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Abstract

This paper investigates group distributionally robust optimization (GDRO), with
the purpose to learn a model that performs well over m different distributions.
First, we formulate GDRO as a stochastic convex-concave saddle-point problem,
and demonstrate that stochastic mirror descent (SMD), using m samples in each
iteration, achieves an O(m(log m)/e?) sample complexity for finding an e-optimal
solution, which matches the Q(m/e?) lower bound up to a logarithmic factor.
Then, we make use of techniques from online learning to reduce the number of
samples required in each round from m to 1, keeping the same sample complexity.
Specifically, we cast GDRO as a two-players game where one player simply
performs SMD and the other executes an online algorithm for non-oblivious multi-
armed bandits. Next, we consider a more practical scenario where the number of
samples that can be drawn from each distribution is different, and propose a novel
formulation of weighted GDRO, which allows us to derive distribution-dependent
convergence rates. Denote by n; the sample budget for the i-th distribution, and
assume nj > ng > --- > Nyy,. In the first approach, we incorporate non-uniform
sampling into SMD such that the sample budget is satisfied in expectation, and
prove that the excess risk of the i-th distribution decreases at an O(y/n1 logm/n;)
rate. In the second approach, we use mini-batches to meet the budget exactly
and also reduce the variance in stochastic gradients, and then leverage stochastic
mirror-prox algorithm, which can exploit small variances, to optimize a carefully
designed weighted GDRO problem. Under appropriate conditions, it attains an
O((logm)/y/n;) convergence rate, which almost matches the optimal O(+/1/n;)
rate of only learning from the ¢-th distribution with n; samples.

1 Introduction

In the classical statistical machine learning, our goal is to minimize the risk with respect to a fixed
distribution Py [Vapnikl 2000], i.e.,

min {Ro(w) = By, [((w;2)]}, M

where z € Z is a sample drawn from Py, W denotes a hypothesis class, and ¢(w;z) is a loss
measuring the prediction error of model w on z. During the past decades, various algorithms have
been developed to optimize (), and can be grouped in two categories: sample average approximation
(SAA) and stochastic approximation (SA) [Kushner and Yin, [2003]. In SAA, we minimize an
empirical risk defined as the average loss over a set of samples drawn from Py, and in SA, we directly
solve the original problem by using stochastic observations of the objective Ro(-).
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However, a model that trained over a single distribution may lack robustness in the sense that (i)
it could suffer high error on minority subpopulations, though the average loss is small; (ii) its
performance could degenerate dramatically when tested on a different distribution. Distributionally
robust optimization (DRO) provides a principled way to address those limitations by minimizing the
worst-case risk in a neighborhood of Py [Ben-Tal et al., 2013|]. Recently, it has attracted great interest
in optimization [Shapirol 2017], statistics [Duchi and Namkoong| [2021]], operations research [Duchi
et al.,|2021]], and machine learning [Hu et al.| [2018| |Jin et al.| 2021} |Agarwal and Zhang| 2022]]. In
this paper, we consider an emerging class of DRO problems, named as Group DRO (GDRO) which
optimizes the maximal risk over a finite number of distributions [Oren et al., [2019, Sagawa et al.,
2020]. Mathematically, GDRO can be formulated as a minimax stochastic problem:

i R; = Ezp, [£(W; 2
nin, max {Ri(w) P [(w;2)] } @)
where Py, ..., Py, denote m distributions. A motivating example is federated learning, where a

centralized model is deployed at multiple clients, each of which faces a (possibly) different data
distribution [Mohri et al.,[2019].

Supposing that samples can be drawn from all distributions freely, we develop efficient SA approaches
for (2)), in favor of their light computations over SAA methods. As elaborated by Nemirovski et al.
[2009} §3.2], we can cast @]) as a stochastic convex-concave saddle-point problem:

min_ max {¢(w,q) —Zm&(w)} 3)
=1

weWqeA,,

where A, = {q € R™ :q > 0,> " g; = 1} is the (m—1)-dimensional simplex, and then solve
by their mirror descent stochastic approximation method, namely stochastic mirror descent (SMD). In
fact, several recent studies have adopted this (or similar) strategy to optimize (3). But, unfortunately,
we found that existing results are unsatisfactory because they either deliver a loose sample complexity
[Sagawa et al.l 2020], suffer subtle dependency issues in their analysis [Haghtalab et al.l 2022} [Soma
et al.,[2022]], or hold only in expectation [Carmon and Hausler, [2022]].

As a starting point, we first provide a routine application of SMD to (3)), and discuss the theoretical
guarantees. In each iteration, we draw 1 sample from every distribution to construct unbiased
estimators of R;(-) and its gradient, and then update both w and g by SMD. The proposed method
achieves an O(1/(logm)/T) convergence rate in expectation and with high probability, where T is
the number of iterations. As a result, we obtain an O(m(logm)/e?) sample complexity for finding an
e-optimal solution of (3), which matches the Q(m/e?) lower bound [[Soma et al.|[2022] Theorem 5]
up to a logarithmic factor, and tighter than the O(m?(logm)/e?) bound of Sagawa et al.|[2020] by
an m factor. While being straightforward, this result seems new for GDRO.

Then, we proceed to reduce the number of samples used in each iteration from m to 1. We remark
that a naive uniform sampling over m distributions does not work well, and yields a worse sample
complexity [Sagawa et al., 2020]. As an alternative, we borrow techniques from online learning with
stochastic observations, and explicitly tackle the non-oblivious nature of the online process, which
distinguishes our method from that of [Soma et al.| [[2022]]. Specifically, we use SMD to update w, and
Exp3-IX, an algorithm for non-oblivious multi-armed bandits (MAB) [Neu, |2015]], with stochastic
rewards to update q. In this way, our algorithm only needs 1 sample in each round and attains an

O(y/m(logm)/T) convergence rate, implying the same O(m(logm)/e?) sample complexity.

Next, we investigate a more practical and challenging scenario in which there are different budgets of
samples that can be drawn from each distribution, a natural phenomenon encountered in learning
with imbalanced data [Amodei et al.l 2016]. Let n; be the sample budget of the ¢-th distribution, and
without loss of generality, we assume that ny > no > --- > n,,. Now, the goal is not to attain the
optimal sample complexity, but to reduce the risk on all distributions as much as possible, under
the budget constraint. For GDRO with different budgets, we develop two SA approaches based on
non-uniform sampling and mini-batches, respectively.

In each iteration of the first approach, we draw 1 sample from every P; with probability n;/nq,
and then construct stochastic gradients to perform mirror descent. In this way, the budget will be
satisfied in expectation after n; rounds. To analyze its performance, we propose a novel formulation
of weighted GDRO, which weights each risk R;(-) in (3) by a scale factor p;. Then, our algorithm
can be regarded as SMD for an instance of weighted GDRO. With the help of scale factors, we



demonstrate that the proposed algorithm enjoys distribution-dependent convergence in the sense that
it converges faster for distributions with more samples. In particular, the excess risk on distribution

P; reduces at an O(y/n1 logm/n;) rate, and for Py, it becomes O(4/(logm)/n1), which almost
matches the optimal O(4/1/n1) rate of learning from a single distribution with n; samples.

On the other hand, for distribution P; with budget n; < nj, the above O(1/n1 logm/n;) rate is

worse than the O(4/1/n;) rate obtained by learning from P; alone. In shape contrast with this
limitation, our second approach yields nearly optimal convergence rates for multiple distributions
across a large range of budgets. To meet the budget constraint, it runs for n < n,, rounds, and in
each iteration, draws a mini-batch of n; /i samples from every distribution P;. As a result, (i) the
budget constraint is satisfied exactly; (ii) for distributions with a larger budget, the associated risk
function can be estimated more accurately, making the variance of the stochastic gradient smaller. To
benefit from the small variance, we leverage stochastic mirror-prox algorithm [Juditsky et al.,[2011]],
instead of SMD, to update our solutions, and again make use of the weighted GDRO formulation to
obtain distribution-wise convergence rates. Theoretical analysis shows that the excess risk converges
at an O((T% + \/%) log m) rate for each P;. Thus, we obtain a nearly optimal O((logm)/\/n;)

rate for distributions P; with n; < n2 , and an O((logm)/n,,) rate otherwise. Note that the latter
rate is as expected since the algorithm only updates O(n,,,) times.

Related work We briefly discuss the related works on the GDRO problem in (2)/(3) and will review
the traditional DRO problem in Appendix[Al [Sagawa et al|[2020] have applied SMD [Nemirovski
et al.l 2009] to (3), but only obtain a sub-optimal sample complexity. In the sequel, [Haghtalab et al.
[2022] and [Soma et al.| [2022] have tried to improve the sample complexity by reusing samples and
applying techniques from MAB respectively, but their analysis suffers dependency issues. (Carmon
and Hausler| [2022, Proposition 2] successfully established an O(m(logm)/e?) sample complexity
by combining SMD and gradient clipping, but their result holds only in expectation. To deal with
heterogeneous noise in different distributions, Agarwal and Zhang|[2022]] propose a variant of GDRO
named as minimax regret optimization (MRO), which replaces the risk with “excess risk”.

2 SA Approaches to GDRO

In this section, we provide two efficient SA approaches for GDRO, which are equipped with the same
sample complexity, but with different number of samples used in each round (m versus 1).

2.1 Preliminaries

First, we state the general setup of mirror descent [Nemirovski et al., 2009]. We equip the domain W
with a distance-generating function v, (-), which is 1-strongly convex with respect to certain norm
I - |lo- We define the Bregman distance associated with v, (+) as By, (u,v) = v, (1) — [v (V) +
(Vg (v),u — v)]. For the simplex A,,, we choose the entropy function v,(q) = > -, ¢;Ing;,
which is 1-strongly convex with respect to the vector ¢1-norm || - ||1, as the distance-generating
function. Similarly, B, (-, -) is the Bregman distance associated with v ().

Then, we introduce the standard assumptions about the domain, and the loss function.

