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ABSTRACT

The sharpness-aware minimization (SAM) algorithm and its variants, including
gap guided SAM (GSAM), have been successful at improving the generalization
capability of deep neural network models by finding flat local minima of the em-
pirical loss in training. Meanwhile, it has been shown theoretically and practi-
cally that increasing the batch size or decaying the learning rate avoids sharp local
minima of the empirical loss. In this paper, we consider the GSAM algorithm
with increasing batch sizes or decaying learning rates, such as cosine annealing
or linear learning rate, and theoretically show its convergence. Moreover, we nu-
merically compare SAM (GSAM) with and without an increasing batch size and
conclude that using an increasing batch size or decaying learning rate finds flatter
local minima than using a constant batch size and learning rate.

1 INTRODUCTION

One way to train a deep neural network (DNN) is to find an optimal parameter x⋆ of the net-
work in the sense of minimizing the empirical loss fS(x) = 1

n

∑
i∈[n] fi(x) given by the train-

ing set S = (z1, z2, · · · , zn) and a nonconvex loss function f(x; zi) = fi(x) corresponding to
the i-th training data zi ∈ S (i ∈ [n] := {1, 2, · · · , n}). Our main concern is whether a DNN
trained by an algorithm for empirical risk minimization (ERM), wherein the empirical loss fS is
minimized, has a strong generalization capability. The sharpness-aware minimization (SAM) prob-
lem (Foret et al., 2021) was proposed as a way to improve a DNN’s generalization capability. The
SAM problem is to minimize a perturbed empirical loss defined as the maximum empirical loss
fS,ρ(x) := max∥ϵ∥≤ρ fS(x + ϵ) over a certain neighborhood of a parameter x ∈ Rd of the DNN,
where ρ ≥ 0 and ϵ ∈ Rd. From the definition of the perturbed empirical loss fS,ρ, the SAM problem
is specialized to finding flat local minima of the empirical loss fS , which may lead to a better gen-
eralization capability than finding sharp minima (Keskar et al., 2017; Jiang et al., 2020). Although
(Andriushchenko et al., 2023b) reported that the relationship between sharpness and generalization
would be weak, the SAM algorithm and its variants for solving the SAM problem have high gen-
eralization capabilities and superior performance, as shown in, e.g., (Chen et al., 2022; Du et al.,
2022; Andriushchenko et al., 2023a; Wen et al., 2023; Chen et al., 2023; Möllenhoff & Khan, 2023;
Wang et al., 2024; Sherborne et al., 2024; Springer et al., 2024).

Meanwhile, an algorithm using a large batch size falls into sharp local minima of the empirical loss
fS and the algorithm would experience a drop in generalization performance (Hoffer et al., 2017;
Goyal et al., 2018; You et al., 2020). It has been shown that increasing the batch size (Byrd et al.,
2012; Balles et al., 2017; De et al., 2017; Smith et al., 2018; Goyal et al., 2018) or decaying the
learning rate (Wu et al., 2014; Ioffe & Szegedy, 2015; Loshchilov & Hutter, 2017; Hundt et al.,
2019) avoids sharp local minima of the empirical loss. Hence, we are interested in verifying whether
the SAM algorithm with an increasing batch size or decaying learning rate performs well in training
DNNs. In this paper, we focus on the SAM algorithm called gap guided SAM (GSAM) algorithm
(Zhuang et al., 2022) (see Algorithm 1 for details).

Contribution: The main contribution of this paper is to show an ϵ-approximation of the GSAM
algorithm with an increasing batch size and constant learning rate ((7) in Table 1; Theorem 2.3)
and with a constant batch size and decaying learning rate ((8) in Table 1; Theorem 2.4).
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Table 1: Convergence of SAM and its variants to minimize f̂SAM
S,ρ (x) = fS(x) + ρ∥∇fS(x)∥ over

the number of steps T . “Noise” in the Gradient column means that algorithm uses noisy observation,
i.e., g(x) = ∇f(x) + (Noise), of the full gradient ∇f(x), while “Mini-batch” in the Gradient
column means that algorithm uses a mini-batch gradient ∇fB(x) =

1
b

∑
i∈[b] ∇fξi(x) with a batch

size b. Here, we let E[∥∇f̂SAM∗
S,ρ ∥] := mint∈[T ] E[∥∇f̂SAM

S,ρ (xt)∥], where (xt)
T
t=0 is the sequence

generated by Algorithm. Results (1)–(6) were presented in (1) (Andriushchenko & Flammarion,
2022, Theorem 2), (2) (Mi et al., 2022, Theorem 2), (3) (Zhuang et al., 2022, Theorem 5.1), (4)
(Si & Yun, 2023, Theorem 4.6), (5) (Li & Giannakis, 2023, Corollary 1), and (6) (Li et al., 2024,
Theorem 2).

Algorithm Gradient Leaning Rate Perturbation Convergence Analysis

(1) SAM Mini-batch b ηT = Θ( 1
T 1/2 ) ρT = Θ( 1

T 1/4 ) E[∥∇f∗
S∥] = O( 1

T 1/4 + 1
bT 1/4 )

(2) SSAM Noise ηt = Θ( 1
t1/2

) ρt = Θ( 1
t1/2

) E[∥∇f∗
S∥] = O(

√
log T
T 1/4 )

(3) GSAM Noise ηt = Θ( 1
t1/2

) ρt = Θ( 1
t1/2

) E[∥∇f̂SAM∗
S,ρt

∥] = O
(√

log T
T 1/4

)
(4) m-SAM Noise ηT = O( 1

T 1/2 ) ρ E[∥∇f∗
S∥] = O(

√
1

T 1/2 + ρ2)

(5) VaSSO Noise ηT = Θ( 1
T 1/2 ) ρT = Θ( 1

T 1/2 ) E[∥∇f̂SAM∗
S,ρ ∥] = O( 1

T 1/4 )

(6) FSAM Noise ηT = Θ( 1
T 1/2 ) ρt = Θ( 1

t1/2
) E[∥∇f∗

S∥] = O(
√
log T
T 1/4 )

(7) GSAM Increasing Constant ρ E[∥∇f̂SAM∗
S,ρ ∥] ≤ ϵ

[Ours] mini-batch bt η = O(nϵ2) = O( nb0ϵ
2√

n2+b20
)

(8) GSAM Mini-batch b Cosine/Linear ρ E[∥∇f̂SAM∗
S,ρ ∥] ≤ ϵ

[Ours] ηt → η (≥ 0) = O( nbϵ2√
n2+b2

)

Our convergence analyses of GSAM are based on the search direction noise ηtωt (defined by (9))
between GSAM and gradient descent (GD) (Theorems 2.1 and 2.2 in Section 2.3). The norm of the
noise is approximately Θ( ηt√

bt
) (see also (10)). Since this implies that GSAM using a large batch

size b or a small learning rate η behaves approximately the same as GD in solving the SAM problem,
GSAM eventually needs to use a large batch size or a small learning rate. Accordingly, it will be
useful to use increasing batch sizes or decaying learning rates, as the previous results presented in
the second paragraph of this section point out. We would also like to emphasize that our analyses
allow us to use practical learning rates, such as constant, cosine-annealing, and linear learning rates,
unlike the existing methods listed in Table 1. Our other contribution is to provide numerical results
on training ResNets and ViT-Tiny on the CIFAR100 dataset such that using a doubly increasing
batch size or a cosine-annealing learning rate finds flatter local minima than using a constant batch
size and learning rate (Section 3 and Appendix C).

Related work: Convergence analyses of SGD (Robbins & Monro, 1951) with a fixed batch
size have been presented in (Ghadimi & Lan, 2013; Ghadimi et al., 2016; Vaswani et al., 2019;
Fehrman et al., 2020; Chen et al., 2020; Scaman & Malherbe, 2020; Loizou et al., 2021; Wang et al.,
2021; Arjevani et al., 2023; Khaled & Richtárik, 2023). Our analyses found that SGD (an exam-
ple of GSAM) using increasing batch sizes or a cosine-annealing (linear) learning rate is an ϵ-
approximation. The linear scaling rule (Goyal et al., 2018; Smith et al., 2018; Xie et al., 2021) based
on η

b coincides with our rule based on the noise norm η∥ωt∥2 = Θ(ηt

bt
). In (Hazan et al., 2016;

Sato & Iiduka, 2023), it was shown that SGD with an increasing batch size reaches the global opti-
mum under the strong convexity assumption of the smoothed function of fS . This paper shows that,
with nonconvex loss functions, GSAM with an increasing batch size achieves an ϵ-approximation.

Limitations: The limitation of this study is the limited number of models and datasets used in the
experiments. Hence, we should conduct similar experiments with a larger number of models and
datasets to support our theoretical results.
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2 SAM PROBLEM AND GSAM

Let N be the set of natural numbers. Let [n] := {1, 2, · · · , n} and [0 : n] := {0, 1, · · · , n} for n ∈ N.
Let Rd be a d-dimensional Euclidean space with inner product ⟨x,y⟩2 = x⊤y (x,y ∈ Rd) and
its induced norm ∥x∥2 :=

√
⟨x,x⟩2 (x ∈ Rd). The gradient and Hessian of a twice differentiable

function f : Rd → R at x ∈ Rd are denoted by ∇f(x) and ∇2f(x), respectively. Let L > 0.
A differentiable function f : Rd → R is said to be L–smooth if the gradient ∇f : Rd → Rd is
Lipschitz continuous; i.e., for all x,y ∈ Rd, ∥∇f(x) −∇f(y)∥2 ≤ L∥x − y∥2. Let O and Θ be
Landau’s symbols, i.e., yt = O(xt) (resp. yt = Θ(xt)) if there exist c > 0 (resp. c1, c2 > 0) and
t0 ∈ N such that, for all t ≥ t0, yt ≤ cxt (resp. c1xt ≤ yt ≤ c2xt).

2.1 SAM PROBLEM AND ITS APPROXIMATION PROBLEM

Given a parameter x ∈ Rd and a data point z, a machine-learning model provides a prediction
whose quality can be measured by a differentiable nonconvex loss function f(x; z). For a training
set S = (z1, z2, . . . , zn), fi(·) := f(·; zi) is the loss function corresponding to the i-th training data
zi. The empirical risk minimization (ERM) is to minimize the empirical loss defined for all x ∈ Rd

by

fS(x) =
1

n

∑
i∈[n]

f(x; zi) =
1

n

∑
i∈[n]

fi(x). (1)

Given ρ ≥ 0 and a training set S, the SAM problem (Foret et al., 2021, (1)) is to minimize

fSAM
S,ρ (x) := max

∥ϵ∥2≤ρ
fS(x+ ϵ). (2)

Let x ∈ Rd and ρ ≥ 0. Taylor’s theorem thus implies that there exists τ = τ(x, ρ) ∈ (0, 1) such
that the maximizer ϵ⋆S,ρ(x) of fS(x+ ϵ) over B2(0; ρ) := {ϵ ∈ Rd : ∥ϵ∥2 ≤ ρ} is as follows:

ϵ⋆S,ρ(x) := argmax
∥ϵ∥2≤ρ

fS(x+ ϵ) = argmax
∥ϵ∥2≤ρ

{
fS(x) + ⟨∇fS(x), ϵ⟩2 +

1

2
⟨ϵ,∇2fS(x+ τϵ)ϵ⟩2

}
,

where we suppose that fS is twice differentiable on Rd. Then, assuming ∥ϵ∥22 ≈ 0 (i.e., a small
enough ρ2), ϵ⋆S,ρ(x) can be approximated as follows ϵ̂S,ρ(x) (Foret et al., 2021, (2)):

ϵ⋆S,ρ(x) ≈ ϵ̂S,ρ(x) := argmax
∥ϵ∥2≤ρ

⟨∇fS(x), ϵ⟩2 =

{{
ρ ∇fS(x)
∥∇fS(x)∥2

}
(∇fS(x) ̸= 0)

B2(0; ρ) (∇fS(x) = 0).
(3)

Here, our goal is to solve the following problem that is an approximation of the SAM problem of
minimizing fSAM

S,ρ (x) = max∥ϵ∥2≤ρ fS(x+ ϵ) (see (2) and (3)).

Problem 2.1 (Approximated SAM problem (Foret et al., 2021)) Let fS be the empirical loss de-
fined by (1) with the training set S = (z1, z2, · · · , zn). Given ρ ≥ 0,

minimize f̂SAM
S,ρ (x) := max

∥ϵ∥2≤ρ
{fS(x) + ⟨∇fS(x), ϵ⟩2} = fS(x) + ρ∥∇fS(x)∥2 subject to x ∈ Rd.

We use the following approximation (Foret et al., 2021, (3)) of the gradient of f̂SAM
S,ρ at x ∈ Rd:

∇f̂SAM
S,ρ (x) := ∇fS(x)|x+ϵ̂S,ρ(x) =

{
∇fS

(
x+ ρ ∇fS(x)

∥∇fS(x)∥2

)
(∇fS(x) ̸= 0)

∇fS (x+ u) (∇fS(x) = 0),
(4)

where ϵ̂S,ρ(x) is denoted by (3) and u is an arbitrary point in B2(0; ρ) (e.g., we may set u = 0
before implementing algorithms).

