297

search systems do not limit results to one or pro- 298

vide too many; we consider 5 to be a reason- 299

able number for assessment. Additionally, we re- 300

port full results of Hits@k and AnswerRecall@k 301

pk P t5, 10, 50, 100uq in Appendix A.8. Answer 302

Recall measures whether the retrieved passage con- 303

tains an exact lexical match for the gold-standard 304

answer. For retrieval efficiency, we report inference 305

FLOPs (Floating Point Operations), indexing time, 306

inference latency, and storage footprint (Details in 307

Section 6). 308

5 Results and Analysis 309

In this section, we showcase the adaptability and ro- 310

bustness of DE and GR, and provide an analysis on 311

utilizing R1
new and LoRA during the training-based 312

update. Our results are summarized as below; 313

4

https://github.com/castorini/docTTTTTquery

Performance phit@5q Efficiency

Evaluation Qtotal Qinitial Qnew Qw/o bias
new Inference Flops Indexing Time

Inference Latency
(Tonline / Toffline)

Storage Footprint

StaticIR

Spider DE - 19.65% - - 9.0e+10 18.9h 24.48ms / 26m 173.8G
Contriever DE - 16.10% - - 9.0e+10 18.9h 212.4ms †/ 9.8m 88.8G
SEAL GR - 34.95% - - 4.3e+10 2.7h 545.9ms / 1m 5s 34.5G
MINDER GR - 37.90% - - 4.3e+10 2.7h 424.6ms / 1m 5s 34.5G

Indexing-based Update

Spider DE 24.82% 15.60% 34.03% 17.40% 1.0e+11 20.4h 24.84ms / 28m 196.8G
Contriever DE 19.66% 13.75% 28.53% 8.27% 1.0e+11 20.4h 228.8ms† / 10.5m 99.8G
SEAL GR 33.05% 32.75% 33.50% 37.50% 4.3e+10 3.1h 612.2ms / 1m 26s 37.5G
MINDER GR 38.47% 37.65% 39.70% 39.47% 4.3e+10 3.1h 485.4ms / 1m 26s 37.5G

Training-based Update

Spider DE 36.99% 21.75% 52.23% 17.40% 1.0e+11 20.4h 24.84ms / 28m 196.8G
Contriever DE 23.85% 8.20% 39.50% 11.43% 1.0e+11 20.4h 228.8m† / 10.5m 99.8G
SEAL GR 41.01% 38.25% 43.77% 39.53% 4.3e+10 3.1h 612.2ms / 1m 26s 37.5G
MINDER GR 41.54% 38.85% 44.23% 43.57% 4.3e+10 3.1h 485.4ms / 1m 26s 37.5G

† For Contriever, Tonline is measured using faiss-cpu.

Table 2: Results of DynamicIR. Our experiments are divided into 3 setups, (1) StaticIR, (2) Indexing-based updates,
and (3) Training-based updates. For each setups, we assess the performance on Qtotal, Qinitial, Qnew, and Qw/o bias

new
where the bias-inducing timestamps are removed. Efficiency is evaluated using 4 metrics on the right side. For
Inference Latency, Tonline indicates the time required for query embedding and search, and Toffline represents the
time for loading the indexed corpus. We highlight the best scores in bold for each setup. Additionally, the zero-shot
performance for all models is provided in Appendix 6.

