
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PASRL: STABILISING REINFORCEMENT LEARNING
WITH PAST ACTION-STATE REPRESENTATION LEARN-
ING

Anonymous authors
Paper under double-blind review

ABSTRACT

Although deep reinforcement learning (DRL) deals with sequential decision mak-
ing problems, temporal information representation is absent from state-of-the-art
actor-critic algorithms. The reliance on a single observation vector, representing
information from only one time step, combined with densely connected neural net-
works, causes instability and oscillations in action smoothness. Therefore many
applied DRL robotics control methods employ various reward shaping, low-pass
filter and traditional controller-based methods to mitigate this effect. However,
the interactions of these different parts hinders the performance of the original
goal for the RL algorithm. In this paper we present a reinforcement learning al-
gorithm extended with past action-state representation learning (PASRL), which
allows for the end-to-end training of RL-based control methods without the need
for common heuristics. PASRL is evaluated on the MuJoCo benchmark, show-
ing smoother actions that preserve exploration, eliminate the need for extensive
hyperparameter tuning, and provide a simple and efficient solution for enhancing
action smoothness.

1 INTRODUCTION

Even though Reinforcement Learning (RL) Sutton & Barto (2018) is a powerful tool to deal with
physical control problems, it exhibits a well-known instability regarding the smoothness of its pre-
dicted control actions Song et al. (2023)Mysore et al. (2021a). Oscillating, jerky control signals
can degrade control performance and potentially damage the system Ibarz et al. (2021)Kim et al.
(2022). This issue could be attributed to the reliance on a single observation vector, representing
information only at time step t and densely connected nature of the deployed neural network con-
troller. Assuming that the state is a fully observable Markov Decision Process (MDP), instability
could represent divergence in training, drops in performance across episodes, performance oscilla-
tions inside episodes and the actions taken by the agent could differ greatly from one time step to
another. Furthermore, observation vectors that contain only the current time step’s sensory record-
ings can lead to instabilities. This occurs when the agent lacks access to the complete observation
space, transforming the underlying problem formulation into a Partially Observable Markov Deci-
sion Process (POMDP) Kaelbling et al. (1998). POMDPs could be induced by anomalies such as
flickering, noise or data transmission loss in sensors during real-world applications. Or by the agent
not having access to accurate information in its observation vector.

Stability issues in MDP formulated RL problems have been tackled by multiple methods and their
mixtures (Figure. 1). Most commonly methods incorporate a motor behavior reward part that en-
courages improved action smoothness and the use of smaller action values into the desired reward
function Liu et al. (2024). Others include past sensory readings and agent outputs into their obser-
vation vector, use the frame stacking of previous sensory observations Mnih et al. (2015), or employ
state estimation models such as Kalman filters Kalman (1960), to better estimate the actual underly-
ing state based on the sensory information received from the environment. Applied RL controllers
commonly use low-pass filters to filter out large oscillations in the RL based control commands out-
put and make use of traditional control algorithms such as PD or PID controllers Kaufmann et al.
(2023)Luo et al. (2024)Reddy et al. (2018)Han et al. (2024)Jin et al. (2022).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Applied reinforcement learning flowchart. In most applied reinforcement learning based
control methods, RL based neural network controllers are augmented by a low-pass filter and/or a
traditional control algorithm. The reward can be divided into two parts: the main reward task of the
control and the behavior reward which forces the agent to output smooth actions and penalizes large
actions.

However, what these methods do not take into account is that these modifications alter the original
system’s closed-loop dynamics leading to erratic control behavior Mysore et al. (2021b)Kim et al.
(2022).

Densely connected layers have been the staple of most MDP formulated state-of-the-art algorithm
Fujimoto et al. (2018)Haarnoja et al. (2018)Kuznetsov et al. (2020)Fujimoto et al. (2024). However,
since these neural network structures contain no memory cells, they are prone to produce vastly
different actions for concurrent time steps.

POMDP formulated reinforcement learning algorithms have been shown to mitigate these problems
Dulac-Arnold et al. (2021) by either incorporating memory by stacking previous observations to-
gether ,Mnih et al. (2013) thus being able to turn partially observable MDPs to fully observable ones
Hausknecht & Stone (2015) and mitigating the effect inaccurate state recordings could pose on the
agent’s observation vector. Furthermore, incorporating recurrent architectures within the agent en-
ables the use of hidden states for memory integration. Additionally, it has been shown that recurrent
architectures are effective even without frame-stacked observations Hausknecht & Stone (2015);
Meng et al. (2021).

Recurrent neural network structure based agents have long been utilized in the Arcade Learning
Environment (ALE) Bellemare et al. (2013). This environment offers interfaces with wide range
of Atari 2600 games and has been a popular benchmark ever since. Most recurrent network-based
agents rely on distributed training to avoid ”representational drift,” where stored hidden states gen-
erated by older network parameters differ significantly from those produced by the network at the
current training step Kapturowski et al. (2018), Badia et al. (2020), Kapturowski et al. (2022), Es-
peholt et al. (2018)Horgan et al. (2018).

Improving the action smoothness generated by reinforcement learning agents has been explored via
two main research lines. The modification of the RL training algorithms Shen et al. (2020), Mysore
et al. (2021a), Chen et al. (2021), Yu et al. (2021), Kobayashi (2022), Zou et al. (2022) and by
modifications of the policy network Takase et al. (2022), Song et al. (2023), Wang et al. (2024).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

However, to the best of our knowledge no research has been conducted on recurrent reinforcement
learning agents effect on action smoothness comparing against the training of reinforcement learning
agents in concurrency with commonly used action smoothness reward, low-pass filter and traditional
control heuristics. The training of this segmented system of RL controllers, low-pass filters and
traditional control algorithms pose an issue since they are not optimized concurrently and rely on the
correct guessing of various control parameters and cutoff frequencies. Furthermore the incorporation
of an action smoothness term causes the agent to maximize the balance between achieving the main
objective and minimizing abrupt changes in actions, instead of solely maximizing the primary goal.