2.2 MINI-BATCH GSAM ALGORITHM

As a way of solving Problem 2.1, we will study the GSAM algorithm (Zhuang et al., 2022, Algo-
rithm 1) using b loss functions fξt,1 , fξt,2 , · · · , fξt,b ∈ {f1, f2, · · · , fn} which are randomly chosen
at each time t, where b is a batch size satisfying b ≤ n. We suppose that loss functions satisfy the
following conditions.
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Assumption 2.1 (A1) fi : Rd → R (i ∈ [n]) is twice differentiable and Li-smooth.

(A2) ∇fξ : Rd → Rd is the stochastic gradient of ∇fS; i.e., (i) for all x ∈ Rd, Eξ[∇fξ(x)] =
∇fS(x), (ii) there exists σ ≥ 0 such that, for all x ∈ Rd, Vξ[∇fξ(x)] = Eξ[∥∇fξ(x) −
∇fS(x)∥22] ≤ σ2, where ξ is a random variable which is independent of x and Eξ[·] stands for
the expectation with respect to ξ.

(A3) Let t ∈ N and suppose that bt ∈ N and bt ≤ n. Let ξt = (ξt,1, ξt,2, · · · , ξt,bt)⊤ be a random
variable that consists of bt independent and identically distributed variables. The full gradient
∇fS(x) is estimated as the following mini-batch gradient at x ∈ Rd:

∇fSt(x) :=
1

bt

∑
i∈[bt]

∇fξt,i(x), (5)

where ξt is independent of x, bt, and ξt′ (t ̸= t′).

We define ϵ̂St,ρ by replacing S in (3) with St in (A3), i.e.,

ϵ̂St,ρ(x) := argmax
∥ϵ∥2≤ρ

⟨∇fSt
(x), ϵ⟩2 =

{{
ρ

∇fSt (x)

∥∇fSt (x)∥2

}
(∇fSt(x) ̸= 0)

B2(0; ρ) (∇fSt(x) = 0),
(6)

where ∇fSt
is defined as in (5). Accordingly, an approximation of a mini-batch gradient of f̂SAM

S,ρ

(see Problem 2.1 and (4)) at x ∈ Rd can be defined as

∇f̂SAM
St,ρ (x) := ∇fSt(x)|x+ϵ̂St,ρ(x)

=

{
∇fSt

(
x+ ρ

∇fSt (x)

∥∇fSt (x)∥2

)
(∇fSt

(x) ̸= 0)

∇fSt (x+ u) (∇fSt(x) = 0),
(7)

where ϵ̂St,ρ(x) is denoted by (6) and u is an arbitrary point in B2(0; ρ). Accordingly, the SAM al-
gorithm (Foret et al., 2021, Algorithm 1) can be obtained by applying SGD to the objective function
f̂SAM
S,ρ in Problem 2.1, as described in Algorithm 1. GD for Problem 2.1 coincides with Algorithm 1

with St = S (i.e., bt = n), as follows:

xt+1 := xt − ηt∇f̂SAM
S,ρ (xt), (8)

where ∇f̂SAM
S,ρ is defined as in (4). The GSAM algorithm uses an ascent step in the orthogonal direc-

tion that is obtained by using stochastic gradient decomposition ∇fSt
(x) = ∇fSt∥(x)+∇fSt⊥(x)

to minimize a surrogate gap ht(x) := f̂SAM
St,ρ

(x)− fSt
(x) (see (Zhuang et al., 2022, Section 4)).

Algorithm 1 Mini-batch GSAM algorithm
Require: ρ ≥ 0 (hyperparameter), u ∈ B2(0; ρ), x0 ∈ Rd (initial point), bt > 0 (batch size),
ηt > 0 (learning rate), α ∈ R (control parameter of ascent step), T ≥ 1 (steps)

Ensure: (xt)
T
t=0 ⊂ Rd

for t = 0, 1, . . . , T − 1 do

∇f̂SAM
St,ρ

(xt) :=

{
∇fSt

(
xt + ρ

∇fSt (xt)

∥∇fSt (xt)∥2

)
(∇fSt(xt) ̸= 0)

∇fSt
(xt + u) (∇fSt

(xt) = 0)
◁ See (5) for ∇fSt

dt :=


−(∇f̂SAM

St,ρ
(xt)− α∇fSt⊥(xt)) (GSAM)

−∇f̂SAM
St,ρ

(xt) (SAM; α = 0)
−∇f̂SAM

St,0
(xt) = −∇fSt(xt) (SGD; α = ρ = 0)

xt+1 := xt + ηtdt

end for

2.3 SEARCH DIRECTION NOISE BETWEEN GSAM AND GD

GSAM can find local minima of Problem 2.1 (by using −∇f̂SAM
St,ρ

(xt)) that are flatter local minima
of fS (by using α∇fSt⊥(xt)) (see (Zhuang et al., 2022, Section 4) for details). Meanwhile, GD
defined as (8) (i.e., GSAM with bt = n and α = 0) is the simplest algorithm for solving Problem 2.1.
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Although this GD can minimize f̂SAM
S,ρ by using the full gradient ∇f̂SAM

S,ρ (xt), it is not guaranteed
that it converges to a flatter minimum of fS compared with the one of GSAM. Here, let us compare
GSAM with GD. Let xt ∈ Rd be the t-th approximation of Problem 2.1 and ηt > 0. The xt+1

generated by GSAM is as follows:

xt+1 = xt + ηt{−(∇f̂SAM
St,ρ (xt)− α∇fSt⊥(xt))}

= xt − ηt∇f̂SAM
S,ρ (xt)︸ ︷︷ ︸

GD

+ ηt(

ω̂t︷ ︸︸ ︷
∇f̂SAM

S,ρ (xt)−∇f̂SAM
St,ρ (xt)+α∇fSt⊥(xt))︸ ︷︷ ︸

Search Direction Noise ηtωt

(9)

This implies that, if ηtωt := ηt(∇f̂SAM
S,ρ (xt)−∇f̂SAM

St,ρ
(xt)+α∇fSt⊥(xt)) is approximately zero,

i.e., bt ≈ n and α ≈ 0, then GSAM is approximately GD in the sense of the norm of Rd, and if ηtωt

is not zero under α ̸= 0, i.e., bt < n, then the behavior of GSAM with bt < n differs from the one
of GD. We call ηtωt the search direction noise of GSAM, since ηtωt is noise from the viewpoint of
the search direction of GD. We provide an upper bound of the norm of the search direction noise of
GSAM. Theorem 2.1 is proved in Appendix A.
Theorem 2.1 (Upper bound of Eηt∥ωt∥2) Suppose that Assumption 2.1 holds and define ωt ∈
Rd for all t ∈ N ∪ {0} by ωt := ω̂t + α∇fSt⊥(xt), where xt is generated by Algorithm 1 and we
assume that G⊥ := supt∈N∪{0} ∥∇fSt⊥(xt)∥2 < +∞. Then, for all t ∈ N ∪ {0},

E[ηt∥ωt∥2] ≤


ηt|α|G⊥ (bt = n)

ηt

{√
4ρ2

(
1
b2t

+ 1
n2

) (∑
i∈[n] Li

)2
+ 2σ2

bt
+ |α|G⊥

}
(bt < n),

where E[·] stands for the total expectation defined by E = Eξ0
Eξ1

· · ·Eξt
.

In the case of GSAM with bt = n and α ̸= 0, we have that ηtωt = ηt(∇f̂SAM
S,ρ (xt)−∇f̂SAM

S,ρ (xt)+

α∇fS⊥(xt)) = ηtα∇fS⊥(xt). Hence, an upper bound of E[ηt∥ωt∥2] is ηt|α|G⊥ (Theorem 2.1
(bt = n)). For simplicity, let us consider the case of α = 0. The search direction noise ηtωt

of GSAM with bt < n is not zero, from ∇f̂SAM
S,ρ (xt) ̸= ∇f̂SAM

St,ρ
(xt) (see (9)). Meanwhile, the

search direction noise ηtωt of GD (GSAM with bt = n and α = 0) is ηtωt = ηt(∇f̂SAM
S,ρ (xt) −

∇f̂SAM
S,ρ (xt)) = 0, which implies that E[ηt∥ωt∥2] = 0 (This result coincides with Theorem 2.1

(bt = n and α = 0)). Accordingly, the noise norm E[ηt∥ωt∥2] of GSAM will decrease as the batch
size bt increases. In fact, from Theorem 2.1 (bt < n), the upper bound U(ηt, bt) of E[ηt∥ωt∥2]

E[ηt∥ωt∥2] ≤ ηt

√√√√4ρ2
(

1

b2t
+

1

n2

)( ∑
i∈[n]

Li

)2
+

2σ2

bt
≤ ηt

√
8ρ2(

∑
i∈[n] Li)2 + 2σ2

√
bt

=: U(ηt, bt)

is a monotone decreasing function of bt. As a result, E[ηt∥ωt∥2] decreases as bt increases. Theorem
2.1 also indicates that the smaller ηt is, the smaller E[ηt∥ωt∥2] becomes.

Next, we provide a lower bound of the norm of the search direction noise of GSAM. Theorem 2.2 is
proven in Appendix A.
Theorem 2.2 (Lower bound of Eηt∥ωt∥2) Under the assumptions in Theorem 2.1, for all t ∈
N ∪ {0},

E[ηt∥ωt∥2] ≥


ηt|α|E[∥∇fS⊥(xt)∥2] (bt = n)

ηt

{
ctσ√
bt

− ρ
(

1
bt

+ 1
n

)∑
i∈[n] Li − |α|G⊥

}
(bt < n ∧At ≥ 0)

ηt

{
ρ
(

dt

bt
− 1

n

)∑
i∈[n] Li − σ√

bt
− |α|G⊥

}
(bt < n ∧At < 0)

where At is defined by (25), ct, dt ∈ (0, 1], and |α| is small such that, for bt < n,
|α|∥∇fSt⊥(xt)∥2 ≤ ∥ω̂t∥2.

From the definition (9) of the search direction noise, the noise norm E[ηt∥ωt∥2] of GSAM will
increase as the batch size bt decreases. We can verify this fact from Theorem 2.2 (bt < n∧At ≥ 0).
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For simplicity, let us consider the case where α = 0. We set T ≥ 1, c := mint∈[0:T ] ct, and
ρ ≤ cσ

2
∑

i∈[n] Li
(this setting implies that ρ, which is used in the definition of Problem 2.1, will be a

small parameter (see also (3)). Then, the lower bound L(ηt, bt) of E[ηt∥ωt∥2] satisfies

E[ηt∥ωt∥2] ≥ ηt

 ctσ√
bt

− ρ

(
1

bt
+

1

n

) ∑
i∈[n]

Li

 ≥ ηt
ctσ − 2ρ

∑
i∈[n] Li

√
bt

=: L(ηt, bt) (≥ 0),

which implies that the smaller bt is, the larger the lower bound L(ηt, bt) of E[ηt∥ωt∥2] becomes
(We can verify this result from Theorem 2.2 (bt < n ∧ At < 0)). Therefore, E[ηt∥ωt∥2] increases
as bt decreases.

To solve Problem 2.1, we consider a mini-batch scheduler and a learning rate scheduler based on
Theorems 2.1 and 2.2. To apply not only GSAM but also SAM (α = 0) to Problem 2.1, we will
assume that |α| is approximately zero. Theorems 2.1 and 2.2 (see also the definitions of U(ηt, bt)
and L(ηt, bt)) indicate that, for a given small ρ and for all t ∈ N ∪ {0},

E[ηt∥ωt∥2] ≈ E
[
ηt

∥∥∥∇f̂SAM
S,ρ (xt)−∇f̂SAM

St,ρ (xt)
∥∥∥
2

]
≈

{
Θ
(

ηt√
bt

)
(bt < n)

0 (bt = n).
(10)

Equation (10) indicates that the full gradient ∇f̂SAM
S,ρ (x0) substantially differs from ∇f̂SAM

S0,ρ
(x0)

with a small batch size b0 or a large learning rate η0. Meanwhile, GSAM eventually needs to use a
large batch size b or a small learning rate η, since the behavior of GSAM using a large b or small η
is approximately like that of GD in minimizing f̂SAM

S,ρ . Accordingly, in the process of training DNN,
it would be useful to use increasing batch sizes or decaying learning rates.

2.4 CONVERGENCE ANALYSIS OF GSAM

2.4.1 INCREASING BATCH SIZE AND CONSTANT LEARNING RATE

Motivated by (Smith et al., 2018), we focus on using a constant learning rate defined for all t ∈
N ∪ {0} by ηt = η ∈ (0,+∞) and a mini-batch scheduler that gradually increases the batch size:

b0 = · · · = b0︸ ︷︷ ︸
E0 epochs

≤ b1 = · · · = b1︸ ︷︷ ︸
E1 epochs

≤ · · · ≤ bM = · · · = bM = n︸ ︷︷ ︸
EM epochs

, (11)

where M ∈ N and Ei ∈ N (i ∈ [0 : M ]). Accordingly, we have that the total number of steps for
training is T =

∑
i∈[0:M ]⌈

n
bi
⌉Ei.

