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ABSTRACT

Optimization techniques have become increasingly critical due to the ever-
growing model complexity and data scale. In particular, teleportation has emerged
as a promising approach, which accelerates convergence of gradient descent-based
methods by navigating within the loss invariant level set to identify parameters
with advantageous geometric properties. Existing teleportation algorithms have
primarily demonstrated their effectiveness in optimizing Multi-Layer Perceptrons
(MLPs), but their extension to more advanced architectures, such as Convolutional
Neural Networks (CNNs) and Transformers, remains challenging. Moreover, they
often impose significant computational demands, limiting their applicability to
complex architectures. To this end, we introduce an algorithm that projects the
gradient of the teleportation objective function onto the input null space, effec-
tively preserving the teleportation within the loss invariant level set and reducing
computational cost. Our approach is readily generalizable from MLPs to CNNs,
transformers, and potentially other advanced architectures. We validate the ef-
fectiveness of our algorithm across various benchmark datasets and optimizers,
demonstrating its broad applicability.

1 INTRODUCTION

Consider an optimization problem where the objective function, denoted by L (ω), is parameterized
by ω ∈ Ω. When L (ω) is non-convex, gradient-based methods are commonly used to find a set
of parameters corresponding to local minimums in the loss landscape. The standard update rule for
gradient descent is given by:

ωt+1 ← ωt − η∇L (ωt) , (1)

where ωt represents the parameter values at ieration t and η > 0 is the learning rate. As a first-
order method, gradient descent is computationally efficient but often suffers from slow convergence.
In contrast, second-order methods, such as Newton’s method, incorporate higher-order geometric
information, resulting in faster convergence. However, this comes with significant computational
cost, particularly due to the need to compute and invert the Hessian matrix (Hazan, 2019). To this
end, teleportation is motivated by the need to leverage higher-order geometry while relying only on
gradient information.

Teleportation is based on the premise that multiple points in the parameter space can yield the same
loss, which forms the loss invariant level set of parameters (Du et al., 2018; Kunin et al., 2020).
This assumption is particularly feasible in modern deep learning, where most advanced models
are highly over-parameterized (Sagun et al., 2017; Tarmoun et al., 2021; Simsek et al., 2021). By
identifying the level set, parameters can be teleported within it to enhance the gradient norm,
thereby accelerating the optimization process (Kunin et al., 2020; Grigsby et al., 2022).

Related Work. Zhao et al. (2022) indicates that the behavior of teleportation, despite utilizing only
gradient information, closely resembles that of Newton’s method. An alternative perspective on tele-
portation is that it mitigates the locality constraints of the gradient descent algorithm, resembling the
dynamics of warm restart algorithms (Loshchilov & Hutter, 2016; Dodge et al., 2020; Bouthillier
et al., 2021; Ramasinghe et al., 2022). Under this context, each step of gradient descent is equiv-
alent to a proximal mapping (Combettes & Pesquet, 2011). Teleportation periodically relaxes the
proximal restriction, allowing the algorithm to restart at a distant location with desirable geometric
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properties. Compared to warm restart algorithms, teleportation incurs minimal to no increase in
loss while providing greater control over the movement of parameters. Notably, the field of telepor-
tation reveals a gap between theoretical developments and practical applications. Zhao et al. (2022)
shows that gradient descent (GD) with teleportation can achieve mixed linear and quadratic conver-
gence rates on strongly convex functions. Mishkin et al. (2024) proves that, for convex functions
with Hessian stability, GD with teleportation attains a convergence rate faster than O(1/K). How-
ever, both approaches encounter limitations when applied to empirical studies involving highly
non-convex functions, which are a common characteristic of modern architectures. Specifically,
Zhao et al. (2022) develops a symmetry teleportation algorithm only for Multi-Layer Perceptrons
(MLPs) using group actions (Armenta & Jodoin, 2021; Ganev et al., 2021; Armenta et al., 2023) .
However, challenges persist in terms of its generalizability to other contemporary architectures and
its relatively low efficiency. Mishkin et al. (2024), on the other hand, tackled a sequential quadratic
programming by using linear approximations of the level set, which can lead to error accumulation
when the architecture becomes more complicated and the number of teleportation steps increase (see
Figure 1 for a visual comparision). Moreover, both studies have primarily concentrated on empirical
results involving MLPs and the vanilla Stochastic Gradient Descent (SGD) optimizer.