Assumption 1 The domain W is convex and its diameter measured by v,,(+) is bounded by D, i.e.,
max V(W) — VIVIIEI)I/{} V(W) < D2, €))

For A,,, it is easy to verify that its diameter measured by the entropy function is bounded by v/In m.

Assumption 2 For all i € [m], the risk function R;(w) = Eg.p, [{(W;2z)] is convex.

Assumption 3 For all i € [m], we have

0<(w;z) <1, VweW, z~ P 5)

Assumption 4 For all i € [m], we have
IVlw;2)|| s <G, YweW, z~P; (6)

where || - ||w,« is the dual norm of || - |-



Algorithm 1 Stochastic Mirror Descent for GDRO
Input: Two step sizes: n,, and 7,

1: Initialize wy = argmin,, ¢y v (W), and q1 = [1/m,...,1/m]" € R™
2: fort =1toT do ,

3:  Foreachi € [m], draw a sample zgl) from distribution P;

4:  Construct the stochastic gradients defined in (9)

5:  Update w; and q; according to (IT)) and (I2)), respectively

6: end for

7: return W= 4 wiandg= %~ 3 q

Last, we discuss the performance measure. To analyze the convergence property, we measure the
quality of an approximate solution (W, q) to (3) by the error

_ oy - o _ 7
€6(W, @) = max ¢(W,q) — min ¢(w, q) ©)

which directly controls the optimality of w to the original problem (2)), since
max R;(W) — min max R;(w) < max i Ri(W) 7II1111 iRi(W) = ey (W, q). 8
i€m] (W) weEW ig[m] aEA, 6k Zq o(W, Q). @)

2.2 Stochastic Mirror Descent for GDRO

To apply SMD, the key is to construct stochastic gradients of the function ¢(w, q) in . In each

round ¢, denote by w; and q; the current solutions. We draw one sample zgl) from every distribution
‘P;, and define stochastic gradients as

gu(We ) = > g Vl(wyiz), and g (wi, ) = [((wi V), .. Uwiz™)]T. )
i=1
It is worth mentioning that the construction of g,,(w¢, q;) can be further simplified to
Bu(wi ) = V(wi;z")) (10)
where i; € [m] is drawn randomly according to the probability q;.

Then, we utilize SMD to update w; and q;:

Wiyl = argmin {nw<gw(wta qr), W — wy) + By (w, Wt)}» (1)
wew

qr1 = argmin {ne(—g¢(We, i), a — i) + Byla,ar) } (12)
(e [SYAVSY

where 7, > 0 and 1, > 0 are two step sizes that will be determined later. The updating rule of w
depends on the choice of the distance-generating function v,,(-). Since B,(q, q;) is defined in terms
of the negative entropy, (I2) is equivalent to

g.i exp (ngl(wi;2."))

S ey exp (10w z))
which is the Hedge algorithm [Freund and Schapire}, |1997]] applied to a maximization problem. In
the beginning, we set wi = argming, ¢y, ¥ (W), and q; = >1,,, where 1,,, is the m-dimensional

Gt+1,i = , Vi € [m] (13)

vector consisting of 1’s. In the last step, we return the averaged iterates w = % Zthl w; and

q= % Zthl q: as final solutions. The completed procedure is summarized in Algorithm

Based on the theoretical guarantee of SMD [Nemirovski et al., 2009, §3.1], we have the following
theorem.

Theorem 1 Under Assumptzonsl and I and setting 0, = D?, /m and ng =

(Inm), /m in Algorithm|l| with probability at least 1 — §, we have
10(D2G? + Inm)
W 84+ 2In— .
(W, Q) < ( * 6) \/ T

4




Remark 1 Theorem |1| shows that Algorithm (1| achieves an O(y/(logm)/T) convergence rate.
Since it consumes m samples per iteration, the sample complexity is O(m(logm)/e?), which nearly
matches the Q(m/ 62) lower bound [[Soma et al., 2022, Theorem 5]. Due to space limitations, we
defer all the proofs to Appendix |B| and omit expectation bounds.

Comparisons with[Sagawa et al. [2020] In their stochastic algorithm,|Sagawa et al.|[2020]] generate
arandom index i; € [m] uniformly in each round ¢, and draw 1 sample zgz‘) from P;,. The stochastic
gradients are constructed as follows:

&uw(We,q) = Qt,itmvg(wt; Zgit)), and gq(wta q:) = [0,...,ml(wy; Z,E“)L S ,O]T (14

where g,(wy,q;) is a vector with mel(wy; zg“)) in position 7; and 0 elsewhere. Then, the two
stochastic gradients are used to update w; and qy, in the same way as (I1)) and (I12). However, it
only attains a slow convergence rate: O(m-/(logm)/T), leading to an O(m?(logm)/e?) sample
complexity, which is higher than that of Algorithm[I]by a factor of m. The slow convergence is due
to the fact that the optimization error depends on the dual norm of the stochastic gradients in (T4),
which blows up by a factor of m, compared with the gradients in (9).

Comparisons with [Haghtalab et al. [2022] To reduce the number of samples required in each
round, [Haghtalab et al.| [2022]] propose to reuse samples for multiple iterations. To approximate
Vwd(We, qy), they construct the stochastic gradient g,,(w¢, q;) in the same way as , which

needs 1 sample. To approximate Vq¢(wy, q;), they draw m samples z(Tl), e ,z(Tm), one from each

distribution, at round 7 = mk + 1, k € Z, and reuse them for m iterations to construct
g (wi,qp) = [((wyzM), . Uwiz™)]T t=7. . r+m— L (15)

Then, they treat g,,(W¢, q¢) and g7 (W, q;) as stochastic gradients, and update w; and q; by SMD.
In this way, their algorithm uses 2 samples on average in each iteration. However, the gradient in (I5)
is no longer an unbiased estimator of the true gradient g,(wy, q;) atrounds t = 7+2,..., 7+m—1,
making their analysis ungrounded. To see this, from the updating rule of SMD, we know that w,
depends on qr41, which in turn depends on the m samples drawn at round 7, and thus

E |:€(WT+2; Z_(,_i))} 75 Ri(W—,—+2)7 1= 1, cee,Mm.

Remark 2 As shown in (T0), we can use 1 sample to construct a stochastic gradient for w, with
small norm, since ||g, (W¢, q¢)||lw,« < G under Assumption Thus, it is relatively easy to control
the error related to w;. However, we do not have such guarantees for the stochastic gradient of q;.
Recall that the infinity norm of g,(wy, q;) in is upper bounded by m. The reason is that we
insist on the unbiasedness of the stochastic gradient, which leads to a large variance. In the next
section, we borrow techniques from online learning to better balance the bias and the variance.

2.3 Non-oblivious Online Learning for GDRO

In the studies of convex-concave saddle-point problems, it is now well-known that they can be solved
by playing two online learning algorithms against each other [Freund and Schapirel [1999, Rakhlin
and Sridharan, 2013 [Syrgkanis et al., 2015]]. With this transformation, we can exploit no-regret
algorithms developed in online learning to bound the optimization error. To solve problem (3), we
ask the 1st player to minimize a sequence of convex functions

o(w,qi) = ZQI,iRi(W)a (W, qz) = ZQZ,iRi(W)» o, d(war) = ZQT,iRi(W)
i=1 i=1 i=1

subject to the constraint w € W, and the 2nd player to maximize a sequence of linear functions

m

p(wi,q) = ZQiRi(Wl)v P(w2,q) = ZQiRi(WQ)v o, d(wr,q) = ZQiRi(WT)

i=1

subject to the constraint q € A,,,. We highlight that there exists an important difference between our
stochastic convex-concave problem and its deterministic counterpart. Here, the two players cannot



Algorithm 2 Non-oblivious Online Learning for GDRO
Input: Two step sizes: 1, and 714; IX coefficient

1: Initialize wy = argmin,,eyy v (W), and qi = [1/m,...,1/m]T € R™

2: fort =1to T do _

2:  Generate i; € [m] according to q;, and then draw a sample zg“) from q;,
3:  Construct the stochastic gradient in and the IX loss estimator in
4:  Update w; and g, according to (I6) and (I8), respectively

5: end for

6: return W=+ > wiandq= > q

directly observe the loss function, and can only approximate R;(w) = E,p, [¢(w;z)] by drawing
samples from P;. The stochastic setting makes the problem more challenging, and in particular, we
need to take care of the non-oblivious nature of the learning process. Here, “non-oblivious” refers to
the fact that the online functions depend on the past decisions of the learner.

Next, we discuss the online algorithms that will be used by the two players. As shown in Section [2.2]
the 1st player can easily obtain a stochastic gradient with small norm by using 1 sample. So, we
model the problem faced by the 1st player as “non-oblivious online convex optimization (OCO) with
stochastic gradients”, and still use SMD to update its solution. In each round ¢, with 1 sample drawn
from P;, the 2nd player can estimate the value of R;(w;) which is the coefficient of ¢;. Since the
2nd player is maximizing a linear function over the simplex, the problem can be modeled as “non-
oblivious multi-armed bandits (MAB) with stochastic rewards”. And fortunately, we have powerful
online algorithms for non-oblivious MAB [Auer et al.| 2002} Lattimore and Szepesvari, [2020], whose
regret has a sublinear dependence on m. In this paper, we choose the Exp3-IX algorithm [Neu, 2015],
and generalize its theoretical guarantee to stochastic rewards.