Theorem 2.1 leads us to the following theorem, the proof of which is given in Appendix B.2.

Theorem 2.3 (ϵ–approximation of GSAM with an increasing batch size and constant learning rate)
Consider the sequence (xt) generated by the mini-batch GSAM algorithm (Algorithm 1) with an in-
creasing batch size bt ∈ (0, n] defined by (11) and a constant learning rate, ηt = η ∈ (0,+∞). Fur-
thermore, let us assume that there exists a positive number G such that max{supt∈N∪{0} ∥∇fS(xt+

ϵ̂St,ρ(xt))∥2, supt∈N∪{0} ∥∇f̂SAM
St,ρ

(xt)∥2, supt∈N∪{0} ∥∇f̂SAM
S,ρ (xt)∥2, G⊥} ≤ G, where

G⊥ := supt∈N∪{0} ∥∇fSt⊥(xt)∥2 < +∞ (see Theorem 2.1). Let ϵ > 0 be the precision and let
b0 > 0, η > 0, α ∈ R, and ρ ≥ 0 such that

η ∈

12σC
ϵ2

 ρG√
b0

+
3σ

nb0

∑
i∈[n]

Li

 ,
(|α|+ 1)−2n3ϵ2

6G2
∑

i∈[n] Li{n2 + 4C(
∑

i∈[n] Li)2}

 , (12)

ρ(|α|+ 1) ≤ n
√
b0ϵ

2

6G(CG
√
b0 +Bσ)

∑
i∈[n] Li

, ρ ≤ nb0ϵ
2

2
√
42G

√
n2 + b20

∑
i∈[n] Li

, (13)

where B and C are nonnegative constants. Then, there exists t0 ∈ N such that, for all T ≥ t0,

min
t∈[0:T−1]

E
[∥∥∥∇f̂SAM

S,ρ (xt)
∥∥∥
2

]
≤ ϵ.
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Theorem 2.3 indicates that the parameters |α| and ρ in (13) become small and thereby achieve an
ϵ–approximation of GSAM. The setting of the small parameter ρ is consistent with the definition of
Problem 2.1 (see also (3)). Moreover, the setting also matches the numerical results in (Zhuang et al.,
2022) that used small |α| and ρ. Using a small ρ leads to the finding that C and B are approximately
zero (see Propositions B.2 and B.3). In particular, ρ = 0 implies that B = C = 0. Hence, a constant
learning rate η satisfying (12) is approximately

η ∈

(
0,

nϵ2

6(|α|+ 1)2G2
∑

i∈[n] Li

]
. (14)

From (14), it would be appropriate to set a small η in order to achieve an ϵ-approximation of GSAM.
In fact, the numerical results in (Zhuang et al., 2022) used small learning rates, such as 10−2, 10−3,
and 10−5.

Since SGD (i.e., GSAM with α = ρ = 0) satisfies (13), Theorem 2.3 guarantees that SGD is an ϵ-
approximation in the sense of mint∈[0:T−1] E[∥∇fS(xt)∥2] ≤ ϵ. Moreover, using α = ρ = 0 makes
the upper bound of mint∈[0:T−1] E[∥∇fS(xt)∥2] (= mint∈[0:T−1] E[∥∇f̂SAM

S,ρ (xt)∥2]) smaller than
using α ̸= 0 ∨ ρ ̸= 0. Hence, SGD using α = ρ = 0 would minimize ∥∇fS(xt)∥2 more quickly
than would SAM/GSAM using α ̸= 0 ∨ ρ ̸= 0 (see also Figure 1 (Left) indicating that SGD
minimizes fS more quickly than SAM/GSAM). Meanwhile, the previous results in (Foret et al.,
2021; Zhuang et al., 2022) indicate that using α ̸= 0 ∨ ρ ̸= 0 leads to a better generalization than
using α = ρ = 0 (see Figure 1 (Right) and Table 2 indicating that SAM/GSAM with an increasing
batch size has a higher generalization capability than SGD has with an increasing batch size).

2.4.2 CONSTANT BATCH SIZE AND DECAYING LEARNING RATE

Motivated by (Loshchilov & Hutter, 2017), we focus on a constant batch size defined for all t ∈
N ∪ {0} by bt = b and examine a cosine-annealing rate scheduler defined by

ηt = η +
η − η

2

(
1 + cos

⌊
t

K

⌋
π

E

)
(t ∈ [0 : KE]), (15)

where η and η are such that 0 ≤ η ≤ η, E is the number of epochs, and K = ⌈n
b ⌉ is the number

of steps per epoch. We then have that the total number of steps for training is T = KE. The
cosine-annealing learning rate (15) is updated per epoch and remains unchanged during K steps.

Moreover, for a constant batch size bt = b (t ∈ N∪{0}), we examine a linear learning rate scheduler
(Liu et al., 2020) defined by

ηt =
η − η

T
t+ η (t ∈ [0 : T ]), (16)

where η and η are such that 0 ≤ η ≤ η and T is the number of steps. The linear learning rate
scheduler (16) is updated per step whose size decays linearly from step 0 to T .

Theorem 2.1 leads us to the following theorem, the proof which is given in Appendix B.3 (The case
where η > 0 is also shown in Appendix B.3).
Theorem 2.4 (ϵ–approximation of GSAM with a constant batch size and decaying learning rate)
Consider the sequence (xt) generated by the mini-batch GSAM algorithm (Algorithm 1) with a
constant batch size bt = b ∈ (0, n] and a decaying learning rate ηt ∈ [η, η] defined by (15) or (16).
Furthermore, let us assume that there exists a positive number G defined as in Theorem 2.3. Let
ϵ > 0 be the precision and let b > 0, η > 0 (= η), α ∈ R, and ρ ≥ 0 such that

η ∈


[
24σC
ϵ2

(
ρG√
b
+ 3σ

nb

∑
i∈[n] Li

)
, 2(|α|+1)−2n3ϵ2

9G2
∑

i∈[n] Li{n2+4C(
∑

i∈[n] Li)2}

]
if (15) is used,[

24σC
ϵ2

(
ρG√
b
+ 3σ

nb

∑
i∈[n] Li

)
, (|α|+1)−2n3ϵ2

4G2
∑

i∈[n] Li{n2+4C(
∑

i∈[n] Li)2}

]
if (16) is used,

(17)

ρ(|α|+ 1) ≤ n
√
bϵ2

6G(CG
√
b+Bσ)

∑
i∈[n] Li

, ρ ≤ nbϵ2

2
√
42G

√
n2 + b2

∑
i∈[n] Li

, (18)

where B and C are nonnegative constants. Then, there exists t0 ∈ N such that, for all T ≥ t0,

min
t∈[0:T−1]

E
[∥∥∥∇f̂SAM

S,ρ (xt)
∥∥∥
2

]
≤ ϵ.
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Theorem 2.4 indicates that the parameters |α| and ρ in (18) become small and thereby achieve an
ϵ–approximation of GSAM, as also seen in Theorem 2.3. A discussion similar to the one showing
(14) implies that the maximum learning rate η satisfying (17) using a small ρ is approximately

η ∈


(
0, 2(|α|+1)−2nϵ2

9G2
∑

i∈[n] Li

]
if (15) is used,(

0, (|α|+1)−2nϵ2

4G2
∑

i∈[n] Li

]
if (16) is used.

(19)

From (19), it would be appropriate to set a small η in order to achieve an ϵ-approximation of GSAM.
In fact, the numerical results in (Zhuang et al., 2022) used small values of η, such as 1.6 and 3×10−3.

Theorem 2.4 guarantees that SGD is an ϵ-approximation in the sense of
mint∈[0:T−1] E[∥∇fS(xt)∥2] ≤ ϵ. Moreover, using α = ρ = 0 makes the upper bound of
mint∈[0:T−1] E[∥∇fS(xt)∥2] smaller than when using α ̸= 0 ∨ ρ ̸= 0. Hence, SGD using
α = ρ = 0 would minimize ∥∇fS(xt)∥2 more quickly than SAM/GSAM using α ̸= 0 ∨ ρ ̸= 0
(see also Figure 2 (Left) indicating that SGD minimizes fS more quickly than SAM/GSAM).
Meanwhile, the previous results in (Foret et al., 2021; Zhuang et al., 2022) indicate that using
α ̸= 0 ∨ ρ ̸= 0 leads to a higher generalization capability than using α = ρ = 0 (see Table 2 which
shows that the generalization capability of SAM/GSAM+C has a higher than that of SGD+C).

3 NUMERICAL RESULTS

We used a computer equipped with NVIDIA GeForce RTX 4090×2GPUs and an Intel Core i9
13900KF CPU. The software environment was Python 3.10.12, PyTorch 2.1.0, and CUDA 12.2.
The solid lines in the figures represent the mean value and the shaded areas represent the maximum
and minimum over three runs.

Training Wide-ResNet28-10 on CIFAR100 We set E = 200, η = η = 0.1, and η = 0.001.
We trained Wide-ResNet-28-10 on the CIFAR100 dataset (see Appendix C for an explanation of
training ResNet-18 on the CIFAR100 dataset). The parameters, α = 0.02 and ρ = 0.05, were deter-
mined by conducting a grid search of α ∈ {0.01, 0.02, 0.03} and ρ ∈ {0.01, 0.02, 0.03, 0.04, 0.05}.
Figure 1 compares the use of an increasing batch size [8, 16, 32, 64, 128] (SGD/SAM/GSAM + in-
creasing batch) with the use of a constant batch size 128 (SGD/SAM/GSAM) for a fixed learning
rate, 0.1. SGD/SAM/GSAM + increasing batch decreased the empirical loss (Figure 1 (Left)) and
achieved higher test accuracies compared with SGD/SAM/GSAM (Figure 1 (Right)). Figure 2 com-
pares the use of a cosine-annealing learning rate defined by (15) (SGD/SAM/GSAM + Cosine) with
the use of a constant learning rate, 0.1 (SGD/SAM/GSAM) for a fixed batch size 128. SAM/GSAM
+ Cosine decreased the empirical loss (Figure 2 (Left)) and achieved higher test accuracies compared
with SGD/SAM/GSAM (Figure 2 (Right)).

40 80 120 160 200
number of epochs

10 3

10 2

10 1

100

lo
ss

 fu
nc

tio
n 

va
lu

e 
in

 tr
ai

ni
ng

Training WideResNet28-10 on CIFER100 dataset
SGD
SAM
GSAM
SGD + increasing_batch
SAM + increasing_batch
GSAM + increasing_batch

40 80 120 160 200
number of epochs

50

55

60

65

70

75

80

ac
cu

ra
cy

 sc
or

e 
in

 te
st

in
g

Training WideResNet28-10 on CIFER100 dataset

SGD
SAM
GSAM
SGD + increasing_batch
SAM + increasing_batch
GSAM + increasing_batch

Figure 1: (Left) Loss function value in training and (Right) accuracy score in testing for the algo-
rithms versus the number of epochs in training Wide-ResNet-28-10 on the CIFAR100 dataset. The
learning rate of each algorithm was fixed at 0.1. In SGD/SAM/GSAM, the batch size was fixed at
128. In SGD/SAM/GSAM + increasing batch, the batch size was set at 8 for the first 40 epochs and
then it was doubled every 40 epochs afterwards, i.e., to 16 for epochs 41-80, 32 for epochs 81-120,
etc.
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Figure 2: (Left) Loss function value in training and (Right) accuracy score in testing for the algo-
rithms versus the number of epochs in training Wide-ResNet28-10 on the CIFAR100 dataset. The
batch size of each algorithm was fixed at 128. In SGD/SAM/GSAM, the constant learning rate was
fixed at 0.1. In SGD/SAM/GSAM + Cosine, the maximum learning rate was 0.1 and the minimum
learning rate was 0.001.

Table 2: Mean values of the test errors (Test Error) and the worst-case ℓ∞ adaptive sharpness (Sharp-
ness) for the parameter obtained by the algorithms at 200 epochs in training Wide-ResNet28-10 on
the CIFAR100 dataset. “(algorithm)+B” refers to “(algorithm) + increasing batch” used in Figure
1, and “(algorithm)+C” refers to “(algorithm) + Cosine” used in Figure 2.

SGD SAM GSAM SGD+B SAM+B GSAM+B SGD+C SAM+C GSAM+C

Test Error 25.62 24.78 24.94 22.65 21.10 21.50 25.57 24.16 24.00
Sharpness 1113.26 456.20 435.17 22.72 10.99 12.37 1148.09 687.44 665.13

Table 2 summarizes the mean values of the test errors and the worst-case ℓ∞ adaptive sharpness
defined by (Andriushchenko et al., 2023b, (1)) for the parameters c = (1, 1, · · · , 1)⊤ and ρ =
0.0002 obtained by the algorithm after 200 epochs. SAM+B (SAM + increasing batch) had the
highest test accuracy and the lowest sharpness, which implies that SAM+B approximated a flatter
local minimum. The table indicates that increasing batch sizes could avoid sharp local minima to
which the algorithms using the constant and cosine-annealing learning rates converged.