It is also important to note that taking smooth actions is not always optimal. Overly smoothed actions
can restrict the agent’s exploration, potentially limiting its performance and preventing it from fully
exploring the state-action space needed to achieve an optimal policy. Moreover, some environments
demand rapid action responses where swift or highly reactive control strategies are ideal. Hence, an
effective algorithm should balance responsiveness to accommodate rapid changes while minimizing
unnecessary oscillations in action selection.

In this paper we propose a non-distributed recurrent reinforcement learning agent, with learned
hidden states. Our approach can be thought of as an extension to TD7 Fujimoto et al. (2024),
which also learns decouples state and state-action embeddings. We augment this already existing
pipeline by creating time-dependent embeddings. The proposed RL agent could be trained end-to-
end without the commonly employed heuristics present in applied reinforcement learning methods.
We evaluate this algorithm’s performance in two metrics: the control methods achieved reward in
the main task of the environment and the action smoothness of the created control strategy. Our
findings show that recurrent reinforcement learning agents achieve comparable task performance to
mixed traditional and RL-based controllers, while generating substantially smoother actions without
relying on heuristics or compromising exploration.

2 BACKGROUND

Reinforcement learning formulates problems as a Markov Decision Process Bellman (1957)Sutton
& Barto (2018). An MDP can be described as a tuple of 5 (S,A,R, p, γ), containing S the state
space, A action space, R reward function, p dynamics model and discount factor γ. In RL the
objective is to find an optimal policy πθ : S → A, that maps state s ∈ S to an action a ∈ A, in a
way that maximizes the discounted accumulative reward

∑∞
t=1 γ

t−1 · rt, with parameters θ.

Recurrent Neural Networks (RNNs) are widely applied in reinforcement learning (RL) to address
tasks involving temporal dependencies, where decisions depend not only on the current observation
but also on past experiences. By maintaining a hidden state that evolves over time, RNNs enable RL
agents to incorporate historical information, making them particularly effective in partially observ-
able environments, such as Partially Observable Markov Decision Processes (POMDPs). The most
commonly used RNN variants in RL are Long Short-Term Memory (LSTM) networks Hochreiter
& Schmidhuber (1997) and Gated Recurrent Units (GRUs) Cho (2014), both of which mitigate the
vanishing gradient problem and improve performance in tasks that require memory and sequential
decision-making.

State-Action Learning Embeddings (SALE) Fujimoto et al. (2024) are designed to improve RL
algorithms by effectively capturing observation space structure and transition dynamics. It employs
two encoders: f transforms the state s into an embedding zs and g combines zs with action a to
create a state-action embedding zsa. SALE serves as the principle component for TD7 Fujimoto
et al. (2024), which is an improved version of TD3 Fujimoto et al. (2018).

3 ACTION SMOOTHNESS ISSUE OF CURRENT STATE-OF-THE ART METHODS

Although recurrent neural networks (RNNs) are widely used in POMDP tasks, the broader research
community has not fully adopted them into MDP tasks. Instead, many deep reinforcement learning
(DRL) algorithms are typically used off-the-shelf relying on densely connected neural networks
that lack memory of previous inputs or outputs. This is problematic, as reinforcement learning is
fundamentally aimed at addressing sequential decision-making challenges.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

We show that the sole reliance on feed forward densely connected networks introduces instabilities
present in the action smoothness of a trained agents performance. Further evidence of RL instabili-
ties is provided in the Appendix.

3.1 INSTABILITY IN ACTION OUTPUTS

Stability/smoothness of the action outputs is not commonly explored in reinforcement learning al-
gorithmic papers. Although not relevant to the usual return score representation commonly found in
papers, it provides valuable insight into the feasibility of the learned control strategy in many real
world applications.

To investigate how attainable the learned action outputs are, we can evaluate the rate of change of the
rate of change of the outputs, which we approximate by using the second derivative of the actions.

Figure 2: The action smoothness of a TD7-based agent trained for 3M time steps in the Hopper
environment. The results were evaluated across ten episodes.

The agent’s lack of memory is evident upon examining the output values. (Figure. 2) Each output
at a given time step has no connection to the output before or after it. Also the magnitude of the
second derivative of these output poses a real difficulty in achieving these output values in real-world
scenarios. Although periodic oscillations are expected, because of the nature of the environment any
structured change in the smoothness of the actions is absent.

4 METHODOLOGY

In this section we introduce our past action-state information learning method, as well as perform
in-depth empirical evaluations for the design choices when using past information augmentation.
PASRL is built on TD7 with additional recurrent encoder structure, with prioritized recent expe-
rience replay to alleviate recurrent state staleness Kapturowski et al. (2018) and use pink noise
Eberhard et al. (2023) for added exploration benefits with more correlated noise.

4.1 PAST ACTION-STATE REPRESENTATION LEARNING

The aim of past action-state representation learning is to learn time dependent embeddings (zsat , zst),
which is able to capture the time dependent change of the observation space and environment char-
acteristics. PASRL augments the encoder pair (f, g) present in TD7, with a recurrent bottleneck
hidden layer, with learnable hidden states. In PASRL f(s̃, ht) encodes information from state s̃ and
the hidden state of the state encoder ht into time dependent state embedding zst and g(zs, ht, ã)
encodes state s̃ and action ã into a time dependent state action embedding zsat .