• GR has greater adaptability in indexing-based314

and training-based updates (Section 5.1).315

• GR better acquires new corpora and is robust316

in adapting to temporal data (Section 5.2).317

• GR better preserves initial knowledge after318

updates (Section 5.3).319

• Generating R1
new for finetuning always helps320

learning new corpora (Section 5.4).321

• During pretraining on new corpora, apply-322

ing LoRA on feed-forward networks (FFN) is323

more beneficial (Section 5.5).324

5.1 Overall adaptability325

In order to assess the adaptability on evolving cor-326

pora, we examine performance on Qtotal in each327

update setup, comparing it to the performance on328

Qinitial in StaticIR (See Table 2). This analysis329

enables us to evaluate the extent to which perfor-330

mance is maintained after updates.331

First, in indexing-based updates, GR exhibits332

4% greater adaptability to new corpora compared333

to DE. Specifically, GR maintains an average per-334

formance, going from 34.95% (before updates)335

Ñ 33.05% (after updates) for SEAL and 37.90% 336

Ñ 38.47% for MINDER. Conversely, DE demon- 337

strates a 4% degradation on average, decreasing 338

from 19.65% Ñ 16.50% for Spider and 16.10% Ñ 339

11.01% for Contriever. 340

Second, In training-based updates, GR shows 341

11% greater adaptability to new corpora compared 342

to DE. GR shows a 5% average gain in perfor- 343

mance, increasing from 34.95% (before updates) 344

Ñ 41.01% (after updates) for SEAL and 37.90% 345

Ñ 41.54% for MINDER. On the other hand, DE 346

demonstrates a 6% degradation on average, de- 347

creasing from 19.65% Ñ 19.58% for Spider and 348

16.10% Ñ 9.82% for Contriever. 349

For DE, we extract the results from Qw/o bias
new 350

where the bias-inducing timestamps are removed. 351

The total performance is then computed by aver- 352

aging the scores of Qinitial and Qw/o bias
new , instead of 353

considering Qtotal indicated in Table 2. Because 354

unlike GR, DE exhibits a significant inherent bias 355

towards the lexical overlap of timestamps when 356

evaluating Qnew. We delve deeper into this phe- 357

nomenon in the following Section 5.2. 358

5

5.2 Acquisition of new knowledge and359

Robustness towards temporal data360

We assess the ability to acquire new knowledge361

through performance on Qnew in both the indexing-362

based and training-based update setups. For363

indexing-based updates, Table 2 shows that GR364

excels in retrieving new knowledge with updated365

indexes, even without parameter updates. GR366

achieves 33.50% (SEAL) and 39.70% (MINDER)367

in Qnew, which are 2 – 6% higher than the scores in368

Qinitial. DE achieves 34.03% (Spider) and 28.53%369

(Contriever) in Qnew, which are 19 – 31% higher370

than the scores in Qinitial. The unexpectedly high371

performance of DE with respect to Qnew originates372

from the bias (Details are clarified below). Sim-373

ilarly, for training-based updates, GR shows a 5374

– 6% improvement on Qnew compared to Qinitial,375

while DE demonstrates a substantial 31% increase.376

The results reveal that training-based updates are377

more beneficial for retrieving new knowledge com-378

pared to indexing-based updates for DE and GR.379

However, during the updates, we observe a bias380

in DE towards the lexical overlap of timestamps381

from the unusually high performance on Qnew not382

only in training-based updates but also in indexing-383

based updates where the models never encounter384

new corpora during training. This phenomenon385

stems from the temporal information, where all386

timestamps in the queries and in the documents to387

be retrieved are set to the year 2020, introducing388

bias towards lexical overlap. Qw/o bias
new in Table 2389

shows that when the bias-inducing timestamps are390

removed, the performance of Qnew significantly391

decreases to a level similar to the performance on392

Qinitial. For more detailed explanations, refer to393

Appendix A.4.394

5.3 Forgetting of initial knowledge395

To assess the ability to retain initial knowledge,396

we analyze the performance on Qinitial in both397

indexing-based and training-based update setups,398

comparing the performance on Qinitial in StaticIR.399

For GR, Table 2 demonstrates that the perfor-400

mance on Qinitial is 32.75% (SEAL) and 37.65%401

(MINDER) in indexing-based updates, and 38.25%402

(SEAL) and 38.85% (MINDER) in training-based403

updates, which do not exhibit notable sign of forget-404

ting compared to their scores on Qinitial in StaticIR.405

We hypothesize that the lack of signs of forgetting406

in training-based updates may be influenced by407

the use of language model attributes for learning408

Model R1
new Qtotal Qinitial Qnew

Spider DE

with 36.99% 21.75% 52.23%

w/o 35.77% 29.90% 41.63%

Contriever DE
with 23.85% 8.20% 39.50%

w/o 19.12% 13.90% 24.33%

SEAL GR

with 41.01% 38.25% 43.77%

w/o 37.91% 37.25% 38.90%

MINDER GR

with 41.54% 38.85% 44.23%

w/o 37.80% 38.15% 40.03%

Table 3: Analysis the effectiveness of R1
new with pseudo-

queries in training-based updates. In this table, w/o
refers only using Rinitial during finetuning. The results
in hit@5 show that it is effective to include the R1

new.

language distributions. Through additional train- 409

ing on in-domain data, GR can gain advantages in 410

mitigating the forgetting issue. 411

On the other hand, DE shows a 3 – 4% degrada- 412

tion in indexing-based updates, reaching 15.60% 413

(Spider) and 13.75% (Contriever) and a 0 – 8% 414

decrease in training-based updates, with results of 415

21.75% (Spider) and 8.20% (Contriever). This ob- 416

servation indicates that DE tends to forget initial 417

knowledge more during updates compared to GR. 418

5.4 Effectiveness of R1
new in learning from new 419

corpora 420

We analyze the effectiveness of utilizing R1
new, 421

query-document pairs where the queries are 422

pseudo-queries (Mehta et al., 2022; Zhuang et al., 423

2023; Lin and Ma, 2021; Mallia et al., 2021; Cheri- 424

ton, 2019; Wang et al., 2022; Pradeep et al., 2023) 425

generated from Cnew using docT5. Table 3 shows 426

employing R1
new leads to achieve superior perfor- 427

mance on Qtotal compared to only using Rbase (w/o 428

R1
new) for both DE and GR. 429

In particular, GR also enhances its performance 430

on Qinitial. We believe experiencing benefits on 431

Qinitial despite training with R1
new is also attributed 432

to the utilization of language models attributes for 433

learning language distributions. On the other hand, 434

in the case of DE, we observe a 5 – 8% degradation 435

in Qinitial, indicating forgetting. 436

5.5 Effectiveness of LoRA applied to FFN for 437

GR 438

When continually pretraining GR on Cnew, we em- 439

ploy LoRA widely recognized for its training ef- 440

6

Model LoRA Qtotal Qinitial Qnew

SEAL GR
attn ` ffn 38.08% 37.25% 38.90%

attn 31.69% 32.00% 31.37%

MINDER GR

attn ` ffn 39.04% 38.15% 39.93%

attn 38.35% 37.50% 39.20%

Table 4: Analysis of effectiveness according to the ap-
plication range of LoRA. The results in hit@5 exhibit
that activating feed-forward network modules is benefi-
cial, not only for acquiring new knowledge but also for
retraining past knowledge.

Layer Projection Avg num of DPs

FFN
FC1 1.1M

FC2 77K

Total 1.87M

ATTN

Query 41K

Key 35K

Total 76K

Table 5: Average number of Dynamic Parameters (DPs),
the parameters that have large impact on acquiring new
knowledge per block. It reveals that DPs are signifi-
cantly more prevalent in the fully connected layer, ex-
ceeding those in the attention layer.

ficiency. In contrast to GR, since DE experiences441

significant degradation when applying LoRA (Ap-442

pendix A.6), we pretrain DE with full parameters.443

Notably, the application of LoRA on feed-444

forward networks (FFN) yields benefits in adapting445

to new knowledge. Table 4 demonstrates its greater446

effectiveness when applied to both attention and447

FFN modules compared to applying it only to at-448

tention modules. As shown in Table 5, Dynamic449

Parameters (DPs), identified as the most crucial pa-450

rameters in learning new knowledge, are 2ˆ more451

prevalent in the FFN layer, exceeding those in the452

attention layer. Consequently, to better target key453

parameters for incorporating new knowledge, ex-454

panding LoRA to FFN proves to be beneficial.455

To identify DPs, we analyze which parameters456

undergo the most significant change during the ac-457

quisition of new knowledge. (1) we calculate abso-458

lute differences of parameters between the model459

pretrained on Cinitial and the continually pretrained460

model on Cnew with full parameters. (2) we deter-461

mine parameters exceeding the 90th percentile of462

these absolute differences.463

Figure 2: Inference FLOPs according to the number
of instances. The flops for GR on both the static and
updated corpus are identical, as it maintains consistent
flops regardless of the corpus size unlike DE.

6 Computation & Memory Efficiency 464

In this section, we provide the results of computa- 465

tional and memory efficiency. To measure indexing 466

time and inference latency, we use an 80G A100 467

GPU, keeping the server empty except for our pro- 468

cess throughout the measurement. 469

Inference FLOPs. We analyze the inference 470

FLOPs † of DE and GR to assess their compu- 471

tational efficiency. We approximately measure 472

FLOPs per instance using DEflops for DE and 473

GRflops for GR defined as below. We use the nota- 474

tion IP for inner product, FW for forward pass, 475

and Beam for beam search. 476

DEflops “ FW enc
flops ` C ˆ IPflops 477

GRflops “ FW enc
flops ` L ˆ Beamflops 478

IPflops “ dmodel ` pdmodel ´ 1q 479

FWflops “ 2N ` 2nlayernctxdattn 480

Beamflops “ pFW dec
flops ` IPflops ˆ |V | log |V |q ˆ B 481

where C is the corpus size, L is the sequence length 482

of output, dmodel is dimension of hidden vector, 483

N is the model size, nlayer is the number of lay- 484

ers, nctx is the length of input context, dattn is 485

the dimension of attention, V is the vocab size, 486

and B is the beam size. |V |log|V | is the com- 487

plexity of obtaining possible token successors with 488

FM-index (Bevilacqua et al., 2022). We calculate 489

FWflops for the transformer based on Table 1 in 490

(Kaplan et al., 2020) and apply it to the encoder 491

and decoder. 492

†FLOPs (Floating Point Operations) is the number of
floating-point arithmetic calculations.

