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ABSTRACT

Although deep reinforcement learning (DRL) deals with sequential decision mak-
ing problems, temporal information representation is absent from state-of-the-art
actor-critic algorithms. The reliance on a single observation vector, representing
information from only one time step, combined with densely connected neural net-
works, causes instability and oscillations in action smoothness. Therefore many
applied DRL robotics control methods employ various reward shaping, low-pass
filter and traditional controller-based methods to mitigate this effect. However,
the interactions of these different parts hinders the performance of the original
goal for the RL algorithm. In this paper we present a reinforcement learning al-
gorithm extended with past action-state representation learning (PASRL), which
allows for the end-to-end training of RL-based control methods without the need
for common heuristics. PASRL is evaluated on the MuJoCo benchmark, show-
ing smoother actions that preserve exploration, eliminate the need for extensive
hyperparameter tuning, and provide a simple and efficient solution for enhancing
action smoothness.

1 INTRODUCTION

Even though Reinforcement Learning (RL) Sutton & Barto (2018) is a powerful tool to deal with
physical control problems, it exhibits a well-known instability regarding the smoothness of its pre-
dicted control actions Song et al. (2023)Mysore et al. (2021a). Oscillating, jerky control signals
can degrade control performance and potentially damage the system Ibarz et al. (2021)Kim et al.
(2022). This issue could be attributed to the reliance on a single observation vector, representing
information only at time step t and densely connected nature of the deployed neural network con-
troller. Assuming that the state is a fully observable Markov Decision Process (MDP), instability
could represent divergence in training, drops in performance across episodes, performance oscilla-
tions inside episodes and the actions taken by the agent could differ greatly from one time step to
another. Furthermore, observation vectors that contain only the current time step’s sensory record-
ings can lead to instabilities. This occurs when the agent lacks access to the complete observation
space, transforming the underlying problem formulation into a Partially Observable Markov Deci-
sion Process (POMDP) Kaelbling et al. (1998). POMDPs could be induced by anomalies such as
flickering, noise or data transmission loss in sensors during real-world applications. Or by the agent
not having access to accurate information in its observation vector.

Stability issues in MDP formulated RL problems have been tackled by multiple methods and their
mixtures (Figure. 1). Most commonly methods incorporate a motor behavior reward part that en-
courages improved action smoothness and the use of smaller action values into the desired reward
function Liu et al. (2024). Others include past sensory readings and agent outputs into their obser-
vation vector, use the frame stacking of previous sensory observations Mnih et al. (2015), or employ
state estimation models such as Kalman filters Kalman (1960), to better estimate the actual underly-
ing state based on the sensory information received from the environment. Applied RL controllers
commonly use low-pass filters to filter out large oscillations in the RL based control commands out-
put and make use of traditional control algorithms such as PD or PID controllers Kaufmann et al.
(2023)Luo et al. (2024)Reddy et al. (2018)Han et al. (2024)Jin et al. (2022).
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Figure 1: Applied reinforcement learning flowchart. In most applied reinforcement learning based
control methods, RL based neural network controllers are augmented by a low-pass filter and/or a
traditional control algorithm. The reward can be divided into two parts: the main reward task of the
control and the behavior reward which forces the agent to output smooth actions and penalizes large
actions.

However, what these methods do not take into account is that these modifications alter the original
system’s closed-loop dynamics leading to erratic control behavior Mysore et al. (2021b)Kim et al.
(2022).

Densely connected layers have been the staple of most MDP formulated state-of-the-art algorithm
Fujimoto et al. (2018)Haarnoja et al. (2018)Kuznetsov et al. (2020)Fujimoto et al. (2024). However,
since these neural network structures contain no memory cells, they are prone to produce vastly
different actions for concurrent time steps.

POMDP formulated reinforcement learning algorithms have been shown to mitigate these problems
Dulac-Arnold et al. (2021) by either incorporating memory by stacking previous observations to-
gether ,Mnih et al. (2013) thus being able to turn partially observable MDPs to fully observable ones
Hausknecht & Stone (2015) and mitigating the effect inaccurate state recordings could pose on the
agent’s observation vector. Furthermore, incorporating recurrent architectures within the agent en-
ables the use of hidden states for memory integration. Additionally, it has been shown that recurrent
architectures are effective even without frame-stacked observations Hausknecht & Stone (2015);
Meng et al. (2021).