4.2 REPLAY BUFFER MODIFICATIONS

In order to train our algorithm with hidden states of the recurrent layers present, we modify our
replay buffer to store transition tuples as well as the current ht and next hidden states nht at a given

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

time step (s̃, ã, s̃′, r, ht, nht). We also enhance the state and action vectors by defining them as
fixed-length sequences of history (hl = 10), referred to as s̃ and ã. These sequences are updated by
appending the current time step observation s, and action a at the end for s̃ and ã and removing the
oldest information. These observation and action vectors are initialized by zeroes and stored without
crossing episode boundaries.

To alleviate recurrent state staleness and representation drift we employ a prioritizing recent experi-
ence replay sampling method Wang & Ross (2019) to prioritize the probability of sampling transition
tuples created by more up-to-date network parameters.

Therefore in a given update phase we make K mini-batch updates. Suppose N is the size of the
replay buffer, then for the kth update, where 1 ≤ k ≤ K, we perform uniform sampling from the
most recently stored ck data points, which is defined by

ck = max{N · η k·m
K , cmin} (1)

in which equation η is the hyperparemeter determining how much prioritization is assigned to newer
samples, cmin determines the minimum sub-buffer range from which we can sample, and m is an
environment-dependent variable that is the maximum steps inside an episode.

4.3 RECURRENT LAYER MODIFICATION

For the recurrent layer type in our algorithm we selected GRU layers, since compared to LSTMs
they have less parameters per unit, therefore we can increase the bottleneck size with less parameters.
Furthermore, GRU layer based methods typically achieve the best performance in POMDP based
benchmarks Morad et al. (2023).

To make the comparisons fair and to keep the encoder’s parameter size from growing substantially
due to more parameters found in a GRU unit, compared to DNN units, we have chosen to reduce
the number of layers our encoders utilize, to ensure the encoder is capable of creating meaningful
embeddings to the actor and critic networks. Therefore not hindering the overall training process by
outputting not trained embeddings.

To ensure that the encoders utilize all the recurrent bottleneck layer’s neurons, we used a dropout
Srivastava et al. (2014) of 20%.

(a) Modified value function Q of PASRL. (b) Modified policy function π of PASRL.

Figure 3: The flow chart of the information propagation in PASRL. PASRL builds on the encoder
structure used in TD7 augmenting it with the use of recurrent layered encoders with the propagation
of hidden states ht between the encoders to allow for the encoding of time dependencies inside an
episode. (Figure inspired by Fujimoto et al. (2024).)

4.4 NOISE FOR EXPLORATION

Actor-critic reinforcement algorithms typically encourage exploration via adding noise to the output
actions or by target policy noise. These methods utilize white noise for both exploration methods.
However, it has been shown that white noise is not able to sufficiently explore action spaces, and the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

use of a more correlated color noise. for example pink noise, achieves better results for the agent
Eberhard et al. (2023).

In our method we utilize pink noise for the exploration during actions chosen during training and
white noise exploration for the target policy noise. We further utilize the addition of white noise to
the sampled next hidden states during the training of the critic networks.

4.5 EFFECTS OF REPRESENTATIONAL DRIFT

For the training of recurrent reinforcement learning models two methods are commonly described
Hausknecht & Stone (2015). The first replays entire episode trajectories, while the second utilizes
the common sampling paradigm for training. Although these methods follow different chains of
thought, they overall lead to the same performance, therefore in PASRL, we utilize the common
sampling paradigm found in TD7.

As for the use of the hidden states values we can also divide them into two categories.

1. Zeroing out the hidden states of sampled transition tuples

2. Storing the hidden states of the transition tuples.

The first approach appeals in its simplicity for implementation, however limits the networks tempo-
ral information modeling capability. While the second suffers from an effect called representational
drift, where the stored hidden states generated by a sufficiently old network parameters causes dis-
crepancy, since the updated network’s parameter generated hidden states do not align with the stored
ones.

In order to measure recurrent state staleness and representational drift, we can measure the Q-value
discrepancy Kapturowski et al. (2018) between Q-values generated by the network’s up-to-date hid-
den states versus the stored hidden states.

∆Q =
∥qt(ĥt, θ̂)− qt(ht, θ̂)∥2
|max(qt(ĥt, θ̂))|

(2)

Where ĥt are the hidden states generated by the up-to-date state encoder network parameters, and
ht are the stored hidden states generated by the encoder during a point of previous training. With θ̂
denoting the current parameters of the network.

Figure 4: Delta Q discrepancy as a measure for representational drift. The results were achieved in
3 MuJoCo environments over 3 seed, with delta Q values being stored between 1M and 3M time
steps. The shaded area captures the standard deviation of the average performance.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

In Figure 4 we show that emphasizing recent experience replay (ERE) Wang & Ross (2019) provides
an antidote for counteracting representational drift as we compare it to the prioritized experience
replay Fujimoto et al. (2020) present in TD7.

PASRL with ERE is able to overcome representational drift, meanwhile PASRL with LAP fails
to learn any meaningful policies, leading to minimal ∆Q values. PASRL with ERE is capable of
solving this issue and effectively minimizes ∆Q difference between the hidden variables generated
by the encoder network’s weights at the current training step and the stored ht values.