7

As shown in Table 2, our results reveal that GR493

requires 2 times fewer computations per instance494

over DE, exhibiting 4.3e+10 for the all three se-495

tups. In contrast, DE has 9.0e+10 for StaticIR and496

1.0e+11 for indexing-based and training-based up-497

dates. Detailed calculations are in Appendix A.7.498

Figure 2 illustrates that GR offers superior effi-499

ciency as the number of instances increases. More-500

over, unlike DE, which exhibits OpNq complexity,501

where N represents the corpus size, GR maintains502

a constant Op1q complexity.503

Indexing Time. There is a difference in the con-504

cept of indexing between DE and GR. For DE,505

this involves embedding, which converts the cor-506

pus into representations using an encoder. In GR,507

indexing refers the data processing of document508

identifiers to constrain beam search decoding, en-509

suring the generation of valid identifiers. Note that510

we process data without applying sharding.511

As shown in Table 2, our results exhibit that GR512

(3.1h) requires 6ˆ less time than DE (20.4h) for513

indexing Cinitial and Cnew. The crucial aspect of514

indexing is that DE necessitates re-indexing the515

entire corpus each time whenever the model is up-516

dated, irrespective of the corpus update. In contrast,517

GR has a significant advantage in that they do not518

require re-indexing when the model is changed.519

This issue becomes even more prominent when the520

corpus size is substantial.521

Inference Latency. Inference process can be di-522

vided into two stages: (1) loading a pre-indexed523

corpus and (2) retrieving, which includes query524

embedding and search. We classify the former as525

offline latency (Toffline) and the latter is referred to526

as online latency (Tonline). We measure both. Tonline527

in 2 is reported for a single instance.528

Table 2 shows GR is 10 times faster than DE529

when retrieving from updated corpora for Toffline.530

Unlike DE, which stores each passage representa-531

tion in vector form, GR does not need much time532

to load the index since it stores knowledge within533

its parameters. For Tonline, however, GR is 20 times534

slower than DE using faiss-gpu. Although DE535

requires 2 times more inference flops, it seems536

that the FAISS (Johnson et al., 2019) module con-537

tributes significantly to the inference speed of DE.538

While online latency remains a challenge in GR,539

we anticipate that this can be addressed through the540

development of powerful computing resources or541

external modules like FAISS for GR in the future.542

Storage Footprint. We measure the storage foot- 543

print of the retrieval model and the pre-indexed 544

corpus, which are required for performing retrieval. 545

Table 2 indicates that GR has 4 less storage re- 546

quirements over DE for updated corpora. Notably, 547

the memory requirements for DE are directly af- 548

fected by the corpus size, as they store representa- 549

tions of all documents in vector form outside the 550

retrieval model. In contrast, GR has minimal de- 551

pendence on the corpus size by storing knowledge 552

in its internal parameters. 553

GR also stores information approximately 4 554

times more efficiently per passage from the per- 555

spective of information theory. Specifically, we 556

incorporate 6M Cnew to the retrieval model using 557

only 3.1M parameters (with LoRA) and an extra 558

3GB FM-index in training-based updates. That is, 559

when updating using FP16, GR requires approxi- 560

mately 501 bytes to store one passage, which is the 561

sum of 1 byte and 500 bytes for the parameters and 562

FM-index, respectively. In contrast, DE demands 563

2,048 bytes for storing a passage in index with a 564

dimension of 1,024. However, we note that the 565

index of DE is often quantized to FP8 or higher. 566

7 Conclusion 567

In this work, we conduct an extensive comparison 568

of DE and GR, focusing on their practicality. By 569

establishing a DynamicIR setup, we showcase how 570

retrieval models perform in real-world scenarios 571

where knowledge evolves over time. Although DE 572

is more commonly utilized in practical IR systems, 573

our findings highlight GR’s superior performance 574

in terms of adaptability, robustness, and efficiency. 575

While online inference latency of GR remains the 576

challenge, it has potential as a practical IR system 577

in the future. This potential stems from GR’s high 578

adaptability to evolving knowledge, robustness in 579

handling temporal data without introducing bias, 580

lower memory requirements, fewer inference flops, 581

and reduced indexing time. In this paper, we shed 582

light on the practical advantages of GR on dynamic 583

corpora. 584

8 Limitations 585

Our study has certain limitations. First, the evalua- 586

tion dataset in the StreamingQA benchmark lacks 587

diversity. All timestamps in the queries and in the 588

documents to be retrieved from Qnew are set to 589

the year 2020. This matching may introduce bias 590

towards lexical overlap of temporal information 591

8

when evaluating the acquisition of new knowledge.592

For a more dynamic evaluation, it is better to con-593

sider diverse query timestamps. Second, due to594

the scarcity of datasets that reflect the evolution595

of knowledge over time, we rely only on Stream-596

ingQA. While this dataset comprises 50 million597

articles spanning 14 years, a more comprehensive598

assessment across various datasets is needed to gen-599

eralize our findings. Lastly, although our results600

highlight the numerous advantages of GR in terms601

of adaptability to new corpora, inference flops, and602

memory, our evaluation of online inference latency603

demonstrates that DE has a faster speed over GR,604

which is attributed from the FAISS module.605

References606

Michele Bevilacqua, Giuseppe Ottaviano, Patrick Lewis,607
Wen tau Yih, Sebastian Riedel, and Fabio Petroni.608
2022. Autoregressive search engines: Generating609
substrings as document identifiers. In arXiv pre-print610
2204.10628.611

David R. Cheriton. 2019. From doc2query to docttttt-612
query.613

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and614
Fabio Petroni. 2020. Autoregressive entity retrieval.615

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and616
Kristina Toutanova. 2019. BERT: Pre-training of617
deep bidirectional transformers for language under-618
standing. In Proceedings of the 2019 Conference of619
the North American Chapter of the Association for620
Computational Linguistics: Human Language Tech-621
nologies, Volume 1 (Long and Short Papers), pages622
4171–4186, Minneapolis, Minnesota. Association for623
Computational Linguistics.624