Recurrent neural network structure based agents have long been utilized in the Arcade Learning
Environment (ALE) Bellemare et al. (2013). This environment offers interfaces with wide range
of Atari 2600 games and has been a popular benchmark ever since. Most recurrent network-based
agents rely on distributed training to avoid ”representational drift,” where stored hidden states gen-
erated by older network parameters differ significantly from those produced by the network at the
current training step Kapturowski et al. (2018), Badia et al. (2020), Kapturowski et al. (2022), Es-
peholt et al. (2018)Horgan et al. (2018).

Improving the action smoothness generated by reinforcement learning agents has been explored via
two main research lines. The modification of the RL training algorithms Shen et al. (2020), Mysore
et al. (2021a), Chen et al. (2021), Yu et al. (2021), Kobayashi (2022), Zou et al. (2022) and by
modifications of the policy network Takase et al. (2022), Song et al. (2023), Wang et al. (2024).
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However, to the best of our knowledge no research has been conducted on recurrent reinforcement
learning agents effect on action smoothness comparing against the training of reinforcement learning
agents in concurrency with commonly used action smoothness reward, low-pass filter and traditional
control heuristics. The training of this segmented system of RL controllers, low-pass filters and
traditional control algorithms pose an issue since they are not optimized concurrently and rely on the
correct guessing of various control parameters and cutoff frequencies. Furthermore the incorporation
of an action smoothness term causes the agent to maximize the balance between achieving the main
objective and minimizing abrupt changes in actions, instead of solely maximizing the primary goal.

It is also important to note that taking smooth actions is not always optimal. Overly smoothed actions
can restrict the agent’s exploration, potentially limiting its performance and preventing it from fully
exploring the state-action space needed to achieve an optimal policy. Moreover, some environments
demand rapid action responses where swift or highly reactive control strategies are ideal. Hence, an
effective algorithm should balance responsiveness to accommodate rapid changes while minimizing
unnecessary oscillations in action selection.

In this paper we propose a non-distributed recurrent reinforcement learning agent, with learned
hidden states. Our approach can be thought of as an extension to TD7 Fujimoto et al. (2024),
which also learns decouples state and state-action embeddings. We augment this already existing
pipeline by creating time-dependent embeddings. The proposed RL agent could be trained end-to-
end without the commonly employed heuristics present in applied reinforcement learning methods.
We evaluate this algorithm’s performance in two metrics: the control methods achieved reward in
the main task of the environment and the action smoothness of the created control strategy. Our
findings show that recurrent reinforcement learning agents achieve comparable task performance to
mixed traditional and RL-based controllers, while generating substantially smoother actions without
relying on heuristics or compromising exploration.

2 BACKGROUND

Reinforcement learning formulates problems as a Markov Decision Process Bellman (1957)Sutton
& Barto (2018). An MDP can be described as a tuple of 5 (S,A,R, p, γ), containing S the state
space, A action space, R reward function, p dynamics model and discount factor γ. In RL the
objective is to find an optimal policy πθ : S → A, that maps state s ∈ S to an action a ∈ A, in a
way that maximizes the discounted accumulative reward

∑∞
t=1 γ

t−1 · rt, with parameters θ.

Recurrent Neural Networks (RNNs) are widely applied in reinforcement learning (RL) to address
tasks involving temporal dependencies, where decisions depend not only on the current observation
but also on past experiences. By maintaining a hidden state that evolves over time, RNNs enable RL
agents to incorporate historical information, making them particularly effective in partially observ-
able environments, such as Partially Observable Markov Decision Processes (POMDPs). The most
commonly used RNN variants in RL are Long Short-Term Memory (LSTM) networks Hochreiter
& Schmidhuber (1997) and Gated Recurrent Units (GRUs) Cho (2014), both of which mitigate the
vanishing gradient problem and improve performance in tasks that require memory and sequential
decision-making.

State-Action Learning Embeddings (SALE) Fujimoto et al. (2024) are designed to improve RL
algorithms by effectively capturing observation space structure and transition dynamics. It employs
two encoders: f transforms the state s into an embedding zs and g combines zs with action a to
create a state-action embedding zsa. SALE serves as the principle component for TD7 Fujimoto
et al. (2024), which is an improved version of TD3 Fujimoto et al. (2018).