The complete procedure is presented in Algorithm 2] and we explain key steps below. In each round
t, we generate an index i; € [m] from the probability distribution q¢, and then draw a sample zg“)
from the distribution q;,. With the stochastic gradient in (I0), we use SMD to update w:

Wil = argn;l\i)n {10 (8w (Wi, au), W — W) + B (W, wy) | (16)
we

Then, we reuse the sample zgi‘) to update q; according to Exp3-IX, which first constructs the

Implicit-eXploration (IX) loss estimator [Kocak et al., [2014]:
1—¢ (i)
_ 1w m ) gy ), vie fm, (17)
Qe+

where 7 > 0 is the IX coefficient and I[A] equals to 1 when the event A is true and 0 otherwise, and
then performs a mirror descent update:

St,i

Qe+1 = argmin {nq (8,a — i) + By(a,ar) } (18)
qE m

We present the theoretical guarantee of Algorithm 2]

Theorem 2 Under Assumptions E| and and setting 1, = G%, Ng = 1/ 17’7‘1—;” and v = "7“ in
Algorithm 2] with probability at least I — §, we have

€5(W,q)

1 2 mlnm 1 m 1 1 6 (19)
<DGy/ = \/In = \/ \/ ==+ [ 1/ \/=+ = |In=.
<DG T(2\/5+8 ln5>+3 7+ 2T+< T+ 2T+T>1n5

Remark 3 The above theorem shows that with 1 sample per iteration, Algorithm2]is able to achieve
an O(y/m(logm)/T) convergence rate, thus maintaining the O(m (log m)/e?) sample complexity.

Comparisons with Soma et al.|[2022] In a recent work, |Soma et al.|[2022] have deployed online
algorithms to optimize w and q, but did not consider the non-oblivious property. As a result, their



theoretical guarantees, which build upon the analysis for oblivious online learning [[Orabonal 2019],
cannot justify the optimality of their algorithm for (3). Specifically, their results imply that for any
fixed w and q that are independent from w and q [Soma et al., [2022, Theorem 3],

_ _ m
Blotw.a) - otw.a)] =0 (/7). 20)
However, cannot be used to bound €4 (W, q) in . because of the dependency issue. To be more

clear, we have €;(W, Q) = maxgea,, ¢(W,q) — mingew ¢(W,q) = ¢(W,q) — ¢(W, q), where
W = argmingcyy ¢(w,q) and q = argmaxqum ¢(W,q) depend on w and q.

Remark 4 After we pointed out the issue of reusing samples, Haghtalab et al.|[2023]] modified their
method by incorporating bandits algorithms to optimize q. From our understanding, the idea of
applying bandits to GDRO is firstly proposed by Soma et al.|[2022]], and subsequently refined by us.

3 Weighted GDRO and SA Approaches

When designing SA approaches for GDRO, it is common to assume that the algorithms are free to
draw samples from every distribution [[Sagawa et al.,|2020], as we do in Section E} However, this
assumption may not hold in practice. For example, data collection costs can vary widely among
distributions [Radivojac et al., [2004], and data collected from various channels can have different
throughputs [Zhoul [2023]). In this section, we investigate the scenario where the number of samples
can be drawn from each distribution could be different. Denote by n,; the number of samples that can
be drawn from P;. Without loss of generality, we assume that ny > ng > --- > n,,. Note that we
have a straightforward Baseline which just runs Algorithm I|for n,,, iterations, and the optimization

error €4(W, q) = O(y/(logm)/ny,).
3.1 Stochastic Mirror Descent with Non-uniform Sampling

To meet the budget, we propose to incorporate non-uniform sampling into SMD. Speciﬁcally, in
round ¢, we first generate a set of Bernoulli random variables {b\"), ..., 5™} with Pr[b(l) =1] =
to determine whether to sample from each distribution. If b(l) = 1 we draw a sample z; @) from 77 .

Now, the question is how to construct stochastic gradients from those samples. Let C; = {z|bt =1}
be the indices of selected distributions. If we stick to the original problem in (3)), then the stochastic
gradients should be constructed in the following way

qz )
wwear) = S Ve 2)), and[gq<wt,qt>1i:{§<wwzt oo i€C
’LEC l )

to ensure unbiasedness. Then, they can be used by SMD to update w; and q;. After n; iterations, the
expected number of samples drawn from P; will be np; = n;, and thus the budget is satisfied in
expectation. To analyze the optimization error, we need to bound the norm of stochastic gradients in
(21). To this end, we have ||gw, (Wi, q¢)[|w,» < Gn1/nam and [|gq(We, qt)illoo < 11 /M. Following

the arguments of Theorem we can prove that the error e4(W, q) = O(y/(logm)/ny - i /Nm) =
O(v/n1 logm/n,,), which is even larger than the O(1/(log m)/n,,) error of the Baseline.

In the following, we demonstrate that a simple twist of the above procedure can still yield meaningful
results that are complementary to the Baseline. We observe that the large norm of the stochastic

gradients in is caused by the inverse probability 1/p;. A natural idea is to ignore 1/p;, and define
the following stochastic gradients:

_ , @) [ uwy2), iec
guw(We, qr) = ; Qi Vl(Wy 2z, ), and [gq(We, qp)]i = { 0. otherwise. (22)

In this way, they are no longer stochastic gradients of (3), but can be treated as stochastic gradients of
a weighted GDRO problem:

s s (s = Do} -



Algorithm 3 Stochastic Mirror Descent for Weighted GDRO
Input: Two step sizes: 7,, and 7,

1: Initialize wy = argmin,,eyy v (W), and qi = [1/m,...,1/m]T € R™
2: fort =1ton; do 4 '
3:  Foreach i € [m], generate a Bernoulli random variable bgz) with Pr[bgl) = 1] = p;, and if

bgi) = 1, draw a sample Z,Ei) from distribution P;

Construct the stochastic gradients defined in
Update w; and q; according to (IT) and (I2)), respectively
end for
ny

= _ 1 ni ~ _ 1
return w= -3 wyandq = ;- >0 q

AR A

where each risk R;(-) is scaled by a factor p;. Based on the gradients in , we still use and
to update w; and ;. We summarize the complete procedure in Algorithm 3]

We omit the optimization error of Algorithm [3] for (23), since it has exactly the same form as
Theorem [T} What we are really interested in is the theoretical guarantee of its solution on multiple
distributions. To this end, we have the following theorem.

Theorem 3 Under Assumptions and 4} and setting n,, = D?,/ m and ng =

(Inm), /m in Algorithm|3| with probability at least 1 — 0, we have

L Vi€ [m]

no, 1 \/10(D2G2+lnm)_ (5)\/10(D2G2+lnm)n

ni n;
where p7, is the optimal value of and p(8) =8+ 2In 2.

Remark 5 We see that Algorithm [3|exhibits a distribution-dependent convergence behavior: The
larger the number of samples n;, the smaller the target risk ny p:; /n;, and the faster the convergence

rate O(1/n1 logm/n;). Note that its rate is always better than the O(1/nq log m/n,,) rate of SMD
with as gradients. Furthermore, it converges faster than the Baseline when n; > /nin,,. In

particular, for distribution P1, Algorithmattains an O(y/(logm)/nq) rate, which almost matches

the optimal O(+/1/n;) rate of learning from a single distribution. Finally, we would like to emphasize
that a similar idea of introducing “scale factors” has been used by Juditsky et al.|[2011] §4.3.1] for
stochastic semidefinite feasibility problems and [Agarwal and Zhang|[2022] for empirical MRO.

3.2 Stochastic Mirror-Prox Algorithm with Mini-batches

In Algorithm 3] distributions with more samples take their advantage by appearing more frequently
in the stochastic gradients. In this section, we propose a different way, which lets them reduce the
variance in the elements of stochastic gradients by mini-batches [Roux et al.,[2008].

The basic idea is as follows. We run our algorithm for a small number of iterations 7 that is no larger
than n,,. Then, in each iteration, we draw a mini-batch of n; /7 samples from every distribution P;.
For P; with more samples, we can estimate the associated risk R;(-) and its gradient more accurately,
i.e., with a smaller variance. However, to make this idea work, we need to tackle two obstacles: (i)
the performance of the SA algorithm should depend on the variance of gradients instead of the norm,
and for this reason SMD is unsuitable; (ii) even some elements of the stochastic gradient have small
variances, the entire gradient may still have a large variance. To address the first challenge, we resort
to a more advanced SA approach—stochastic mirror-prox algorithm (SMPA), whose convergence
rate depends on the variance [Juditsky et al., 2011]]. To overcome the second challenge, we again
introduce scale factors into the optimization problem and the stochastic gradients.

In SMPA, we need to maintain two sets of solutions: (wy, q;) and (w}, q}). In each round ¢, we first

draw n;/n.,, samples from every distribution P;, denoted by zil’] ), j=1,...,n;/n,. Then, we
use them to construct stochastic gradients at (w}, q;) of a weighted GDRO problem (23), where the



Algorithm 4 Stochastic Mirror-Prox Algorithm for Weighted GDRO
Input: Two step sizes: 7,, and 7,

1: Initialize W} = argmin,,cy v (W), and g} = [1/m,...,1/m]T € R™
2: fort =1ton,,/2do
3:  Foreachi € [m], draw n;/n,, samples {z :7=1,...,n;/n,} from distribution P;
Construct the stochastic gradients defined in (24))
Calculate wy; and g, according to @]) and (26), respectively
For each i € [m], draw n;/n,, samples {z i), ] =1,...,n;/ny} from distribution P;
Construct the stochastic gradients defined in
8:  Calculate w; ; and g}, according to and , 29), respectively
9: end for
10: return w =

(i.9) .

AN AN

2 Zl—‘rnm/th andq— 2 Zl+nm/2qt

value of p; will be determined later. Specifically, we define

ni/Nm

w(Wi, dy) thzpl fm Z Vi(wy;z (”)) )

(24)
n1/Nm T

gq(wqut = pli Z gwta (1.0) a"'7pm£(wtazygm))

Let’s take the stochastic gradient gq(wt7 q;), whose variance will be measured in terms of || - || oo,

as an example to explain the intuition of inserting p;. Define u; = 7= Z?;/lnm o(wy; zf 7 )) With

a larger mini-batch size n;/n.,, u; will approximate R;(w}) more accurately, and thus have a
smaller variance. Then, it allows us to insert a larger value of p;, without affecting the variance of
llgq (Wi, d})]lo» since || - ||oo is insensitive to perturbations of small elements. Similar to the case in
Theorem 3| the convergence rate of R;(-) depends on 1/p;, and becomes faster if p; is larger.

