
Neo-GNNs: Neighborhood Overlap-aware
Graph Neural Networks for Link Prediction

Seongjun Yun, Seoyoon Kim, Junhyun Lee, Jaewoo Kang∗ , Hyunwoo J. Kim∗
Department of Computer Science and Engineering

Korea University
{ysj5419, sykim45, ljhyun33, kangj, hyunwoojkim}@korea.ac.kr

Abstract

Graph Neural Networks (GNNs) have been widely applied to various fields for
learning over graph-structured data. They have shown significant improvements
over traditional heuristic methods in various tasks such as node classification and
graph classification. However, since GNNs heavily rely on smoothed node features
rather than graph structure, they often show poor performance than simple heuris-
tic methods in link prediction where the structural information, e.g., overlapped
neighborhoods, degrees, and shortest paths, is crucial. To address this limitation,
we propose Neighborhood Overlap-aware Graph Neural Networks (Neo-GNNs)
that learn useful structural features from an adjacency matrix and estimate over-
lapped neighborhoods for link prediction. Our Neo-GNNs generalize neighborhood
overlap-based heuristic methods and handle overlapped multi-hop neighborhoods.
Our extensive experiments on Open Graph Benchmark datasets (OGB) demonstrate
that Neo-GNNs consistently achieve state-of-the-art performance in link prediction.

1 Introduction

Graph-structured data is ubiquitous in a wide range of domains ranging from social network analysis
[1, 2, 3] to biology [4, 5, 6, 7] and computer vision [8, 9, 10]. In recent years, numerous variants of
Graph neural networks (GNNs) have been proposed for learning representations over graph-structured
data. GNNs learn low dimensional representations of nodes or graphs via iterative aggregation of
features from neighbors using non-linear transformations. In this manner, GNNs have shown
significant improvements over traditional methods, e.g., heuristic methods and embedding-based
methods, and achieved state-of-the-art performance on various tasks, such as node classification
[11, 12, 13, 14, 15], graph classification [16, 17, 18, 19, 20], and graph generation [21, 22, 23, 24].

However, in link prediction, traditional heuristic methods still show competitive performance com-
pared to GNNs, which often even outperform GNNs. This is because structural information, (e.g.,
overlapped neighborhoods, degrees, and shortest path), is crucial for link prediction whereas GNNs
heavily rely on smoothed node features rather than graph structure. Recently, SEAL [25] has been
proposed to consider structural information for link prediction by utilizing the relative distance
between the target node pair and their neighborhoods. Nonetheless, SEAL requires the expensive
computational cost to apply a GNN independently to an extracted subgraph for each target node pair.

To address this limitation, we propose Neighborhood Overlap-aware Graph Neural Networks (Neo-
GNNs) that are designed to consider key structural information regarding links without manual
processes. Specifically, instead of using input node features, Neo-GNNs first learn to generate useful
structrual features for each node from an adjacency matrix. Then Neo-GNNs measure the existence
of links by considering the structural features of overlapped neighbhorhoods via neighbhorhood

∗corresponding author

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



overlap-aware aggregation scheme. Finally, to consider both structural information and input node
features, our proposed model adaptively combines scores from Neo-GNNs and feature-based GNNs
in an end-to-end fashion. We show that Neo-GNNs consistently outperform both state-of-the-art
GNNs and heuristic methods on four Open Graph Benchmark datasets (OGB) for link prediction.
Furthermore, Our Neo-GNNs generalize the neighborhood overlap-based heuristic methods which
measure the likelihood of the link based on manually designed structural information of overlapped
neighbors.

Our contributions are as follows: (i) We propose Neighborhood Overlap-aware Graph Neural
Networks (Neo-GNNs) that learn useful structural features from an adjacency matrix and estimate
overlapped neighborhoods for link prediction. (ii) Neo-GNNs generalize neighborhood overlap-based
heuristic methods and handle overlapped multi-hop neighborhoods. (iii) Our extensive experi-
ments on Open Graph Benchmark datasets (OGB) demonstrate that Neo-GNNs consistently achieve
state-of-the-art performance in link prediction.