5 RESULTS

In this section, we evaluate the main task reward, which refers to the original reward without any
motor control penalties, and the action smoothness of the control policy based on PASRL, comparing
it against TD7 across various commonly constructed applied reinforcement learning control loops.
These include PASRL without any modifications, TD7 with an additional action smoothness reward
component (TD7 + AC), TD7 with both the action smoothness reward and a low-pass filter (TD7
+ AC +LPF), TD7 with the action smoothness reward and a PD controller (TD7 + AC + PD), and
finally, TD7 with the action smoothness reward, a low-pass filter, and a PD controller (TD7 + AC +
LPF + PD).

We obtain these results using 4 different OpenAI gym Brockman (2016) MuJoCo Todorov et al.
(2012) environments. A detailed description of the used hyperparameters, baselines and experimen-
tal setup is included in the Appendix.

Figure 5: Learning curves on the MuJoCo benchmark. Results are averaged over 10 seeds, except
in the case of the Walker2d environment, where only 7 seeds were used. The shaded area captures
the standard deviation (std), around the average performance.

Figure 5 presents the learning curves for the different control strategies. Table 1 highlights the
quantitative results, summarizing the performance during and at the end of training. The quantitative
results for the action smoothness values are provided in Table 2. The learning curves indicate that,
as the reward of TD7-based agents increases exponentially in the early stages of training, there is a
significant spike in action smoothness. We attribute this to the exploration phase, where the agent
has not yet developed an optimal policy.

Additionally, we observe that applying action smoothing through a low-pass filter (LPF) in mixed
control methods impedes the agent’s convergence in some cases, as it constrains exploration. This
negative impact is more pronounced in environments with larger action spaces, such as Ant, com-
pared to smaller action space environments like Hopper. The Humanoid and Walker2d environments
are an exception to this pattern, which have similar tasks. Also in the first case this could be due to
the limited range of actions available to the agent.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Environment Time Step PASRL TD7 TD7+AC TD7+AC+LPF TD7+AC+PD TD7+AC+LPF+PD
300k 3750 ± 1785 6222 ± 1442 6907 ± 769 3775 ± 2080 6818 ± 803 3830 ± 2141

Ant 1M 5596 ± 1498 9276 ± 577 8314 ± 402 4941 ± 2453 8858 ± 217 5776 ± 2380
3M 7676 ± 898 11230 ± 67 9234 ± 1141 5564 ± 2561 9749 ± 973 5260 ± 2707

300k 2313 ± 311 3146 ± 106 3032 ± 200 2791 ± 339 3260 ± 126 2872 ± 311
Hopper 1M 3500 ± 5 3692 ± 49 3502 ± 213 2606 ± 613 3583 ± 420 3109 ± 508

3M 3686 ± 5 4096 ± 73 3810 ± 286 2981 ± 468 4074 ± 192 3508 ± 178
300k 4200 ± 1583 5358 ± 1000 5391 ± 1097 4060 ± 1169 5228 ± 938 4252 ± 1305

Humanoid 1M 5936 ± 889 7259 ± 292 7409 ± 22 6879 ± 23 7305 ± 16 6764 ± 156
3M 8090 ± 652 9768 ± 220 9813 ± 22 8723 ± 451 9335 ± 615 9169 ± 20

300k 4069 ± 413 5275 ± 358 5104 ± 324 4991 ± 451 4729 ± 842 5250 ± 507
Walker2d 1M 5296 ± 12 6086 ± 18 6029 ± 20 5912 ± 34 6288 ± 100 6164 ± 70

3M 5824 ± 14 6748 ± 208 6627 ± 30 6234 ± 44 7041 ± 15 6652 ± 72

Table 1: Average reward performance on the selected MuJoCo benchmark at 300k, 1M, and 3M
time steps. ± captures the standard deviation of the averaged main task rewards.

Environment Time Step PASRL TD7 TD7+AC TD7+AC+LPF TD7+AC+PD TD7+AC+LPF+PD
300k 0.0627 0.1433 0.1176 0.0739 0.1456 0.0779

Ant 1M 0.0764 0.1877 0.1170 0.0827 0.1430 0.1029
3M 0.1045 0.1754 0.1281 0.0932 0.1260 0.0945

300k 0.0257 0.0788 0.0810 0.0301 0.0970 0.0338
Hopper 1M 0.0650 0.1436 0.1599 0.0376 0.1506 0.0435

3M 0.0938 0.1766 0.1794 0.0454 0.2489 0.0511
300k 0.0426 0.0702 0.0699 0.0214 0.0759 0.0242

Humanoid 1M 0.0497 0.0572 0.0488 0.0263 0.0571 0.0211
3M 0.0656 0.0690 0.0612 0.0298 0.0832 0.0290

300k 0.0403 0.0551 0.0554 0.0312 0.0696 0.0416
Walker2d 1M 0.0564 0.0748 0.0618 0.0364 0.0788 0.0524

3M 0.0610 0.0957 0.0883 0.0433 0.1024 0.0564

Table 2: Average action smoothness values on the selected MuJoCo benchmark at 300k, 1M, and
3M time steps.

Integrating traditional control heuristics with a RL agent in these settings adds complexity and de-
mands extensive hyperparameter tuning. Often this results in solutions that struggle to improve
action smoothness consistently across diverse environments. PASRL strikes a balance between the
high performance of top mixture methods and the action smoothness of LPF-based approaches. It
avoids the initial spike in action smoothness seen during early training and does not over-smooth
actions to the detriment of exploration, as demonstrated in the Humanoid environment results.

Figure 6: PASRL performance across different seeds. The results are achieved over the
AntSchulman et al. (2015) MuJoCo environment. The shaded area captures the standard devia-
tion of the evaluation episodes.