Based on (24), we use SMD to update (w7}, q}), and denote the solution by (W¢1, qe1):

Wit1 = argn\}\i}n {nw (8w (Wg’ q;)v w = W7/5> + By(w, W;)}a (25)
we
Qe+1 =argmin {1g(~8¢(Wi, at),a — a;) + By(a, ap) }- (26)
A€,
Next, we draw another n;/n,, samples from each distribution P;, denoted by z(w ) j =
1,...,n;/Mum, to construct stochastic gradients at (W;11, qz+1):
nb/nnl
guw(Wii1,dt41) :ZQt+1,ipi Z Ve Wt+1,Z§ ’j)) )
— =
T (27)
n ny/Nm
(1,5 .
8q(We1,Qet1) = plnfrj Z U(Wigr; Zg 'J))a oo Pl (Wi ng))
j=1

Then, we use them to update (w7}, q;) again, and denote the result by (w;__;, q},;):

Wi = argrf/l\i}n {Nw(guw(Wis1, aeg1), w — wi) + By(w,w))}, (28)
we
Apy1 = argmin {1g(—8q(Wes1,at41),a — ay) + Byla, ay) }- (29)
A€,

To meet the budget constraints, we repeat the above process for n,, /2 iterations. Finally, we
return w = 2 ZH”’"/ 2w, and q= i i;” m/2 q; as solutions. The completed procedure is

summarlzed in Algorlthm 21}

To analysis the performance of Algorithm@], we further assume the risk function R;(+) is smooth, and
the dual norm || - ||« satisfies a regularity condition.



Assumption 5 All the risk functions are L-smooth, i.e.,
IVR; (W) — VR;{(W')||w.« < Ll|lw —W|w, YW, w' € W,i € [m]. (30)

Note that even in the studies of stochastic convex optimization (SCO), smoothness is necessary to
obtain a variance-based convergence rate [Lan| [2012].

Assumption 6 The dual norm || - ||y« is -regular for some small constant r > 1.

The regularity condition is used when analyzing the effect of mini-batches on stochastic gradients.
For a formal definition, please refer to Juditsky and Nemirovskil [2008]. Assumption|[§]is satisfied by
most of papular norms considered in the literature, such as the vector £,-norm and the infinity norm.

Then, we have the following theorem for Algorithm [4]

Theorem 4 Define

_ o Pinm
Pmax = lnel[%r)ﬁ Dis,  Wmax = Znel[%r)f] n 31
L= V2P max (D?L + D2GM), and 0% = 2cwmax (kD?G? + In* m)
where ¢ > 0 is an absolute constant. Under Assumptions|[I} 2] 5] 4] Bland[6] and setting
1 2 . 1 2
ﬁ7 m) , and 1y = 2min (\/gz, m) Inm

in AlgorithmH) with probability at least 1 — §, we have

B 1 1 (7L o2 \F 2 14 2
Ri(w)— —pt = — | == +/— [ 144/5 +7/3log = + —log =
(%) Pz‘pw Di \ Nm * N ( 3 + 8 1) + Nom, & 6)

where p7, is the optimal value of @)
Furthermore, by setting p; as

Nw = 2D? min (

_ /M + 1 32)
1/%"’ \/nm/ni’

Dbi

with high probability, we have

Ri(w);p20(<7;+ \/177) \/m)

Remark 6 Compared with Algorithm 3] Algorithm[4]has two advantages: (i) the budget constraint
is satisfied exactly; (ii) we obtain a faster O((log m)/,/n;) rate for all distributions P; such that n; <

nZ,, which is much better than the O(y/n1 Inm/n;) rate of Algorithm and the O(/(log m) /nm, )

m?
rate of the Baseline. For distributions with a larger number of budget, i.e., n; > nfn, it maintains a
fast O((log m)/n,y,) rate. Since it only updates n,, times, and the best we can expect is the O(1/n.,)
rate of deterministic settings [Nemirovski, 2004]. So, there is a performance limit for mini-batch
based methods, and after that increasing the batch-size cannot reduce the rate, which consists with
the usage of mini-batches in SCO [[Cotter et al.,|2011}|Zhang et al.,[2013]].

4 Conclusion

For the GDRO problem, we develop two SA approaches based on SMD and non-oblivious MAB.
Both of them attain the nearly optimal O (m (log m)/€?) sample complexity, but with different number
of samples used in each round, which are m and 1 respectively. Then, we formulate a weighted
GDRO problem to handle the scenario in which different distributions have different sample budgets.
We first incorporate non-uniform sampling into SMD to satisfy the sample budget in expectation, and
deliver distribution-dependent convergence rates. Then, we propose to use mini-batches to meet the
budget exactly, deploy SMPA to exploit the small variances, and establish nearly optimal rates for
multiple distributions. We have conducted experiments to evaluate our proposed algorithms. The
empirical results are presented in Appendix |C} and align closely with our theories.
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A Related Work

Distributionally robust optimization (DRO) stems from the pioneering work of Scarf| [1958]], and has
gained a lot of interest with the advancement of robust optimization [Ben-Tal et al., 2009, [2015]). It
has been successfully applied to a variety of machine learning tasks, including adversarial training
[Sinha et al.l 2018]], algorithmic fairness [Hashimoto et al.,[2018]], class imbalance [Xu et al., [2020],
long-tail learning [[Samuel and Chechik, [2021]], label shift [Zhang et al., [2021]], etc.

In general, DRO is formulated to reflect our uncertainty about the target distribution. To ensure good
performance under distribution perturbations, it minimizes the risk w.r.t. the worst distribution in an
uncertainty set, i.e.,

i Ezvp [6(w; 33
Inin P:gg)ﬂ){ P [(w;2)] } (33)

where S(Py) denotes a set of probability distributions around Py. In the literature, there mainly exist
three ways to construct S(Pg): (i) enforcing moment constraints [Delage and Yel |[2010], (ii) defining
a neighborhood around P, by a distance function such as the f-divergence [Ben-Tal et al.,|2013],
the Wasserstein distance [Kuhn et al., 2019], and the Sinkhorn distance [Wang et al., [2021], and (iii)
hypothesis testing of goodness-of-fit [Bertsimas et al.| 2018]].

By drawing a set of samples from Py, we can also define an empirical DRO problem, which can be
regarded as an SAA approach for solving (33). When the uncertainty set is defined in terms of the
Cressie—Read family of f-divergences,|Duchi and Namkoong|[2021] have studied finite sample and
asymptotic properties of the empirical solution. Besides, it has been proved that empirical DRO can
also benefit the risk minimization problem in (T). Namkoong and Duchi| [2017] show that empirical
DRO with the y2-divergence has the effect of variance regularization, leading to better generalization
w.r.t. distribution Py. Later, [Duchi et al.| [2021]] demonstrate similar behaviors for the f-divergence
constrained neighborhood, and provide one- and two-sided confidence intervals for the minimal risk
in (T). Based on the Wasserstein distance, [Esfahani and Kuhn|[2018]] establish an upper confidence
bound on the risk of the empirical solution.

Since (33) is more complex than (T]), considerable research efforts were devoted to develop efficient
algorithms for DRO and its empirical version. For P, with finite support, Ben-Tal et al.|[2013]
Corollary 3] have demonstrated that with f-divergences is equivalent to a convex optimization
problem, provided that the loss £(w; z) is convex in w. Actually, this conclusion is true even when Py
is continuous [Shapirol 2017, §3.2]. Under mild assumptions, |[Esfahani and Kuhn|[[2018]] show that
DRO problems over Wasserstein balls can be reformulated as finite convex programs—in some cases
even as linear programs. Besides the constrained formulation in (33)), there also exists a penalized (or
regularized) form of DRO [Sinha et al., [2018]], which makes the optimization problem more tractable.
In the past years, a series of SA methods have been proposed for empirical DRO with convex losses
[Namkoong and Duchil, |2016]], and DRO with convex loss [Levy et al.,|2020]] and non-convex losses
[Jin et al.| 2021, |Q1 et al., [2021} Rafique et al., [2022]].

The main focus of this paper is the GDRO problem in (2)/(3), instead of the traditional DRO in
@. Sagawa et al.|[2020] have applied SMD [Nemirovski et al., 2009] to (E]), but only obtain a
sub-optimal sample complexity of O(m?(logm)/e?), because of the large variance in their gradients.
In the sequel, Haghtalab et al.| [2022] and |Soma et al.| [2022] have tried to improve the sample
complexity by reusing samples and applying techniques from MAB respectively, but their analysis
suffers dependency issues. (Carmon and Hausler|[2022, Proposition 2] successfully established an
O(m(logm)/€?) sample complexity by combining SMD and gradient clipping, but their result holds
only in expectation. To deal with heterogeneous noise in different distributions, Agarwal and Zhang
[2022] propose a variant of GDRO named as minimax regret optimization (MRO), which replaces
the risk R;(w) with “excess risk” R;(w) — minyeyy R;(w). More generally, we can introduce
calibration terms in DRO to prevent any single distribution to dominate the maximum [Stowik and
Bottou, [2022]].

Finally, we note that GDRO has a similar spirit with collaborative PAC learning [Blum et al.,|2017,
Nguyen and Zakynthinoul |2018}, Rothblum and Yona, 2021]] in the sense that both aim to find a single
model that performs well on multiple distributions.
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B Analysis
In this section, we present proofs of main theorems.

B.1 Proof of Theorem/[]

The proof is based on Lemma 3.1 and Proposition 3.2 of[Nemirovski et al.| [2009]. To apply them, we
show that their preconditions are satisfied under our assumptions.