2 Related Works

Graph Neural Networks. GNNs have been designed to learn node representations by using neural
networks on graph topology. Among deep learning based approaches, the message passing scheme
is dominantly used in recent studies such as GCN [11], GraphSAGE [26], and GAT [12]. Due to
the iterative aggregation step, each node representation vector can have information of neighbor
nodes in multi-hop relationships required for downstream tasks. However, there is a limitation of
the expressive power that is upper-bounded by the 1-Weisfeiler-Lehman (1-WL) graph isomorphism
test. To overcome this limitation, recent works have tried to boost the expressive power of GNNs by
augmenting node features with ordering vectors or position-aware vectors [11, 27, 28]. The main
purpose of these works is to complement GNNs with structural information which is crucial for
prediction tasks. Our study focuses on adaptively incorporating structural information to GNNs for
the link prediction task.

Link Prediction. Link prediction has been studied in various ways. Conventionally, diverse heuristic
methods have been proposed for link prediction. They basically measure the scores of given node
pairs based on structural information e.g., overlapped neighbors and shortest path, about the pair
of nodes. Common neighbors and preferential attachment [29] exploit structural information about
one-hop neighbors to compute the score. To consider more than one-hop relationships, second-order
heuristic methods (e.g., Adamic-Adar [30] and resource allocation [31]) and higher-order heuristic
methods (e.g., Katz [32] , PageRank [33] , and SimRank [34]) have been proposed. Heuristic methods
are extremely effective for link prediction. However, they require manually designed structural
information for each heuristic method. To overcome this limitation, embedding-based methods have
been proposed. They learn node embeddings based on connections between nodes and compute
similarity scores using the embeddings. Typically, Matrix factorization [35] learns node embeddings
by decomposing an adjacency matrix of the graph. Random walk-based embedding methods such
as Deepwalk [36], and node2vec [37] learn node embeddings by applying the Skip-Gram [38]
techniques on the random walks. LINK [39] learns to classify the existence of links based on each
row in the adjacency matrix, which includes connectivity information. Since the performance of the
embedding methods depends on the sparsity of the input graph, it is hard to regard these methods
as generalized ones. Recently, with the success of GNNs in learning graph representations, there
have been several attempts to apply them to the link prediction task. Typically, GAE and VGAE
[40] learn node representations through GCN to reconstruct the input graph in the auto-encoder
framework. Based on the GAE, various GNN architectures have been applied to link prediction. On
the other hand, SEAL [25] reformulated the link prediction task to the classification of enclosing
subgraphs. Instead of directly predicting the link, enclosing graphs are sampled around each target
link to compose dataset and SEAL performs the graph classification task. Due to the node labeling
step to mark nodes’ different roles in an enclosing subgraph, SEAL has better performance than GAE
even though both are GNN-based methods. However, constructing subgraphs is inefficient because it
requires a large amount of computation, whereas our model is as efficient as GAE and can consider
structural information like SEAL.
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3 Methods

The goal of our framework, Neighborhood Overlap-aware Graph Neural Networks (Neo-GNNs), is
to learn useful structural features from an adjacency matrix and estimate overlapped neighbors for
link prediction. We begin with defining the basic notions of graph neural networks for link prediction
and review neighborhood overlap-based heuristic methods, and then introduce Neo-GNNs.

3.1 Preliminaries

Notations. Consider an undirected graph G = (V, E) with N nodes, where V = {v1, v2, . . . , vN}
represents a set of nodes and E = {eij | vi, vj ∈ V} represents a set of edges where the nodes
vi, vj ∈ V are connected. The adjacency matrix A ∈ RN×N is defined by Aij = 1 if eij ∈ E and 0
otherwise. The degree matrix D ∈ RN×N is a diagonal matrix defined by Dii =

∑
j Aij . The nodes

of G have their own feature vectors xi ∈ RF (i ∈ {1, 2, . . . , N}), with X ∈ RN×F denoting the
collection of such vectors in a matrix form.

Graph Neural Networks for Link Prediction. Given a graph G and a feature matrix X , graph
neural networks learn meaningful node representations by an iterative aggregation of transformed
representations of neighbor nodes in each l-th GNN layer as follows:

H(l+1) = σ
(
ÃGNNH

(l)W (l)
)
, (1)

where ÃGNN ∈ RN×N is the adjacency matrix normalized in different ways depending on each GNN
architecture (e.g., D̃−

1
2 (A+ I)D̃−

1
2 ), W (l) ∈ Rd

(l)×d(l+1)

is a trainable weight matrix, and H(0) is
the node feature matrix X ∈ RN×F . After stacking L GNN layers, node representations H(L) are
then used to predict existence of each link (i, j):

ŷij = σ(s(h
(L)
i , h

(L)
j )), (2)

where s(·, ·) is a function, e.g., inner product or MLP, and h(L)
i is the representation of the node i

from H(L).