Figure 6 illustrates the performance variability of PASRL across different seeds, showing that it
can rival the top reward performance of the best TD7 control mixture method. Notably, PASRL
achieves smooth action outputs without relying on hand-tuned components like low-pass filters or

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

PD controllers for action regularization, which are commonly used in TD7-based methods. This
capability demonstrates PASRL’s potential to simplify the control process by eliminating the need
for auxiliary reward shaping or extensive parameter tuning for outside the primary RL framework.
By eliminating the need for extensive expertise in designing controllers where smoothness is critical,
PASRL simplifies the process of achieving effective control. It removes the complexity associated
with tuning traditional control methods to the specific characteristics of the environment.

6 CONCLUSION

The action smoothness of state-of-the-art RL algorithms is often addressed by adding smoothness
reward terms, low-pass filters, or traditional control methods. However, these approaches can hinder
performance. For this reason we introduce PASRL, a method to learn time-dependent state-action
embeddings to create smoother action controls.

This paper highlights the issue of action smoothness found in RL algorithms using densely con-
nected networks, and show how this could be overcome without changing the mathematical models
behind the algorithm’s training. We also incorporate various advances in exploration and optimizers.

PASRL is able to generate smooth actions without requiring manually designed reward parts or
additional controllers, such as low-pass filters or PD controllers. This reduces the complexity of
parameter tuning in applied RL cases. As a general-purpose technique, PASRL offers an alternative
for reinforcement learning tasks where the smoothness of the controller is amongst key priorities. We
found that PASRL is even able to match the performance of commonly employed RL and traditional
control methods in some environments, while outputting smoother actions.

REFERENCES

Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi,
Zhaohan Daniel Guo, and Charles Blundell. Agent57: Outperforming the atari human benchmark.
In International conference on machine learning, pp. 507–517. PMLR, 2020.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Richard Bellman. A markovian decision process. Journal of mathematics and mechanics, pp. 679–
684, 1957.

G Brockman. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Chen Chen, Hongyao Tang, Jianye Hao, Wulong Liu, and Zhaopeng Meng. Addressing action
oscillations through learning policy inertia. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 7020–7027, 2021.

Kyunghyun Cho. Learning phrase representations using rnn encoder-decoder for statistical machine
translation. arXiv preprint arXiv:1406.1078, 2014.

Timothy Dozat. Incorporating nesterov momentum into adam. 2016.

Gabriel Dulac-Arnold, Nir Levine, Daniel J Mankowitz, Jerry Li, Cosmin Paduraru, Sven Gowal,
and Todd Hester. Challenges of real-world reinforcement learning: definitions, benchmarks and
analysis. Machine Learning, 110(9):2419–2468, 2021.

Onno Eberhard, Jakob Hollenstein, Cristina Pinneri, and Georg Martius. Pink noise is all you
need: Colored noise exploration in deep reinforcement learning. In The Eleventh International
Conference on Learning Representations, 2023.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with im-
portance weighted actor-learner architectures. In International conference on machine learning,
pp. 1407–1416. PMLR, 2018.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Scott Fujimoto, David Meger, and Doina Precup. An equivalence between loss functions and non-
uniform sampling in experience replay. Advances in neural information processing systems, 33:
14219–14230, 2020.

Scott Fujimoto, Wei-Di Chang, Edward Smith, Shixiang Shane Gu, Doina Precup, and David Meger.
For sale: State-action representation learning for deep reinforcement learning. Advances in Neural
Information Processing Systems, 36, 2024.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

Lei Han, Qingxu Zhu, Jiapeng Sheng, Chong Zhang, Tingguang Li, Yizheng Zhang, He Zhang,
Yuzhen Liu, Cheng Zhou, Rui Zhao, et al. Lifelike agility and play in quadrupedal robots using
reinforcement learning and generative pre-trained models. Nature Machine Intelligence, pp. 1–12,
2024.

Charles R Harris, K Jarrod Millman, Stéfan J Van Der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith, et al. Array program-
ming with numpy. Nature, 585(7825):357–362, 2020.

Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for partially observable mdps. In
2015 aaai fall symposium series, 2015.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado Van Hasselt,
and David Silver. Distributed prioritized experience replay. arXiv preprint arXiv:1803.00933,
2018.

Julian Ibarz, Jie Tan, Chelsea Finn, Mrinal Kalakrishnan, Peter Pastor, and Sergey Levine. How to
train your robot with deep reinforcement learning: lessons we have learned. The International
Journal of Robotics Research, 40(4-5):698–721, 2021.

Yongbin Jin, Xianwei Liu, Yecheng Shao, Hongtao Wang, and Wei Yang. High-speed quadrupedal
locomotion by imitation-relaxation reinforcement learning. Nature Machine Intelligence, 4(12):
1198–1208, 2022.

Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in
partially observable stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998.

Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. 1960.

Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney. Recurrent ex-
perience replay in distributed reinforcement learning. In International conference on learning
representations, 2018.

Steven Kapturowski, Vı́ctor Campos, Ray Jiang, Nemanja Rakićević, Hado van Hasselt, Charles
Blundell, and Adrià Puigdomènech Badia. Human-level atari 200x faster. arXiv preprint
arXiv:2209.07550, 2022.

Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Müller, Vladlen Koltun, and
Davide Scaramuzza. Champion-level drone racing using deep reinforcement learning. Nature,
620(7976):982–987, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Taekyung Kim, Gyuhyun Park, Kiho Kwak, Jihwan Bae, and Wonsuk Lee. Smooth model predictive
path integral control without smoothing. IEEE Robotics and Automation Letters, 7(4):10406–
10413, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Taisuke Kobayashi. L2c2: Locally lipschitz continuous constraint towards stable and smooth re-
inforcement learning. In 2022 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 4032–4039. IEEE, 2022.