Figure 1: From left to right: symmetry teleport (slow and limited to MLPs), linear approximation
of level set (prone to error), our algorithm that projects gradient onto the input null space (fast and
accurate).

Contributions. Our work seeks to overcome these challenges by designing an algorithm not only
generalizes to other modern architectures, but also is efficient and accurate. To be more specific,
we eliminate the need for the bottleneck group action transformations of Zhao et al. (2022) by
utilizing a more efficient gradient projection technique. Moreover, instead of taking on the errors
introduced by linear approximations of the level set, we project the gradient of the teleportation
objective onto the input null space, ensuring an accurate search on the level set thus minimal to no
change in loss value. Specifically, our contributions are:

• We propose a novel algorithm that utilizes gradient projection to offer improved computa-
tional efficiency and parallelization capabilities.

• The proposed algorithm is a general framework that can be easily applied to various mod-
ern architectures, including MLPs, Convolutional Neural Networks (CNNs), transformers,
and potentially linear time series models such as Mamba (Gu & Dao, 2023) and TTT (Sun
et al., 2024). As a result, our work is the first work to extend teleportation to CNNs and
transformers.

• We present extensive empirical results to demonstrate its effectiveness, spanning a range
of benchmark datasets, including MNIST, FashionMNIST, CIFAR-10, CIFAR-100, Tiny-
ImageNet, multi-variate time series datasets (electricity and traffic), and Penn Treebank
language dataset. We also evaluate the algorithm with multiple modern optimizers, such as
SGD (Robbins & Monro, 1951), Momentum (Polyak, 1964), Adagrad (Duchi et al., 2011),
and Adam (Kingma, 2014), whereas previous studies primarily focused on the vanilla SGD.

2 PRELIMINARY

2.1 SYMMETRY TELEPORTATION

In this section, we describe the general framework of teleportation through a state-of-the-art algo-
rithm, symmetry teleportation (Zhao et al., 2022; 2023).
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Let G be a set of symmetries that preserves the loss value L, i.e., let ω = (X,W ),

L(X,W ) = L(g · (X,W )),∀g ∈ G, (2)

where X represents data and W represents parameters of the deep learning model. Define a teleport
schedule K ⊂ {0, 1, ..., Tmax}, where Tmax is the maximum training epochs. Prior to each epoch
in K, teleportation is applied by searching for g ∈ G which transforms the parameter W to W ∗ with
greater gradient norm within the loss invariant level set.

When the group G is continuous, the search process can be conducted by parameterizing the group
action g and performing gradient ascent on g with the teleportation objective function defined as
the gradient norm of the current parameter W . For example, general linear group transformations
g ∈ GLd(R) can be parameterized as g = I + ϵM , where ϵ≪ 1 and M is an arbitrary matrix.

Zhao et al. (2022; 2023) designs a loss invariant group action specifically for MLPs with bijective
activation function σ. Assuming the invertibility of (k − 2)-th layer’s output, hk−2, the following
group action g ∈ GLd(R) on k-th and (k − 1)-th layers ensures the output of the entire network
unchanged:

gm ·Wk =


Wmg−1

m if k = m,

σ−1 (gmσ (Wm−1hm−2))h
−1
m−2 if k = m− 1,

Wk if k /∈ {m,m− 1}.

In practice, each teleportation update applies the above group action to every layer of an MLP,
requiring two bottleneck inverse operations per update. Denote Dmax as the largest width of the
MLPs, and n the sample size, assuming Dmax > n. The time complexity of calculating pseudo-
inverse for each layer is O(D2

maxn). Therefore, the total time complexity for l layers, b batches, and
t teleport updates per batch is O(D2

maxnlbt). The need for pseudo-inverse computations and the
dependencies between layers render the algorithm relatively slow and unsuitable for parallelization.
Additionally, there is no straightforward method to generalize this design from MLPs to CNNs or
transformers.

2.2 MATRIX APPROXIMATION WITH SVD

An arbitrary matrix A ∈ R(m,n) can be decomposed using the singular value decomposition
(SVD) Klema & Laub (1980) as A = UΣV T , where U ∈ R(m,m) consists of orthonormal eigen-
vectors of AAT , Σ ∈ R(m,n) is a diagonal matrix containing sorted singular values, and V ∈ R(n,n)

contains orthonormal eigenvectors of ATA. The matrix A can be expressed as
∑r

i=1 σiuiv
T
i , where

r = min(m,n), and (ui, vi) are the column and row vectors of U, V respectively.