3 ACTION SMOOTHNESS ISSUE OF CURRENT STATE-OF-THE ART METHODS

Although recurrent neural networks (RNNs) are widely used in POMDP tasks, the broader research
community has not fully adopted them into MDP tasks. Instead, many deep reinforcement learning
(DRL) algorithms are typically used off-the-shelf relying on densely connected neural networks
that lack memory of previous inputs or outputs. This is problematic, as reinforcement learning is
fundamentally aimed at addressing sequential decision-making challenges.
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We show that the sole reliance on feed forward densely connected networks introduces instabilities
present in the action smoothness of a trained agents performance. Further evidence of RL instabili-
ties is provided in the Appendix.

3.1 INSTABILITY IN ACTION OUTPUTS

Stability/smoothness of the action outputs is not commonly explored in reinforcement learning al-
gorithmic papers. Although not relevant to the usual return score representation commonly found in
papers, it provides valuable insight into the feasibility of the learned control strategy in many real
world applications.

To investigate how attainable the learned action outputs are, we can evaluate the rate of change of the
rate of change of the outputs, which we approximate by using the second derivative of the actions.

Figure 2: The action smoothness of a TD7-based agent trained for 3M time steps in the Hopper
environment. The results were evaluated across ten episodes.

The agent’s lack of memory is evident upon examining the output values. (Figure. 2) Each output
at a given time step has no connection to the output before or after it. Also the magnitude of the
second derivative of these output poses a real difficulty in achieving these output values in real-world
scenarios. Although periodic oscillations are expected, because of the nature of the environment any
structured change in the smoothness of the actions is absent.

4 METHODOLOGY

In this section we introduce our past action-state information learning method, as well as perform
in-depth empirical evaluations for the design choices when using past information augmentation.
PASRL is built on TD7 with additional recurrent encoder structure, with prioritized recent expe-
rience replay to alleviate recurrent state staleness Kapturowski et al. (2018) and use pink noise
Eberhard et al. (2023) for added exploration benefits with more correlated noise.

4.1 PAST ACTION-STATE REPRESENTATION LEARNING

The aim of past action-state representation learning is to learn time dependent embeddings (zsat , zst ),
which is able to capture the time dependent change of the observation space and environment char-
acteristics. PASRL augments the encoder pair (f, g) present in TD7, with a recurrent bottleneck
hidden layer, with learnable hidden states. In PASRL f(s̃, ht) encodes information from state s̃ and
the hidden state of the state encoder ht into time dependent state embedding zst and g(zs, ht, ã)
encodes state s̃ and action ã into a time dependent state action embedding zsat .

4.2 REPLAY BUFFER MODIFICATIONS

In order to train our algorithm with hidden states of the recurrent layers present, we modify our
replay buffer to store transition tuples as well as the current ht and next hidden states nht at a given
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time step (s̃, ã, s̃′, r, ht, nht). We also enhance the state and action vectors by defining them as
fixed-length sequences of history (hl = 10), referred to as s̃ and ã. These sequences are updated by
appending the current time step observation s, and action a at the end for s̃ and ã and removing the
oldest information. These observation and action vectors are initialized by zeroes and stored without
crossing episode boundaries.

To alleviate recurrent state staleness and representation drift we employ a prioritizing recent experi-
ence replay sampling method Wang & Ross (2019) to prioritize the probability of sampling transition
tuples created by more up-to-date network parameters.

Therefore in a given update phase we make K mini-batch updates. Suppose N is the size of the
replay buffer, then for the kth update, where 1 ≤ k ≤ K, we perform uniform sampling from the
most recently stored ck data points, which is defined by

ck = max{N · η k·m
K , cmin} (1)

in which equation η is the hyperparemeter determining how much prioritization is assigned to newer
samples, cmin determines the minimum sub-buffer range from which we can sample, and m is an
environment-dependent variable that is the maximum steps inside an episode.

4.3 RECURRENT LAYER MODIFICATION

For the recurrent layer type in our algorithm we selected GRU layers, since compared to LSTMs
they have less parameters per unit, therefore we can increase the bottleneck size with less parameters.
Furthermore, GRU layer based methods typically achieve the best performance in POMDP based
benchmarks Morad et al. (2023).

To make the comparisons fair and to keep the encoder’s parameter size from growing substantially
due to more parameters found in a GRU unit, compared to DNN units, we have chosen to reduce
the number of layers our encoders utilize, to ensure the encoder is capable of creating meaningful
embeddings to the actor and critic networks. Therefore not hindering the overall training process by
outputting not trained embeddings.

To ensure that the encoders utilize all the recurrent bottleneck layer’s neurons, we used a dropout
Srivastava et al. (2014) of 20%.

(a) Modified value function Q of PASRL. (b) Modified policy function π of PASRL.