3.2 Neighborhood Overlap-based Heuristic Methods

Heuristic methods for link prediction measure the score of given node pairs based on structural
information about the node pairs, e.g., shortest path, degree, and common neighbors. Although GNNs
outperform existing traditional heuristic methods in various graph tasks, in link prediction, since
GNNs heavily rely on smoothed node features rather than graph structure, the heuristic methods often
show competitive performance compared to GNNs. Especially, neighborhood overlap-based heuristic
methods are straightforward yet highly effective, even better than GNN models in several datasets,
e.g., ogbl-collab and ogbl-ppa. Typical neighborhood overlap-based heuristic methods are Common
Neighbors, Resource Allocation (RA) [31], and Adamic Adar [30]. The Common Neighbors method
measures the score of link (u, v) by counting the number of common neighbors between node u and
v as

SCN (u, v) = |N (u) ∩N (v)| =
∑

k∈N (u)∩N (v)

1. (3)

The Common Neighbors method is simple and effective, but has a limitation that equally weighs the
importance of each common neighbor. To solve this issue, several heuristic methods e.g., Resource
Allocation, and Adamic-Adar measure the score for the link by considering the importance of each
common neighbor. From the intuition that neighbor nodes with lower degrees are more significant,
they give more weight to neighbors with lower degrees. Specifically, Resource Allocation (RA) [31]
measures the score of link (u, v) by counting the inverse degrees of common neighbors between node
u and v as

SRA(u, v) =
∑

k∈N (u)∩N (v)

1

dk
, (4)

where dk denotes the degree of node k. Adamic-Adar has a relatively decreased penalty for higher
degree compared to RA by using the reciprocal logarithm of common neighbors’ degrees between

3



.0

.0

Figure 1: The Neo-GNNs framework for link prediction. Neo-GNNs learn useful structural features
from an adjacency matrix and estimate similarity scores based on overlapped neighborhoods. (a)
Neo-GNNs first generate the structural feature vector xstruct ∈ RN×1 from an adjacency matrix
A ∈ RN×N by using Structural feature generator Fθ, i.e., Fθ(A). Then to consider only features of
overlapped neighbors between nodes, (b) Neo-GNNs construct a diagonal matrix Xstruct ∈ RN×N
and (c) aggregate the features of multi-hop neighborhoods by multiplying the sum of powers of
adjacency matrices, i.e.,

∑L
l=1 β

l−1Al. Finally, two node representations Z and H , respectively
from Neo-GNNs and feature-based GNNs, are used to (d) compute similarity scores and combined
adaptively with the learnable parameter α.

node u and v as

SAA(u, v) =
∑

k∈N (u)∩N (v)

1

log dk
. (5)

These heuristic methods show comparable performance to GNNs for link prediction.

However, they have two limitations. First, each heuristic method uses manually designed structural
features of neighborhoods, e.g., 1, 1

d ,
1

log d . This requires the manual choice by domain experts to
select the best heuristic method for each dataset. Second, they only consider structural similarity.
While the GNNs do not use graph structures well compared to using node features, heuristic methods
cannot utilize the node features for link prediction.

To address the limitations of both GNNs and heuristic methods, we propose Neighborhood Overlap-
aware Graph Neural Networks (Neo-GNN), that learn useful structural features from an adjacency
matrix and estimate overlapped neighborhoods for link prediction, and adaptively combine with the
conventional feature-based GNNs in an end-to-end fashion.

3.3 Neighborhood Overlap-aware Graph Neural Networks

We now introduce Neighborhood Overlap-aware Graph Neural Networks (Neo-GNNs) for link
prediction. We first explain how Neo-GNNs learn and utilize structural information for link prediction
and then explain the process of adaptively combining with the feature-based GNNs.