In this work, we consider the matrix approximation Ak of A defined as Ak =
∑k

i=1 σiuiv
T
i , where

k = argmin
k

{
k : ||Ak||2F ≥ τ ||A||2F

}
, (3)

with ∥ · ∥F denotes the Frobenius norm and τ ∈ [0, 1] being a threshold hyper-parameter.

3 TELEPORT WITH NULL SPACE GRADIENT PROJECTION

Our objective is to develop a generalizable and efficient algorithm that avoids reliance on specific
group action designs. Moreover, it should avoid any (linear) approximation of the level set with
uncontrollable errors, as these could otherwise result in suboptimal performance. Considering the
common architectural design in modern neural networks, which typically employ a linear relation-
ship between weights and inputs of each layer, the technique of gradient projection on to the input
null space of each layer is well-suited for this purpose. We next elaborate on it.

Gradient Projection. To incorporate the geometric landscape and accelerate optimization using
only gradient information, the objective function for teleportation is defined as the squared gradient
norm of the loss function of the primary task with respect to the model parameter W ,

Lteleport =
1

2
∥∇WLprimary∥2. (4)
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During each teleportation step, in contrast to symmetry teleportation, the gradient ascent is applied
directly on the model parameter Wl of each layer l instead of relying on an intermediate group action
g, i.e., we have

Wl,t+1 = Wl,t + ηπl(∇Wl
Lteleport), (5)

where η is the learning rate for teleportation update, and πl is the layerwise projection operator
onto the null space of each layer’s input. We have distinct projection operators for different model
architectures. We will derive πl for MLPs, CNNs and transformes in the sequel. The validity of
this projection is based on the assumption that the gradient resides within the span of each layer’s
input for certain structures, which will also be elaborated in a subsequent section.

Section Organization. We first define and provide notations for MLPs, CNNs, and transformers.
Next, we demonstrate that the gradient in Equation 5 indeed resides within the input space of these
architectures, thus satisfying the required assumption of gradient projection. Finally, we present
our proposed approach and provide a detailed explanation of how to derive the projection operators
for each of these architectures.

3.1 DEEP LEARNING ARCHITECHTURES

3.1.1 MULTI-LAYER PERCEPTRONS

We define the l-th layer of an MLP (Rumelhart et al., 1986). Denote the input of the layer as
xl−1 ∈ R(dl−1,1), the parameter as Wl ∈ R(dl,dl−1), the output as xl ∈ R(dl,1). We incorporate
the bias term into Wl and xl−1 by adding an additional column to Wl and unity to xl−1. Then the
output of l-th layer is defined as

xl = σ(Wlxl−1),

where σ is an activation function, e.g. ReLU (Nair & Hinton, 2010).

3.1.2 CONVOLUTIONAL NEURAL NETWORK

We define the l-th layer of a CNN (LeCun et al., 1998). Denote the input to the l-th convolu-
tional layer as xl−1 ∈ RCi×hi×wi , convolutional kernel as Wl ∈ RCo×Ci×k×k, and output as
xl ∈ RCo×ho×wo , where Ci, hi, wi(Co, ho, wo) are the input (output) channel, height, and width,
respectively, and k is the kernel size. If xl−1 (e.g., with padding, striding, etc) is reshaped into
(ho×wo)× (Ci× k× k) as Xl−1, and Wl is reshaped to (Ci× k× k)×Co, then the convolutional
layer can be expressed as a matrix multiplication

xl = σ(Xl−1Wl),

where xl ∈ R(xo×wo)×Co is the output of l-th layer, and σ an activation function. See Appendix A.3
for a visual explanation of the matrix multiplication.

3.1.3 TRANSFORMER

We define the self-attention and multi-head self-attention layers (Vaswani, 2017). Denote the input
sequence of the l-th self-attention layer as Xl−1 ∈ RT×Di , with sequence length T and dimension
Di. The l-th self-attention layer is parameterized by the query matrix Wl,q ∈ R(Di,Dk), the key
matrix Wl,k ∈ R(Di,Dk), and the value matrix Wl,v ∈ R(Di,Do). Then, the self-attention layer maps
the sequence from dimension Di to Do by

Attention(Q,K, V ) = softmax(
QKT

√
Dk

)V,

where Q = Xl−1Wl,q,K = Xl−1Wl,k, V = Xl−1Wl,v , and Dk is the dimension of the model.