Figure 3: The flow chart of the information propagation in PASRL. PASRL builds on the encoder
structure used in TD7 augmenting it with the use of recurrent layered encoders with the propagation
of hidden states ht between the encoders to allow for the encoding of time dependencies inside an
episode. (Figure inspired by Fujimoto et al. (2024).)

4.4 NOISE FOR EXPLORATION

Actor-critic reinforcement algorithms typically encourage exploration via adding noise to the output
actions or by target policy noise. These methods utilize white noise for both exploration methods.
However, it has been shown that white noise is not able to sufficiently explore action spaces, and the

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

use of a more correlated color noise. for example pink noise, achieves better results for the agent
Eberhard et al. (2023).

In our method we utilize pink noise for the exploration during actions chosen during training and
white noise exploration for the target policy noise. We further utilize the addition of white noise to
the sampled next hidden states during the training of the critic networks.

4.5 EFFECTS OF REPRESENTATIONAL DRIFT

For the training of recurrent reinforcement learning models two methods are commonly described
Hausknecht & Stone (2015). The first replays entire episode trajectories, while the second utilizes
the common sampling paradigm for training. Although these methods follow different chains of
thought, they overall lead to the same performance, therefore in PASRL, we utilize the common
sampling paradigm found in TD7.

As for the use of the hidden states values we can also divide them into two categories.

1. Zeroing out the hidden states of sampled transition tuples

2. Storing the hidden states of the transition tuples.

The first approach appeals in its simplicity for implementation, however limits the networks tempo-
ral information modeling capability. While the second suffers from an effect called representational
drift, where the stored hidden states generated by a sufficiently old network parameters causes dis-
crepancy, since the updated network’s parameter generated hidden states do not align with the stored
ones.

In order to measure recurrent state staleness and representational drift, we can measure the Q-value
discrepancy Kapturowski et al. (2018) between Q-values generated by the network’s up-to-date hid-
den states versus the stored hidden states.

∆Q =
∥qt(ĥt, θ̂)− qt(ht, θ̂)∥2
|max(qt(ĥt, θ̂))|

(2)

Where ĥt are the hidden states generated by the up-to-date state encoder network parameters, and
ht are the stored hidden states generated by the encoder during a point of previous training. With θ̂
denoting the current parameters of the network.

Figure 4: Delta Q discrepancy as a measure for representational drift. The results were achieved in
3 MuJoCo environments over 3 seed, with delta Q values being stored between 1M and 3M time
steps. The shaded area captures the standard deviation of the average performance.
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In Figure 4 we show that emphasizing recent experience replay (ERE) Wang & Ross (2019) provides
an antidote for counteracting representational drift as we compare it to the prioritized experience
replay Fujimoto et al. (2020) present in TD7.

PASRL with ERE is able to overcome representational drift, meanwhile PASRL with LAP fails
to learn any meaningful policies, leading to minimal ∆Q values. PASRL with ERE is capable of
solving this issue and effectively minimizes ∆Q difference between the hidden variables generated
by the encoder network’s weights at the current training step and the stored ht values.

5 RESULTS

In this section, we evaluate the main task reward, which refers to the original reward without any
motor control penalties, and the action smoothness of the control policy based on PASRL, comparing
it against TD7 across various commonly constructed applied reinforcement learning control loops.
These include PASRL without any modifications, TD7 with an additional action smoothness reward
component (TD7 + AC), TD7 with both the action smoothness reward and a low-pass filter (TD7
+ AC +LPF), TD7 with the action smoothness reward and a PD controller (TD7 + AC + PD), and
finally, TD7 with the action smoothness reward, a low-pass filter, and a PD controller (TD7 + AC +
LPF + PD).

We obtain these results using 4 different OpenAI gym Brockman (2016) MuJoCo Todorov et al.
(2012) environments. A detailed description of the used hyperparameters, baselines and experimen-
tal setup is included in the Appendix.

Figure 5: Learning curves on the MuJoCo benchmark. Results are averaged over 10 seeds, except
in the case of the Walker2d environment, where only 7 seeds were used. The shaded area captures
the standard deviation (std), around the average performance.

Figure 5 presents the learning curves for the different control strategies. Table 1 highlights the
quantitative results, summarizing the performance during and at the end of training. The quantitative
results for the action smoothness values are provided in Table 2. The learning curves indicate that,
as the reward of TD7-based agents increases exponentially in the early stages of training, there is a
significant spike in action smoothness. We attribute this to the exploration phase, where the agent
has not yet developed an optimal policy.

