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ABSTRACT

Sharpness-Aware Minimization (SAM) is an iterative optimization process to train
neural networks, by which the training is guided to find flat minima, such that the
solution found at convergence may generalize well. However, previous studies
on the convergence of SAM have only shown the existence of such a solution at
arbitrary iteration. We prove that SAM converges at its last iteration almost surely.

1 OVERVIEW

Consider the following general optimization problem:

min
x

f(x) (1)

where f is the objective function to minimize, convex or non-convex, and x is its parameters, such
as the weights of a neural network in deep learning, for example. The standard approach to (1) is by
employing an iterative first-order optimization algorithm such as stochastic gradient descent, which
updates x at each iteration t until it reaches a minimum point x⋆; in non-convex settings, it means
finding a stationary point as measured by the gradient norm being zero, i.e., ∥∇f(x⋆)∥ = 0.

Inspired by recent findings in the literature (Yiding et al., 2019; Keskar et al., 2017; Gintare & Roy,
2017) that the shape of minimum highly correlates with their generalization performance, i.e. the
flatter it is shaped, the better it is generalized, Foret et al. (2021) have turned (1) into a min-max
problem of the following form:

min
x

max
∥ϵ∥2≤ρ

f(x+ ϵ) (2)

where ϵ denotes some perturbation added to x and ρ sets the radius of the perturbation in 2-norm;
i.e., it seeks x that yields the minimum f in the entire ϵ-neighborhood, which would illustrate “flat”
minima in the objective geometry, and hence the name, sharpness-aware minimization or SAM1.
Specifically, Foret et al. (2021) suggest the following two-step update rule to solve (2) iteratively:

xt+ 1
2
= xt + ρ∇f(xt)/∥∇f(xt)∥

xt+1 = xt − ηt∇f(xt+ 1
2
)

where ηt is the step size. The ∇f(xt) can be replaced with a stochastic version of it in practice and
we will prove this setting.

SAM has tremendously succeeded in many scenarios (Chen et al., 2022; Bahri et al., 2022; Na
et al., 2022). However, the theoretical understanding of SAM, particularly regarding its convergence
behavior, remains quite limited. For example, to our knowledge, the existing convergence results
by Andriushchenko & Flammarion (2022); Mi et al. (2022) only show the convergence of SAM at

1We elaborate more about SAM in Appendix A.

1



Published as a Tiny Paper at ICLR 2023

arbitrary iteration, which does not coincide with the current practice of machine learning, i.e., taking
the solution achieved at the last iteration2.

In this work, we reduce this gap by proving almost sure last iterate convergence of SAM. Our
analysis is based on the recent work of Liu & Yuan (2022) that proves the same for a family of
stochastic gradient methods. Our result shows that SAM can indeed converge to the point of zero
gradient norm at convergence under certain conditions.

2 LAST ITERATE CONVERGENCE OF SAM

Let gt be the stochastic gradient of f at xt. We assume that gt is Ft+1-measurable, meaning its value
depends only on the information that is available until that step, but not on any other information that
becomes available in the future. The resulting stochastic process {xt} is adapted to filtration Ft≥0,
which means that it contains all the information of x0, · · · ,xt. To prove the last iterate convergence,
we first make the following assumptions3:

(A.1) There exists G ≥ 0 s.t. ∥∇f(x)∥ ≤ G for all x.

(A.2) f is L-smooth, i.e. ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ for all {x,y}.

(A.3) f is bounded from below, i.e. there exists f∗ such that f(x) ≥ f∗ for all x.

(A.4) gt is an unbiased estimator of ∇f(xt), and there exist A,B,C ≥ 0 such that

E[∥gt −∇f(xt)∥2] ≤ A(f(xt)− f∗) +B∥∇f(xt)∥2 + C

(A.5) The step sizes {ηt} satisfy
∑∞

t=0 ηt = ∞ and
∑∞

t=0 η
2
t < ∞ and the perturbation size {ρt}

satisfy
∑∞

t=0 ρ
2
t < ∞.