Training ViT-Tiny on CIFAR100 We set E = 100 and a learning rate of η = 0.001 with an ini-
tial learning rate of 0.00001 and linear warmup during 10 epochs. We trained ViT-Tiny on the
CIFAR100 dataset (see Appendix D for the ViT-Tiny model). We used Adam (Kingma & Ba,
2015) with β1 = 0.9, β2 = 0.999 and a weight decay of 0.05 as the base algorithm. The
parameters, α = 0.1 and ρ = 0.6, were determined by conducting a grid search of α ∈
{0.1, 0.2, 0.3} and ρ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. We used the data extension and regular-
ization technique in (Lee et al., 2021). Figure 3 compares the use of an increasing batch size
[64, 128, 256, 512] (Adam/SAM/GSAM + increasing batch) with the use of a constant batch size
128 (Adam/SAM/GSAM) for a fixed learning rate, 0.001. SAM + increasing batch achieved higher
test accuracies compared with Adam/SAM/GSAM (Figure 3 (Right)). Figure 4 compares the use
of a cosine-annealing learning rate defined by (15) (Adam/SAM/GSAM + Cosine) with the use of
a constant learning rate, 0.001, (Adam/SAM/GSAM) for a fixed batch size, 128. Adam + Cosine
achieved higher test accuracies than Adam/SAM/GSAM (Figure 4 (Right)).

Table 3: Mean values of the test errors (Test Error) and the worst-case ℓ∞ adaptive sharpness
(Sharpness) for the parameter obtained by the algorithms at 100 epochs in training ViT-Tiny on
the CIFAR100 dataset. “(algorithm)+B” refers to “(algorithm) + increasing batch” in Figure 3, and
“(algorithm)+C” refers to “(algorithm) + Cosine” in Figure 4.

Adam SAM GSAM Adam+B SAM+B GSAM+B Adam+C SAM+C GSAM+C

Test Error 31.62 29.20 29.81 29.26 28.45 29.10 27.06 28.18 28.90
Sharpness 0.28 0.16 0.15 0.24 0.15 0.16 0.42 0.17 0.17
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Figure 3: (Left) Loss function value in training and (Right) accuracy score in testing for the algo-
rithms versus the number of epochs in training ViT-Tiny on the CIFAR100 dataset. The learning
rate of each algorithm was fixed at 0.001 with an initial learning rate 0.00001 and linear warmup
during 10 epochs. In Adam/SAM/GSAM, the batch size was fixed at 128. In Adam/SAM/GSAM +
increasing batch, the batch size was set at 64 for the first 25 epochs and then it was doubled every
25 epochs afterwards, i.e., to 128 for epochs 26-50, 256 for epochs 51-75, etc.
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Figure 4: (Left) Loss function value in training and (Right) accuracy score in testing for the algo-
rithms versus the number of epochs in training ViT-Tiny on the CIFAR100 dataset. The batch size
of each algorithm was fixed at 128. In Adam/SAM/GSAM, the constant learning rate was fixed
at 0.001 with an initial learning rate 0.00001 and linear warmup during the first 10 epochs. In
Adam/SAM/GSAM + Cosine, the maximum learning rate was 0.001 and the minimum learning rate
was 0.00001 with linear warmup during the first 10 epochs.

Table 3 summarizes the mean values of the test errors and the worst-case ℓ∞ adaptive sharpness
defined by (Andriushchenko et al., 2023b, (1)) for the parameters c = (1, 1, · · · , 1)⊤ and ρ =
0.0002 obtained by the algorithm after 100 epochs. The table indicates that SAM+B could avoid
local minima to which the algorithms using the cosine-annealing learning rate converged.

4 CONCLUSION

First we gave upper and lower bounds of the search direction noise of the GSAM algorithm for solv-
ing the SAM problem. Then, we examined the GSAM algorithm with two mini-batch and learning
rate schedulers based on the bounds: an increasing batch size and constant learning rate scheduler
and a constant batch size and decaying learning rate scheduler. We performed convergence analyses
on GSAM for the two schedulers. We also provided numerical results to support the analyses. The
numerical results showed that, compared with SGD/Adam, SAM/GSAM with an increasing batch
size and a constant learning rate converges to flatter local minima of the empirical loss functions for
ResNets and ViT-Tiny on the CIFAR100 dataset.
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Ahmed Khaled and Peter Richtárik. Better theory for SGD in the nonconvex world. Transactions
on Machine Learning Research, 2023.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings
of The International Conference on Learning Representations, 2015.

Seung Hoon Lee, Seunghyun Lee, and Byung Cheol Song. Vision transformer for small-size
datasets. CoRR, abs/2112.13492, 2021.

Bingcong Li and Georgios B. Giannakis. Enhancing sharpness-aware optimization through variance
suppression. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Tao Li, Pan Zhou, Zhengbao He, Xinwen Cheng, and Xiaolin Huang. Friendly sharpness-aware
minimization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2024.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. In International Conference on
Learning Representations, 2020.

Nicolas Loizou, Sharan Vaswani, Issam Laradji, and Simon Lacoste-Julien. Stochastic polyak step-
size for SGD: An adaptive learning rate for fast convergence. In Proceedings of the 24th Interna-
tional Conference on Artificial Intelligence and Statistics, volume 130, 2021.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In Inter-
national Conference on Learning Representations, 2017.

Peng Mi, Li Shen, Tianhe Ren, Yiyi Zhou, Xiaoshuai Sun, Rongrong Ji, and Dacheng Tao. Make
sharpness-aware minimization stronger: A sparsified perturbation approach. In Advances in Neu-
ral Information Processing Systems, 2022.
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A PROOFS OF THEOREMS 2.1 AND 2.2

A.1 PROPOSITIONS

We first give an upper bound of the variance of the stochastic gradient ∇fSt(x).
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Proposition A.1 Under Assumption 2.1, we have that, for all x ∈ Rd and all t ∈ N ∪ {0},

Eξt

[
∇fSt

(x)
∣∣∣ξ̂t−1

]
= ∇fS(x),

Vξt

[
∇fSt

(x)
∣∣∣ξ̂t−1

]
= Eξt

[
∥∇fSt

(x)−∇fS(x)∥22
∣∣∣ξ̂t−1

]
≤ σ2

bt
,

where Eξt
[·|ξ̂t−1] stands for the expectation with respect to ξt conditioned on ξt−1 = ξ̂t−1.

Proof: Let x ∈ Rd and t ∈ N ∪ {0}. Assumption 2.1(A3) ensures that

Eξt

[
∇fSt(x)

∣∣∣ξ̂t−1

]
= Eξt

 1

bt

∑
i∈[bt]

∇fξt,i(x)

∣∣∣∣∣ξ̂t−1

 =
1

bt

∑
i∈[bt]

Eξt,i

[
∇fξt,i(x)

∣∣∣ξ̂t−1

]
,

which, together with Assumption 2.1(A2)(i) and the independence of ξt and ξt−1, implies that

Eξt

[
∇fSt

(x)
∣∣∣ξ̂t−1

]
= ∇fS(x).

Assumption 2.1(A3) implies that

Vξt

[
∇fSt

(x)
∣∣∣ξ̂t−1

]
= Eξt

[
∥∇fSt

(x)−∇fS(x)∥22
∣∣∣ξ̂t−1

]
= Eξt


∥∥∥∥∥∥ 1bt

∑
i∈[bt]

∇fξt,i(x)−∇fS(x)

∥∥∥∥∥∥
2

2

∣∣∣∣∣ξ̂t−1


=

1

b2t
Eξt


∥∥∥∥∥∥
∑
i∈[bt]

(
∇fξt,i(x)−∇fS(x)

)∥∥∥∥∥∥
2

2

∣∣∣∣∣ξ̂t−1

 .

From the independence of ξt,i and ξt,j (i ̸= j), for all i, j ∈ [bt] with i ̸= j,

Eξt,i [⟨∇fξt,i(x)−∇fS(x),∇fξt,j (x)−∇fS(x)⟩2|ξ̂t−1]

= ⟨Eξt,i [∇fξt,i(x)|ξ̂t−1]− Eξt,i [∇fS(x)|ξ̂t−1],∇fξt,j (x)−∇fS(x)⟩2 = 0.

Hence, Assumption 2.1(A2)(ii) guarantees that

Vξt

[
∇fSt

(x)
∣∣∣ξ̂t−1

]
=

1

b2t

∑
i∈[bt]

Eξt,i

[∥∥∇fξt,i(x)−∇fS(x)
∥∥2
2

∣∣∣ξ̂t−1

]
≤ σ2bt

b2t
=

σ2

bt
,

which completes the proof. 2

We will use the following proposition to prove Theorem 2.1.

Proposition A.2 (Ortega & Rheinboldt, 2000, 3.2.6, (10)) Let f : Rd → R be twice differentiable.
Then, for all x,y ∈ Rd,

∇f(y) = ∇f(x) +

∫ 1

0

∇2f(x+ t(y − x))(y − x)dt.

A.2 PROOF OF THEOREM 2.1

We will use Propositions A.1 and A.2 to prove Theorem 2.1.
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Let t ∈ N ∪ {0} and b < n and suppose that xt generated by Algorithm 1 satisfies ∇fSt
(xt) ̸= 0

and ∇fS(xt) ̸= 0. Then, we have

∥ω̂t∥22 =
∥∥∥∇f̂SAM

St,ρ (xt)−∇f̂SAM
S,ρ (xt)

∥∥∥2
2

=
(7)

∥∥∥∥∇fSt

(
xt + ρ

∇fSt(xt)

∥∇fSt
(xt)∥2

)
−∇fS

(
xt + ρ

∇fS(xt)

∥∇fS(xt)∥2

)∥∥∥∥2
2

=

∥∥∥∥∥∇fSt(xt) +

∫ 1

0

∇2fSt

(
xt + ρs

∇fSt
(xt)

∥∇fSt(xt)∥2

)
ρ

∇fSt
(xt)

∥∇fSt(xt)∥2
ds

−
(
∇fS(xt) +

∫ 1

0

∇2fS

(
xt + ρs

∇fS(xt)

∥∇fS(xt)∥2

)
ρ

∇fS(xt)

∥∇fS(xt)∥2
ds

)∥∥∥∥∥
2

2

,

(20)

where the third equation comes from Proposition A.2. From ∥x + y∥22 ≤ 2∥x∥22 + 2∥y∥22 (x,y ∈
Rd), we have

∥ω̂t∥22 ≤ 2∥∇fSt(xt)−∇fS(xt)∥22

+ 4

∥∥∥∥∫ 1

0

∇2fSt

(
xt + ρs

∇fSt
(xt)

∥∇fSt
(xt)∥2

)
ρ

∇fSt
(xt)

∥∇fSt
(xt)∥2

ds

∥∥∥∥2
2

+ 4

∥∥∥∥∫ 1

0

∇2fS

(
xt + ρs

∇fS(xt)

∥∇fS(xt)∥2

)
ρ

∇fS(xt)

∥∇fS(xt)∥2
ds

∥∥∥∥2
2

,

which, together with the property of ∥ · ∥2, implies that

∥ω̂t∥22 ≤ 2∥∇fSt(xt)−∇fS(xt)∥22

+ 4

(
ρ

∫ 1

0

∥∥∥∥∇2fSt

(
xt + ρs

∇fSt(xt)

∥∇fSt
(xt)∥2

)∥∥∥∥
2

ds

)2

+ 4

(
ρ

∫ 1

0

∥∥∥∥∇2fS

(
xt + ρs

∇fS(xt)

∥∇fS(xt)∥2

)∥∥∥∥
2

ds

)2

.