Additionally, we observe that applying action smoothing through a low-pass filter (LPF) in mixed
control methods impedes the agent’s convergence in some cases, as it constrains exploration. This
negative impact is more pronounced in environments with larger action spaces, such as Ant, com-
pared to smaller action space environments like Hopper. The Humanoid and Walker2d environments
are an exception to this pattern, which have similar tasks. Also in the first case this could be due to
the limited range of actions available to the agent.
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Environment Time Step PASRL TD7 TD7+AC TD7+AC+LPF TD7+AC+PD TD7+AC+LPF+PD
300k 3750 ± 1785 6222 ± 1442 6907 ± 769 3775 ± 2080 6818 ± 803 3830 ± 2141

Ant 1M 5596 ± 1498 9276 ± 577 8314 ± 402 4941 ± 2453 8858 ± 217 5776 ± 2380
3M 7676 ± 898 11230 ± 67 9234 ± 1141 5564 ± 2561 9749 ± 973 5260 ± 2707

300k 2313 ± 311 3146 ± 106 3032 ± 200 2791 ± 339 3260 ± 126 2872 ± 311
Hopper 1M 3500 ± 5 3692 ± 49 3502 ± 213 2606 ± 613 3583 ± 420 3109 ± 508

3M 3686 ± 5 4096 ± 73 3810 ± 286 2981 ± 468 4074 ± 192 3508 ± 178
300k 4200 ± 1583 5358 ± 1000 5391 ± 1097 4060 ± 1169 5228 ± 938 4252 ± 1305

Humanoid 1M 5936 ± 889 7259 ± 292 7409 ± 22 6879 ± 23 7305 ± 16 6764 ± 156
3M 8090 ± 652 9768 ± 220 9813 ± 22 8723 ± 451 9335 ± 615 9169 ± 20

300k 4069 ± 413 5275 ± 358 5104 ± 324 4991 ± 451 4729 ± 842 5250 ± 507
Walker2d 1M 5296 ± 12 6086 ± 18 6029 ± 20 5912 ± 34 6288 ± 100 6164 ± 70

3M 5824 ± 14 6748 ± 208 6627 ± 30 6234 ± 44 7041 ± 15 6652 ± 72

Table 1: Average reward performance on the selected MuJoCo benchmark at 300k, 1M, and 3M
time steps. ± captures the standard deviation of the averaged main task rewards.

Environment Time Step PASRL TD7 TD7+AC TD7+AC+LPF TD7+AC+PD TD7+AC+LPF+PD
300k 0.0627 0.1433 0.1176 0.0739 0.1456 0.0779

Ant 1M 0.0764 0.1877 0.1170 0.0827 0.1430 0.1029
3M 0.1045 0.1754 0.1281 0.0932 0.1260 0.0945

300k 0.0257 0.0788 0.0810 0.0301 0.0970 0.0338
Hopper 1M 0.0650 0.1436 0.1599 0.0376 0.1506 0.0435

3M 0.0938 0.1766 0.1794 0.0454 0.2489 0.0511
300k 0.0426 0.0702 0.0699 0.0214 0.0759 0.0242

Humanoid 1M 0.0497 0.0572 0.0488 0.0263 0.0571 0.0211
3M 0.0656 0.0690 0.0612 0.0298 0.0832 0.0290

300k 0.0403 0.0551 0.0554 0.0312 0.0696 0.0416
Walker2d 1M 0.0564 0.0748 0.0618 0.0364 0.0788 0.0524

3M 0.0610 0.0957 0.0883 0.0433 0.1024 0.0564

Table 2: Average action smoothness values on the selected MuJoCo benchmark at 300k, 1M, and
3M time steps.

Integrating traditional control heuristics with a RL agent in these settings adds complexity and de-
mands extensive hyperparameter tuning. Often this results in solutions that struggle to improve
action smoothness consistently across diverse environments. PASRL strikes a balance between the
high performance of top mixture methods and the action smoothness of LPF-based approaches. It
avoids the initial spike in action smoothness seen during early training and does not over-smooth
actions to the detriment of exploration, as demonstrated in the Humanoid environment results.

Figure 6: PASRL performance across different seeds. The results are achieved over the
AntSchulman et al. (2015) MuJoCo environment. The shaded area captures the standard devia-
tion of the evaluation episodes.