Although two instances of SMD are invoked to update w and q separately, they can be merged as 1
instance by concatenating w and q as a single variable [w;q] € W x A,,,, and redefine the norm
and the distance-generating function [Nemirovski et al., 2009, §3.1]. Let £ be the space that WV lies
in. We equip the Cartesian product £ x R™ with the following norm and dual norm:

1 1
|ws al]| = \/ s IWIE + 5l and [[[ws ][, = /202 ul, . + 2vZ nm. G4)
We use the notation x = [w; q], and equip the set W x A,,, with the distance-generating function

V() = vllwia) = 5svu(w) + 5o v(a). (5)

It is easy to verify that v(x) is 1-strongly convex w.r.t. the norm || - ||. Let B(:,-) be the Bregman
distance associated with v(-):

B(x,x') =v(x) - [v(x') + (Vv(x'), x = x')]

2lnm

1 ) l /
:W (Vw(w)_ [Vw(W)+<VVw(W )>W_W>}) .
ﬁ (Vq(q) - [VQ(q/) + <qu(q/)7q _ q/>])
1 ’ 1 ,
:ﬁBw(w,w ) + mBq(q’q)

where x' = [w'; ¢'].
Then, we consider the following version of SMD for updating x;:

X¢41 = argmin {Tl<[gw(Wt, at); —8q(We,qr)], x — x¢) + B(x, Xt)} (37)
XEWXA,,

where 77 > 0 is the step size. In the beginning, we set x; = argmmerXA v(x) = [w1;q1]. From

m

the decomposition of the Bregman distance in (36), we observe that (37) is equivalent to (IT]) and

(T2) by setting
Nw = 2nD?, and ng = 2nlnm.

Next, we show that the stochastic gradients are well-bounded. Under our assumptions, we have

< ZQt,i VE(Wt;Z£ )) s < ZQt,iG =G,
=1

Z q1,i VE(Wy; Zgi))

||gw(wtv(1t)||w,* =

i=1 w A=l
| GO Y T (0N TR 1
Igq(we, ar)lloo = [|[6(Wes 2, ), . Lwes 2™ )] T < 1.
As a result, the concatenated gradients used in is also bounded in term of the dual norm || - ||,:

[lgw(we, ae); —gq(we. anl|, =\/2D2||gw(Wuqﬁ)lli,* +2/gg(we, qe) |13, Inm

<+2D?G2+2Inm.

=M

Now, we are ready to state our theoretical guarantees. By setting

2 2
1= MVeT \/5T(D2G2 T m)’
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Lemma 3.1 and (3.13) of Nemirovski et al.| [2009] imply that

Eleg(w,q)] < 2M\/E - 2\/10(D2G;+ Inm)

Furthermore, from Proposition 3.2 of Nemirovski et al. [2009], we have, for any 2 > 1

Pr [ey(w,q) > (84 20) M\f s+29)\/10(D2G;““m)] < 2exp(~Q).

We complete the proof by setting 6 = 2 exp(—2).

B.2 Proof of Theorem 2]

We first bound the regret of the st player. In the analysis, we address the non-obliviousness by the
“ghost iterate” technique of Nemirovski et al.|[2009].

Theorem 5 Under Assumptions and by setting 1, = G%, we have

T T
E lZ d(wi, aqr) — vrvrgngmW,qt)] < 2DGV5T
t=1 t=1

and with probability at least 1 — 0,

T T
Z¢(wt,qt) - vlvréilr/lvz:(b(w,qt) < DGVT (2\/54- 84/1n ;) )
t=1 t=1

By extending Exp3-IX to stochastic rewards, we have the following bound for the 2nd player.

Theorem 6 Under AssumptionH by setting ng = 4/ 1“ - and the IX coefficient v = 3, we have

T T
T T T
E maXE d(wi,q E (Wi, qr) S3\/mTlnm+\/>+3 \/m+\/>+1
9E€Am — = 2 Inm 2

and with probability at least 1 — 0,

mT
qrggﬁgaﬁ(wt,q Zsbwt,qt <3\/mTlnm+\/ (‘/ln /= +1>1n

From Jensen’s inequality and the outputs w = % Zle w; and q = % Zthl d:, we have

€s(W,q) = nax P(W,q) — Inin o(w,q)

T
<— (qngg)’(” g (725 Wi, q) — v{lléllI/b Z ¢(W, Qt)) (38)
T 1 (T T
= (qﬂelgx Z¢ Wi, q) 2:: (We, qe ) + T (t_zl d(W,qr) vgéi}ﬁlv;ﬂwv%)) .

We obtain (T9) by substituting the high probability bound in Theorems [5|and[6]into (38)), and taking
the union bound.

B.3 Proof of Theorem 3

Our goal is to analyze SMD for non-oblivious OCO with stochastic gradients. In the literature, we
did not find a convenient reference for it. A very close one is the Lemma 3.2 of |[Flaxman et al.
[2005]], which bounds the expected regret of SGD for non-oblivious OCO. But it is insufficient for our
purpose, so we provide our proof by following the analysis of SMD for stochastic convex-concave
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optimization [Nemirovski et al.,[2009| §3]. Notice that we cannot use the theoretical guarantee of
SMD for SCO [[Nemirovski et al., 2009} §2.3], because the objective function is fixed in SCO.

From the standard analysis of mirror descent, e.g., Lemma 2.1 of Nemirovski et al.| [2009], we have

Bw(W, Wt) - Bw(W, Wt+1)

~ Nw | ~
<gw(wt7qt)7wt - W> < + ?w”gw(wtvqt)"i;,*

T
Summing the above inequality overt = 1,...,T, we have
T
- By (w,wy T
S (B (Wi, 40), wy — w) < D) | T Z 18w ()2,
t=1 T (39)
2 2 2
@@)Bw(w,wl) 4 anG < D* . N TG
B Thw 2 T Nw 2
where the last step is due to [Nemirovski et al., 2009, (2.42)]
@
By, (w, < w(W) — min v, (w) < D2 40
max (w,wy) < max v (w) nin v (w) < (40)
By Jensen’s inequality, we have
T T
> [b(wi,ar) — d(w, )] Z Vwo(We, qr), Wi — w)
t=1 =1
T T
= (Buw(We, dr), Wi — W) + Y (Vad(We, @) — Bu(We, Qr), Wi — W)
t=1 t=1
»D?  n,TG? -
< TTw + 5 + Z;(Vw¢(wt7Qt) — 8uw(We, qr), Wi — w).
Maximizing each side over w € W, we arrive at
T T T
max, [o(we, qr) — ¢(w, qu)] Z (W, qr) — varg]f}v Z o(w,qr)
t=1 t=1 t=1
(4D)
D* 1, TG? =
§777w + 1 3 Jrvfgleav}é tzzl<vw¢(wta(lt) — Buw(Wi, qr), Wy — W)

=F(w)

Next, we bound the last term in (1), i.e., maxwew F(w). Because E;_1[g, (W, q:)] =
Vwd(We,qr), F(w) is the sum of a martingale difference sequence for any fixed w. However,
it is not true for w = argmax, ¢y F'(w), because w depends on the randomness of the algorithm.
Thus, we cannot directly apply techniques for martingales to bounding maxweyy £'(w). This is the
place where the analysis differs from that of SCO.

To handle the above challenge, we introduce a virtual sequence of variables to decouple the depen-
dency [Nemirovski et al,2009| proof of Lemma 3.1]. Imagine there is an online algorithm which
performs SMD by using Vw¢(We, q:) — 8w (W, q¢) as the gradient:

Vil = agég}\i}n {Ww<vw¢(wt, dt) — 8uw(We, dt), W — Vi) + By (W, Vt)} 42)
where v = w;. By repeating the derivation of (39), we can show that
T
Z(ngb(wt, ar) — 8uw(We,qr), vi — W)
t=1 (43)
By (w,wi) 1y a . D )
ST Ty Z IVwod(We, i) = &uw(We, ae)[l5,0 < 77* + 21, TG
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where in the last inequality, we make use of (0] and

vaqb(wtaqt) - gw(wtyqt)”w,* S H(b(wtaqt)Hw « + ||gw(wt7qt)||w,*

e, (44)
<Ei 1118w (Wi, dt) lw ] + 18w (We, Qi) [[w,x <

Then, we have

T
max {Z(quf)(wmoh) — Buw(Wi, qp), Wy — W>}

t=1

T T
:vlglea‘/)\(; {Z<vw¢(wt7qt) = 8uw(We,qr), vi — W>} + Z<vw¢(wt7 at) — 8uw(We, Q) Wi — Vi)
t=1 t=1

@ D? -
< . + 20, TG+ (Vuwd(Wi, ) — Eu (Wi, qr), We — Vi) -

t=1

Vi
(45)

From the updating rule of v; in @]), we know that v; is independent from V,¢(Wy, Q) — 8w (We, qt),
and thus V1, ..., Vr is a martingale difference sequence.
Substituting (@5) into (@#I)), we have

T T

T
. 2D?  5p,TG?
> o(wiqr) — min Y d(w.q) < n—w+mT+ZVt. (46)
t=1 t=1 t=1

Taking expectation over both sides, we have

T T
2D2 50w TG?
Z ¢(W,q¢) — min th (w,aqt)| < ; + UT = 2DGV5T
=1 w

2D
GV5T”

To establish a high probability bound, we make use of the Hoeffding-Azuma inequality for martingales
stated below [Cesa-Bianchi and Lugosil, [2006].

where we set 1, =

Lemmal Let V1, Vs, ... be a martingale difference sequence with respect to some sequence
X1, Xo, ... suchthat V; € [A;, A; + ¢;] for some random variable A;, measurable with respect to
X1,...,X,_1 and a positive constant c;. If S, = >, V;, then for any t > 0,

Pr[S, > 1] < 27
r[n>]_exp —m .

To apply the above lemma, we need to show that V; is bounded. Indeed, we have
((Vwd(We, ar) — 8w (Wi, dr), Wi — vi)| < IVwd(We, i) — 8w (Wi, d) w, [[We — Villw

(2]
2G| wi — villw < 2G (|lwWe — W llw + [|ve — Willw)

(0]
<2G (\/QBw(wt, w1) + /2B (ve, w1)> 4V2DG.