(21)

Meanwhile, the triangle inequality and the Li–smoothness of fi (see (A1)) ensure that, for all x,y ∈
Rd,

∥∇fSt
(x)−∇fSt

(y)∥2 =

∥∥∥∥∥∥ 1bt
∑
i∈[bt]

(∇fξt,i(x)−∇fξt,i(y))

∥∥∥∥∥∥
2

≤ 1

bt

∑
i∈[bt]

∥∥∇fξt,i(x)−∇fξt,i(y)
∥∥
2

≤ 1

bt

∑
i∈[bt]

Lξt,i∥x− y∥2 ≤ 1

bt

∑
i∈[n]

Li∥x− y∥2,

which implies that, for all x ∈ Rd, ∥∇2fSt
(x)∥2 ≤ b−1

t

∑
i∈[n] Li. A discussion similar to the one

showing that ∇fSt
is b−1

t

∑
i∈[n] Li–smooth ensures that ∇fS is n−1

∑
i∈[n] Li–smooth, which in

turn implies that, for all x ∈ Rd, ∥∇2fS(x)∥2 ≤ n−1
∑

i∈[n] Li. Accordingly, (21) guarantees that

∥ω̂t∥22 ≤ 2∥∇fSt
(xt)−∇fS(xt)∥22 +

4ρ2

b2t

( ∑
i∈[n]

Li

)2

+
4ρ2

n2

( ∑
i∈[n]

Li

)2

. (22)

Taking the expectation with respect to ξt conditioned on ξt−1 = ξ̂t−1 on both sides of (22) ensures
that

Eξt
[∥ω̂t∥22|ξ̂t−1] ≤ 2Eξt

[∥∇fSt
(xt)−∇fS(xt)∥22|ξ̂t−1] +

4ρ2

b2t

( ∑
i∈[n]

Li

)2

+
4ρ2

n2

( ∑
i∈[n]

Li

)2

,

which, together with Proposition A.1, implies that

Eξt
[∥ω̂t∥22|ξ̂t−1] ≤

2σ2

bt
+

4ρ2

b2t

( ∑
i∈[n]

Li

)2

+
4ρ2

n2

( ∑
i∈[n]

Li

)2

.
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Since ξt is independent of ξt−1, we have

Eξt−1
Eξt

[∥ω̂t∥22] = Eξt−1
[Eξt

[∥ω̂t∥22|ξt−1]] ≤
2σ2

bt
+

4ρ2

b2t

( ∑
i∈[n]

Li

)2

+
4ρ2

n2

( ∑
i∈[n]

Li

)2

,

which, together with E = Eξ0
Eξ1

· · ·Eξt
, implies that

E[∥ω̂t∥22] ≤
2σ2

bt
+

4ρ2

b2t

( ∑
i∈[n]

Li

)2

+
4ρ2

n2

( ∑
i∈[n]

Li

)2

. (23)

Suppose that xt generated by Algorithm 1 satisfies either ∇fSt
(xt) = 0 or ∇fS(xt) = 0. Let

∇fSt
(xt) = 0. A discussion similar to the one obtaining (20) and (21), together with (7), ensures

that

∥ω̂t∥22 =
∥∥∥∇f̂SAM

St,ρ (xt)−∇f̂SAM
S,ρ (xt)

∥∥∥2
2

=

∥∥∥∥∇fSt
(xt + u)−∇fS

(
xt + ρ

∇fS(xt)

∥∇fS(xt)∥2

)∥∥∥∥2
2

=

∥∥∥∥∥∇fSt
(xt) +

∫ 1

0

∇2fSt
(xt + su)uds

−
(
∇fS(xt) +

∫ 1

0

∇2fS

(
xt + ρs

∇fS(xt)

∥∇fS(xt)∥2

)
ρ

∇fS(xt)

∥∇fS(xt)∥2
ds

)∥∥∥∥∥
2

2

,

which, together with ∥u∥2 ≤ ρ, implies that

∥ω̂t∥22 ≤ 2∥∇fSt
(xt)−∇fS(xt)∥22

+ 4

(
ρ

∫ 1

0

∥∥∇2fSt(xt + su)
∥∥
2
ds

)2

+ 4

(
ρ

∫ 1

0

∥∥∥∥∇2fS

(
xt + ρs

∇fS(xt)

∥∇fS(xt)∥2

)∥∥∥∥
2

ds

)2

.

Hence, the same discussion as in (22) leads to the finding that

∥ω̂t∥22 ≤ 2∥∇fSt
(xt)−∇fS(xt)∥22 +

4ρ2

b2t

( ∑
i∈[n]

Li

)2

+
4ρ2

n2

( ∑
i∈[n]

Li

)2

.

Accordingly, Proposition A.1 and a discussion similar to the one showing (23) imply that (23) holds
in the case of ∇fSt(xt) = 0. Moreover, it ensures that (23) holds in the case of ∇fS(xt) = 0.
Therefore, we have

E[∥ω̂t∥2] ≤

√√√√2σ2

bt
+

4ρ2

b2t

( ∑
i∈[n]

Li

)2

+
4ρ2

n2

( ∑
i∈[n]

Li

)2

. (24)

We reach the desired result for when bt < n in Theorem 2.1 from ∥ωt∥2 ≤ ∥ω̂t∥2 + |α|G⊥ and
(24). We reach the desired result for when bt = n from ∥ω̂t∥22 = 0. This completes the proof. 2

A.3 PROOF OF THEOREM 2.2

Let t ∈ N ∪ {0} and b < n and suppose that xt generated by Algorithm 1 satisfies ∇fSt(xt) ̸= 0
and ∇fS(xt) ̸= 0. From |α|∥∇fSt⊥(xt)∥2 ≤ ∥ω̂t∥2, we have

∥ωt∥2 ≥ ∥ω̂t∥2 − |α|∥∇fSt⊥(xt)∥2 ≥ ∥ω̂t∥2 − |α|G⊥.

From (20), we have

∥ω̂t∥2 =
∥∥∥∇f̂SAM

St,ρ (xt)−∇f̂SAM
S,ρ (xt)

∥∥∥
2
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≥

∣∣∣∣∣∥∇fSt(xt)−∇fS(xt)∥2 −

∥∥∥∥∥
∫ 1

0

∇2fSt

(
xt + ρs

∇fSt(xt)

∥∇fSt
(xt)∥2

)
ρ

∇fSt(xt)

∥∇fSt
(xt)∥2

ds

−
∫ 1

0

∇2fS

(
xt + ρs

∇fS(xt)

∥∇fS(xt)∥2

)
ρ

∇fS(xt)

∥∇fS(xt)∥2
ds

∥∥∥∥∥
2

∣∣∣∣∣ =: |At|. (25)

When At ≥ 0,

∥ω̂t∥2 ≥ ∥∇fSt
(xt)−∇fS(xt)∥2 −

∥∥∥∥∥
∫ 1

0

∇2fSt

(
xt + ρs

∇fSt(xt)

∥∇fSt
(xt)∥2

)
ρ

∇fSt(xt)

∥∇fSt
(xt)∥2

ds

−
∫ 1

0

∇2fS

(
xt + ρs

∇fS(xt)

∥∇fS(xt)∥2

)
ρ

∇fS(xt)

∥∇fS(xt)∥2
ds

∥∥∥∥∥
2

≥ ∥∇fSt
(xt)−∇fS(xt)∥2 − ρ

(
1

bt
+

1

n

) ∑
i∈[n]

Li,

where the second inequality comes from (21) and (22). A similar discussion to the one in (23),
together with Proposition A.1, implies that there exists ct ∈ [0, 1] such that

E[∥ω̂t∥2] ≥
ctσ√
bt

− ρ

(
1

bt
+

1

n

) ∑
i∈[n]

Li.

Accordingly, we have

E[∥ωt∥2] ≥
ctσ√
bt

− ρ

(
1

bt
+

1

n

) ∑
i∈[n]

Li − |α|G⊥. (26)

Furthermore, when At < 0, we have

∥ω̂t∥2 ≥

∥∥∥∥∥
∫ 1

0

∇2fSt

(
xt + ρs

∇fSt
(xt)

∥∇fSt(xt)∥2

)
ρ

∇fSt
(xt)

∥∇fSt(xt)∥2
ds

−
∫ 1

0

∇2fS

(
xt + ρs

∇fS(xt)

∥∇fS(xt)∥2

)
ρ

∇fS(xt)

∥∇fS(xt)∥2
ds

∥∥∥∥∥
2

− ∥∇fSt
(xt)−∇fS(xt)∥2

≥

∣∣∣∣∣
∥∥∥∥∥
∫ 1

0

∇2fSt

(
xt + ρs

∇fSt(xt)

∥∇fSt
(xt)∥2

)
ρ

∇fSt(xt)

∥∇fSt
(xt)∥2

ds

∥∥∥∥∥
2

−

∥∥∥∥∥
∫ 1

0

∇2fS

(
xt + ρs

∇fS(xt)

∥∇fS(xt)∥2

)
ρ

∇fS(xt)

∥∇fS(xt)∥2
ds

∥∥∥∥∥
2

∣∣∣∣∣− ∥∇fSt(xt)−∇fS(xt)∥2,

which, together with (21) and (22), implies that there exists dt ∈ (0, 1] such that

∥ω̂t∥2 ≥ ρ

(
dt
bt

− 1

n

) ∑
i∈[n]

Li − ∥∇fSt
(xt)−∇fS(xt)∥2.

A similar discussion to the one in (23), together with Proposition A.1, implies that

E[∥ω̂t∥2] ≥ ρ

(
dt
bt

− 1

n

) ∑
i∈[n]

Li −
σ√
bt
.

Hence,

E[∥ωt∥2] ≥ ρ

(
dt
bt

− 1

n

) ∑
i∈[n]

Li −
σ√
bt

− |α|G⊥. (27)

Suppose that xt generated by Algorithm 1 satisfies ∇fSt
(xt) = 0 or ∇fS(xt) = 0. Then, a

discussion similar to the one proving Theorem 2.1 under ∇fSt
(xt) = 0 ∨ ∇fS(xt) = 0 ensures

that (26) and (27) hold. When bt = n, we have ωt = ∇f̂SAM
S,ρ (xt)−∇f̂SAM

S,ρ (xt) + α∇fS⊥(xt) =

α∇fS⊥(xt), which implies that E[∥ωt∥2] = |α|E[∥∇fS⊥(xt)∥2]. 2
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B GENERAL CONVERGENCE ANALYSIS OF GSAM AND ITS PROOF

Theorem B.1 (ϵ–approximation of GSAM with an increasing batch size and decaying learning rate)
Consider the sequence (xt) generated by the mini-batch GSAM algorithm (Algorithm 1) with an
increasing batch size bt ∈ (0, n] and a decaying learning rate ηt ∈ [η, η] ⊂ [0,+∞) satisfying that
there exist positive numbers H1(η, η), H2(η, η), and H3(η, η) such that, for all T ≥ 1,

T∑T−1
t=0 ηt

≤ H1(η, η) and
∑T−1

t=0 η2t∑T−1
t=0 ηt

≤ H2(η, η) +
H3(η, η)

T
. (28)

Let us assume that there exists a positive number G such that max{supt∈N∪{0} ∥∇fS(xt +

ϵ̂St,ρ(xt))∥2, supt∈N∪{0} ∥∇f̂SAM
St,ρ

(xt)∥2, supt∈N∪{0} ∥∇f̂SAM
S,ρ (xt)∥2, G⊥} ≤ G, where G⊥ :=

supt∈N∪{0} ∥∇fSt⊥(xt)∥2 < +∞ (Theorem 2.1). Let ϵ > 0 be the precision and let b0 > 0,
α ∈ R, and ρ ≥ 0 such that

H1 ≤ ϵ2

12σC

 ρG√
b0

+
3σ

nb0

∑
i∈[n]

Li

−1

, (|α|+ 1)2H2 ≤ n3ϵ2

6G2
∑

i∈[n] Li{n2 + 4C(
∑

i∈[n] Li)2}
,

ρ(|α|+ 1) ≤ n
√
b0ϵ

2

6G(
∑

i∈[n] Li)(CG
√
b0 +Bσ)

, ρ2 ≤ n2b20ϵ
4

168G2(n2 + b20)(
∑

i∈[n] Li)2
, (29)

where B and C are nonnegative constants. Then, there exists t0 ∈ N such that, for all T ≥ t0,

min
t∈[0:T−1]

E
[∥∥∥∇f̂SAM

S,ρ (xt)
∥∥∥
2

]
≤ ϵ.

Let us start with a brief outline of the proof strategy of Theorem B.1, with an emphasis on the main
difficulty that has to be overcome. The flow of our proof is almost the same in Theorem 5.1 of
(Zhuang et al., 2022), indicating that GSAM using a decaying learning rate, ηt = η0/

√
t, and a

perturbation amplitude, ρt = ρ0/
√
t, proportional to ηt satisfies

1

T

T∑
t=1

E
[∥∥∥∇f̂SAM

S,ρt
(xt)

∥∥∥2
2

]
≤ C1 + C2 log T√

T
,

where C1 and C2 are positive constants. First, from the smoothness condition (A1) of fS and the
descent lemma, we prove the inequality (Proposition B.1) that is satisfied for GSAM. Next, us-
ing the Cauchy–Schwarz inequality and the triangle inequality, we provide upper bounds of the
terms Xt (Proposition B.2), Yt (Proposition B.3), and Zt (Proposition B.4) in Proposition B.1. The
main issue in Theorem B.1 is to evaluate the full gradient ∇f̂SAM

S,ρ (xt) using the mini-batch gra-
dient ∇f̂SAM

St,ρ
(xt). The difficulty comes from the fact that the unbiasedness of ∇f̂SAM

St,ρ
(xt) does

not hold (i.e., E[∇f̂SAM
St,ρ

(xt)] ̸= ∇f̂SAM
S,ρ (xt), although (A2)(i) holds). However, we can resolve

this issue using Theorem 2.1. In fact, in order to evaluate the upper bound of Xt, we can use
Theorem 2.1 indicating the upper bound of ∥ω̂t∥2 = ∥∇f̂SAM

S,ρ (xt) − ∇f̂SAM
St,ρ

(xt)∥2. Another
issue that has to be overcome in order to prove Theorem B.1 is to evaluate the upper bound of
mint∈[0:T−1] E[∥∇f̂SAM

S,ρ (xt)∥22] using a learning rate ηt ∈ [η, η]. We can resolve this issue by us-
ing mint∈[0:T−1] E[∥∇f̂SAM

S,ρ (xt)∥22] ≤
∑T−1

t=0 ηtE[∥∇f̂SAM
S,ρ (xt)∥22]/

∑T−1
t=0 ηt. As a result, we can

provide an upper bound of mint∈[0:T−1] E[∥∇f̂SAM
S,ρ (xt)∥22]. Finally, we set H1, H2, α, and ρ such

that the upper bound of mint∈[0:T−1] E[∥∇f̂SAM
S,ρ (xt)∥22] is less than or equal to ϵ2.