Next, we rely on the following lemma from Orabona (2020); Liu & Yuan (2022):

Lemma 1. Let {bt} and {ηt} be two nonnegative sequences and {αt} a sequence of vectors. Let
p ≥ 1 and assume

∑∞
t=1 ηtb

p
t < ∞ and

∑∞
t=1 ηt = ∞. Assume also that there exists some L > 0

such that |bt+τ − bt| ≤ L(
∑t+τ−1

i=t ηibi + ∥
∑t+τ−1

i=t ηiαi∥), where αi is such that ∥
∑∞

t=1 ηtαt∥ <
∞. Then bt converges to 0.

We are now prepared to present the theorem, which can be formally stated as follows:

Theorem 1. Consider the iterates of SAM under Assumptions (A.1) ∼ (A.5) and Lemma 1, then
the gradient norm approach zero almost surely, i.e,

lim
t→∞

∥∇f(xt)∥ = 0 almost surely.

We direct the reader to Appendix E for the complete proof.

3 CONCLUSION

We show that the last iterate of SAM converges almost surely under the standard assumptions, which
supports the common practice of using the last iterate as a solution to (2). We note however that this
result does not imply how fast it converges or that SAM converges to “flat” minima. We plan to
investigate further into these aspects in future work.

4 URM STATEMENT

The authors acknowledge that at least one key author of this work meets the URM criteria of ICLR
2023 Tiny Papers Track.

2We explain more about the difference between the average and last iterate convergences in Appendix B.
3We note that these assumptions are considered relatively weak and frequently used in the literature; we

further refer to Appendix C for detailed explanations about these assumptions.
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A SHARPNESS-AWARE MINIMIZATION

Deep neural networks are often overparameterized and capable of memorizing the entire training set
(Zhang et al., 2017) and it means neural networks can easily achieve extremely small training loss.
However, overfitting to the training dataset doesn’t mean good generalization ability (e.g (Zhang
et al., 2017)), and the training loss landscape of such a complex model has many local and global
minima of different generalization abilities. Meanwhile, the “flat” minima (Hochreiter & Schmid-
huber, 1997) started to focus again and several studies show that the flatness of the minima is linked
with better model generalization (Yiding et al., 2019; Keskar et al., 2017; Gintare & Roy, 2017). For
minimizing the sharpness to improve generalization, Foret et al. (2021) proposes a SAM optimizer
for converging to flat minima. The sharpness-aware optimization problem is defined as

min
x

max
∥ϵ∥2≤ρ

f(x+ ϵ)

To show explicitly that SAM simultaneously minimizes train loss and loss sharpness, we can rewrite
the SAM optimization problem as follow.

min
x

[ max
∥ϵ∥2≤ρ

f(x+ ϵ)− f(x)] + f(x)

SAM optimization problem minimizes the sharpness (max∥ϵ∥2≤ρ f(x + ϵ) − f(x)) and the train
loss f(x). In order to minimize the SAM loss function by SGD and its variants, Foret et al. (2021)
performs two rounds of approximation. The first approximation is used in calculating the ϵ at each
step. Since the exact solution of the inner maximization ϵ∗ := argmax∥ϵ∥2≤ρ f(x + ϵ) is NP-hard
problem, they employ an first-order approximation:

ϵ̂(x) := arg max
∥ϵ∥2≤ρt

f(x) + ϵT∇f(x) = ρ
∇f(x)

∥∇f(x)∥

where ϵ̂(x) is approximated version of ϵ∗. The second approximation is used to calculate the SAM
loss function gradient, i.e. ∇f(x+ ϵ̂).

∇f(x+ ϵ̂) =
d(x+ ϵ̂(x))

dx
∇f(x)|x+ϵ̂(x)

= ∇f(x)|x+ϵ̂(x)︸ ︷︷ ︸
at

+
d(ϵ̂(x))

dx
∇f(x)|x+ϵ̂(x)︸ ︷︷ ︸

bt

Since the ϵ̂(x) contains ∇f(x), the computation for bt needs the Hessian-vector product. For effi-
cient computation, they drop the bt and the final SAM gradient is derived.