Neo-GNNs consist of two key components: (1) Structural feature generator and (2) neighborhood
overlap-aware aggregation scheme. First, as we discussed in section 3.2, each heuristic method uses
manually designed structural features of neighborhoods, 1, 1

d ,
1

log d . To generalize and learn these
structural features, we propose Structural feature generator Fθ which learns to generate structural
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features of each node using an only adjacency matrix A ∈ RN×N of the graph as

xstructi = Fθ(Ai) = fθnode

∑
j∈Ni

fθedge(Aij)

 , (6)

where xstructi is a structural feature value of the node i and Fθ is a learnable function comprised
of two MLPs, fθnode

and fθedge , for nodes and edges, respectively. That is to say, Neo-GNNs take
only an adjacency matrix A as an input to generate the most beneficial structural features. This
input adjacency matrix A can be replaced with the combination of powers of adjacency matrices.
Now, Structural feature generator Fθ can generate structural features for each heuristic method. For
example, if fθnode

is a reciprocal of the logarithm function, i.e., f(x) = 1
log x , and fθedge is an identity

function, i.e., f(x) = x, then Structural feature generator Fθ can generate the exactly same structural
feature as the features used in Adamic-Adar method.

Based on the generated structural features of each node, the next process is to calculate the similarity
score that considers only structural features of overlapped neighbors between given nodes. Note
that conventional GNNs cannot compute this score due to two reasons: the normalized adjacency
matrix and the lower dimension of hidden representations than the number of nodes (i.e., d� N ).
The normalized adjacency matrix hinders GNNs counting a number of neighborhoods and the low
dimension makes features of each neighborhoods indistinguishable after aggregation, which cannot
detect the neighborhoods overlap. We propose the neighborhood overlap-aware aggregation scheme
to calculate neighborhood overlap-aware score. First, to maintain the respective features of each
node after aggregation, we construct a diagonal matrix Xstruct ∈ RN×N using the structural feature
vector xstruct ∈ RN×1 as

Xstruct = diag(xstruct). (7)
Then, to consider the number of overlapped neighbors, we aggregate features of neighborhoods by
multiplying an unnormalized adjacency matrix A as

Z = AXstruct. (8)

Now, each i-th row vector of Z, zi, involves all the features of node i’s neighboring nodes individually.
If we compute the inner product of two row vectors in Z, then we can compute the scores with
the only overlapped neighborhoods, which equals the sum of square of structural feature values of
overlapped neighborhoods, i.e., zTi zj =

∑
k∈N (i)∩N (j) (x

struct
k )2.

Furthermore, to consider multi-hop overlapped neigbhors, we extend (8) to multi-hop settings as
follows:

Z = gΦ

(
L∑
l=1

βl−1AlXstruct

)
, (9)

where β denotes a hyper-parameter controlling how much weight is given to close neighbors versus
distant neighbors and gΦ is a MLP which controls the scale of representations Z. Since node repre-
sentations Z are based on only structural information, we compute feature-based node representations
H ∈ RN×d

′
using the conventional feature-based GNNs as

H = GNN(X, ÃGNN ;W ), (10)

where X ∈ RN×F denotes the raw feature matrix, ÃGNN denotes a normalized adjacency matrix,
and W is the parameter for GNNs. Then given a link (i, j), Neo-GNNs calculate both similarity
scores from each representation matrix Z and H and compute the convex combination of two scores
by a trainable parameter α as follows:

ŷij = α · σ(zTi zj) + (1− α) · σ(s(hi, hj))), (11)

Based on (12), we jointly train our proposed model and individual models using three standard
(binary) cross-entropy losses

L =
∑

(i,j)∈D

(
λ1BCE(ŷij , yij) + λ2BCE(σ(zTi zj), yij) + λ3BCE(σ(s(hi, hj)), yij)

)
, (12)

where BCE(·, ·) denotes binary cross entropy loss and λi are the weights.
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Table 1: Statistics and evaluation metrics of OGB link prediction datasets.

Dataset #Nodes #Edges Avg. node deg. Density Split ratio Metric

OGB-PPA 576,289 30,326,273 73.7 0.018% 70/20/10 Hits@100

OGB-COLLAB 235,868 1,285,465 8.2 0.0046% 92/4/4 Hits@50

OGB-DDI 4,267 1,334,889 500.5 14.67% 80/10/10 Hits@20

OGB-CITATION2 2,927,963 30,561,187 20.7 0.00036% 98/1/1 MRR

Computational Complexity. Our proposed model uses the N × N matrix Xstruct for neigb-
horhood overlap detection, which generally takes O(N |E|L) computational time to compute node
representations Z in (9), where |E|L denotes a number of edges connected up to L-hop. To solve
this high complexity issue, we represent matrices Xstruct and Z as the sparse matrix form and the
computational time becomes just O(|E|L). Also, as we can pre-compute the set of adjacency matrices
{Al}Ll=1 in (9), thus there is no additional cost to calculate the powers of the adjacency matrix during
training and inference.