From Lemmal[I] with probability at least 1 — &, we have

r [
ZVtSSDG Tln . (47)
t=1

We complete the proof by substituting into (46).
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B.4 Proof of Theorem @]

Because we can only observe {(wy, zgit)) instead of R;, (w;), the theoretical guarantee of Exp3-IX
[Neul 2015]] cannot be directly applied to Algorithm 2] To address this challenge, we generalize the

regret analysis of Exp3-IX to stochastic rewards.

By the definition of ¢(w, q) in (3) and the property of linear optimization over the simplex, we have

T T m
s Yot~ Yot = s 3 (zR w ) S
=1 t=1 t=1 i=1
T T m m
:ZRj*(Wt) - Z ZQt,iRi(Wt) = ZEzNPj* [l(wy;z)]) — Z Zq iEgmp, [(Wy;2)] (48)
t=1 t=1 i=1 = t=1 i=1
T
_qutzstz Zsm*—z QuSt Zst,y
t=1 i=1 t=1

where j* € argmax;c,,] thl R;(w,) and the vector s; € R™ is defined as

505 21— By (w3 2)] 2 [0,1], Vi € [m].

To facilitate the analysis, we introduce a vector §; € R™ with

b0 21— t(wi2) B 0,1), Vi € [m] (49)
where zgi) denotes a random sample drawn from the i-th distribution. Note that §; is only used
for analysis with the purpose of handling the stochastic rewards. In the algorithm, only 3;;, =

1 —l(wy; 2y t)) is observed in the ¢-th iteration.

Following the proof of Theorem 1 of Neu|[2015]], we have

T m
(d5) =S iy < T S (50)
n 2

t=1 t=1 q t=1 i=1

which makes use of the property of online mirror descent with local norms [Bubeck and Cesa-Bianchil
2012, Theorem 5.5]. From (5) of Neu|[2015]], we have

m
{ae, 8¢) ZQtzStz =St =V Y - D
i=1

Combining (50) and (51)), we have

T T T
S0, s é (S ot m (52)
— 7

T T T
= th,it - Z St,5* + Z(qt7 St> - Z St (53)
[ _ Mg EML R Inm
<D (g —sege) + (5 £9) YD St Y ((asi) — 81 T

t=1 t=1 i=1 t=1 q

=A = =C
We proceed to bound the above three terms A, B and C respectively.

To bound term A, we need the following concentration result concerning the IX loss estimates [Neul,
2015, Lemma 1], which we further generalize to the setting with stochastic rewards.
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Lemma2 Let &; € [0,1] forall t € [T) and i € [m), and &; be its IX-estimator defined as
ét’i = pf_tj%l[it = i), where ét,i is such that E[ét,i] = & with ét,i € [0,1] and the index i is
sampled from [m] according to the distribution p; € A,,. Let {v;}I_, be a fixed non-increasing
sequence with vy, > 0 and let o ; be non-negative F;_1-measurable random variables satisfying
ay; < 2y, forallt € [T] and i € [m). Then, for any 6 > 0, with probability at least 1 — ¢,

T m ~ 1
> il — &) <l (54)

t=1 i=1

Furthermore, when v, = v > 0 for all t € [T, the following holds with probability at least 1 — 6,

T

> (i) < 5y (55)

t=1

—_

simultaneously for all i € [m).

Notice that our construction of §; in (T7) satisfies that 5, ; =

m At_H}I[zt = 4] and ¢; is drawn from [m]
according to q; € A,, as well as E[$; ;] = s;,;, which meets the conditions required by Lemmal
As a result, according to (53)), we have

T

- 1 m
Z(St7j — St,j) S ﬂlng

t=1
for all j € [m] (including j*) with probability at least 1 — 4.

To bound term B, we can directly use Lemma 1 of Neu| [2015]], because our setting Ua —  satisfies
its requirement. Thus, with probability at least 1 — 9, we have

(5 eSS (5 o) L5 v 2 (3 ;
5 0 < (% v)zz .+ 1In ( +’y)mT+ln6. (56)

t=1 i=1 t=1 i=1

We now consider term C'in (33). Let V; = (qy, S¢) — 84,4, Then, it is easy to verify that E,_,[V;] = 0.
So, the process {V;}~_; forms a martingale difference sequence and it also satisfies |V;| < 1 for all ¢.
Hence, we can apply Lemma|[T]and have

T
1 T 1
&, . < Z< L 1 ‘
;(<Qt78t> St,zt)f 2Tln5\/;<1_|_1n6)

with probability at least 1 — 4.

Combining the three upper bounds for the terms A, B and C, and further taking the union bound, we
have, with probability at least 1 — §

T T
ngX Z¢(Wt7 Z(b Wtaqt
€8m t=1
1. 3m g 3 /T 3 Inm
< —np 2t Ja bl - b i
72V1n 5 —|—<2 +7>mT+ln5+ > 1+1n6 + "
—2\/mTlnm+\/ -In ——1—1/ <\/ )ln?
mT
—3\/mTlnm+\/ (\/1 +1/ = —I—l)ln
nm

where the third line holds because of our parameter settings v = "—2" and 7, = 4/ %
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Based on this high probability guarantee, we can then obtain the expected regret upper bound using
the formula that

1 1
E[X]g/ ZPr|X >In=| ds
o 0 5

holds for any real-valued random variable X [Bubeck and Cesa-Bianchi}, 2012} § 3.2]. In particular,

taking
T T
mT
(\K \f“> '(J?i’:gd’(wm SUCRSEENT TS ,/)

t=

yields E[X] < 3, which implies that

l;ggxz¢wt7 )_;¢(WtaQt)] §3m+\/§+3(\/£+\/§+1)~

B.5 Proof of Theorem[3

For the stochastic gradients in (22), their norm can be upper bounded in the same way as (9). That is,

< Z Qi

1€Cy

Z Gt V(Wi Zgi))

1€Cy

ng(WtaQt)Hw,* =

Vg(Wt; ZE”)H q%p Z Qt,i,G =G,
W e

&
g (We, ae)lloo = ngaXIK(Wt,Zt )<L

So, with exactly the same analysis as Theorem [T} we have

e (. )] < 2\/10(D2G2 +1lnm)

and with probability at least 1 — 6,

o (W,q) < <8+21 5) \/10(D2G2+lnm) (57)

ni

Next, we discuss how to bound the risk of w on every distribution P;, i.e., R;(w). Following the
derivation in (§)), we know

sz W) — sz S 5 .
max p (W) vl}glvlrg%p (W) < ep(W,q)

Thus, for every distribution P;, R;(W) can be bounded in the following way:

1 1
R; < — min max p; R;(w) + —e€,(W,q).
(%) < - iy o i () + - (.)

Taking the high probability bound in as an example, we have with probability at 1 — §

2072
Ri(w) < <i min max p; R;(w) + E <8+21 > \/10(D GE+lnm)
Pi weW ie[m] Di ) ni

(58)

V10(D2G? + Inm)ny

Uz

niy
—— m m R 21In =
n; WGI)I}\)ze[?”Z{]pZ l( )+ <8+ (5)

B.6 Proof of Theorem [d

We first provide some simple facts that will be used later. From Assumption |3} we immediately know
that each risk function R;(-) also belongs to [0, 1]. As a result, the difference between each risk
function and its estimator is well-bounded, i.e., for all i € [m)],

—1< Ri(w)—4Ll(w;z) <1, VYweW, z~P,. (59)
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From Assumption we can prove that each risk function R;(-) is G-Lipschitz continuous. To see
this, we have

IVR(W)l[w, = [[Eznp, VE(W; 2)

< EZNPiHVK(W;Z)Hw . g’ G, Vw e W,i € [m]. (60)
As a result, we have
|R;(w) — R;(w")] < Gl|lw — W ||, YW, w' € W,i € [m]. (61)

Furthermore, the difference between the gradient of R;(+) and its estimator is also well-bounded, i.e.,
forall i € [m],

@. .
IVR;(w) —VU(W;2) ||« < [[VRi(W)||lw,«+[[VUW; 2) ||, 2G, Yw e W,z ~ P;. (62)

Recall the definition of the norm || - || and dual norm || - ||.. for the space & x R™ in (34), and the
distance-generating function v(-) in (35). Following the arguments in Section the two updating
rules in (25) and (26) can be merged as

[Wer1:Gea] = argmin {n<[gw<w;,qi>;—gq<wz,q;>17x—[wz;qu>+B<x, Wi} (63)
X XAm

where 7,, = 2nD? and 1, = 2nlnm. Similarly, (28) and (29) are equivalent to

(Wi Qi) = arvgvmiAn {n([gw(Wt+1,qt+1); —8¢(Wes1, Quy1)], x—[wis qf] )+ B(x, [WQ;QQ])}-
xe XA
(64)

Let F([w; q]) be the monotone operator associated with the weighted GDRO problem in (23), i.c.,

F([w;d]) = [Vwe(w,q); =Vap(w, q)]

Z @ipiVRi(W); — [p1R1(W), ..., D Ron (W) T] . (65)

From our constructions of stochastic gradients in (24) and (Z7), we clearly have
Ei1 {lgw(wi, qp); —gg(wi, qp)I} = F([wis qp),
BEio1 {[8w(Wit1,di41); —gq(Wt+1»Qt+1)}} = F([Wiy15qe41])-

Thus, Algorithm@is indeed an instance of SMPA [Juditsky et al., 2011, Algorithm 1], and we can
use their Theorem 1 and Corollary 1 to bound the optimization error.

Before applying their results, we show that all the preconditions are satisfied. The parameter 2
defined in (16) of Juditsky et al.|[2011]] can be upper bounded by

_ @) L 1 /
€= 2xe%iXA B, [wisdai)) \/D2 wew Bu(wi, wi) + aCAr, lntQ(q’ a1)

(66)

2 (ampeeto sy v0) + i (s ot - i @) @2
Next, we need to demonstrate that F'([w; q]) is continuous.
Lemma 3 For the monotone operator F([w; q]), we have
|F(fw;al) = F(iw'sd )]l < L w = w0 - q]]
where L is defined in .