Figure 6 illustrates the performance variability of PASRL across different seeds, showing that it
can rival the top reward performance of the best TD7 control mixture method. Notably, PASRL
achieves smooth action outputs without relying on hand-tuned components like low-pass filters or

8
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PD controllers for action regularization, which are commonly used in TD7-based methods. This
capability demonstrates PASRL’s potential to simplify the control process by eliminating the need
for auxiliary reward shaping or extensive parameter tuning for outside the primary RL framework.
By eliminating the need for extensive expertise in designing controllers where smoothness is critical,
PASRL simplifies the process of achieving effective control. It removes the complexity associated
with tuning traditional control methods to the specific characteristics of the environment.

6 CONCLUSION

The action smoothness of state-of-the-art RL algorithms is often addressed by adding smoothness
reward terms, low-pass filters, or traditional control methods. However, these approaches can hinder
performance. For this reason we introduce PASRL, a method to learn time-dependent state-action
embeddings to create smoother action controls.

This paper highlights the issue of action smoothness found in RL algorithms using densely con-
nected networks, and show how this could be overcome without changing the mathematical models
behind the algorithm’s training. We also incorporate various advances in exploration and optimizers.

PASRL is able to generate smooth actions without requiring manually designed reward parts or
additional controllers, such as low-pass filters or PD controllers. This reduces the complexity of
parameter tuning in applied RL cases. As a general-purpose technique, PASRL offers an alternative
for reinforcement learning tasks where the smoothness of the controller is amongst key priorities. We
found that PASRL is even able to match the performance of commonly employed RL and traditional
control methods in some environments, while outputting smoother actions.
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A APPENDIX

A.1 HYPERPARAMETERS

The action space for the environments is in the range of [-1, 1]. Most hyperparameters match TD7.

Our algorithm differs from TD7 in the following changes:

1. The use of hidden states and GRU neurons inside the encoders

2. The use of NAdam instead of Adam

3. The use of a different exploration strategy, using Pink noise for exploration during episodes
and adding white noise to the next hidden noise values hnt during the training of the target
value function Qt

4. We furthermore decided to leave out warm-up period for the sake of learning the hidden
variable transitions of the agent from the start of the training.

A.2 ALGORITHM DESCRIPTIONS

Pseudocode for PASRL is described in Algorithm 1.
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Hyperparameter Value

TD3 Fujimoto et al. (2018)
Target Policy noise σ N(0, 0.22)
Target Policy noise clipping c (-0.5, 0.5)
Policy update frequency 2

ERE Wang & Ross (2019) cmin 25k
η 0.994

TD3 + BC Fujimoto & Gu (2021) Behavior cloning weight λ (Online) 0.0
Behavior cloning weight λ (Offline) 0.1

Policy Checkpoints

Checkpoint criteria minimum
Early assessment episodes 1
Early time steps 20
Early time steps 750k
Criteria reset weight 0.9

PASRL GRU neurons 80
GRU layers 2

Exploration

Initial random exploration time steps 0
Color parameter beta 1.0
Noise scale 0.3
Target Policy hidden noise N(0, 0.1)

Common

Discount factor 0.99
Replay buffer capacity 1M
Mini-batch size 256
Target update frequency 250

Optimizer (Shared) Optimizer NAdam Dozat (2016)
(Shared) Learning rate 3e-4

Table 3: PASRL Hyperparameters

Algorithm 1 Online PASRL

1: Initialize:
2: Policy πt+1, value function Qt+1, encoders (ft+1, gt+1).
3: Target policy πt, target value function Qt, fixed encoders (ft, gt), target fixed encoders

(ft−1, gt−1).
4: Checkpoint policy πc, checkpoint encoder fc.
5: for Every episode do
6: Reset hidden states ht of the encoder
7: Generate episodic pink action noise
8: if checkpoint condition then
9: if actor πt+1 outperformes checkpoint policy πc then

10: Update checkpoint networks πc ← πt+1, fc ← ft.
11: end if
12: end if
13: for episode in episodes since training do
14: for time step: t=1,..,K in episode do
15: calculate ck
16: Sample transitions from ERE replay buffer, based on ck
17: Train encoder, value function, and policy (accordingly to Fujimoto et al. (2024))
18: if passed steps > target update frequency then
19: Update tartget networks (based on Fujimoto et al. (2024)
20: end if
21: end for
22: end for
23: end for
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A.3 BASELINES HYPERPARAMETERS

A.3.1 TD7

Our TD7 implementation uses the exact hyperparameters as described by the author at https:
//github.com/sfujim/TD7.