4 Experiments

In this section, we evaluate the benefits of our method against state-of-the-art models on link prediction
benchmarks. Then we analyze the contribution of each component in Neo-GNNs and show how
Neo-GNNs can actually generalize and learn neighborhood overlap-based heuristic methods.

4.1 Experiment Settings

Datasets. We evaluate the effectiveness of our Neo-GNNs for link prediction on Open Graph
Benchmark datasets [41] (OGB) : OGB-PPA, OGB-Collab, OGB-DDI, OGB-Citation2. Note that
OGB-Collab contains multiple edges. Detailed statistics of each dataset are summarized in Table 1.

Evaluation. The evaluation for link prediction is based on the ranking performance of positive test
edges over negative test edges. Specifically, in OGB-PPA, OGB-Collab, OGB-DDI, each model
ranks positive test edges against randomly-sampled negative edges, and computes the ratio of positive
test edges that are ranked at K-th place or above (Hits@K). In OGB-Citation2, the evaluation metric
is Mean Reciprocal Rank (MRR), where the reciprocal rank of the true link among the negative
candidates is calculated for each source node, and then the average is taken over all source nodes.

Baselines. To demonstrate the effectiveness of our Neo-GNNs in link prediction, we compare
Neo-GNNs with three heuristic link prediction methods, three embedding-based methods, and five
GNN-based models. For heuristic methods, we used three well-known neighborhood-overlap based
heuristic methods, Common Neighbors, Adamic Adar [30], and Resource Allocation [31]. Without
learning process, they predict links by utilizing each designed structural information regarding
overlapped neighborhoods. For embedding-based methods, we used Matrix Factorization, Node2Vec
[42], and Multi-Layer Perceptron (MLP). Furthermore, we compare our method to GNN-based
models, GCN [11], GraphSAGE [26], JK-Net [43], GAT [12], and SEAL [25]. GCN, GraphSAGE,
JK-Net, and GAT compute representations for each node and predict target links by measuring the
similarity score between the source and target node of the target links. SEAL extracts enclosing
subgraphs around target links and predict target links based on representations of the enclosing
subgraphs as graph classification.

Implementation Details. We reimplemented neighborhood overlap-based heuristic method,i.e.,
Common neighbors, Adamic Adar, and Resource allocation from the referenced papers by using
PyTorch. For Node2Vec, GCN, GraphSAGE, JK-Net, and GAT, we used the implementation in
PyTorch Geometric [44] and the implementation in the official github repository for SEAL. We set
the number of layers to 3 and latent dimensionality to 256 for all GNN-based models. To train our
method, we used GCN as a feature-based GNN based model and all MLP models in our Neo-GNNs
consist of 2 fully connected layers. We jointly trained feature-based GNNs and Neo-GNNs. Since
a GNN model requires more epochs for convergence than that of Neo-GNNs on OGB-PPA, and
OGB-DDI, we adopted pre-trained GCN to handle this issue. In OGB-Citation2, due to memory
issue, we fix the fθedge as the identity function. For fair comparison, we reported performances of
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Table 2: Link prediction performances (%) of our Neo-GNNs and baselines on Open Graph Bench-
mark (OGB) datasets. Each number is the average performance for 10 random initialization of
the experiments. OOM denotes ’out of memory’. Bold indicates the second best performance and
underline indicates the best performance.

Method OGB-PPA OGB-COLLAB OGB-DDI OGB-CITATION2
Common Neighbors 27.65± 0.00 50.06± 0.00 17.73± 0.00 76.20± 0.00

Adamic Adar 32.45± 0.00 53.00± 0.00 18.61± 0.00 76.12± 0.00

Resource Allocation 49.33± 0.00 52.89± 0.00 6.23± 0.00 76.20± 0.00

Matrix Factorization 27.83± 2.02 38.74± 0.30 17.92± 3.57 53.08± 4.19

Node2Vec 17.24± 0.76 41.36± 0.69 21.95± 1.58 53.47± 0.12

MLP 0.47± 0.05 19.98± 0.96 N/A 28.99± 0.16

GCN 16.98± 1.33 47.01± 0.79 44.60± 8.87 84.79± 0.24

GraphSAGE 13.93± 2.38 48.60± 0.46 48.01± 9.02 82.64± 0.01

JK-Net 11.40± 2.04 48.84± 0.83 57.98± 6.88 OOM
GAT OOM 44.89± 1.23 29.51± 6.40 OOM

SEAL 48.15± 4.17 54.37± 0.02 26.25± 6.00 86.32± 0.52

Neo-GNN 49.13± 0.60 57.52± 0.37 63.57± 3.52 87.26± 0.84

all baselines and our Neo-GNNs as the mean and the standard deviation of performances from 10
independent runs, where each seed is from 0 to 9. The experiments are conducted on a RTX 3090
(24GB) and a Quadro RTX (48GB).