Arsenii Kuznetsov, Pavel Shvechikov, Alexander Grishin, and Dmitry Vetrov. Controlling overesti-
mation bias with truncated mixture of continuous distributional quantile critics. In International
Conference on Machine Learning, pp. 5556–5566. PMLR, 2020.

Jia Liu, Jianwen Yin, Zhengmin Jiang, Qingyi Liang, and Huiyun Li. Attention-based distributional
reinforcement learning for safe and efficient autonomous driving. IEEE Robotics and Automation
Letters, 9(9):7477–7484, 2024.

Shuzhen Luo, Menghan Jiang, Sainan Zhang, Junxi Zhu, Shuangyue Yu, Israel Dominguez Silva,
Tian Wang, Elliott Rouse, Bolei Zhou, Hyunwoo Yuk, et al. Experiment-free exoskeleton assis-
tance via learning in simulation. Nature, 630(8016):353–359, 2024.

Lingheng Meng, Rob Gorbet, and Dana Kulić. Memory-based deep reinforcement learning for
pomdps. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 5619–5626. IEEE, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Steven Morad, Ryan Kortvelesy, Matteo Bettini, Stephan Liwicki, and Amanda Prorok. Popgym:
Benchmarking partially observable reinforcement learning, 2023.

Siddharth Mysore, Bassel Mabsout, Renato Mancuso, and Kate Saenko. Regularizing action poli-
cies for smooth control with reinforcement learning. In 2021 IEEE International Conference on
Robotics and Automation (ICRA), pp. 1810–1816. IEEE, 2021a.

Siddharth Mysore, Bassel Mabsout, Kate Saenko, and Renato Mancuso. How to train your quadro-
tor: A framework for consistently smooth and responsive flight control via reinforcement learning.
ACM Transactions on Cyber-Physical Systems (TCPS), 5(4):1–24, 2021b.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Gautam Reddy, Jerome Wong-Ng, Antonio Celani, Terrence J Sejnowski, and Massimo Vergassola.
Glider soaring via reinforcement learning in the field. Nature, 562(7726):236–239, 2018.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015.

Qianli Shen, Yan Li, Haoming Jiang, Zhaoran Wang, and Tuo Zhao. Deep reinforcement learning
with robust and smooth policy. In International Conference on Machine Learning, pp. 8707–
8718. PMLR, 2020.

Xujie Song, Jingliang Duan, Wenxuan Wang, Shengbo Eben Li, Chen Chen, Bo Cheng, Bo Zhang,
Junqing Wei, and Xiaoming Simon Wang. Lipsnet: a smooth and robust neural network with
adaptive lipschitz constant for high accuracy optimal control. In International Conference on
Machine Learning, pp. 32253–32272. PMLR, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Ryoichi Takase, Nobuyuki Yoshikawa, Toshisada Mariyama, and Takeshi Tsuchiya. Stability-
certified reinforcement learning control via spectral normalization. Machine Learning with Ap-
plications, 10:100409, 2022.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Che Wang and Keith Ross. Boosting soft actor-critic: Emphasizing recent experience without for-
getting the past. arXiv preprint arXiv:1906.04009, 2019.

Wenxuan Wang, Jingliang Duan, Xujie Song, Liming Xiao, Liangfa Chen, Yinuo Wang, Bo Cheng,
and Shengbo Eben Li. Smooth filtering neural network for reinforcement learning. IEEE Trans-
actions on Intelligent Vehicles, 2024.

Haonan Yu, Wei Xu, and Haichao Zhang. Taac: Temporally abstract actor-critic for continuous
control. Advances in Neural Information Processing Systems, 34:29021–29033, 2021.

Zijun Zhang, Lin Ma, Zongpeng Li, and Chuan Wu. Normalized direction-preserving adam. arXiv
preprint arXiv:1709.04546, 2017.

Guangyuan Zou, Ying He, F. Richard Yu, Longquan Chen, Weike Pan, and Zhong Ming. Multi-
constraint deep reinforcement learning for smooth action control. In Lud De Raedt (ed.), Pro-
ceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22,
pp. 3802–3808. International Joint Conferences on Artificial Intelligence Organization, 7 2022.
doi: 10.24963/ijcai.2022/528. URL https://doi.org/10.24963/ijcai.2022/528.
Main Track.

A APPENDIX

A.1 HYPERPARAMETERS

The action space for the environments is in the range of [-1, 1]. Most hyperparameters match TD7.

Our algorithm differs from TD7 in the following changes:

1. The use of hidden states and GRU neurons inside the encoders

2. The use of NAdam instead of Adam

3. The use of a different exploration strategy, using Pink noise for exploration during episodes
and adding white noise to the next hidden noise values hnt during the training of the target
value function Qt

4. We furthermore decided to leave out warm-up period for the sake of learning the hidden
variable transitions of the agent from the start of the training.

A.2 ALGORITHM DESCRIPTIONS

Pseudocode for PASRL is described in Algorithm 1.