Bhuwan Dhingra, Jeremy R. Cole, Julian Martin625
Eisenschlos, Daniel Gillick, Jacob Eisenstein, and626
William W. Cohen. 2022. Time-aware language mod-627
els as temporal knowledge bases. Transactions of the628
Association for Computational Linguistics, 10:257–629
273.630

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2022.631
Simcse: Simple contrastive learning of sentence em-632
beddings.633

Daniel Gillick, Alessandro Presta, and Gaurav Singh634
Tomar. 2018. End-to-end retrieval in continuous635
space.636

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-637
bastian Riedel, Piotr Bojanowski, Armand Joulin,638
and Edouard Grave. 2022. Unsupervised dense infor-639
mation retrieval with contrastive learning.640

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.641
Billion-scale similarity search with GPUs. IEEE642
Transactions on Big Data, 7(3):535–547.643

Nattiya Kanhabua and Avishek Anand. 2016. Temporal 644
information retrieval. In Proceedings of the 39th In- 645
ternational ACM SIGIR Conference on Research and 646
Development in Information Retrieval, SIGIR ’16, 647
page 1235–1238, New York, NY, USA. Association 648
for Computing Machinery. 649

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. 650
Brown, Benjamin Chess, Rewon Child, Scott Gray, 651
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020. 652
Scaling laws for neural language models. 653

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick 654
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and 655
Wen tau Yih. 2020a. Dense passage retrieval for 656
open-domain question answering. 657

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick 658
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and 659
Wen-tau Yih. 2020b. Dense passage retrieval for 660
open-domain question answering. 661

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, 662
Joel Veness, Guillaume Desjardins, Andrei A. Rusu, 663
Kieran Milan, John Quan, Tiago Ramalho, Ag- 664
nieszka Grabska-Barwinska, Demis Hassabis, Clau- 665
dia Clopath, Dharshan Kumaran, and Raia Hadsell. 666
2017. Overcoming catastrophic forgetting in neural 667
networks. Proceedings of the National Academy of 668
Sciences, 114(13):3521–3526. 669

Hyunji Lee, Jaeyoung Kim, Hoyeon Chang, Hanseok 670
Oh, Sohee Yang, Vlad Karpukhin, Yi Lu, and Min- 671
joon Seo. 2022a. Contextualized generative retrieval. 672
arXiv preprint arXiv:2210.02068. 673

Hyunji Lee, Sohee Yang, Hanseok Oh, and Minjoon Seo. 674
2022b. Generative multi-hop retrieval. In Proceed- 675
ings of the 2022 Conference on Empirical Methods 676
in Natural Language Processing, pages 1417–1436. 677

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova. 678
2019. Latent retrieval for weakly supervised open 679
domain question answering. 680

Yongqi Li, Nan Yang, Liang Wang, Furu Wei, and Wen- 681
jie Li. 2023a. Learning to rank in generative retrieval. 682

Yongqi Li, Nan Yang, Liang Wang, Furu Wei, and Wen- 683
jie Li. 2023b. Multiview identifiers enhanced genera- 684
tive retrieval. 685

Jimmy Lin and Xueguang Ma. 2021. A few brief notes 686
on deepimpact, coil, and a conceptual framework for 687
information retrieval techniques. 688

Adam Liška, Tomáš Kočiský, Elena Gribovskaya, Tay- 689
fun Terzi, Eren Sezener, Devang Agrawal, Cyprien 690
de Masson d’Autume, Tim Scholtes, Manzil Zaheer, 691
Susannah Young, Ellen Gilsenan-McMahon, Sophia 692
Austin, Phil Blunsom, and Angeliki Lazaridou. 2022. 693
Streamingqa: A benchmark for adaptation to new 694
knowledge over time in question answering models. 695

Antonio Mallia, Omar Khattab, Nicola Tonellotto, and 696
Torsten Suel. 2021. Learning passage impacts for 697
inverted indexes. 698

9

https://arxiv.org/abs/2204.10628
https://arxiv.org/abs/2204.10628
https://arxiv.org/abs/2204.10628
https://doi.org/10.48550/ARXIV.2010.00904
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1162/tacl_a_00459
https://doi.org/10.1162/tacl_a_00459
https://doi.org/10.1162/tacl_a_00459
http://arxiv.org/abs/2104.08821
http://arxiv.org/abs/2104.08821
http://arxiv.org/abs/2104.08821
http://arxiv.org/abs/1811.08008
http://arxiv.org/abs/1811.08008
http://arxiv.org/abs/1811.08008
http://arxiv.org/abs/2112.09118
http://arxiv.org/abs/2112.09118
http://arxiv.org/abs/2112.09118
https://doi.org/10.1145/2911451.2914805
https://doi.org/10.1145/2911451.2914805
https://doi.org/10.1145/2911451.2914805
http://arxiv.org/abs/2001.08361
http://arxiv.org/abs/2004.04906
http://arxiv.org/abs/2004.04906
http://arxiv.org/abs/2004.04906
https://doi.org/10.48550/ARXIV.2004.04906
https://doi.org/10.48550/ARXIV.2004.04906
https://doi.org/10.48550/ARXIV.2004.04906
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1073/pnas.1611835114
http://arxiv.org/abs/1906.00300
http://arxiv.org/abs/1906.00300
http://arxiv.org/abs/1906.00300
http://arxiv.org/abs/2306.15222
http://arxiv.org/abs/2305.16675
http://arxiv.org/abs/2305.16675
http://arxiv.org/abs/2305.16675
http://arxiv.org/abs/2106.14807
http://arxiv.org/abs/2106.14807
http://arxiv.org/abs/2106.14807
http://arxiv.org/abs/2106.14807
http://arxiv.org/abs/2106.14807
http://arxiv.org/abs/2205.11388
http://arxiv.org/abs/2205.11388
http://arxiv.org/abs/2205.11388
http://arxiv.org/abs/2104.12016
http://arxiv.org/abs/2104.12016
http://arxiv.org/abs/2104.12016

Michael McCloskey and Neal J. Cohen. 1989. Catas-699
trophic interference in connectionist networks: The700
sequential learning problem. Psychology of Learning701
and Motivation - Advances in Research and Theory,702
24(C):109–165. Funding Information: The research703
reported in this chapter was supported by NIH grant704
NS21047 to Michael McCloskey, and by a grant from705
the Sloan Foundation to Neal Cohen. We thank Sean706
Purcell and Andrew Olson for assistance in gener-707
ating the figures, and Alfonso Caramazza, Walter708
Harley, Paul Macaruso, Jay McClelland, Andrew Ol-709
son, Brenda Rapp, Roger Rat-cliff, David Rumelhart,710
and Terry Sejnowski for helpful discussions.711