B.1 LEMMA AND PROPOSITIONS

The following lemma, called the descent lemma, holds.
Lemma B.1 (Descent lemma) (Beck, 2017, Lemma 5.7) Let f : Rd → R be L–smooth. Then, we
have that, for all x,y ∈ Rd,

f(y) ≤ f(x) + ⟨∇f(x),y − x⟩2 +
L

2
∥y − x∥22.

18
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Lemma B.1 leads to the following proposition.
Proposition B.1 Under Assumption 2.1, we have that, for all t ∈ N ∪ {0},

fS(xt+1 + ϵ̂St+1,ρ(xt+1))

≤ fS(xt + ϵ̂St,ρ(xt))

+ ηt ⟨∇fS(xt + ϵ̂St,ρ(xt)),dt⟩2︸ ︷︷ ︸
Xt

+
〈
∇fS(xt + ϵ̂St,ρ(xt)), ϵ̂St+1,ρ(xt+1)− ϵ̂St,ρ(xt)

〉
2︸ ︷︷ ︸

Yt

+

∑
i∈[n] Li

n

{
η2t ∥dt∥22 +

∥∥ϵ̂St+1,ρ(xt+1)− ϵ̂St,ρ(xt)
∥∥2
2

}
︸ ︷︷ ︸

Zt

.

Proof of Proposition B.1: The Li–smoothness (A1) of fi and the definition of fS ensure that, for all
x,y ∈ Rd,

∥∇fS(x)−∇fS(y)∥2 =

∥∥∥∥∥∥ 1n
∑
i∈[n]

(∇fi(x)−∇fi(y))

∥∥∥∥∥∥
2

≤ 1

n

∑
i∈[n]

∥∇fi(x)−∇fi(y)∥2

≤ 1

n

∑
i∈[n]

Li∥x− y∥2,

which implies that fS is (1/n)
∑

i∈[n] Li–smooth. Lemma B.1 thus guarantees that, for all t ∈
N ∪ {0},

fS(xt+1 + ϵ̂St+1,ρ(xt+1))

≤ fS(xt + ϵ̂St,ρ(xt)) +
〈
∇fS(xt + ϵ̂St,ρ(xt)), (xt+1 − xt) + (ϵ̂St+1,ρ(xt+1)− ϵ̂St,ρ(xt))

〉
2

+

∑
i∈[n] Li

2n

∥∥(xt+1 − xt) + (ϵ̂St+1,ρ(xt+1)− ϵ̂St,ρ(xt))
∥∥2
2
,

which, together with ∥x+ y∥22 ≤ 2(∥x∥22 + ∥y∥22) and xt+1 − xt = ηtdt, implies that

fS(xt+1 + ϵ̂St+1,ρ(xt+1))

≤ fS(xt + ϵ̂St,ρ(xt))

+ ηt ⟨∇fS(xt + ϵ̂St,ρ(xt)),dt⟩2 + ⟨∇fS(xt + ϵ̂St,ρ(xt)), ϵ̂St+1,ρ(xt+1)− ϵ̂St,ρ(xt)⟩2

+

∑
i∈[n] Li

n

{
η2t ∥dt∥22 +

∥∥ϵ̂St+1,ρ(xt+1)− ϵ̂St,ρ(xt)
∥∥2
2

}
,

which completes the proof. 2

Using Theorem 2.1, we provide an upper bound of E[Xt].
Proposition B.2 Suppose that Assumption 2.1 holds and there exist G > 0 and
G⊥ > 0 such that max{supt∈N∪{0} ∥∇f̂SAM

St,ρ
(xt)∥2, supt∈N∪{0} ∥∇f̂SAM

S,ρ (xt)∥2} ≤ G and
supt∈N∪{0} ∥∇fSt⊥(xt)∥2 ≤ G⊥. Then, for all t ∈ N ∪ {0},

E[Xt] ≤ −E
[∥∥∥∇f̂SAM

S,ρ (xt)
∥∥∥2
2

]
+G

√√√√4ρ2
(

1

b2t
+

1

n2

)( ∑
i∈[n]

Li

)2
+ 2σ2

t

+ (G+ |α|G⊥)
ρBσ

n
√
bt

∑
i∈[n]

Li,

where σ2
t := E[∥∇fSt

(xt)−∇fS(xt)∥22] ≤ σ2/bt and B ≥ 0 is a constant.

Proof: Let t ∈ N∪{0} and bt < n. The definition of dt = −(∇f̂SAM
St,ρ

(xt)−α∇fSt⊥(xt)) implies
that

Xt = −
〈
∇fS(xt + ϵ̂St,ρ(xt)),∇f̂SAM

St,ρ (xt)
〉
2︸ ︷︷ ︸

Xt,1

+α ⟨∇fS(xt + ϵ̂St,ρ(xt)),∇fSt⊥(xt)⟩2︸ ︷︷ ︸
Xt,2

. (30)
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Then, we have

Xt,1 = −
{∥∥∥∇f̂SAM

S,ρ (xt)
∥∥∥2
2
+
〈
∇fS(xt + ϵ̂St,ρ(xt))−∇f̂SAM

S,ρ (xt),∇f̂SAM
St,ρ (xt)

〉
2

+
〈
∇f̂SAM

S,ρ (xt),∇f̂SAM
St,ρ (xt)−∇f̂SAM

S,ρ (xt)︸ ︷︷ ︸
−ω̂t

〉
2

}

≤ −
∥∥∥∇f̂SAM

S,ρ (xt)
∥∥∥2
2
+
∥∥∥∇fS(xt + ϵ̂St,ρ(xt))−∇f̂SAM

S,ρ (xt)
∥∥∥
2︸ ︷︷ ︸

Xt,3

∥∥∥∇f̂SAM
St,ρ (xt)

∥∥∥
2

+
∥∥∥∇f̂SAM

S,ρ (xt)
∥∥∥
2
∥ω̂t∥2,

(31)

where the second inequality comes from the Cauchy–Schwarz inequality. Suppose that ∇fSt
(xt) ̸=

0 and ∇fS(xt) ̸= 0. The (1/n)
∑

i∈[n] Li–smoothness of fS implies that

Xt,3 =

∥∥∥∥∇fS

(
xt + ρ

∇fSt
(xt)

∥∇fSt
(xt)∥2

)
−∇fS

(
xt + ρ

∇fS(xt)

∥∇fS(xt)∥2

)∥∥∥∥
2

≤ ρ

n

∑
i∈[n]

Li

∥∥∥∥ ∇fSt
(xt)

∥∇fSt(xt)∥2
− ∇fS(xt)

∥∇fS(xt)∥2

∥∥∥∥
2

.

The discussion in (Zhuang et al., 2022, Pages 15 and 16) implies there exists Bt ≥ 0 such that∥∥∥∥ ∇fSt
(xt)

∥∇fSt(xt)∥2
− ∇fS(xt)

∥∇fS(xt)∥2

∥∥∥∥
2

≤ Bt ∥∇fSt(xt)−∇fS(xt)∥2 (32)

Let B := supt∈N∪{0} Bt. Then, Proposition A.1 ensures that

E[Xt,3] ≤
ρBσ

n
√
bt

∑
i∈[n]

Li. (33)

Suppose that ∇fSt(xt) = 0 or ∇fS(xt) = 0. Let ∇fSt(xt) = 0. The (1/n)
∑

i∈[n] Li–
smoothness of fS ensures that

Xt,3 =

∥∥∥∥∇fS (xt + u)−∇fS

(
xt + ρ

∇fS(xt)

∥∇fS(xt)∥2

)∥∥∥∥
2

≤ 1

n

∑
i∈[n]

Li

∥∥∥∥u− ρ
∇fS(xt)

∥∇fS(xt)∥2

∥∥∥∥
2

,

which, together with ∥u∥2 ≤ ρ, implies there exists Ct ≥ 0 such that

Xt,3 ≤ ρCt

n

∑
i∈[n]

Li

∥∥∥∥ ∇fSt
(xt)

∥∇fSt(xt)∥2
− ∇fS(xt)

∥∇fS(xt)∥2

∥∥∥∥
2

Hence, Proposition A.1 implies that (33) holds. A discussion similar to the case where ∇fSt
(xt) =

0 ensures that (33) holds for ∇fS(xt) = 0. Taking the total expectation on both sides of (31),
together with (33) and Theorem 2.1, yields

E[Xt,1] ≤ −E
[∥∥∥∇f̂SAM

S,ρ (xt)
∥∥∥2
2

]
+G

√√√√4ρ2
(

1

b2t
+

1

n2

)( ∑
i∈[n]

Li

)2
+ 2σ2

t

+
ρBGσ

n
√
bt

∑
i∈[n]

Li. (34)

The Cauchy–Schwarz inequality implies that

Xt,2 = α
〈
∇fS(xt + ϵ̂St,ρ(xt))−∇f̂SAM

S,ρ (xt) +∇f̂SAM
S,ρ (xt),∇fSt⊥(xt)

〉
2

≤ |α|Xt,3 ∥∇fSt⊥(xt)∥2 + α
〈
∇f̂SAM

S,ρ (xt),∇fSt⊥(xt)
〉
2
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≤ |α|G⊥Xt,3 + α
〈
∇f̂SAM

S,ρ (xt),∇fSt⊥(xt)
〉
2
,

which, together with Eξt
[∇fSt⊥(xt)|ξt−1] = ∇fS⊥(xt), ⟨∇f̂SAM

S,ρ (xt),∇fS⊥(xt)⟩2 = 0, and
(33), implies that

E[Xt,2] ≤
|α|ρBG⊥σ

n
√
bt

∑
i∈[n]

Li. (35)

Accordingly, (30), (34), and (35) guarantee that

E[Xt] ≤ −E
[∥∥∥∇f̂SAM

S,ρ (xt)
∥∥∥2
2

]
+G

√√√√4ρ2
(

1

b2t
+

1

n2

)( ∑
i∈[n]

Li

)2
+ 2σ2

t

+ (G+ |α|G⊥)
ρBσ

n
√
bt

∑
i∈[n]

Li,

which completes the proof. 2

Proposition B.3 Suppose that the assumptions in Proposition B.2 hold
and there exists G > 0 such that max{supt∈N∪{0} ∥∇fS(xt +

ϵ̂St,ρ(xt))∥2, supt∈N∪{0} ∥∇f̂SAM
St,ρ

(xt)∥2, supt∈N∪{0} ∥∇f̂SAM
S,ρ (xt)∥2, G⊥} ≤ G. Then, for

all t ∈ N ∪ {0},

E[Yt] ≤ ρCG

ηt(|α|+ 1)G

n

∑
i∈[n]

Li +
2σ√
bt

 ,

where C ≥ 0 is a constant.

Proof: Let t ∈ N ∪ {0}. The Cauchy–Schwarz inequality ensures that

Yt ≤ G
∥∥ϵ̂St+1,ρ(xt+1)− ϵ̂St,ρ(xt)

∥∥
2
=: GYt,1. (36)

Suppose that ∇fSt+1
(xt+1) ̸= 0 and ∇fSt

(xt) ̸= 0. The discussion in (Zhuang et al., 2022, Pages
15 and 16) (see (32)) implies that there exists Ct ≥ 0 such that

Yt,1 = ρ

∥∥∥∥ ∇fSt+1
(xt+1)

∥∇fSt+1
(xt+1)∥2

− ∇fSt(xt)

∥∇fSt
(xt)∥2

∥∥∥∥
2

≤ ρCt

∥∥∇fSt+1(xt+1)−∇fSt(xt)
∥∥
2
. (37)

Let C := supt∈N∪{0} Ct. The triangle inequality gives∥∥∇fSt+1
(xt+1)−∇fSt

(xt)
∥∥
2

≤
∥∥∇fSt+1(xt+1)−∇fS(xt+1)

∥∥
2
+ ∥∇fS(xt+1)−∇fS(xt)∥2 + ∥∇fS(xt)−∇fSt(xt)∥2 ,

which, together with the (1/n)
∑

i∈[n] Li–smoothness of fS , xt+1 − xt = ηtdt, (36), and (37),
implies that

Yt,1 ≤ ρC

ηt
n

∑
i∈[n]

Li∥dt∥2 +
∥∥∇fSt+1(xt+1)−∇fS(xt+1)

∥∥
2
+ ∥∇fSt(xt)−∇fS(xt)∥2

 .