The multi-head attention is realized by replicating and concatenating Nh heads of low-rank self-
attentions before applying an output projection, defined as

MultiHead(Xl−1) = concati∈[Nh][H
(i)]Wl,o (6)

H(i) = Attention(Xl−1W
(i)
l,q , Xl−1W

(i)
l,k , Xl−1W

(i)
l,v ), (7)
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where W
(i)
l,q ∈ R(Di,

Dk
Nh

), W (i)
l,k ∈ R(Di,

Dk
Nh

), W (i)
l,v ∈ R(Di,

Dk
Nh

) are parameters for each head. The
output projection matrix Wl,o ∈ R(Dk,Do) maps the concatenation of heads to the desired output
dimension.

3.2 INPUT AND GRADIENT SPACE

Now we establish that the gradient of the teleportation objective function resides within the space
spanned by the input of each layer. Following the notation established in Section 3.1, we can read-
ily express the gradient of the teleportation objective function with respect to the model parameter
Wl:

MLP : ∇Wl
LTeleport = ∇(Wlxl−1)LTeleport · ∇Wl

(Wlxl−1)

= δMLPx
T
l−1

CNN : ∇Wl
LTeleport = ∇Wl

(Xl−1Wl) · ∇(Xl−1Wl)LTeleport

= XT
l−1 · δCNN

Self-Attention : ∇
W

(i)
l,·

LTeleport = ∇W
(i)
l,·

(Xl−1W
(i)
l,· ) · ∇(Xl−1W

(i)
l,· )

LTeleport

= XT
l−1 · δAttention,

where δMLP ∈ R(dl,1), δCNN ∈ R(ho×wo,Co), and δAttention ∈ R(T,Dk) are some error terms de-
termined by both the loss function of the primary task and the objective function of the teleportation.
Here, it can be observed that all gradients above can be written as the matrix multiples involving
the input X of each layer and another matrix. Thus, the gradient of the teleportation objective
function indeed resides within the space spanned by the input of each layer for MLPs, CNNs, and
transformer, which is a composition of attention layers and MLP layers.

3.3 ALGORITHM

Step 1. We first construct the representation matrix for each layer l based on a given teleportation
batch of data:

MLP : Rl
MLP = [xl−1,1, xl−1,2, · · · , xl−1,n] (8)

CNN : Rl
CNN = [XT

l−1,1, X
T
l−1,2, · · · , XT

l−1,n] (9)

Self-Attention : Rl
Attention = [XT

l−1,1, X
T
l−1,2, · · · , XT

l−1,n], (10)

where n is the batch size. Each representation matrix Rl
MLP ∈ R(dl−1,n), Rl

CNN ∈
R(Ci×k×k,ho×wo×n), and Rl

Attention ∈ R(Di,T×n) contains columns of feature vectors, which are
captured at each layer during the forward pass through the network using a random teleportation
batch of size n.

Step 2. For all model architectures, we apply SVD on the representation matrix Rl, followed by
a low-rank approximation (Rl)k =

∑k
i=1 σl,iul,iv

T
l,i based on the criterion in Equation 3, using a

predefined threshold τ . The orthonormal column vectors [ul,1, ul,2, . . . , ul,k], from SVD of Rl, con-
sist of the eigenvectors corresponding to the top k singular values of the representation matrix. We
define the subspace spanned by these eigenvectors as the space of significant representation (Saha
et al., 2021b).

During a teleportation step, the goal is to ensure that the gradient update in Equation 5 preserves
the correlation between the weights and the space of significant representation as much as possi-
ble. Given that the gradient space lies within the input space, we can partition the gradient space
into two orthogonal subspaces of the input space: the Core Gradient Space (CGS) and the Resid-
ual Gradient Space (RGS) (Saha et al., 2021a), which are spanned by [ul,1, ul,2, · · · , ul,k] and
[ul,k+1, ul,k+2, · · · , ul,r] respectively. By construction, projecting the gradient onto CGS will lead
to the greatest interference in the correlation between the weights and the space of significant repre-
sentation, while projecting onto RGS will result in minimal or no interference in this correlation.
To preserve model parameters on the loss-invariant level set during teleportation steps, we project
the gradient of teleportation objective function∇WLTeleport onto the RGS before each update.
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Step 3. Given the orthonormal basis Bl = [ul,1, ul,2, · · · , ul,k] of the CGS for the l-th layer, the
gradient∇Wl