Sanket Vaibhav Mehta, Jai Gupta, Yi Tay, Mostafa De-712
hghani, Vinh Q. Tran, Jinfeng Rao, Marc Najork,713
Emma Strubell, and Donald Metzler. 2022. Dsi++:714
Updating transformer memory with new documents.715

Donald Metzler, Yi Tay, Dara Bahri, and Marc Na-716
jork. 2021. Rethinking search. ACM SIGIR Forum,717
55(1):1–27.718

Jianmo Ni, Gustavo Hernández Ábrego, Noah Constant,719
Ji Ma, Keith B. Hall, Daniel Cer, and Yinfei Yang.720
2021. Sentence-t5: Scalable sentence encoders from721
pre-trained text-to-text models.722

Fabio Petroni, Tim Rocktäschel, Patrick Lewis, An-723
ton Bakhtin, Yuxiang Wu, Alexander H. Miller, and724
Sebastian Riedel. 2019. Language models as knowl-725
edge bases?726

Ronak Pradeep, Kai Hui, Jai Gupta, Adam D. Lelkes,727
Honglei Zhuang, Jimmy Lin, Donald Metzler, and728
Vinh Q. Tran. 2023. How does generative retrieval729
scale to millions of passages?730

Ori Ram, Gal Shachaf, Omer Levy, Jonathan Berant,731
and Amir Globerson. 2022. Learning to retrieve732
passages without supervision.733

Devendra Singh Sachan, Mike Lewis, Dani Yogatama,734
Luke Zettlemoyer, Joelle Pineau, and Manzil Zaheer.735
2023. Questions are all you need to train a dense736
passage retriever.737

Weiwei Sun, Lingyong Yan, Zheng Chen, Shuaiqiang738
Wang, Haichao Zhu, Pengjie Ren, Zhumin Chen,739
Dawei Yin, Maarten de Rijke, and Zhaochun Ren.740
2023. Learning to tokenize for generative retrieval.741

Yi Tay, Vinh Q. Tran, Mostafa Dehghani, Jianmo Ni,742
Dara Bahri, Harsh Mehta, Zhen Qin, Kai Hui, Zhe743
Zhao, Jai Gupta, Tal Schuster, William W. Cohen,744
and Donald Metzler. 2022. Transformer memory as745
a differentiable search index.746

Yujing Wang, Yingyan Hou, Haonan Wang, Ziming747
Miao, Shibin Wu, Hao Sun, Qi Chen, Yuqing Xia,748
Chengmin Chi, Guoshuai Zhao, Zheng Liu, Xing Xie,749
Hao Allen Sun, Weiwei Deng, Qi Zhang, and Mao750
Yang. 2022. A neural corpus indexer for document751
retrieval.752

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, 753
Jialin Liu, Paul Bennett, Junaid Ahmed, and Arnold 754
Overwijk. 2020. Approximate nearest neighbor neg- 755
ative contrastive learning for dense text retrieval. 756

Yujia Zhou, Jing Yao, Zhicheng Dou, Ledell Wu, and Ji- 757
Rong Wen. 2022. Dynamicretriever: A pre-training 758
model-based ir system with neither sparse nor dense 759
index. 760

Shengyao Zhuang, Houxing Ren, Linjun Shou, Jian Pei, 761
Ming Gong, Guido Zuccon, and Daxin Jiang. 2022. 762
Bridging the gap between indexing and retrieval for 763
differentiable search index with query generation. 764

Shengyao Zhuang, Houxing Ren, Linjun Shou, Jian Pei, 765
Ming Gong, Guido Zuccon, and Daxin Jiang. 2023. 766
Bridging the gap between indexing and retrieval for 767
differentiable search index with query generation. 768

10

https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/10.48550/ARXIV.2212.09744
https://doi.org/10.48550/ARXIV.2212.09744
https://doi.org/10.48550/ARXIV.2212.09744
https://doi.org/10.1145/3476415.3476428
http://arxiv.org/abs/2108.08877
http://arxiv.org/abs/2108.08877
http://arxiv.org/abs/2108.08877
http://arxiv.org/abs/1909.01066
http://arxiv.org/abs/1909.01066
http://arxiv.org/abs/1909.01066
http://arxiv.org/abs/2305.11841
http://arxiv.org/abs/2305.11841
http://arxiv.org/abs/2305.11841
http://arxiv.org/abs/2112.07708
http://arxiv.org/abs/2112.07708
http://arxiv.org/abs/2112.07708
http://arxiv.org/abs/2206.10658
http://arxiv.org/abs/2206.10658
http://arxiv.org/abs/2206.10658
http://arxiv.org/abs/2304.04171
https://doi.org/10.48550/ARXIV.2202.06991
https://doi.org/10.48550/ARXIV.2202.06991
https://doi.org/10.48550/ARXIV.2202.06991
https://doi.org/10.48550/ARXIV.2206.02743
https://doi.org/10.48550/ARXIV.2206.02743
https://doi.org/10.48550/ARXIV.2206.02743
http://arxiv.org/abs/2007.00808
http://arxiv.org/abs/2007.00808
http://arxiv.org/abs/2007.00808
http://arxiv.org/abs/2203.00537
http://arxiv.org/abs/2203.00537
http://arxiv.org/abs/2203.00537
http://arxiv.org/abs/2203.00537
http://arxiv.org/abs/2203.00537
https://doi.org/10.48550/ARXIV.2206.10128
https://doi.org/10.48550/ARXIV.2206.10128
https://doi.org/10.48550/ARXIV.2206.10128
http://arxiv.org/abs/2206.10128
http://arxiv.org/abs/2206.10128
http://arxiv.org/abs/2206.10128

Model Qtotal Qinitial Qnew

Spider DE 13.28% 8.95% 17.60%
Contriever DE 18.74% 7.15% 30.33%

SEAL GR 20.60% 19.80% 21.40%
MINDER GR 25.87% 25.00% 26.73%

Table 6: Zero-shot performance on updated corpora.
It demonstrates the zero-shot performance in hit@5
achieved without further training from released check-
points. Overall, it exhibits a similar trend to our models
trained on StreamingQA dataset.