4.2 Results on Link Prediction

Table 2 shows link prediction results of the baselines and Neo-GNNs on Open Graph Benchmark
(OGB) datasets. We use GCN to adaptively combine with Neo-GNNs across all datasets except OGB-
Citation2. In OGB-Citation2, since GCN requires 46 GB memory to train, we trained our Neo-GNNs
without GCN. As shown in Table 2, we can observe that Neo-GNNs consistently achieve state-of-
the-arts performance across all datasets. Especially, Neo-GNNs show significant improvements on
OGB-Collab and OGB-DDI, where the improvements of Neo-GNNs over the best baseline are 5.4%
and 9.6%, respectively. Furthermore, note that Neo-GNNs achieved state-of-the-art performance in
OGB-Citation2 without GCN, that is, by using only graph structures without input node features.
Interestingly, conventional feature-based GNNs show poor performance with a huge gap than that
of neighborhood overlap-based heuristic methods on OGB-PPA and OGB-Collab. This implies that
feature-based GNNs have a difficulty in directly utilizing structural information e.g., degree and
overlapped neighbors, for link prediction. According to this implication, Neo-GNNs and SEAL
are able to learn structural information, thus these methods accomplish better performance than
conventional GNNs do. Moreover, Neo-GNNs and SEAL even show good performance compared
to the heuristic methods in all datasets as they can capture structural information that the heuristic
methods utilize. Although SEAL shows good performance compared to heuristic methods, SEAL
shows poor performance than feature-based GNNs in OGB-DDI. One possible interpretation is that
SEAL cannot adaptively utilize the input node features and structural features according to each data.
Instead, Neo-GNNs adaptively combine Neo-GNNs and GCN for each dataset using the learnable
parameter α, which shows even higher performance than each performance of Neo-GNNs and GCN.
We further analyze the effectiveness of α in 4.2

4.3 Ablation Studies

We present ablation experiments to identify the benefits of different components of Neo-GNNs. First,
we evaluate our Neo-GNNs without GCN and examine the effectiveness of the parameter α that
adaptively combine scores from Neo-GNNs and GCN. Then we study the effects of considering multi-
hop overlapped neighborhoods. Specifically, we investigate the effectiveness of two hyper-parameters,
the decaying factor β and the maximum hop L, related to multi-hop overlapped neighborhoods.
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Table 3: Ablation study analyzing the significance of Neo-GNNs on the OGB-PPA, OGB-Collab,
OGB-DDI, and OGB-Citation2 datasets for link prediction. α denotes the attention weight of
Neo-GNNs’ scores.

Dataset α
Neo-GNN
(w/ GCN)

Neo-GNN
(w/o GCN)

GCN

PPA 0.98± 0.003 49.13± 0.60 48.63± 0.88 16.98± 1.33

COLLAB 0.57± 0.130 57.52± 0.37 55.70± 0.24 47.01± 0.79

DDI 0.48± 0.015 63.57± 3.52 17.38± 4.05 44.60± 8.87

CITATION2 N/A OOM 87.26± 0.84 84.79± 0.24

Figure 2: Link prediction results on the OGB-Collab dataset by varying the maximum hop L (left)
and the decaying factor β (right).

(a) Maximum hop L (b) Decaying factor β

Neo-GNNs without GCN. To measure the effectiveness of Neo-GNNs itself, we perform an ablation
study on four datasets, as shown in Table 3. We can see that Neo-GNNs (w/o GCN) still show the
state-of-the-art performances compared to baselines except OGB-DDI. Note that Neo-GNNs (w/o
GCN) only use graph structures and outperform other GNNs whereas other GNNs use both input
features and graph structures. This shows that utilizing key structrual information about overlapped
neighbors is crucial for link prediction.