LTeleport is initially projected onto the CGS and then removed from itself to yield the
projection onto the RGS. Specifically, the projection operator πl is defined as follows:

MLP : πl(∇Wl
LTeleport) = ∇Wl

LTeleport − (∇Wl
LTeleport)BlB

T
l (11)

CNN : πl(∇Wl
LTeleport) = ∇Wl

LTeleport −BlB
T
l (∇Wl

LTeleport) (12)

Self-Attention : πl(∇W
(i)
l,·

LTeleport) = ∇W
(i)
l,·

LTeleport −BlB
T
l (∇W

(i)
l,·

LTeleport) (13)

The teleportation step is completed by substituting the projection operator back into Equation 5.
The complete training process is outlined in the pseudo-code presented in appendix A.1.

4 EXPERIMENTS

In this section, we demonstrate the effectiveness of our method across MLPs, CNNs, and transform-
ers, utilizing a wide range of benchmark datasets. Additionally, we evaluate our approach using a
variety of optimizers, such as the vanilla SGD, first-moment optimizer like SGD with momentum,
second-moment optimizers like Adagrad and Adam.

We showcase the efficiency of our algorithm compared to the state-of-the-art method, symmetry
teleportation, across multiple teleportation hyperparameters. Furthermore, if any approximation of
the level set is needed, we demonstrate the capability of our approach to control the error in null
space approximation, which subsequently improves the accuracy of level set approximation during
the teleportation.

4.1 MLP EXPERIMENTS

Datasets. To demonstrate the effectiveness of our method with MLPs, we conduct experiments
using the MNIST digit image classification dataset and its clothing variant, FashionMNIST. Both
datasets are split into 60, 000 samples for training and 10, 000 samples for testing. The input images,
with dimensions of 28×28 pixels, are flattened into vectors before being fed into the MLPs models.

Implementation Detail. We use a 3-layer MLPs with hidden dimensions [1024, 1024], ReLU acti-
vation function, and cross-entropy loss. Following the convention in Zhao et al. (2022)’s work, we
schedule teleportation for the first 5 epochs of the primary training phase. For each teleportation in
the schedule, we randomly sample 32 batches of data and perform 8 teleport updates per batch. The
SVD threshold is set to 1, i.e., the gradients are projected onto the exact input null space. Learn-
ing rates are set differently depending on the optimizer used. See the appendix A.2 for complete
implementation details.

Experiment Results. With teleportation, in Figure 2, we observe a faster convergence rate for
both training and test loss, ultimately converging to a lower loss compared to their non-teleportation
counterparts. This behavior suggests that teleportation may have the potential to not only accelerate
the convergence rate but also help in finding a better local minimum.

4.2 CNN EXPERIMENTS

Datasets. We use the CIFAR-10, CIFAR-100, and Tiny-Imagenet datasets to evaluate the effective-
ness of our algorithm on CNNs. Both CIFAR datasets are split into 50,000 training samples and
10,000 test samples. The image size for CIFAR datasets is 3× 32× 32. The Tiny-Imagenet dataset
is a smaller version of the full Imagenet dataset, containing 200 image classes with 100, 000 training
images and 20, 000 validation/test images. The image size for the Tiny-Imagenet dataset is kept the
same as the full Imagenet dataset, i.e., 3× 224× 224.

Implementation Detail. For the CIFAR datasets, we use a 3-layer CNNs with chan-
nels [3, 16, 32, 64], max pooling after each layer, ReLU activation function, and cross-
entropy loss. For the Tiny-Imagenet dataset, we utilize a residual network with channels
[3, 64, 64, 64, 128, 128, 128, 256, 256, 256], and 3 residual connections between channels of same
shape. Instead of max pooling, we use larger strides to reduce the feature size, a common practice
in the design of residual networks. A classification head is connected after the final channel for
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Figure 2: Loss trajectories of training MLPs on the MNIST and FashionMNIST datasets. Each
experiment is repeated 3 times, with the average loss plotted and the standard deviation of loss
represented as the shaded area.

both architectures. The teleportation scheduling and threshold τ remains the same as in the MLPs
experiments. See appendix A.2 for complete implementation details.
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Figure 3: Loss trajectories of training CNNs on CIFAR datasets and Tiny-Imagenet dataset. Each
experiment is repeated 3 times, with the average loss plotted and the standard deviation of loss
represented as the shaded area.