Hyperparameter Value

TD3 Fujimoto et al. (2018)
Target Policy noise σ N(0, 0.22)
Target Policy noise clipping c (-0.5, 0.5)
Policy update frequency 2

LAP Fujimoto et al. (2020) Probability smoothing α 0.4
Minimum priority 1

TD3 + BC Fujimoto & Gu (2021) Behavior cloning weight λ (Online) 0.0
Behavior cloning weight λ (Offline) 0.1

Policy Checkpoints

Checkpoint criteria minimum
Early assessment episodes 1
Early time steps 20
Early time steps 750k
Criteria reset weight 0.9

Exploration Initial random exploration time steps 25k
Exploration noise N(0, 0.12)

Common

Discount factor 0.99
Replay buffer capacity 1M
Mini-batch size 256
Target update frequency 250

Optimizer (Shared) Optimizer Adam Kingma & Ba (2014)
(Shared) Learning rate 3e-4

Table 4: TD7 Hyperparameters

A.3.2 ACTION SMOOTHNESS

The smoothness of an action policy can be approximated by the second derivative of the actions.

Action Smoothness =
1

N

N∑
t=1

(at+2 − 2at+1 + at)
2 (3)

Our action smoothness metrics for the baseline methods and PASRL were calculated by Equation 3.

The action smoothness reward part enhanced environment for Ant has the same equation for the
calculation of action smoothness, with a weight of was = 0.1.

A.3.3 LOW-PASS-FILTER

Low-pass filters in reinforcement learning controllers aim to smooth out high-frequency fluctuations
in the actions generated by the policy. To implement a low-pass filter in our reinforcement learning
(RL) controller, two key parameters must be defined: the sampling frequency fs and the cutoff
frequency ωc. The sampling frequency determines the time step, calculated as ∆t = 1/fs, and
is typically provided by the reinforcement learning environment. The cutoff frequency defines the
filter’s response characteristics. In our implementation, we selected a cutoff frequency of 20Hz to
effectively balance responsiveness and smoothness of the policy.

In our low-pass-filter implementation we utilize a first-order Infinite Impulse Response (IIR) filter,
to minimize the delay in the control policy, which can be described by:

yt = b0 · at + b1 · at−1 + a1 · yt−1 (4)

Where the coefficients in Equation 4 b0 and b1 control the contribution of the current and previous
inputs, respectively, while a1 determines how much of the previous output affects the current output.
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The variable at represents the current input action, which is the new action generated by the rein-
forcement learning policy. The term at-1 denotes the previous action, allowing the filter to take into
account the action taken in the prior time step. Finally, yt-1 represents the previous filtered action
output, which serves as feedback to the current output. At the end the final filtered action output yt
is used as the input for the environment.

A.3.4 PD CONTROLLER

A Proportional-Derivative (PD) controller is a widely used traditional control paradigm in various
robotic applications used to enhance the performance of action outputs. The PD controller combines
two components: the proportional P term, which provides an immediate response to the current
error, and the derivative D term, which predicts future error based on its rate of change.

A PD controller can be described by the following formula:

u(t) = Kp · e(t) +Kd ·
de(t)

dt
(5)

In which equation: u(t) is the control output, e(t) is the error signal (in our case the policy action),
Kp is the proportional gain parameter, and Kd is the derivative gain.

In the context of reinforcement learning, the PD controller is employed to smooth the action outputs
of the policy. The proportional component reacts directly to the error in the action, adjusting the
control output to reduce this error. The derivative component, on the other hand, aims to mitigate
oscillations in the agent’s output actions. In our implementation we have utilized a PD controller
with proportional gain Kp = 1.0 and derivative gain Kd = 0.05 to provide a rapid response to the
given actions generated by the policy.

A.4 FURTHER INSTABILITIES IN RL

A.4.1 INSTABILITY ACROSS EPISODES

Figure 7: Difference in curve smoothness for TD7. Averaged vs single seed representation of the
results. Averaged over 5 different seeds over 2M time steps.The shaded area in the TD7 algorithm
represents rewards averaged over 10 evaluation episodes per seed, and then averaged across all
seeds. For Seed 0, the shaded region specifically reflects the standard deviation among the evaluation
episodes within that seed.
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The fair comparison of RL algorithms have long been a challenge in the evaluation of these algo-
rithm’s results. The issue stems from the variance of the stochastic environment and in the learning
initialization Henderson et al. (2018). With different seeds having drastically different performances
across different seeds.