A Appendix769

A.1 Zero-shot performance of DE and GR770

We conduct zero-shot experiments to assess the771

base performance of retrieval models on Stream-772

ingQA, utilizing Spider trained on NQ, Contriever773

trained on CCNet and Wikipedia, SEAL trained on774

KILT, and MINDER trained NQ. The results of the775

zero-shot experiments are presented in in Table 6.776

A.2 Implementation Details777

A.2.1 Dual Encoder778

Spider. Spider experiments are conducted using779

8ˆ A100 80GB GPUs, and our implementation780

setup is primarily based on Spider. SPIDER (Ram781

et al., 2022)‡ code. We employ the bert-large-782

uncased pretrained model (336M) from Hugging-783

Face, with fp16 enabled and weight sharing, config-784

uring a batch size of 512 and a maximum sequence785

length of 240. For the pretraining stage, we run a786

full epoch with a learning rate of 2e-05 and a warm-787

up of 2,000 steps. The pretraining data is made788

by running the spider code on the provided docu-789

ments from StreamingQA. This yields 95,199,412790

pretraining data from base corpus and 21,698,933791

from new corpus, which are used for StaticIR and792

DynamicIR, respectively. It takes about 5 days793

for pretraining the base model and 25 hours for794

continual pretraining the updated model. For the795

finetuning stage, we run for maximum 10 epochs796

with learning rate of 1e-05 and warm-up of 1,000797

steps with batch size of 512. We select the best798

checkpoint with lowest validation loss.799

Contriever. Contriever experiments are done800

on 4ˆ A100 40GB GPUs. We employ bert-801

large-uncased pretrained model (336M) and802

‡https://github.com/oriram/spider

follow the paper (Izacard et al., 2022) and their 803

official codebase§ for the implementation and 804

hyperparameter setup. We adjust the per_gpu batch 805

size from 256 to 64 to fit in our gpu resource. Total 806

step size is 110,000 for base (warmup 4,000 steps) 807

and 16,000 (warmup 1,000 steps) for continual 808

pretraining on Cnew, which is equivalent to one 809

epoch. Learning rate is set to 1e-04. For the 810

finetuning stage, we run contriever for maximum 811

10 epochs (about 8000 steps, warmup for 100 812

steps) with eval frequency of 200 steps and select 813

the checkpoint with lowest eval loss. The per_gpu 814

batch size is set to 32. All the hyperparemeters 815

are the same with the pretraining setup, except the 816

ones mentioned above. 817

818

819

A.2.2 Generative Retrieval 820

SEAL. We employ the bart-large pre-trained 821

model (400M) for GR and train the model in 822

Fairseq framework for using SEAL.(Bevilacqua 823

et al., 2022)¶. Due to this context, when we utilize 824

LoRA method, we implement the method within 825

the Fairseq framework. For the pretraining stage of 826

the base retrieval model in StaticIR, we generate 827

2 random spans and 1 full passage with the publi- 828

cation timestamp as input for each instance using 829

the past corpus, resulting in 130,897,221 (130M) 830

unsupervised data. We train the initial model on 831

16ˆ A100 40GB GPUs with a batch size of 7,400 832

tokens and a learning rate of 6e-5. Subsequently, 833

for the finetuning stage in StaticIR using Rinitial, 834

we use 10 random spans as document identifiers 835

per question, resulting in 994,020 (994K). We train 836

this model using 4ˆ A100 80GB GPUs with batch 837

size of 11,000tokens and a learning rate of 6e-5. 838

In the continual pretraining stage for the updated 839

model in training-based updates of DynamicIR, 840

we use 3 random spans and 1 full passage with 841

the publication timestamp as input for each in- 842

stance, utilizing the updated corpus, which results 843

in 24,471,541 (24M) unsupervised data. We train 844

this updated model using 4ˆ A100 80GB GPUs 845

with a batch size of 11,000 tokens and a learning 846

rate of 1e-4. Subsequently for finetuning stage in 847

training-based update of DynimicIR using Rinitial 848

and R1
new, we generate 10 random spans as passage 849

identifiers per question, respectively, resulting in 850

1,894,020(1.8M) data. During inference, we set the 851

§https://github.com/facebookresearch/contriever
¶https://github.com/facebookresearch/SEAL

11

https://github.com/oriram/spider
https://github.com/facebookresearch/SEAL

MINDER GR Qtotal Qinitial Qnew

w/o title 41.54% 38.85% 44.23%

with pseudo-title 40.86% 38.15% 43.57%

Table 7: MINDER with and without Titles as Identifiers.
The results in hit@5 indicate that there is little difference
between the use of identifiers with and without the title.

beam size to 10.852

MINDER. We use 2ˆ A100 80GB GPUs for853

MINDER experiments. We use the pretrained854

model which is used for SEAL experiments, since855

MINDER has identical pretraining process to that856

of SEAL. For retrieval model of StaticIR, we create857

MINDER-specific data comprising of 10 spans and858

5 pseudo-queries as passage identifiers per ques-859

tion, resulting in 1,491,030 (1.4M). For retrieval860

model of training-based updates in DynamicIR, we861

generate 10 spans and 5 pseudo-queries, resulting862

in 2,841,030 (2.8M) data. We run all MINDER863

models for maximum 10 epochs using with max864

token of 18,000 and a learning rate of 6e-5. During865

inference, we set the beam size to 10.866

A.3 Difference in the presence of Titles as867

Identifiers for MINDER868

The original MINDER model employs three com-869

ponents, titles, substrings, and pseudo-queries,870

as its identifiers. However, as the StreamingQA871

dataset lacks title information, we exclude docu-872

ment titles when constructing the MINDER model.873

To investigate the impact of this omission on per-874

formance, we conduct an analysis within training-875

based updates by fine-tuning utilizing pseudo-876

queries generated by GPT-3.5. Our results demon-877

strate that the omission of titles, in comparison878

to the utilization of pseudo-titles, has a negligible879

impact on performance as shown in Table 7.880

A.4 Exploration of DE’s bias towards lexical881

overlap of timestamps882

All timestamps in the queries and in the documents883

to be retrieved are set to the year 2020. In this884

context, to clarify the bias of DE towards temporal885

information, we finetune the models using a dataset886

where query dates are removed. Subsequently, we887

evaluate the models using an evaluation dataset888

where query dates are eliminated. This experiment889

is viable because, out of a total of 5,000 evalua-890

tion instances, only 7 cases require different doc-891

Figure 3: Visualization of total performance in Dynam-
icIR. The star marks highlight the change in the gap
between Qinitial and Qnew of DE before and after the elim-
ination of the bias-inducing factor.