Moreover, the Cauchy–Schwarz inequality and the definitions of G and G⊥ ensure that

∥dt∥22 =
∥∥∥∇f̂SAM

St,ρ (xt)− α∇fSt⊥(xt)
∥∥∥2
2

=
∥∥∥∇f̂SAM

St,ρ (xt)
∥∥∥2
2
− 2α

〈
∇f̂SAM

St,ρ (xt),∇fSt⊥(xt)
〉
2
+ |α|2 ∥∇fSt⊥(xt)∥22

≤ G2 + 2|α|GG⊥ + |α|2G2
⊥ ≤ (|α|+ 1)2G2.

(38)

Accordingly, we have

Yt,1 ≤ ρC

ηt(|α|+ 1)G

n

∑
i∈[n]

Li +
∥∥∇fSt+1(xt+1)−∇fS(xt+1)

∥∥
2
+ ∥∇fSt(xt)−∇fS(xt)∥2

 ,
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which, together with Proposition A.1, guarantees that

E[Yt,1] ≤ ρC

ηt(|α|+ 1)G

n

∑
i∈[n]

Li +
2σ√
bt

 . (39)

Hence, from (36),

E[Yt] ≤ ρCG

ηt(|α|+ 1)G

n

∑
i∈[n]

Li +
2σ√
bt

 .

We can show that Proposition B.3 holds for the case where ∇fSt+1(xt+1) = 0 or ∇fSt(xt) = 0 by
proving Proposition B.2. 2

Proposition B.4 Suppose that the assumptions in Proposition B.3 hold. Then, for all t ∈ N ∪ {0},

E[Zt] ≤ η2t (|α|+ 1)2G2

1 +
4C

n2

( ∑
i∈[n]

Li

)2
+

6Cσ2

bt
.

Proof: Let t ∈ N ∪ {0}. From (38), we have

η2tE[∥dt∥2] ≤ η2t (|α|+ 1)2G2.

Suppose that ∇fSt+1
(xt+1) ̸= 0 and ∇fSt

(xt) ̸= 0. Then, from ∥x+ y∥22 ≤ 2(∥x∥22 + ∥y∥22),∥∥∇fSt+1
(xt+1)−∇fSt

(xt)
∥∥2
2

≤ 2
∥∥∇fSt+1

(xt+1)−∇fS(xt+1)
∥∥2
2
+ 4 ∥∇fS(xt+1)−∇fS(xt)∥22 + 4 ∥∇fS(xt)−∇fSt

(xt)∥22 .

A discussion similar to the one showing (39) ensures that

E[Y 2
t,1] = E

[∥∥ϵ̂St+1,ρ(xt+1)− ϵ̂St,ρ(xt)
∥∥2
2

]
≤ 2C

2η2t (|α|+ 1)2G2

n2

( ∑
i∈[n]

Li

)2

+
3σ2

bt

 .

The above inequality holds for the case where ∇fSt+1(xt+1) = 0 or ∇fSt(xt) = 0 by an argument
similar to the one used to prove Proposition B.2. Hence,

E[Zt] ≤ η2t (|α|+ 1)2G2 + 2C

2η2t (|α|+ 1)2G2

n2

( ∑
i∈[n]

Li

)2

+
3σ2

bt


= η2t (|α|+ 1)2G2

1 +
4C

n2

( ∑
i∈[n]

Li

)2
+

6Cσ2

bt
,

which completes the proof. 2

Proof of Theorem B.1: Let us define Fρ(t) := fS(xt + ϵ̂St,ρ(xt)). From Proposition B.1, Proposi-
tion B.2, Proposition B.3, and Proposition B.4, for all t ∈ N ∪ {0}, we have

E[Fρ(t+ 1)] ≤ E[Fρ(t)] + ηtE[Xt] + E[Yt] +

∑
i∈[n] Li

n
E[Zt]

≤ E[Fρ(t)]− ηtE
[∥∥∥∇f̂SAM

S,ρ (xt)
∥∥∥2
2

]
+ ηtG

√√√√4ρ2
(

1

b2t
+

1

n2

)( ∑
i∈[n]

Li

)2

+ 2σ2
t

+ ηt(|α|+ 1)
ρBGσ

n
√
bt

∑
i∈[n]

Li + ρCG

ηt(|α|+ 1)G

n

∑
i∈[n]

Li +
2σ√
bt


22
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+

∑
i∈[n] Li

n

η2t (|α|+ 1)2G2

1 +
4C

n2

( ∑
i∈[n]

Li

)2
+

6Cσ2

bt

 ,

which implies that

ηtE
[∥∥∥∇f̂SAM

S,ρ (xt)
∥∥∥2
2

]
≤ (E[Fρ(t)]− E[Fρ(t+ 1)]) + 2σC

 ρG√
bt

+
3σ

nbt

∑
i∈[n]

Li


+

η2t (|α|+ 1)2G2

n

∑
i∈[n]

Li

1 +
4C

n2

( ∑
i∈[n]

Li

)2


+ ηtG

√√√√4ρ2
(

1

b2t
+

1

n2

)( ∑
i∈[n]

Li

)2
+ 2σ2

t

+ ηt
ρ(|α|+ 1)G

n

∑
i∈[n]

Li

(
CG+

Bσ√
bt

)
.

(40)

Let ϵ > 0. From g(bt) = σ2
t := E[∥∇fSt

(xt)−∇fS(xt)∥22] ≤ σ2/bt (t ∈ N∪{0}) (see Proposition
A.1 and (Freund, 1971, Theorem 8.6)) and g(n) = 0, the sequence (bt) of increasing batch sizes
implies that there exists t0 ∈ N such that, for all t ≥ t0,

2σ2
t ≤ ϵ4

49G2
.

Let T ≥ t0 + 1. Summing the above inequality from t = 0 to t = T − 1, together with b0 ≤ bt and
ηt ≤ η (t ∈ N ∪ {0}), ensures that

T−1∑
t=0

ηtE
[∥∥∥∇f̂SAM

S,ρ (xt)
∥∥∥2
2

]
≤ (E[Fρ(0)]− f⋆

S) + 2σC

 ρG√
b0

+
3σ

nb0

∑
i∈[n]

Li

T

+
(|α|+ 1)2G2

n

∑
i∈[n]

Li

1 +
4C

n2

( ∑
i∈[n]

Li

)2


T−1∑
t=0

η2t

+G

√√√√4ρ2
(

1

b20
+

1

n2

)( ∑
i∈[n]

Li

)2
+

2σ2

b0
t0η

+G

√√√√4ρ2
(

1

b20
+

1

n2

)( ∑
i∈[n]

Li

)2
+

ϵ4

49G2

T−1∑
t=t0

ηt

+
ρ(|α|+ 1)G

n

∑
i∈[n]

Li

(
CG+

Bσ√
b0

) T−1∑
t=0

ηt,

where f⋆
S is the minimum value of fS over Rd. Since we have that

min
t∈[0:T−1]

E
[∥∥∥∇f̂SAM

S,ρ (xt)
∥∥∥2
2

]
≤

∑T−1
t=0 ηtE

[∥∥∥∇f̂SAM
S,ρ (xt)

∥∥∥2
2

]
∑T−1

t=0 ηt
,

we also have that

min
t∈[0:T−1]

E
[∥∥∥∇f̂SAM

S,ρ (xt)
∥∥∥2
2

]
≤ E[Fρ(0)]− f⋆

S∑T−1
t=0 ηt

+ 2σC

 ρG√
b0

+
3σ

nb0

∑
i∈[n]

Li

 T∑T−1
t=0 ηt

+
(|α|+ 1)2G2

n

∑
i∈[n]

Li

1 +
4C

n2

( ∑
i∈[n]

Li

)2

∑T−1

t=0 η2t∑T−1
t=0 ηt
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+G

√√√√4ρ2
(

1

b20
+

1

n2

)( ∑
i∈[n]

Li

)2
+

2σ2

b0

t0η∑T−1
t=0 ηt

+G

√√√√4ρ2
(

1

b20
+

1

n2

)( ∑
i∈[n]

Li

)2
+

ϵ4

49G2

+
ρ(|α|+ 1)G

n

∑
i∈[n]

Li

(
CG+

Bσ√
b0

)
. (41)

From (28), i.e.,

T∑T−1
t=0 ηt

≤ H1(η, η) and
∑T−1

t=0 η2t∑T−1
t=0 ηt

≤ H2(η, η) +
H3(η, η)

T
,

we have that

min
t∈[0:T−1]

E
[∥∥∥∇f̂SAM

S,ρ (xt)
∥∥∥2
2

]

≤ H1(E[Fρ(0)]− f⋆
S)

T
+GH1

√√√√4ρ2
(

1

b20
+

1

n2

)( ∑
i∈[n]

Li

)2
+

2σ2

b0

t0η

T︸ ︷︷ ︸
U1≤ ϵ2

6

+
(|α|+ 1)2G2

n

∑
i∈[n]

Li

1 +
4C

n2

( ∑
i∈[n]

Li

)2
 H3

T︸ ︷︷ ︸
U2≤ ϵ2

6

+

 ρG√
b0

+
3σ

nb0

∑
i∈[n]

Li

 2σCH1︸ ︷︷ ︸
U3≤ ϵ2

6

+
(|α|+ 1)2G2H2

n

∑
i∈[n]

Li

1 +
4C

n2

( ∑
i∈[n]

Li

)2
︸ ︷︷ ︸

U4≤ ϵ2

6

+
ρ(|α|+ 1)G

n

∑
i∈[n]

Li

(
CG+

Bσ√
b0

)
︸ ︷︷ ︸

U5≤ ϵ2

6

+G

√√√√4ρ2
(

1

b20
+

1

n2

)( ∑
i∈[n]

Li

)2
+

ϵ4

49G2︸ ︷︷ ︸
U6≤ ϵ2

6

.

It is guaranteed that there exists t1 ∈ N such that, for all T ≥ max{t0, t1}, U1 ≤ ϵ2

6 and U2 ≤ ϵ2

6 .
Moreover, if (29) holds, i.e.,

H1 ≤ ϵ2

12σC

 ρG√
b0

+
3σ

nb0

∑
i∈[n]

Li

−1

, (|α|+ 1)2H2 ≤ n3ϵ2

6G2
∑

i∈[n] Li{n2 + 4C(
∑

i∈[n] Li)2}
,

ρ(|α|+ 1) ≤ n
√
b0ϵ

2

6G(
∑

i∈[n] Li)(CG
√
b0 +Bσ)

, ρ2 ≤ n2b20ϵ
4

168G2(n2 + b20)(
∑

i∈[n] Li)2
,

then Ui ≤ ϵ2

6 (i = 3, 4, 5, 6), i.e.,

min
t∈[0:T−1]

E
[∥∥∥∇f̂SAM

S,ρ (xt)
∥∥∥
2

]
≤ ϵ. (42)

This completes the proof. 2
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B.2 PROOF OF THEOREM 2.3

Let ηt = η > 0. Then, we have

T∑T−1
t=0 ηt

=
1

η
=: H1 and

∑T−1
t=0 η2t∑T−1
t=0 ηt

= η =: H2,

which implies that (28) with H3 = 0 holds. Hence, from (29), the assertion in Theorem 2.3 holds.
2

B.3 PROOF OF THEOREM 2.4

We can prove the following corollary by using Theorem B.1.
Corollary B.1 (ϵ–approximation of GSAM with a constant batch size and decaying learning rate)
Consider the sequence (xt) generated by the mini-batch GSAM algorithm (Algorithm 1) with a
constant batch size b ∈ (0, n] and a decaying learning rate ηt ∈ [η, η] ⊂ [0,+∞) satisfying
that there exist positive numbers H1(η, η), H2(η, η), and H3(η, η) such that, for all T ≥ 1, (28)
holds. We will assume that there exists a positive number G such that max{supt∈N∪{0} ∥∇fS(xt +

ϵ̂St,ρ(xt))∥2, supt∈N∪{0} ∥∇f̂SAM
St,ρ

(xt)∥2, supt∈N∪{0} ∥∇f̂SAM
S,ρ (xt)∥2, G⊥} ≤ G, where

G⊥ := supt∈N∪{0} ∥∇fSt⊥(xt)∥2 < +∞ (Theorem 2.1). Let ϵ > 0 be the precision and let
b0 > 0, α ∈ R, and ρ ≥ 0 such that

H1 ≤ ϵ2

12σC

ρG√
b
+

3σ

nb

∑
i∈[n]

Li

−1

, (|α|+ 1)2H2 ≤ n3ϵ2

6G2
∑

i∈[n] Li{n2 + 4C(
∑

i∈[n] Li)2}
,

ρ(|α|+ 1) ≤ n
√
bϵ2

6G(
∑

i∈[n] Li)(CG
√
b+Bσ)

, ρ2 ≤ n2b2ϵ4

168G2(n2 + b2)(
∑

i∈[n] Li)2
, (43)

where B and C are nonnegative constants. Then, there exists t0 ∈ N such that, for all T ≥ t0,

min
t∈[0:T−1]

E
[∥∥∥∇f̂SAM

S,ρ (xt)
∥∥∥
2

]
≤ ϵ.