To counteract this issue most algorithms report their performance according to the following stan-
dard: They evaluate every Nfreq steps, over multiple evaluation episodes Nep over a number of
seeds Nseeds and finally they smooth the plot by averaging over a given window size Nwindow

Fujimoto et al. (2024).

Although this standard procedure makes the plots easier to understand and allows for fair comparison
across algorithms, it creates a false sense of stability regarding RL algorithms. (Fig.7)

Where even though the papers report smooth learning curves single seed runs could yield a much
different result during training.

A.4.2 INSTABILITY IN EPISODES

A common performance reporting standard for RL algorithms has long been the plotting of the
episodic return along a given time step of training. Although it gives a clear picture for performance
throughout the episode it is a surface level reporting since the intricacies of how it achieved these
rewards inside the episode is left unanswered.

When examining the rewards the agent accumulates throughout the episode we can make the fol-
lowing observations. (Fig. 8)

(a) Reward surface (b) Reward surface side (c) Violin plot of the rewards

Figure 8: In episode performance fluctuations present in TD7. Subfigure a, shows the reward surface
of a trained TD7 agent on the Hopper environment across 1000 time steps and 10 different episodes.
Subfigure b, shows the reward surface from the side to further showcase the oscillations during time
steps. Subfigure c, shows the violin plot of the accumulated rewards across the mentioned 1000 time
steps and 10 different episodes.

Firstly is that the rewards at the beginning of the episode vastly under perform compared to rewards
in the middle or at the end of the training. (Fig8a.) Secondly the rewards fluctuate similar to
a sinusoid function during inference. (Fig 8b.) Finally the performance can exhibit significant
fluctuations around the mean and in some cases it could deviate substantially from the mean reward
of the episode. (Fig 8c.)

A.5 EVALUATING DESIGN CHOICES

A.5.1 OPTIMIZER

Although Actor-Critic algorithms have been around for ten years most commonly used state of the
art algorithms use Adam Kingma & Ba (2014). While Adam is a trusted and well performing neural
network optimizer, newer versions of this optimizer mainly NAdam Dozat (2016) and ND-Adam
Zhang et al. (2017) have shown that they could improve on its performance. In this section we
discuss and evaluate their performance in a reinforcement learning setting.

NAdam (Nesterov-accelerated Adaptive Moment Estimation) is an enhanced version of the Adam
optimizer, combining the advantages of the Adam and Nesterov momentum methods. The Nadam
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Figure 9: Optimizer Ablation study. Learning curves on the Hopper MuJoCo benchmark. Results
are averaged over 5 seeds. The shaded area captures the standard deviation of the evaluated episodes
at a given time step.

algorithm merges the adaptive learning rate of Adam with the Nesterov-accelerated gradient method,
achieving faster and more stable convergence, especially in deep neural networks.

ND-Adam (Normalized Direction-preserving Adam) is an improved optimization algorithm, its pri-
mary aim is to enhance the learning process’s efficiency by maintaining the gradient’s direction
while normalizing it.

In this paper we provided an ablation study where we compared the performance of Adam, NAdam
and ND-Adam Fig. 9. From which we can observe that NAdam has a slight performance boost
compared to other methods. For this reason we used NAdam optimizer for PASRL.

A.6 EXPERIMENTAL DETAILS FOR REPRODUCIBILITY

All experiments were conducted using fixed seeds for Gymnasium, Torch Paszke et al. (2019), and
Numpy Harris et al. (2020) to ensure consistency. The results were evaluated in evaluation mode
(without exploration noise). For evaluation, we used 10 seeds ranging from 0 to 9, except in the case
of the Walker2d environment, where only 7 seeds were used. All baselines and our method were
evaluated on the same fixed seeds 0-9. The evaluation was performed every 5000 time steps, with
checkpointing enabled for TD7. The results were averaged over the 10 evaluation episodes inside
a seed and then were averaged across seeds. Windowing smoothing with a window size of 10 was
applied to display the results.

The action smoothness results were computed using the second-order derivative of each action out-
put, taking the absolute value, and then averaging the smoothness values across evaluation episodes.
These averaged values were further averaged across all seeds to obtain the final smoothness measure.

A.7 LIMITATIONS

It is important to note that while PASRL aims to enhance action smoothness in applied RL con-
trollers, it is not without limitations. Due to the black-box nature of neural networks, the safety of
selected actions remains a concern, and implementing general fail-safe mechanisms is essential to
address this issue.
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