12

https://doi.org/10.24963/ijcai.2022/528

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hyperparameter Value

TD3 Fujimoto et al. (2018)
Target Policy noise σ N(0, 0.22)
Target Policy noise clipping c (-0.5, 0.5)
Policy update frequency 2

ERE Wang & Ross (2019) cmin 25k
η 0.994

TD3 + BC Fujimoto & Gu (2021) Behavior cloning weight λ (Online) 0.0
Behavior cloning weight λ (Offline) 0.1

Policy Checkpoints

Checkpoint criteria minimum
Early assessment episodes 1
Early time steps 20
Early time steps 750k
Criteria reset weight 0.9

PASRL GRU neurons 80
GRU layers 2

Exploration

Initial random exploration time steps 0
Color parameter beta 1.0
Noise scale 0.3
Target Policy hidden noise N(0, 0.1)

Common

Discount factor 0.99
Replay buffer capacity 1M
Mini-batch size 256
Target update frequency 250

Optimizer (Shared) Optimizer NAdam Dozat (2016)
(Shared) Learning rate 3e-4

Table 3: PASRL Hyperparameters

Algorithm 1 Online PASRL

1: Initialize:
2: Policy πt+1, value function Qt+1, encoders (ft+1, gt+1).
3: Target policy πt, target value function Qt, fixed encoders (ft, gt), target fixed encoders

(ft−1, gt−1).
4: Checkpoint policy πc, checkpoint encoder fc.
5: for Every episode do
6: Reset hidden states ht of the encoder
7: Generate episodic pink action noise
8: if checkpoint condition then
9: if actor πt+1 outperformes checkpoint policy πc then

10: Update checkpoint networks πc ← πt+1, fc ← ft.
11: end if
12: end if
13: for episode in episodes since training do
14: for time step: t=1,..,K in episode do
15: calculate ck
16: Sample transitions from ERE replay buffer, based on ck
17: Train encoder, value function, and policy (accordingly to Fujimoto et al. (2024))
18: if passed steps > target update frequency then
19: Update tartget networks (based on Fujimoto et al. (2024)
20: end if
21: end for
22: end for
23: end for

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A.3 BASELINES HYPERPARAMETERS

A.3.1 TD7

Our TD7 implementation uses the exact hyperparameters as described by the author at https:
//github.com/sfujim/TD7.

Hyperparameter Value

TD3 Fujimoto et al. (2018)
Target Policy noise σ N(0, 0.22)
Target Policy noise clipping c (-0.5, 0.5)
Policy update frequency 2

LAP Fujimoto et al. (2020) Probability smoothing α 0.4
Minimum priority 1

TD3 + BC Fujimoto & Gu (2021) Behavior cloning weight λ (Online) 0.0
Behavior cloning weight λ (Offline) 0.1

Policy Checkpoints

Checkpoint criteria minimum
Early assessment episodes 1
Early time steps 20
Early time steps 750k
Criteria reset weight 0.9

Exploration Initial random exploration time steps 25k
Exploration noise N(0, 0.12)

Common

Discount factor 0.99
Replay buffer capacity 1M
Mini-batch size 256
Target update frequency 250

Optimizer (Shared) Optimizer Adam Kingma & Ba (2014)
(Shared) Learning rate 3e-4

Table 4: TD7 Hyperparameters

A.3.2 ACTION SMOOTHNESS

The smoothness of an action policy can be approximated by the second derivative of the actions.

Action Smoothness =
1

N

N∑
t=1

(at+2 − 2at+1 + at)
2 (3)

Our action smoothness metrics for the baseline methods and PASRL were calculated by Equation 3.

The action smoothness reward part enhanced environment for Ant has the same equation for the
calculation of action smoothness, with a weight of was = 0.1.

A.3.3 LOW-PASS-FILTER

Low-pass filters in reinforcement learning controllers aim to smooth out high-frequency fluctuations
in the actions generated by the policy. To implement a low-pass filter in our reinforcement learning
(RL) controller, two key parameters must be defined: the sampling frequency fs and the cutoff
frequency ωc. The sampling frequency determines the time step, calculated as ∆t = 1/fs, and
is typically provided by the reinforcement learning environment. The cutoff frequency defines the
filter’s response characteristics. In our implementation, we selected a cutoff frequency of 20Hz to
effectively balance responsiveness and smoothness of the policy.

In our low-pass-filter implementation we utilize a first-order Infinite Impulse Response (IIR) filter,
to minimize the delay in the control policy, which can be described by:

yt = b0 · at + b1 · at−1 + a1 · yt−1 (4)

Where the coefficients in Equation 4 b0 and b1 control the contribution of the current and previous
inputs, respectively, while a1 determines how much of the previous output affects the current output.

14

https://github.com/sfujim/TD7
https://github.com/sfujim/TD7

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

The variable at represents the current input action, which is the new action generated by the rein-
forcement learning policy. The term at-1 denotes the previous action, allowing the filter to take into
account the action taken in the prior time step. Finally, yt-1 represents the previous filtered action
output, which serves as feedback to the current output. At the end the final filtered action output yt
is used as the input for the environment.

A.3.4 PD CONTROLLER

A Proportional-Derivative (PD) controller is a widely used traditional control paradigm in various
robotic applications used to enhance the performance of action outputs. The PD controller combines
two components: the proportional P term, which provides an immediate response to the current
error, and the derivative D term, which predicts future error based on its rate of change.

A PD controller can be described by the following formula:

u(t) = Kp · e(t) +Kd ·
de(t)

dt
(5)

In which equation: u(t) is the control output, e(t) is the error signal (in our case the policy action),
Kp is the proportional gain parameter, and Kd is the derivative gain.

In the context of reinforcement learning, the PD controller is employed to smooth the action outputs
of the policy. The proportional component reacts directly to the error in the action, adjusting the
control output to reduce this error. The derivative component, on the other hand, aims to mitigate
oscillations in the agent’s output actions. In our implementation we have utilized a PD controller
with proportional gain Kp = 1.0 and derivative gain Kd = 0.05 to provide a rapid response to the
given actions generated by the policy.