∇f(x)|x+ϵ̂(x)

As a result, we can write the iteration of SAM:

xt+ 1
2
= xt + ρ

∇f(xt)

∥∇f(xt)∥
xt+1 = xt − ηt∇f(xt+ 1

2
)

B CONVERGENCE OF TIME AVERAGE VS LAST ITERATE CONVERGENCE

In this subsection, we provide additional information to explain the difference between time average
convergence and almost surely last iterate convergence results.

When the function f is L-smooth, i.e. ∥∇f(x)−∇f(y)∥2 ≤ L∥x−y∥2, approaching a local min-
imum causes the gradient to go to 0. Therefore, reducing the norm of the gradient is our objective.
The vast majority type for the non-convex convergence analysis which is called the convergence of
time average usually has the following form:

lim
T→∞

E∥∇f(xi)∥2 = 0 or lim
T→∞

1

T

T∑
t=1

E∥∇f(xt)∥2 = 0 (3)
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where xi is an one iterate of optimizer uniformly at random among {x1, · · · ,xT }. Another type is
called best iterate convergence has the following form:

lim
T→∞

min
t∈[T ]

E∥∇f(xt)∥2 = 0 (4)

(3) or (4) suggests that running an optimizer for T finite iterations, then stopping and returning
one of the T iterations at random, yields a small expected norm. However, this only guarantees the
existence of at least one xt with a small expected norm, but we don’t know which one. Hence, (3) or
(4) only partially justifies that the last iterate is a good solution (i.e ∥∇f(xT )∥ ≈ 0 for sufficiently
large T ) as a model output.

The last iterate convergence has the following form:

lim
t→∞

E∥∇f(xt)∥2 = 0 (5)

or
lim
t→∞

∥∇f(xt)∥2 = 0 (6)

The result (5) describes the optimizer algorithm by averaging infinitely many runs, but in practice,
the algorithm is usually run only once, and the last iterate is returned as the solution. (6) shows that
for sufficiently large T , the norm of the gradient at the last iterate (or during the end phase of the
training) is very small (i.e as [∥∇f(xt)∥]t≥0 converges to zero, the term [∥∇f(xT )∥] will stay small
for all T sufficiently large). Hence, (6) characterizes whether an algorithm can eventually approach
an exact stationary point or not.

C DISCUSSION ABOUT ASSUMPTIONS

(A.1) There exists G ≥ 0 s.t. ∥∇f(x)∥ ≤ G for all x.

(A.2) f is L-smooth, i.e. ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ for all {x,y}.

(A.3) f is bounded from below, i.e. there exists f∗ such that f(x) ≥ f∗ for all x.

(A.4) (Khaled & Richtarik, 2020). The stochastic gradient gt is an unbiased estimator of ∇f(xt),
and there exist A,B,C ≥ 0 such that

E[∥gt −∇f(xt)∥2] ≤ A(f(xt)− f∗) +B∥∇f(xt)∥2 + C

(A.5) The step sizes {ηt} satisfy
∑∞

t=0 ηt = ∞ and
∑∞

t=0 η
2
t < ∞ and the perturbation size {ρt}

satisfy
∑∞

t=0 ρ
2
t < ∞.

A filtered probability space (Ω,F , {Ft}t≥0,P) is a probability space with a sequence of sub σ-
algebra, which captures the evolution of information over time. Here, Ω is the sample space, F
is the σ-algebra of events, {Ft}t≥0 is a sequence of sub σ-algebras of F , called the filtration,
and P is a probability measure on (Ω,F). The assumptions for the gt is Ft+1-measurable means
that at each time t, the value of gt can be analyzed using a framework called F-measure. Given
the available information up to that point, this framework allows us to quantify the probability of
certain outcomes occurring at each time step. The resulting stochastic process, denoted by xt, is
adapted to the filtration Ft≥0 means that the process is designed to take into account all available
information up to the current time step, and not rely on any future information. This makes the
process more accurate and reliable for analyzing its evolution over time. This assumption refers
to a stochastic process, which is a mathematical model that describes the evolution of a system
over time, where the outcome at each time step is stochastic. By this assumption, we can better
understand how the process evolves over time, and make more accurate predictions about its future
behavior. The condition (A.4) includes several assumptions for modeling the second moment of the
stochastic gradient and hence the most general assumption (see e.g (Khaled & Richtarik, 2020)).
The condition of step size (A.5) is known as the Robbins-Monro condition (Robbins & Monro,
1951) and is widely used in the SGD literature. We assume that