Proof: Let bt = b (t ∈ N ∪ {0}). Using inequality (40) that was used to prove Theorem B.1, we
have that, for all t ∈ N ∪ {0},

ηtE
[∥∥∥∇f̂SAM

S,ρ (xt)
∥∥∥2
2

]
≤ (E[Fρ(t)]− E[Fρ(t+ 1)]) + 2σC

ρG√
b
+

3σ

nb

∑
i∈[n]

Li


+

η2t (|α|+ 1)2G2

n

∑
i∈[n]

Li

1 +
4C

n2

( ∑
i∈[n]

Li

)2


+ ηtG

√√√√4ρ2
(

1

b2
+

1

n2

)( ∑
i∈[n]

Li

)2
+ 2σ2

t

+ ηt
ρ(|α|+ 1)G

n

∑
i∈[n]

Li

(
CG+

Bσ√
b

)
,

which, together with a discussion similar to the one showing (41), implies that, for all T ≥ 1,

min
t∈[0:T−1]

E
[∥∥∥∇f̂SAM

S,ρ (xt)
∥∥∥2
2

]
≤ E[Fρ(0)]− f⋆

S∑T−1
t=0 ηt

+ 2σC

ρG√
b
+

3σ

nb

∑
i∈[n]

Li

 T∑T−1
t=0 ηt

+
(|α|+ 1)2G2

n

∑
i∈[n]

Li

1 +
4C

n2

( ∑
i∈[n]

Li

)2

∑T−1

t=0 η2t∑T−1
t=0 ηt
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+G

√√√√4ρ2
(

1

b2
+

1

n2

)( ∑
i∈[n]

Li

)2
+ 2σ2

t

+
ρ(|α|+ 1)G

n

∑
i∈[n]

Li

(
CG+

Bσ√
b

)
.

Let ϵ > 0. From (28),

min
t∈[0:T−1]

E
[∥∥∥∇f̂SAM

S,ρ (xt)
∥∥∥2
2

]

≤ H1(E[Fρ(0)]− f⋆
S)

T︸ ︷︷ ︸
V1≤ ϵ2

6

+
(|α|+ 1)2G2

n

∑
i∈[n]

Li

1 +
4C

n2

( ∑
i∈[n]

Li

)2
 H3

T︸ ︷︷ ︸
V2≤ ϵ2

6

+ 2σCH1

ρG√
b
+

3σ

nb

∑
i∈[n]

Li


︸ ︷︷ ︸

V3≤ ϵ2

6

+
(|α|+ 1)2G2H2

n

∑
i∈[n]

Li

1 +
4C

n2

( ∑
i∈[n]

Li

)2
︸ ︷︷ ︸

V4≤ ϵ2

6

+
ρ(|α|+ 1)G

n

∑
i∈[n]

Li

(
CG+

Bσ√
b

)
︸ ︷︷ ︸

V5≤ ϵ2

6

+G

√√√√4ρ2
(

1

b2
+

1

n2

)( ∑
i∈[n]

Li

)2
+ 2σ2

t

︸ ︷︷ ︸
V6≤ ϵ2

6

.

There exists t2 ∈ N such that, for all T ≥ t2, V1 ≤ ϵ2

6 and V2 ≤ ϵ2

6 . Moreover, if

H1 ≤ ϵ2

12σC

ρG√
b
+

3σ

nb

∑
i∈[n]

Li

−1

, (|α|+ 1)2H2 ≤ n3ϵ2

6G2
∑

i∈[n] Li{n2 + 4C(
∑

i∈[n] Li)2}
,

ρ(|α|+ 1) ≤ n
√
bϵ2

6G(
∑

i∈[n] Li)(CG
√
b+Bσ)

, ρ2 ≤ ϵ4

168G2

n2b2

(n2 + b2)(
∑

i∈[n] Li)2
,

then Vi ≤ ϵ2

6 (i = 3, 4, 5, 6), i.e., (42) holds. 2

Proof of Theorem 2.4: Let ηt be the cosine-annealing learning rate defined by (15). We then have
KE−1∑
t=0

ηt = ηKE +
η − η

2
KE +

η − η

2

KE−1∑
t=0

cos

⌊
t

K

⌋
π

E
.

We have
KE−1∑
t=0

cos

⌊
t

K

⌋
π

E
=

KE∑
t=0

cos

⌊
t

K

⌋
π

E
− cosπ = (K − 1) + 1 = K. (44)

We thus have
KE−1∑
t=0

ηt = ηKE +
η − η

2
KE +

η − η

2
K

=
1

2
{(η + η)KE + (η − η)K}

≥
(η + η)KE

2
.

Moreover, we have
KE−1∑
t=0

η2t = η2KE + η(η − η)

KE−1∑
t=0

(
1 + cos

⌊
t

K

⌋
π

E

)
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+
(η − η)2

4

KE−1∑
t=0

(
1 + cos

⌊
t

K

⌋
π

E

)2

,

which implies that

KE−1∑
t=0

η2t = ηηKE +
(η − η)2

4
KE + η(η − η)

KE−1∑
t=0

cos

⌊
t

K

⌋
π

E

+
(η − η)2

2

KE−1∑
t=0

cos

⌊
t

K

⌋
π

E
+

(η − η)2

4

KE−1∑
t=0

cos2
⌊
t

K

⌋
π

E
.

From
KE∑
t=0

cos2
⌊
t

K

⌋
π

E
=

1

2

KE∑
t=0

(
1 + cos 2

⌊
t

K

⌋
π

E

)
=

1

2
(KE + 1) +

1

2

=
KE

2
+ 1,

we have
KE−1∑
t=0

cos2
⌊
t

K

⌋
π

E
=

KE

2
+ 1− cos2 π =

KE

2
.

From (44), we have
KE−1∑
t=0

η2t =
(η + η)2

4
KE + η(η − η) +

(η − η)2

2
+

(η − η)2

4

KE

2

=
3η2 + 2ηη + 3η2

8
KE +

(η − η)(η + η)

2
.

Hence, we have

KE∑KE−1
t=0 ηt

≤ 2KE

(η + η)KE
<

2

η + η
=: H1

and ∑KE−1
t=0 η2t∑KE−1
t=0 ηt

≤
(3η2 + 2ηη + 3η2)

4(η + η)︸ ︷︷ ︸
H2

+
1

KE
(η − η)︸ ︷︷ ︸

H3

.

Accordingly, (28) holds. From (43), we have

2

η + η
≤ ϵ2

12σC

ρG√
b
+

3σ

nb
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4(η + η)
≤ n3ϵ2

6G2
∑

i∈[n] Li{n2 + 4C(
∑

i∈[n] Li)2}
.

In particular, when η = 0, we have

2

η
≤ ϵ2

12σC
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b
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3σ
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.
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Therefore, Corollary B.1 leads to the assertion in Theorem 2.4.

Let ηt be the linear learning rate defined by (16). We then have

T−1∑
t=0

ηt = ηT +
η − η

T

(T − 1)T

2
=

1

2
{(η + η)T + η − η} >

η + η

2
T,

where the third inequality comes from η > η. We also have

T−1∑
t=0

η2t =

(
η − η

T

)2
(T − 1)T (2T − 1)

6
+

2(η − η)η

T

(T − 1)T

2
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6T
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<
(η − η)2T

3
+ (η − η)ηT + η2T

=
(η − η)2T

3
+ ηηT

=
η2 + ηη + η2

3
T,

where the third inequality comes from T − 1 < T and 2T − 1 < 2T . Hence,

T∑T−1
t=0 ηt

<
2

η + η
=: H1

and ∑T−1
t=0 η2t∑T−1
t=0 ηt

<
2(η2 + ηη + η2)

3(η + η)
=: H2.

Accordingly, (28) holds. From (43), we have that

2

η + η
≤ ϵ2

12σC

ρG√
b
+

3σ

nb

∑
i∈[n]

Li
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,

(|α|+ 1)2
2(η2 + ηη + η2)

3(η + η)
≤ n3ϵ2

6G2
∑

i∈[n] Li{n2 + 4C(
∑

i∈[n] Li)2}
.

In particular, when η = 0, we have that

2

η
≤ ϵ2

12σC

ρG√
b
+

3σ

nb

∑
i∈[n]

Li

−1

,

(|α|+ 1)2
2η

3
≤ n3ϵ2

6G2
∑

i∈[n] Li{n2 + 4C(
∑

i∈[n] Li)2}
.

Therefore, Corollary B.1 leads to the assertion in Theorem 2.4. 2

C TRAINING RESNET-18 ON CIFAR100

The code is available at https://anonymous.4open.science/r/INCREASING-BATCH-SIZE-F09C.
We set E = 200, η = η = 0.1, and η = 0.001. First, we trained ResNet18 on the CIFAR100
dataset. The parameters, α = 0.02 and ρ = 0.05, used in GSAM were determined by conducting
a grid search of α ∈ {0.01, 0.02, 0.03} and ρ ∈ {0.01, 0.02, 0.03, 0.04, 0.05}. Figure 5 compares
the use of an increasing batch size [16, 32, 64, 128, 256] (SGD/SAM/GSAM + increasing batch)
with the use of a constant batch size 128 (SGD/SAM/GSAM) for a fixed learning rate, 0.1.
SGD/SAM/GSAM + increasing batch decreased the empirical loss (Figure 5 (Left)) and achieved
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higher test accuracies compared with SGD/SAM/GSAM (Figure 5 (Right)). Figure 6 compares the
use of a cosine-annealing learning rate defined by (15) (SGD/SAM/GSAM + Cosine) with the use
of a constant learning rate, 0.1 (SGD/SAM/GSAM) for a fixed batch size, 128. SAM/GSAM +
Cosine decreased the empirical loss (Figure 6 (Left)) and achieved higher test accuracies compared
with SGD/SAM/GSAM (Figure 6 (Right)).

Table 4 summarizes the mean values of the test errors and the worst-case ℓ∞ adaptive sharpness
defined by (Andriushchenko et al., 2023b, (1)) for the parameters c = (1, 1, · · · , 1)⊤ and ρ =
0.0002 of the parameter obtained by the algorithm after 200 epochs. SAM+B (SAM + increasing
batch) had the highest test accuracy, while GSAM+B (GSAM + increasing batch) had the lowest
sharpness, which implies that GSAM+B approximated a flatter local minimum. The table indicates
that using an increasing batch size could avoid sharp local minima to which the algorithms using
constant and cosine-annealing learning rates converged.
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Figure 5: (Left) Loss function value in training and (Right) accuracy score in testing for the algo-
rithms versus the number of epochs in training ResNet18 on the CIFAR100 dataset. The learning
rate of each algorithm was fixed at 0.1. In SGD/SAM/GSAM, the batch size was fixed at 128. In
SGD/SAM/GSAM + increasing batch, the batch size was set at 16 for the first 40 epochs and then
it was doubled every 40 epochs afterwards, i.e., to 32 for epochs 41-80, 64 for epochs 81-120, 128
for epochs 121 to 160 and 256 for epochs 161 to 200.
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Figure 6: (Left) Loss function value in training and (Right) accuracy score in testing for the algo-
rithms versus the number of epochs in training ResNet18 on the CIFAR100 dataset. The batch size
of each algorithm was fixed at 128. In SGD/SAM/GSAM, the constant learning rate was fixed at
0.1. In SGD/SAM/GSAM + Cosine, the maximum learning rate was 0.1 and the minimum learning
rate was 0.001.
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Figure 7: (Left) Loss function value in training and (Right) accuracy score in testing for the batch
sizes versus the number of steps in training ResNet18 on the CIFAR100 dataset. The learning rate
for each batch size was fixed at 0.1. This is a comparison between the case of a varying batch
size [16, 32, 64, 128, 256] (iteration: 242,120) and the case of a fixed batch size of 41 (iteration:
243,800).

Table 4: Mean values of the test errors (Test Error) and the worst-case ℓ∞ adaptive sharpness
(Sharpness) for the parameter obtained by the algorithms at 200 epochs of training ResNet18 on
the CIFAR100 dataset. “(algorithm)+B” refers to “(algorithm) + increasing batch” in Figure 5, and
“(algorithm)+C” refers to “(algorithm) + Cosine” in Figure 6.

SGD SAM GSAM SGD+B SAM+B GSAM+B SGD+C SAM+C GSAM+C

Test Error 26.61 26.39 26.61 25.58 25.10 25.18 26.63 25.87 26.12
Sharpness 154.27 46.23 47.55 1.33 0.94 0.90 155.88 72.70 71.86
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D THE MODEL OF VIT-TINY

Patch size
Embedding
Dimension

Heads Depth MLP Rate Params

ViT-Tiny 4 192 12 9 2 2.7M
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