We proceed to show the variance of the stochastic gradients satisfies the light tail condition. To this
end, we introduce the stochastic oracle used in AlgorithmEt

g([w;d]) = [gw(W,q); —g4(W,q)] (67)
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where

n;/Mm

Z Vi(w; z(i’j))
j=1

m
w,q) = _qgip;
=1

n1/Mm

gq(W,q) p1f Z Uw;z0D), L pb(w;2)
and z(*) is the j-th sample drawn from distribution ;. The following lemma shows that the variance
is indeed sub-Gaussian.

Lemma 4 For the stochastic oracle g([w; q]), we have

E oy (L0~ g([w;qnzﬂ o

o2

where o2 is defined in (31).

Based on (66), LemrnaE]> and Lemma[ﬂ we can apply the theoretical guarantee of SMPA. Recall that
the total number of iterations is n,,, /2 in Algorithm E} From Corollary 1 of Juditsky et al.| [2011]], by
setting

= min (fLJWiW)

we have

/2 2 o2 Ang,
Pr |e,(w,q) > — + 14/ 22 +7A < exp —) +exp< 5 >
Nm

for all A > 0. Choosing A such that exp(—A?/3) < §/2 and exp(—An,,/2) < §/2, we have with
probability at least 1 — ¢

7L 202 2 2 2 2
o(W,q) < — + 14y | —— 4+ 7(/3log = + —1log = | {/ =

Following the derivation of (38), we have
1

Ri(w) — — R
(W) P &%g“p (w)

(63)
2

<L Eﬂ/” (14\f+7\/31 +1og> .

Di Nm

Inspired by [Juditsky et al.| [2011] §4.3.1], we use the value of p; in (32) to simplify (68). It is easy to
verify that

1 .
Pmax _ /\/nm"’_ nm/nz < (1+ nm)7

pi 1/ /o + /1~ VT
1L max V1 L1
1L _ (panm>20<<+ ) lnm), (69)
Pi Pi Mn RV
1 n; pgnm 1 ?
i< e 1 3 max — L < 1 )
m (i) Vo = P < ()
1 1 vV itm m % 1 m
— v Wmax = / Mm TV /n \/Wmaxg + n ’
Di 1/\/Tlm+1 \/m g

2
119 _, 1\/“max<“+hlm) :0((1 41 >m> (70)

Di Nm Di Nm Nm V1
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Figure 1: Balanced settings: max risk of different methods versus the number of iterations
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Figure 2: Balanced settings: max risk of different methods versus the number of samples

Substituting (69) and into (68)), we have

Ri(w) — ]%v{fé% inel[ili(]PiRi(W) =0 <(1 +

C Experiments

In this section, we conduct empirical studies to evaluate our proposed algorithms.

C.1 Datasets

Following the setup in previous work [Namkoong and Duchi, 2016} Soma et al.| |2022], we use both
synthetic and real-world datasets. First, we construct a synthetic data with group number m = 20.
For each group i € [m], we draw a model w; € R!%% from the uniform distribution over the unit
sphere. For distribution P;, the sample (x, ) is generated with x ~ N(0, ) and y = sign(x " w})
with probability 0.9 and y = — sign(x " w}) with probability 0.1.

We also use the Adult dataset [Becker and Kohavi, [1996], which includes attributes such as age,
gender, race, and educational background of 48842 individuals. The objective is to determine whether
an individual’s income exceeds 50000 USD. We set up m = 6 groups based on the race and gender
attributes, where each group represents a combination of {black, white, others} with {female, male}.
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Figure 3: Imbalanced settings with the synthetic dataset: individual risk versus the number of
iterations

C.2 GDRO with Balanced Data

For experiments on the synthetic dataset, we will generate the random sample on the fly, according to
the protocol above. For those on the Adult dataset, we will randomly select samples from ech group.
In other words, P; is defined as the empirical distribution over the data in the i-th group.

We refer to the method of [Sagawa et al.|[2020] and our Algorithm [I]by SMD(1) and SMD(m) to
underscore that they are instances of SMD with 1 sample and m samples in each iteration, respectively.
We denote our Algorithm [2]as Online(1) to emphasize that it is based on techniques from online
learning and uses 1 sample per iteration. We set ¢(+; -) to be the logistic loss and utilize different
methods to train a linear model. In the balanced setting, we use the max risk, i.e., max;¢,,) Ri(W),
as the performance measure. To estimate the risk value, we will draw a substantial number of samples,
and use the empirical average to approximate the expectation.

We first report the max risk with respect to the number of iterations in Fig. [Il We observe that
SMD(m) is faster than Online(1), which in turn outperforms SMD(1). This observation is con-

sistent with our theories, since their convergence rates are O(+/(logm)/T), O(y/m(logm)/T),

and O(m+/(logm)/T), respectively. Next, we plot the max risk against the number of samples
consumed by each algorithm in Fig.[2] As can be seen, the curves of SMD(m) and Online(1) are very
close, indicating that they share the same sample complexity, i.e., O(m(logm)/€?). By contrast,
SMD(1) has a much higher sample complexity, i.e., O(m?(logm)/€?).
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Figure 4: Imbalanced settings with the Adult dataset: individual risk versus the number of iterations

C.3 GDRO with Imbalanced Data

For experiments on the synthetic dataset, we set the number of samples as n; = 800 x (21 — 7), and
generate each sample as before. For those on the Adult dataset, we first select 364 samples randomly
from each group, reserving them for later use in estimating the risk of each group. Then, we visit
the remaining samples in each group once to simulate the imbalanced setting, where the numbers of
samples in 6 groups are 26656, 11518, 1780, 1720, 998, and 364.

Similarly, we label the Baseline mentioned in the first paragraph of Section [3|as SMD(m). We
designate our Algorithms [3]and ff]as SMD, and SMPA,,, to highlight that the former combines SMD
with random sampling and the latter one integrates SMPA and mini-batches. In the imbalanced
setting, we will examine how the risk on each individual distribution decreases with respect to the
number of iterations. Recall that the total number of iterations of SMD(m), SMD, and SMPA,, are
N, N1 and n,, /2, respectively.

We present the risk on the individual distribution in Fig. 3] and Fig. @ First, we observe that our
SMPA,,, is faster than both SMD(m) and SMD, across all distributions, and finally attains the lower
risk is most cases. This behavior aligns with our Theorem 4] which reveals that SMPA,,, achieves a
nearly optimal rate of O((logm)//n;) for all distributions P, after n,, /2 iterations. We also note
that on distribution P, although SMD,. converges slowly, its final risk is the lowest, as illustrated in
Fig.[3(a)and Fig.[4(a)] This phenomenon is again in accordance with our Theorem 3} which shows
that the risk of SMD, on P; reduces at a nearly optimal O(/(logm)/nq) rate, after n; iterations.
From Fig. and Fig. we can see that the final risk of SMD(m) on the last distribution P,,,
matches that of SMPA ,,. This outcome is anticipated, as they exhibit similar convergence rates of

O(y/(logm)/ny,) and O((logm)/\/nm,), respectively.

D Supporting Lemmas

D.1 Proof of Lemma/[2]

The proof follows the argument of Neu| [2015, Proof of Lemma 1], and we generalize it to the setting
with stochastic rewards. First, observe that for any i € [m] and ¢t € [T7,
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B

iy = ]
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IN

where the last step is due to the inequality TZZ/Q < log(1 + 2) for z > 0 and we introduce the
notations 3; = 2, and &; ; = (ét,i/pt,i) - I[iz = ] to simplify the presentation.

Define the notation \; = > ozt,,;étyi and \p = Y _i" | o ;& Then, we have

E: 1 [GXP(S\t)} =E;_1 |exp (Z at,igt,i)]
L i=1
@ [ (& .
< E;_1 |exp Z 2, log (1 + ﬁtft,i)
| ~ b
<E; 1 |exp (Z log (1 + Ozt,igt,i))] (aét'i < 1 by assumption)
L i=1
=E;1 2 (14 an,iéei) |
=E;1 |1+ Z at,ift,i]
——
=14 ayif; < exp (Z at,ift,i) = exp(Ar) (72)
i=1 i=1

where the second inequality is by the inequality xlog(1 + y) < log(1 + zy) that holds for all
y > —1land z € [0,1], and the equality E;_1 [T (1 + a3&i)] = Eom1 [T+ D070 i)
follows from the fact that &, ; - £ ; = 0 holds whenever i # j. The last line is due to E;_1[&; ;] =
Et_l[(ét,i/pt,i) -1[iy = i]] = &; and the inequality 1 4+ z < e? for all z € R.

As aresult, from (72) we conclude that the process Z; = exp (Zizl (5\5 — )\5)) is a supermartingale.