∑∞
t=1 ρ

2
t < ∞, allowing us to

derive the last iterate convergence analysis for the SAM.
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D SUPER-MARTINGALE CONVERGENCE THEOREM

Theorem 2. (Robbins & Siegmund, 1971) Let {yk}k≥0, {pk}k≥0, and {qk}k≥0 be sequences of
nonnegative integrable random variables adapted to a filtration {Fk}k≥0, that is σ-algebras such
that Fk ⊂ Fk+1 for all k. Furthermore, let {βk}k≥0 ⊆ R+ be a given with

∑∞
k=0 βk < ∞ and

assume that we have
E(yk+1|Fk) ≤ (1 + βk)yk − pk + qk

for all k and
∑∞

k=0 qk < ∞ almost surely.

Then it holds that {yk}k≥0 almost surely converges to a nonnegative finite random variable y and∑∞
k=0 pk < ∞ almost surely.

E MISSING PROOF OF THEOREM 1

By the smoothness of the function f , we obtain

f(xt+1) ≤ f(xt)− ηt⟨∇f(xt), gt+ 1
2
⟩+

Lη2

2
∥gt+ 1

2
∥2

= f(xt)−
Lη2

2
∥∇f(xt)∥2 +

Lη2t
2

∥∇f(xt)− gt+ 1
2
∥2 − (1− Lηt)ηt⟨∇f(xt), gt+ 1

2
⟩

≤ f(xt)−
Lη2t
2

∥∇f(xt)∥2 + Lη2t ∥∇f(xt)− gt∥2 + Lη2t ∥gt − gt+ 1
2
∥2

− (1− Lηt)ηt⟨∇f(xt), gt+ 1
2
⟩

≤ f(xt)−
Lη2t
2

∥∇f(xt)∥2 + Lη2t ∥∇f(xt)− gt∥2 + L3η2t ∥xt − xt+ 1
2
∥2

− (1− Lηt)ηt⟨∇f(xt), gt+ 1
2
⟩

= f(xt)−
Lη2t
2

∥∇f(xt)∥2 + Lη2t ∥∇f(xt)− gt∥2 + η2tL
3ρ2t

− (1− Lηt)ηt⟨∇f(xt), gt+ 1
2
⟩

Taking the conditional expectation and using the variance assumption we obtain

E(f(xt+1)− f∗|Ft) ≤ f(xt)− f∗ − Lη2t
2

∥∇f(xt)∥2 + Lη2E∥∇f(xt)− gt∥2 + η2tL
3ρ2

− (1− Lηt)ηtE⟨∇f(xt), gt+ 1
2
⟩

≤ f(xt)− f∗ − Lη2t
2

∥∇f(xt)∥2 + Lη2t (A(f(xt)− f∗) +B∥∇f(xt)∥2 + C)

+ η2tL
3ρ2t − (1− Lηt)ηtE⟨∇f(xt), gt+ 1

2
⟩

≤ f(xt)− f∗ −
Lη2t
2

∥∇f(xt)∥2 + Lη2t (A(f(xt)− f∗) +B∥∇f(xt)∥2 + C)

+ η2tL
3ρ2t − (1− Lηt)ηt(

1

2
∥∇f(xt)∥2 − L2ρ2t − Lρt∥∇f(xt)∥)

= (1 +ALη2t )(f(xt)− f∗)− ηt
2
∥∇f(xt)∥2 + LBη2t ∥∇f(xt)∥2 + Lη2tC

+ η2tL
3ρ2t + (1− Lηt)ηtL

2ρ2t + (1− Lηt)Lρt∥∇f(xt)∥

≤ (1 +ALη2t )(f(xt)− f∗)− ηt
4
∥∇f(xt)∥2 + Lη2tC + η2tL

3ρ2t

+ (1− Lηt)ηtL
2ρ2 + (1− Lηt)Lρ∥∇f(xt)∥

≤ (1 +ALη2t )(f(xt)− f∗)− ηt
4
∥∇f(xt)∥2 + Lη2tC + η2tL

3ρ2t

+ (1− Lηt)ηtL
2ρ2 + (1− Lηt)LρtG

The third inequality comes from Lemma 2 in Mi et al. (2022). We obtain just before the last inequal-
ity provided that LBηt ≤ 1