Effectiveness of the parameter α. To consider both structural information and input features, our
proposed model predict similarity scores from the convex combination of two scores from Neo-GNNs
and GCN by the trainable parameter α. As shown in Table 3, α varies for each dataset, which indicates
that α properly adjusts the weight of structural information and features for each dataset. With the
combining process, Neo-GNNs (w/ GCN) consistently show better performance than performances
of individual model, i.e., Neo-GNN (w/o GCN) and GCN. Especially, in OGB-DDI, Neo-GNN (w/o
GCN) and GCN show less than 50, but the combined model Neo-GNN (w/ GCN) shows 42% and
80% improved performance compared to each model.

Effectiveness of multi-hop overlapped neighborhoods. We study the effectiveness of multi-hop
overlapped neighborhoods by investigating effects of two hyper-parameters, L and β, on OGB-Collab
dataset. First, as shown in Figure 2, if Neo-GNNs only consider 1-hop ovelapped neighbhors, i.e.,
L = 1, Neo-GNNs converge faster than other cases considering multi-hop overlapped neighbors.
However, the best performance is lower than the others, which shows that multi-hop overlapped
neighborhoods enhance the performance of Neo-GNNs for link prediction. Second, β controls how
much to reduce the effects of neighborhoods when the distance increases. As shown in Figure 2, as β
decreases, Neo-GNNs converge slowly but eventually show similar performance. This means that if
multi-hop overlapped neighbors are informative, then Neo-GNNs achieve good performance robustly
to the value of β.

4.4 Analysis on learning neighborhood overlap-based heuristic methods

As we discussed in Sec 3.3, our Neo-GNNs generalize several neighborhood overlap-based heuristic
methods, (e.g., Common Neighbors, Adamic Adar, and Resource Allocation). Further, in this section,
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we show that Neo-GNNs (w/o GCN) directly learn each neighbhorhood overlap-based heuristic
method and implicitly learn the best one among three heuristic methods on OGB-PPA dataset. We first
trained Neo-GNNs to fit the scores from each heuristic method on the train set of OGB-PPA. Then
we measure the Spearman correlations by using ranks of test edges from each model. We analyze
rank correlations between Neo-GNNs and three heuristic methods based on 50000 sampled test edges
in Figure 3. As shown in Figure 3, Neo-GNNs show a strong correlation with other heuristic methods.
That is, Neo-GNNs can learn each heuristic method. Next, to show that Neo-GNNs learn the most
desirable heuristic method depending on datasets, we compute Spearman correlations between ranks
from trained Neo-GNNs on OGB-PPA dataset and the heuristic methods. As a result, correlation
scores between Neo-GNNs and Resource Allocation, Adamic Adar, and Common Neighbors are
0.9627, 0.9277, and 0.8982, respectively. We can see that correlation scores are proportional to
performances of each heuristic method (49.33, 32.45, and 27.65), which learn the best heuristic
method.

(a) Resource Allocation (0.9913) (b) Adamic Adar (0.9969) (c) Common Neighbors (1.0)

(d) Resource Allocation (0.9627) (e) Adamic Adar (0.9277) (f) Common Neighbors (0.8982)

Figure 3: Comparison of rank correlation between our Neo-GNNs and three neighborhood overlap-
based heuristic methods on OGB-PPA. We evaluate a rank correlation on positive test edges after
ranking the entire test edge prediction scores. We visualize a rank correlation using randomly sampled
50,000 positive test edges. The 3(a), 3(b), and 3(c) show rank correlation when Neo-GNNs (w/o GCN)
fit to scores of each heuristic method. The 3(d), 3(e), and 3(f) present the rank correlation between
Neo-GNNs (w/o GCN) and each heuristic method upon OGB-PPA. The number in parentheses
indicates Spearman Correlation coefficient.

5 Conclusion

We introduced Neighborhood Overlap-based Graph Neural Networks (Neo-GNNs) that learn and
utilize structural information, which is a key element in link prediction. Neo-GNNs learn useful struc-
tural features from an adjacency matrix and estimate overlapped neighborhoods for link prediction.
We also adaptively combine Neo-GNNs and feature-based GNNs to consider both structural features
and input node features. Furthermore, our Neo-GNNs generalize several neigbhorhood overlap-based
heuristic methods and handle overlapped multi-hop neigbhorhoods. Extensive experiments on four
Open Graph Benchmark (OGB) datasets demonstrate that Neo-GNNs consistently acheive state-
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of-the-art performance on four OGB datasets in link prediction. In future work, we plan to further
develop Neo-GNNs to generalize more link prediction-based heuristic methods and improve the
scalability with efficient sparse matrix computation.
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