A.4 FURTHER INSTABILITIES IN RL

A.4.1 INSTABILITY ACROSS EPISODES

Figure 7: Difference in curve smoothness for TD7. Averaged vs single seed representation of the
results. Averaged over 5 different seeds over 2M time steps.The shaded area in the TD7 algorithm
represents rewards averaged over 10 evaluation episodes per seed, and then averaged across all
seeds. For Seed 0, the shaded region specifically reflects the standard deviation among the evaluation
episodes within that seed.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

The fair comparison of RL algorithms have long been a challenge in the evaluation of these algo-
rithm’s results. The issue stems from the variance of the stochastic environment and in the learning
initialization Henderson et al. (2018). With different seeds having drastically different performances
across different seeds.

To counteract this issue most algorithms report their performance according to the following stan-
dard: They evaluate every Nfreq steps, over multiple evaluation episodes Nep over a number of
seeds Nseeds and finally they smooth the plot by averaging over a given window size Nwindow

Fujimoto et al. (2024).

Although this standard procedure makes the plots easier to understand and allows for fair comparison
across algorithms, it creates a false sense of stability regarding RL algorithms. (Fig.7)

Where even though the papers report smooth learning curves single seed runs could yield a much
different result during training.

A.4.2 INSTABILITY IN EPISODES

A common performance reporting standard for RL algorithms has long been the plotting of the
episodic return along a given time step of training. Although it gives a clear picture for performance
throughout the episode it is a surface level reporting since the intricacies of how it achieved these
rewards inside the episode is left unanswered.

When examining the rewards the agent accumulates throughout the episode we can make the fol-
lowing observations. (Fig. 8)

(a) Reward surface (b) Reward surface side (c) Violin plot of the rewards

Figure 8: In episode performance fluctuations present in TD7. Subfigure a, shows the reward surface
of a trained TD7 agent on the Hopper environment across 1000 time steps and 10 different episodes.
Subfigure b, shows the reward surface from the side to further showcase the oscillations during time
steps. Subfigure c, shows the violin plot of the accumulated rewards across the mentioned 1000 time
steps and 10 different episodes.

Firstly is that the rewards at the beginning of the episode vastly under perform compared to rewards
in the middle or at the end of the training. (Fig8a.) Secondly the rewards fluctuate similar to
a sinusoid function during inference. (Fig 8b.) Finally the performance can exhibit significant
fluctuations around the mean and in some cases it could deviate substantially from the mean reward
of the episode. (Fig 8c.)

A.5 EVALUATING DESIGN CHOICES

A.5.1 OPTIMIZER

Although Actor-Critic algorithms have been around for ten years most commonly used state of the
art algorithms use Adam Kingma & Ba (2014). While Adam is a trusted and well performing neural
network optimizer, newer versions of this optimizer mainly NAdam Dozat (2016) and ND-Adam
Zhang et al. (2017) have shown that they could improve on its performance. In this section we
discuss and evaluate their performance in a reinforcement learning setting.

NAdam (Nesterov-accelerated Adaptive Moment Estimation) is an enhanced version of the Adam
optimizer, combining the advantages of the Adam and Nesterov momentum methods. The Nadam

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 9: Optimizer Ablation study. Learning curves on the Hopper MuJoCo benchmark. Results
are averaged over 5 seeds. The shaded area captures the standard deviation of the evaluated episodes
at a given time step.

algorithm merges the adaptive learning rate of Adam with the Nesterov-accelerated gradient method,
achieving faster and more stable convergence, especially in deep neural networks.

ND-Adam (Normalized Direction-preserving Adam) is an improved optimization algorithm, its pri-
mary aim is to enhance the learning process’s efficiency by maintaining the gradient’s direction
while normalizing it.

In this paper we provided an ablation study where we compared the performance of Adam, NAdam
and ND-Adam Fig. 9. From which we can observe that NAdam has a slight performance boost
compared to other methods. For this reason we used NAdam optimizer for PASRL.

A.6 EXPERIMENTAL DETAILS FOR REPRODUCIBILITY

All experiments were conducted using fixed seeds for Gymnasium, Torch Paszke et al. (2019), and
Numpy Harris et al. (2020) to ensure consistency. The results were evaluated in evaluation mode
(without exploration noise). For evaluation, we used 10 seeds ranging from 0 to 9, except in the case
of the Walker2d environment, where only 7 seeds were used. All baselines and our method were
evaluated on the same fixed seeds 0-9. The evaluation was performed every 5000 time steps, with
checkpointing enabled for TD7. The results were averaged over the 10 evaluation episodes inside
a seed and then were averaged across seeds. Windowing smoothing with a window size of 10 was
applied to display the results.

The action smoothness results were computed using the second-order derivative of each action out-
put, taking the absolute value, and then averaging the smoothness values across evaluation episodes.
These averaged values were further averaged across all seeds to obtain the final smoothness measure.

A.7 LIMITATIONS

It is important to note that while PASRL aims to enhance action smoothness in applied RL con-
trollers, it is not without limitations. Due to the black-box nature of neural networks, the safety of
selected actions remains a concern, and implementing general fail-safe mechanisms is essential to
address this issue.

17

	Introduction
	Background
	Action smoothness issue of current state-of-the art methods
	Instability in action outputs

	Methodology
	Past Action-State representation learning
	Replay buffer modifications
	Recurrent layer modification
	Noise for exploration
	Effects of representational drift

	Results
	Conclusion
	Appendix
	Hyperparameters
	algorithm descriptions
	Baselines hyperparameters
	TD7
	Action smoothness
	Low-pass-filter
	PD Controller

	Further instabilities in RL
	Instability across episodes
	Instability in episodes

	Evaluating design choices
	Optimizer

	Experimental details for reproducibility
	Limitations