uments for the same question but with different 892

query timestamps. Through the results Qw/o bias
new 893

in Table 8 compared to Qnew in Table 2, we iden- 894

tify that the unexpectedly high performance of DE 895

models stems from the lexical overlap with the 896

timestamp. On the other hand, GR conducts re- 897

trievals more stably with fewer constraints on the 898

lexical characteristics. See the change in the gap be- 899

tween Qinitial and Qnew before and after removing 900

timestamps in Figure 3. 901

A.5 Constructing the query-document pairs 902

from new corpus 903

Reflecting the original evaluation dataset’s distri- 904

bution which balanced similar proportions of new 905

(2020) and base (2007 – 2019) data, we replicate 906

this distribution in our query generation based on 907

new corpus. We randomly selected 90,000 pas- 908

sages from the 6 million 2020 passages. Sub- 909

sequently, we finetuned a T5-base model on the 910

query-document pairs from StreamingQA’s base 911

corpus, applying a hyperparameter configuration 912

similar to docT5 query generation, feeding date- 913

prefixed passages as input and producing date- 914

prefixed queries as output. The training process 915

comprises three epochs, with each taking roughly 916

45 minutes on an NVIDIA A6000 GPU. We then 917

use the trained T5 model to generate one pseudo- 918

query for each of the 90,000 selected passages, a 919

process lasting approximately 90 minutes. Ensur- 920

ing alignment with our study’s temporal focus, we 921

verify that the date information in the generated 922

queries corresponded to 2020. Following a man- 923

12

Indexing-based updates Training-based updates

w/o timestamp Qw/o bias
initial Qw/o bias

new Qw/o bias
initial Qw/o bias

new

Spider DE 18.90% 17.40% 18.90% 17.40%
Contriever DE 6.25% 8.27% 9.85% 11.43%

SEAL GR 35.35% 37.50% 35.30% 39.53%
MINDER GR 36.85% 39.47% 38.45% 43.57%

Table 8: Ablation Study on the bias towards temporal information. DE shows a lexical bias toward timestamps on
Qnew where all queries are asked in 2020 and the gold documents are published also in 2020. When removing the
timestamp of query, the performance drastically drops, while GR does not exhibit noticeable changes.

Spider DE Qtotal Qinitial Qnew

Full parameters 36.99% 21.75% 52.23%
LoRA 26.44% 10.05% 42.83%

Table 9: Spider with and without LoRA when pretrain-
ing on Cnew. The results in hit@5 show that DE achieves
higher performance when pretraining with full parame-
ters not to apply LoRA

ual adjustment to ensure the queries are asked in924

2020, we assemble the queries and corresponding925

documents into an additional finetuning dataset for926

the retrieval models, a process that takes about four927

hours in total. Examples of the finetuning dataset928

are in Table 10.929

A.6 Application of LoRA on DE930

Unlike GR, LoRA does not improve the retrieval931

performance of DE. As shown in Table 9, it is ev-932

ident that DE achieves higher performance when933

pretraining on Cnew with the full parameters rather934

than using LoRA. The degradation in hit@5 is no-935

ticeable not only in Qnew but also in Qinitial, indicat-936

ing that the application of LoRA is not beneficial937

for both retaining initial knowledge and acquiring938

new knowledge.939

A.7 Calculation Details of Inference FLOPs940

We provide an approximate calculation of infer-941

ence flops for DE and GR on updated corpora.942

For DE using the bert-large-uncased, its config-943

urations are N=336M, dmodel=1,024, nlayer=24,944

nctx=512, and C=50M. For query embedding,945

FWflops is 697M, and for searching, C ˆ IPflops is946

102B. The total inference flops (DEflops) amount947

to approximately 102B + 697M « 102.7B. For948

GR using the bart-large, its configurations are949

N=400M, dmodel=1,024, nlayer=12, nctx=1,024,950

V=50,265, L=10, and B=10. For the encoding 951

process, FWflops is 425M, and for the decoding 952

process, FWflops is 42.5B. The total inference flops 953

(GRflops) amount to approximately 425M + 42.5B 954

« 43B. 955

Note that for DE, we employ the exhaustive 956

(brute-force) search method adopted by our base- 957

lines. Some models can employ approximate 958

search techniques, such as clustering, introducing 959

a trade-off between speed and accuracy as they 960

conduct exhaustive searches within nearby clusters. 961

962

A.8 Full performance on Hit and Answer 963

Recall 964

We present the full results of evaluating the perfor- 965

mance of DE and GR in both StaticIR and Dynami- 966

cIR (indexing-based updates and training-based up- 967

dates). We employ Hit@N and Answer Recall@N 968

metrics, where N is set to 5, 10, 50, and 100, to 969

assess retrieval performance. The results are in 970

Table 11 and Table 12 for Hit and Answer Recall, 971

respectively. 972

13

Pseudo-Query Gold Passage

Today is Sunday, October 25, 2020. When did
the pay gap between Pakistani employees and
white employees decrease to 2%?

Monday, October 12, 2020. In 2019 median hourly earnings for white Irish employees
were 40. 5% higher than those for other white employees at 17.55, while Chinese
workers earned 23.1% more at 15.38 an hour and Indian workers earned 14.43 an hour
- a negative pay gap of 15.5%. Annual pay gap Breaking down the data by gender, the
ONS said ethnic minority men earned 6.1% less than white men while ethnic minority
women earned 2.1% more than white women. The ONS added that ethnicity pay gaps
differed by age group. Ämong those aged 30 years and over, those in ethnic minority
tend to earn less than those of white ethnicities,ït said. In contrast, those in the ethnic
minority group aged 16 to 29 years tend to earn more than those of white ethnicities of
the same age. Gender pay gap The ONS found that the pay gap of 16% for Pakistani
employees aged more than 30 shrank to 2% for those aged 16-29.

Today is Sunday, May 2, 2020. What was the
top level of the FTSE 100?

Tuesday, April 28, 2020. But the big weekly shop has made a comeback, with the
amount families spend on an average shopping trip hitting a record high. The new
tracking data comes after Tesco boss Dave Lewis said the pandemic had changed
people’s shopping habits, which he said have r̈everted to how they were 10 or 15
years ago.M̈eanwhile, is this the end of loo roll wars? Spaghetti hoops have overtaken
lavatory paper as the most out-of-stock item in Britain’s stores. Follow our guide to
minimising your risk of catching Covid-19 while shopping. The oil giant said there
would continue to be an ëxceptional level of uncertaintyïn the sector. Meanwhile, the
FTSE 100 soared to a seven-week high. Follow live updates in our markets blog.

Today is Tuesday, March 24, 2020. Why did
President Trump sign an executive order
banning hoarding?