Indeed, B;—1[Z;] = E;—1[exp (021 (As — As)) - exp(As — Ar)] < Zi—1. Thus, we have E[Z7] <
E[Zr_1 < ... < E[Z] = 1. By Markov’s inequality,

T
Pr [Z(Xt — ) > e] <E

t=1

T
exp (Z(S\t - )@)1 -exp(—e) < exp(—e¢)

t=1

holds for any € > 0. By setting exp(—e¢) = ¢ and solving the value, we complete the proof for (54).
And the inequality (33) for the scenario v; = 7 can be immediately obtained by setting a; ; = 27y
and taking the union bound over all i € [m)].
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D.2 Proof of Lemma[3

From the definition of norms in (34)), we have
1F([w: a)) = (W oD

u T
= ‘ Z szzVR Z quZVR [lel (W/) - lel (W)v cee 7mem(W/) - mem(W)] ‘|
i=1
2
=20 Z 4ipiV Ri(w Z 4ipiV Ri(w
2
2| [ By W) = prByW), B (W) = P Ron(w)] ||
oo
2
=2D? Z qipiV Ri (W Z apiV Ri(w) + Z aipiV Ri(w Z qpiV Ri(w
i=1 w,*
12
+2 [lel (Wl) - lel (W)7 s 7mem(W/) - mem(W)] H Inm
2
<4D? Z ¢ipi VRi(w Z ¢piVRi(w)|| +4D? Z 4PV Ri(w Z 4piV Ri(w
w,* =1 w,*
—A =B
+2 m[ax] |pi [Ri(w) — Ri(w')] |2 lnm.
1e|m
=C
To bound term A, we have
m 2
AD* || qipi VR (w Z apiVRi(w
i=1 w,r

2 2
m @ m
<4D? (Z g — q;lllinRi(W)Ilw,*> < 4D? (Z lgi — qélpiG> <AD*GPp} i lla — d'[IF.
=1

i=1
where ppax is defined in (31)). To bound B, we have

2
4D? ZquNR ZquNR
=1 w,*
m 2 @ m 2
<4D? (Z 4ipi [[VRi(w) — VRi(W’>||w,*> < 4D? (Z gipiL||w — W’w>
i=1 =1

m
<AD2L*p2 . |w — w'|% <Z q2> = 4D L?p} W — W12

To bound C', we have

2 max pi[Ri(w) — Ri(w")] ’2 Inm
1em

(@

<2 max Gw — W |lo|* Inm < 2G2p%,. |[w — w'||2 Inm.
i€[r

Putting everything together, we have

I ([w;a]) = F(w's D2 < (4D*L? + 2G* Inm)pgalw — W'I[5, + 4D*G*paclla — d'[17

2 4712 2,2 /112
DD 480262 mm) (I - W + 5~ o)

=2 (8D*L? + 8D°C lum)|[[w — w'iq — ]|
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which implies

IF([w; )= F([w'; a']) [« < PmaxV/8DL? +8D?G? lnm||[w—w'; q—q']|| < L|[w—w’;a—q']]|

where L is defined in .

D.3 Proof of Lemma[d]

The light tail condition, required by Juditsky et al.|[2011]], is essentially the sub-Gaussian condition.
To this end, we introduce the following sub-gaussian properties [Vershynin, 2018, Proposition 2.5.2].

Proposition 1 (Sub-gaussian properties) Let X be a random variable. Then the following proper-

ties are equivalent; the parameters K; > 0 appearing in these properties differ from each other by at
most an absolute constant factor.

(i) The tails of X satisfy
Pr(|X| > t] < 2exp(—t?/K7), Vt > 0.

(ii) The moments of X satisfy
1Xz, = (BIX|P)? < Kay/p, ¥p 2 1.
(iii) The moment generating function (MGF) of X? satisfies
E[exp(A?X?)] < exp(K3N%), VA such that |A| < 1/Ks.
(iv) The MGF of X? is bounded at some point, namely
E[exp(X?/K})] < 2.

Moreover, if E[X] = 0 then properties (i)—(iv) are also equivalent to the following property.
(v) The MGF of X satisfies

E[exp(AX)] < exp(KZ)\?), VA € R.
From the above proposition, we observe that the exact value of those constant K, ..., K5 is not
important, and it is very tedious to calculate them. So, in the following, we only focus on the order of

those constants. To simplify presentations, we use c to denote an absolute constant that is independent
of all the essential parameters, and its value may change from line to line.

Since

| F([w;a]) — g([w;a))|?
=2D?||Vwip(w,q) — gu(w,q)|l5. +2[Vqe(w,q) — g,(w,q)|2, Inm,

we proceed to analyze the behavior of ||V (W, q) —gw (W, q)||2, . and | Vqe(w, q) —g4(w, q)[|Z,.
To this end, we have the following lemma.

Lemma 5 We have

1 2
- _ <
E |:6Xp (CKZGQWmaX ||VWQD(W, q) gw(W7 q)|u},*> :| — 27
. (73)
2
— <
E {eXp (cwmax o Vage(w,a) gq(w,q)llm)] <2

where wpay is defined in and ¢ > 0 is an absolute constant.

30



From Lemma[5} we have

. :e"p( : — I (fw:q) —g([w,qnniﬂ

2ckD2G2Wmax + 2CWmax IN“ M

[ 2D?
=E |ex v w,q) — Zuw(W, 121,*
0 (e Ve~ gl @l
2lnm
+ Vap(w,q) — g4(wW, 3,0
2CHD2G2wmaX—|—26wmaxln2m” a(W, d) =& (w, a)] ﬂ
kD2G?  |[Vwe(w,q) — gu(w,q)l3 .
=E |exp 5
HD2G2 + h’l m CﬁG2wmax
In*m  |[Vqe(w,q) = gg(w,q)[1%
kD2G2 +1n’m CWmax 11T
kD?G? g [ IVwe(W. @) —gu(w, )l
~ kD2G2 =+ ln2 m P CKJGQWmax

. %E exp [Vqe(w,q) — g,(w,q)|%
kD2G2 +1n2m CWmax INM
3 kD2G? In®m
S 2 + 2
kD2G2 +1n“m kD?2G2 +1n“m

where the first inequality follows from Jensen’s inequality.

D.4 Proof of Lemma/[3]

To analyze ||Vwo(W,q) — guw(W,q)|2, .. we first consider the approximation error caused by
samples from P;:

ni/Nm ni/Mm
i - B N LGN -
Z::l Vi(w;z")) — VR;(w) - =% ]; [V€(w,z( ) VRZ(W)} -

Nm

U

Under the regularity condition of || - ||« in Assumption@ we have, for any v > 0,

ni/Nm
N [Vewia ) = VRw)| | 2 262k + Vay), [T < exp(—42/2) (74)
i j=1 i

w,*

which is a directly consequence of the concentration inequality of vector norms [Juditsky and
Nemirovski, 2008, Theorem 2.1.(ii1)] and @ Then, we introduce the following lemma to simplify
(74).

Lemma 6 Suppose we have
Pr[X > a+ 9] < exp(—y?/2), Vy > 0
where X is nonnegative. Then, we have

Pr[X > 4] < 2exp (—*/ max(6a2,8)), Vy > 0.

From (74)) and Lemma 6] we have

”i/nnL
1 n; [|n y
v m E O(w:z(B)) — : >
2\/§G Tvm, n; = |:V (W, Z ) VR (W):| =z

w,*

<2exp (—72/max(6/<a, 8)) < 2exp (—72/(8/<)), Yy >0
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which satisfies the Proposition[T}(i). From the equivalence between Proposition [T} (i) and Proposi-
tion[1}(iv), we have

2

ni/mm 2
E |exp fim Z {VE(W;Z(W')) - VRi(W):| /cmGnm <9
=1

% %
w,*

Inserting the scaling factor p;, we have

n "i/mm . : ckG2p?n
E |exp | [|[pi—> Z [V@(W; z()) — VRZ-(W)] — <2 (75)
i i . n;
To simplify the notation, we define
g, "L p2n
o m )Y _ R, } - pimfm
u; = p; . ; {Vﬁ(w,z ) — VR;(w)|, and wax ng[%ic] —

By Jensen’s inequality, we have

B o (o ga— ITwewa) - sulwall. )|

ckG2Wmax

m 2
=E |exp Zqiui / [CKGQWHMX]
=1 w,*
< aE [exp <||uz||w*/ [angwmaX])} < Zqu =9.
i=1 i=1

where we use the fact that || - || «, (-)% and exp(-) are convex, and the last two functions are increasing
in R+ .

To analyze || Vqp(W,q) — g,(W, q)|%, we consider the approximation error related to P;:

ni/nm N /N,
o :200)) = Ry(w)| = |2 .70y _ R,
. ; Uw; 209) = Rifw)| = | ; [t0w; 20) = Ri(w)] |

Note that the absolute value | - | is 1-regular [Juditsky and Nemirovskil [2008]]. Following (59) and the
derivation of (73)), we have

2

ni/nm, 2
Nyn, C cpinm,
E i |:£ W, (5.7)y — Rz \%% i| - <2. 76
exp | |p . ]E:l (w;z'"7) (w) n < (76)

To prove that || Vqo(W, q) — g,(W, q)||% is also sub-Gaussian, we need to analyze the effect of the
infinity norm. To this end, we develop the following lemma.

Lemma 7 Suppose
E [exp (1X;|*/K3)] <2, Vj € [m]. (77)

E {exp (m[ax] |Xj|2/ [cKﬁlax lnm}>} <2.
JEIM

where ¢ > 0 is an absolute constant, and Kyax = maX;jcpm) Kj.

Then,

From (76) and Lemma[7} we have

1 2
— < 2.
E [eXp (Cwmax lanVqsO(WA) gq(w,Q)lloo)] <2
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D.5 Proof of Lemma6]
When v € [0, 2], we have
Pr[X > 7] <1< 2exp(—2/3) < 2exp(—y2/6a?).
When v > 2a, we have
Pr[X >9] =Pr[X > a+y—a] <exp(—(y—a)?/2) < exp(—*/8)

where we use the fact
v—a >

]2

Thus, we always have

Pr[X > 7] < 2exp (—7*/ max(6a*,8)), Yy > 0.

D.6 Proof of Lemmal7l
From (77), and the equivalence between Proposition[T}(i) and Proposition[T}(iv), we have
Pr[|X;| > t] < 2exp (—t*/cK7), Vt > 0,Vj € [m].
As aresult,
Pr [max | X, > t] =Pr[3j,|X;| > t] < ZPr 1X;| > t] < QZexp tz/ch)

Jj=1 j=1
<2mexp (—t*/cK ) = exp (—t*/cK} . + In[2m]).

Choosing t = /cK2,,. (In[2m] +72/2), we have

Pr Lmax 1X;| > /K2, (In[2m] + ’Y2/2)] <exp(—°/2).

Thus

Pr Lmax |X;| > /K2, <\/1n[2m] +’y/\/§>} <exp (—7%/2)

< Pr max\X|>\/21n2m +
CKI%]RX JE[m

By Lemmal(6] we have

2
E“ﬂ = V] < 2exp (72 max (12 n2m]8) ), ¥7 > 0.

From the equivalence between Proposition[T}(i) and Proposition [} (iv), we have

E {exp <¥n[zl}<] |Xj|2/ [eK2 . lnm}ﬂ <2.
JEM

<exp (—7%/2).

Pr
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