Experiment Results. With teleportation, we observe in Figure 3 a marked acceleration in optimiza-
tion in the beginning of each training, coinciding with the application of teleportation. The test loss
with teleportation tends to converge to the same value as the non-teleportation counterpart, while
the training loss with teleportation continues to decrease at a faster rate even after the test loss has
plateaued. This behavior is expected, as the teleportation objective is defined as the squared norm of
the gradient, which prioritizes faster convergence on the training set rather than improving general-
ization. The teleportation framework is highly flexible, allowing the teleportation objective function
to be adjusted to other reasonable choices, such as the curvature of the parameter landscape, which
has been shown to enhance generalization (Zhao et al., 2023).
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4.3 TRANSFORMER EXPERIMENTS

Datasets. We first consider the MNIST dataset as a sequential classification task, with a sequence
length of 28× 28 and a data dimension 1.

Next, we evaluate on two publicly available multi-variate time series regression datasets: electric-
ity and traffic. The electricity dataset consists of 321 dimensions with a total sequence length of
26, 304. The sample sequence length is set to 7 × 24, representing a week’s worth of data. The
regression target is the data point of the same dimension 24 hours after the input sample. The traffic
dataset consists of 862 dimensions, with a total sequence length of 17, 544. The data is similarly
manipulated to regress a week’s worth of data to the data 24 hours after the week. See Appendix
A.4 for a detailed explanation.

We also evaluate on the Penn Treebank (PTB) language corpus. We use the default train/test split
of the PTB dataset, where the training set contains approximately 950, 000 words and the test set
approximately 80, 000 words. We use the TreebankWord tokenizer from the nltk Library and set
the sequence length to 256. As is common practice, we formulate the problem as a causal self-
supervised learning task, where the label is the input shifted to the right by one.

Implementation Detail. For the sequential MNIST dataset, we use a small Transformer model
with 2 heads, each having a dimension of 64, stacked across two layers. For the regression and
language datasets, we use a transformer with 4 heads, each with a dimension of 64, stacked across 4
layers without pooling, followed by a linear output. See appendix A.2 for complete implementation
details.
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Figure 4: Loss trajectories of training Transformers on sequential MNIST, electricity, traffic, and
Penn Treebank datasets. Each experiment is repeated 3 times, with the average loss plotted and the
standard deviation of loss represented as the shaded area.

Experiment Results. In addition to the observations from previous experiments, in Figure 4, we
notice that teleportation remains effective across different problem settings, including regression
problems and language modeling. Significant acceleration is observed in the regression datasets,
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particularly with the SGD and momentum optimizers, where the loss with teleportation converges
within the first few epochs, while the non-teleportation counterpart takes more than 50 epochs to
converge on the traffic dataset. Furthermore, the acceleration with teleportation in language model-
ing is particularly notable during the initial phase of training, even though both approaches eventu-
ally converge to the same loss. These results highlight the potential of applying teleportation to the
training of large language models.

4.4 EFFICIENCY IMPROVEMENT

In this section, we demonstrate the efficiency of our algorithm compared to the state-of-the-art sym-
metry teleportation algorithm.

Recall that the time complexity of symmetry teleportation is O(d2nlbt), where d is the feature
dimension of layers, n is the batch size, l is the number of layers, b is the number of batches, and t
is the number of teleport steps per batch. Note that the pseudo-inverse is calculated using SVD for
Pytorch Library, thus sharing the same time complexity as SVD operation. However, in our method,
only one SVD is needed for each batch of data, which reduces the bottleneck and brings the time
complexity down to O(d2nlb). Ideally, by leveraging our algorithm’s layer-independent property,
computations can be parallelized across all layers, further reducing the time complexity to O(d2nb).
However, we leave such engineering optimizations for future work.
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Figure 5: From left to right: a comparison between symmetry teleport and our algorithm using
MLPs in terms of the scaling of runtime with respect to t, d, n, l, and b.

In practice, as demonstrated in Figure 5, our algorithm exhibits linear scaling with respect to t, l, and
b, while the runtime of the symmetry teleportation increases at a significantly faster rate. Notably,
for d and n, our approach achieves near-constant runtime in contrast to the linear-to-polynomial
runtime of the symmetry teleport. Ideally, once the layer parallelization is fully implemented, we
anticipate that constant runtime will also be achieved with an increasing number of layers, thereby
enhancing overall performance.