Tuesday, March 24, 2020. President Donald Trump signs executive order banning
hoarding March 23 (UPI) – President Donald Trump on Monday signed an executive
order to prevent hoarding and price gouging for supplies needed to combat the COVID-
19 pandemic. During a briefing by the White House Coronavirus Task Force, Trump
and Attorney General William Barr outlined the order which bans the hoarding of vital
medical equipment and supplies including hand sanitizer, face masks and personal
protection equipment. Ẅe want to prevent price gouging and critical health and medical
resources are going to be protected in every form,T̈rump said. The order will allow
Health and Human Services Secretary Alex Azar to designate certain essential supplies
a s scarce, which will make it a crime to stockpile those items in excessive quantities.
Barr said the limits prohibit stockpiling in amounts greater than r̈easonable personal
or business needsör for the purpose of selling them in ëxcess of prevailing market
pricesädding that the order is not aimed at consumers or businesses stockpiling supplies
for their own operation. Ẅe’re talking about people hoarding these goods and materials
on an industrial scale for the purpose of manipulating the market and ultimately deriving
windfall profits,ḧe said.

Today is Tuesday, November 27, 2020. What is
the name of the radio channel Joe Biden was
on?

Monday, November 16, 2020. ’Heal the damage’: Activists urge Joe Biden to move
beyond b̈order securityÄs Joe Biden prepares to take office, activists say the president-
elect must not only take mean ingful action to stabilize the US-Mexico border, but
also reckon with his own history of militarizing the border landscape and communities.
Biden has promised to end many of the Trump administration’s border policies, but has
yet to unveil the kind of bold immigration plan that would suggest a true departure from
Obama-era priorities. Cecilia Muoz, Obama’s top immigration adviser who memorably
defended the administration’s decision to deport hundreds of thousands of immigrants,
was recently added to Biden’s transition team. Biden has stated that he will cease
construction of the border wall, telling National Public Radio in August that there will
be n̈ot another foot of wall,änd that his administration will close lawsuits aimed at
confiscating land to make way for construction. His immigration plan will also rescind
Trump’s declaration of a n̈ational emergencyön the southern border, which the Trump
administration has used to siphon funds from the Department of Defense to finance
construction, circumventing Congress in an action recently declared illegal by an
appeals court. Some lawmakers along the border find these developments heartening,
after Trump’s border wall construction has devastated sensitive ecosystems, tribal
spaces, and communities, a nd has been continuously challenged in court.

Table 10: Examples of Finetuning dataset R1
new created by docT5.

14

hit@5 hit@10 hit@50 hit@100

Model Method Total initial New Total initial New Total initial New Total initial New

Spider
StaticIR 19.65 19.65 – 25.40 25.40 – 38.20 38.20 – 44.50 44.50 –
Index-based Update 24.82 15.60 34.03 30.67 20.20 41.13 44.92 32.80 57.03 51.28 38.45 64.10

Train-based Update 36.99 21.75 52.23 43.74 26.95 60.53 58.75 40.40 77.10 64.84 46.95 82.73

Contriever
StaticIR 16.10 16.10 – 20.25 20.25 – 33.80 33.80 – 40.90 40.90 –
Index-based Update 21.14 13.75 28.53 25.17 17.35 36.90 39.44 29.45 54.43 46.26 35.65 62.17

Train-based Update 23.85 8.20 39.50 29.26 10.55 47.97 43.66 20.35 66.97 49.64 25.35 73.93

SEAL
StaticIR 34.95 34.95 – 41.80 41.80 – 57.25 57.25 – 63.10 63.10 –
Index-based Update 33.13 32.75 33.50 39.64 38.90 40.37 54.14 54.50 53.77 59.71 60.55 58.87

Train-based Update 41.01 38.25 43.77 47.99 45.30 50.67 62.90 60.20 65.60 67.79 65.00 70.57

MINDER
StaticIR 37.90 37.90 – 45.00 45.00 – 59.60 59.60 – 64.00 64.00 –
Index-based Update 38.68 37.65 39.70 45.27 44.40 46.13 60.87 60.60 61.13 66.13 66.35 65.90

Train-based Update 41.54 38.85 44.23 48.29 45.60 50.97 63.12 60.80 65.43 68.43 66.25 70.60

Table 11: Full results on the Hit of DE and GR.

answer recall @5 answer recall @10 answer recall @50 answer recall @100

Model Method Total initial New Total initial New Total initial New Total initial New

Spider
StaticIR 37.55 37.55 – 47.45 47.45 – 67.65 67.65 – 74.80 74.80 –
Index-based Update 44.24 33.45 55.03 52.93 41.50 64.37 70.77 61.70 79.83 76.68 69.20 84.17

Train-based Update 55.79 41.05 70.53 64.32 49.90 78.73 79.25 68.90 89.60 83.63 75.50 91.77

Contriever
StaticIR 28.90 28.90 – 37.60 37.60 – 60.20 60.20 – 68.25 68.25 –
Index-based Update 31.34 25.15 40.63 41.84 34.80 52.40 63.05 55.15 74.90 70.98 64.30 81.00

Train-based Update 37.14 20.15 54.13 46.54 28.15 64.93 66.21 48.65 83.77 72.33 56.85 87.80

SEAL
StaticIR 58.25 58.25 – 66.30 66.30 – 80.45 80.45 – 83.60 83.60 –
Index-based Update 55.85 56.80 54.90 63.68 64.45 62.90 77.58 78.95 76.20 81.49 82.75 80.23

Train-based Update 62.44 59.95 64.93 70.25 68.10 72.40 81.65 80.30 83.00 85.02 84.10 85.93

MINDER
StaticIR 59.50 59.50 – 68.10 68.10 – 80.35 80.35 – 83.75 83.75 –
Index-based Update 54.23 54.45 54.00 62.96 63.75 62.17 76.54 78.00 75.07 79.79 81.20 78.37

Train-based Update 56.74 55.35 58.13 64.45 63.70 65.20 77.19 77.40 76.97 80.34 80.50 80.17

Table 12: Full results on the Answer Recall of DE and GR.

15

	Introduction
	Related Work
	Dynamic Information Retrieval
	DynamicIR Task Setup
	Benchmark

	Experimental setup
	Retrieval Models
	Evaluation
	Metric

	Results and Analysis
	Overall adaptability
	Acquisition of new knowledge and Robustness towards temporal data
	Forgetting of initial knowledge
	Effectiveness of R'new in learning from new corpora
	Effectiveness of LoRA applied to FFN for GR

	Computation & Memory Efficiency
	Conclusion
	Limitations
	Appendix
	Zero-shot performance of DE and GR
	Implementation Details
	Dual Encoder
	Generative Retrieval

	Difference in the presence of Titles as Identifiers for MINDER
	Exploration of DE's bias towards lexical overlap of timestamps
	Constructing the query-document pairs from new corpus
	Application of LoRA on DE
	Calculation Details of Inference FLOPs
	Full performance on Hit and Answer Recall