4 . By the supermartingale theorem,
∑∞

t=1 ηt∥∇f(xt)∥2 < ∞.
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Next, we provide complete proof of
∞∑
t=1

(Lη2tC + η2tL
3ρ2t + (1− Lηt)ηtL

2ρ2t + (1− Lηt)ηtLρtG) < ∞ (7)

Lemma 2. Let {ηt} and {ρt} be two non-negative sequences and hold assumption (A.5). Then,

∞∑
t=1

ηtρt < ∞

Proof. Since ρt and ηt are non-negative and square summable sequences, it holds that

k∑
t=1

ρ2t ≤
∞∑
t=1

ρ2t < ∞,

k∑
t=1

η2t ≤
∞∑
t=1

η2t < ∞

Then we can get the following

k∑
t=1

ρtηt ≤

√√√√ k∑
t=1

ρ2t

√√√√ k∑
t=1

η2t < ∞

By monotone convergence theorem,
∑∞

t=1 ηtρt < ∞.

Corollary 2.1. Let {ηt} and {ρt} be two nonnegative sequences and hold assumption (A.5). Then,

∞∑
t=1

ηtρ
2
t < ∞

The proof of Corollary 2.1 follows easily from Lemma 2 and the inequality (7) follows from Lemma
2 and Corollary 2.1.

Next, We can derive αt = gt+ 1
2
−∇f(xt) by following.

|∥∇f(xt+τ )∥ − ∥∇f(xt)∥| ≤ ∥∇f(xt+τ )−∇f(xt)∥

≤ L∥xt+τ − xt∥ = L∥
t+τ−1∑
i=t

ηigi+ 1
2
∥

= L∥
t+τ−1∑
i=t

ηi∇f(xi) + ηi(gi+ 1
2
−∇f(xi))∥

≤ L(

t+τ−1∑
i=t

ηi∥∇f(xi)∥+ ∥
t+τ−1∑
i=t

ηiαi∥)

Lastly, we need to show that ∥
∑

t≥1 ηtαt∥ < ∞. For this, we can rewrite ηtαt as follows.

ηtαt = ηt(gt+ 1
2
−∇f(xt+ 1

2
)) + ηt(∇f(xt+ 1

2
)−∇f(xt))

Step 1 : Mt =
∑t

i=1 ηi(gi+ 1
2
− ∇f(xi+ 1

2
)) is a martingale bounded and hence converges almost

surely (Williams, 1991).

Step 2 : Nt =
∑t

i=1 ηi(∇f(xi+ 1
2
)−∇f(xi)) converges almost surely.

Proof of Step 1

It is well known that Mt is martingale bounded if and only if
∞∑
t=1

E[∥Mt −Mt−1∥2] < ∞.

7
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So it is verified by
∞∑
t=1

E[∥Mt −Mt−1∥2] ≤
∞∑
t=1

η2t (A(f(xt)− f∗) +B∥∇f(xt)∥2 + C)

We already know that f(xt) − f∗ converges almost surely, and
∑∞

t=1 η
2
t < ∞ ,∑∞

t=1 ηt∥∇f(xt)∥2 < ∞, we can conclude that
∑∞

t=1 E[∥Mt −Mt−1∥2] < ∞.

Proof of Step 2

By L-smoothness of f , we have

t∑
i=1

∥ηi(∇f(xi+ 1
2
)−∇f(xi))∥ ≤

t∑
i=1

ηiL∥xi+ 1
2
− xi∥ =

t∑
i=1

ηiL∥ρi
gi

∥gi∥
∥

= L

t∑
i=1

ηiρi

≤ L

√√√√ t∑
i=1

η2i

√√√√ t∑
i=1

ρ2i

Nt converges almost surely is straightforward by the (A.5).

Through step 1 and step 2, ∥
∑∞

t=1 ηtαt∥ converges almost surely. Applying Lemma 1 with bt =
∥∇f(xt)∥ and p = 2, we can obtain Theorem 1.
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