4.5 ERROR CONTROL

In addition to its efficiency, our algorithm provides a distinct advantage in controlling the error
associated with increased loss during teleportation. Figure 6a records the information of the input
space of the second layer in MLPs, CNNs, and Transformers (with the same architechtures used
in experiments) across all datasets. Most variance of input is captured by the space of significant
representation of a relatively small proportion of total dimensions, represented by the percentages
of sorted eigenvectors in SVD. Consequently, even without approximating the input null space,
sufficient dimensions are typically available in the null space to facilitate gradient projection and
search. This validates our choice of setting τ to be 1 in most cases. Figure 6b further confirms that
when the threshold τ is set to 1, meaning the exact null space is utilized, the gradient norm increases
steadily during teleportation while the loss remains constant. Moreover, as τ decreases, the gradient
is projected onto an approximated null space with a significantly larger number of dimensions, yet
capturing only slightly more variance with minimal impact on the loss. A remarkable increase in
the gradient norm ascending speed is observed when τ is set to 0.99, with the loss still remaining
constant. (Experiments in Figure 6b are conducted using transformer on sMNIST dataset.)

5 DISCUSSION AND CONCLUSION

In this paper, we propose a novel algorithm that generalizes the application of teleportation from
MLPs to other modern architectures such as CNNs and transformers. The algorithm demonstrates
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(a) Input variance captured by eigenvectors.
(b) Effect of teleport step on increase of gradient norm and loss
value.

Figure 6: A majority of the input variance is captured by a relatively small proportion of the input
space. As we approximate a larger input null space, the gradient norm increases more rapidly during
teleportation, while the loss remains constant when τ is greater than 0.99.

improved computational efficiency and introduces explicit error control during the level set approx-
imation, if such an approximation is employed.

Gradient projection proves to be a powerful tool for modern AI, as most contemporary architec-
tures rely on a linear modeling between inputs and weights. Consequently, our framework has the
potential to be generalized to emerging time-series architectures such as Mamba and TTT.

Despite its promising performance, teleportation still faces challenges when applied broadly in the
deep learning field. One of the major challenges is the selection of hyperparameters. Identifying
a generalizable set of hyperparameters suitable for all architectures and datasets remains difficult.
Developing a simple and effective hyperparameter selection strategy will significantly enhance the
overall efficiency of teleportation.
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A APPENDIX

A.1 PSEUDOCODE

Algorithm 1 Teleportation with Input Null Space Gradient Projection
Input: Loss function L(w), number of epochs for primary task T , teleport learning rate η, teleport
batch number b, teleport step number t, teleport schedule K, threshold maximum gradient norm
value CAP, initialized parameters w0.
Output: wT .

1: for i← 0 to T − 1 do
2: if i ∈ K then
3: for b batches do
4: Null space projection matrix π ← SVD(batch)
5: for t steps do
6: if ∥∇wL|wi

∥2 < CAP then
7: wi ← wi − ηπ(∇w∥∇wL|wi

∥2|wi
)

8: else
9: break

10: end if
11: end for
12: end for
13: end if
14: Continue the training of the primary task
15: end for
16: return wT

A.2 IMPLEMENTATION DETAILS

In table 1, we summarize the hyper-parameters used in experiments. We denote the base learning
rate for primary task as ηprim, the learning rate for teleportation as ηtele, maximum epoch for pri-
mary task as Tprim, teleport batch size as n, and teleport cap threshold as CAP. The batch size for
the primary task is set to 32, the number of teleport batches set to 32, and the number of teleportation
steps per batch set to 8 throughout all experiments.

For all experiments using CNNs, we perform 40 warm-up steps before the first teleportation to
stabilize the behavior of the gradients.

For the sequential MNIST dataset, we use a small Transformer model with 2 heads, each having
a dimension of 64, stacked across two layers. This is followed by an average pooling layer and a
ten-way linear classification head, optimized using cross-entropy loss. For the electricity and traffic
datasets, we use a transformer with 4 heads, each with a dimension of 64, stacked across 4 layers
without pooling, followed by a linear regression head where the output dimension matches the input
dimension. For the PTB dataset, we use the same Transformer architecture but replace the first
linear layer with an embedding layer and set the output dimension to the vocabulary size, which is
approximately 10, 000.

A.3 VISUALIZATION OF MATRIX MULTIPLICATION REPRESENTATION FOR CNNS

Although filters in CNNs works differently than weights in MLPs, the forward and backward prop-
agations of CNNs are essentially still matrix multiplications (see Figure 7).
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Dataset (Optimizer) ηprim ηtele Tprim n CAP
MNIST (SGD) 2e− 4 2e− 1 100 32 5
MNIST (Momentum) 2e− 4 2e− 1 100 32 5
MNIST (Adagrad) 2e− 4 2e− 1 100 32 5
MNIST (Adam) 2e− 4 2e− 1 100 32 5
FashionMNIST (SGD) 2e− 4 2e− 1 100 32 5
FashionMNIST (Momentum) 2e− 4 2e− 1 100 32 5
FashionMNIST (Adagrad) 2e− 4 2e− 1 100 32 5
FashionMNIST (Adam) 2e− 4 2e− 1 100 32 5
CIFAR10 (SGD) 1e− 4 3e− 3 100 256 40
CIFAR10 (Momentum) 1e− 4 3e− 3 100 256 40
CIFAR10 (Adagrad) 1e− 4 3e− 3 100 256 40
CIFAR10 (Adam) 1e− 5 3e− 3 300 256 40
CIFAR100 (SGD) 1e− 4 3e− 3 400 256 40
CIFAR100 (Momentum) 1e− 4 3e− 3 400 256 40
CIFAR100 (Adagrad) 1e− 4 3e− 3 400 256 40
CIFAR100 (Adam) 3e− 5 3e− 3 400 256 40
Tiny Imagenet (SGD) 2e− 4 3e− 3 400 32 40
Tiny Imagenet (Momentum) 2e− 4 3e− 3 400 32 40
Tiny Imagenet (Adagrad) 2e− 4 3e− 3 400 32 40
Tiny Imagenet (Adam) 5e− 5 3e− 3 400 32 40
sMNIST (SGD) 1e− 3 3e− 3 400 32 10
sMNIST (Momentum) 1e− 3 3e− 3 400 32 10
sMNIST (Adagrad) 1e− 3 3e− 3 400 32 10
sMNIST (Adam) 1e− 4 3e− 3 400 32 10
electricity (SGD) 1e− 4 3e− 3 50 32 10
electricity (Momentum) 1e− 4 3e− 3 50 32 10
electricity (Adagrad) 1e− 4 3e− 3 50 32 10
electricity (Adam) 1e− 4 3e− 3 50 32 10
traffic (SGD) 1e− 4 3e− 3 50 32 10
traffic (Momentum) 1e− 4 3e− 3 50 32 10
traffic (Adagrad) 1e− 4 3e− 3 50 32 10
traffic (Adam) 1e− 4 3e− 3 50 32 10
Penn Treebank (SGD) 2e− 4 5e− 2 20, 000

steps
32 5

Penn Treebank (Momentum) 2e− 4 5e− 2 20, 000
steps

32 5

Penn Treebank (Adagrad) 2e− 4 5e− 2 20, 000
steps

32 5

Penn Treebank (Adam) 5e− 5 5e− 2 20, 000
steps

32 5

Table 1: Summary table for hyper-parameters of all experiments
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Figure 7: Visualization of matrix representation of forward and backward pass for CNNs.

A.4 BRIEF EXPLANATION OF THE MULTI-VARIATE TIME SERIES REGRESSION DATASETS

The electricity dataset tracks electricity consumption in kWh every 15 minutes from 2012 to 2014
for 321 clients, adjusted to reflect hourly consumption. The dataset consists of 321 dimensions
with a total sequence length of 26, 304. The sample sequence length is set to 7 × 24, representing
a week’s worth of data. The regression target is the data point of the same dimension 24 hours
after the input sample. The traffic dataset contains 48 months (2015–2016) of hourly data from
the California Department of Transportation, describing road occupancy rates (between 0 and 1)
measured by various sensors on the San Francisco Bay Area freeway. This dataset consists of 862
dimensions, with a total sequence length of 17, 544. The data is similarly manipulated to regress a
week’s worth of data to the data 24 hours after the week.

14


	Introduction
	Preliminary
	Symmetry Teleportation
	Matrix Approximation With SVD

	Teleport With Null Space Gradient Projection
	Deep Learning Architechtures
	Multi-Layer Perceptrons
	Convolutional Neural Network
	Transformer

	Input and Gradient Space
	Algorithm

	Experiments
	MLP Experiments
	CNN Experiments
	Transformer Experiments
	Efficiency Improvement
	Error Control

	Discussion and Conclusion
	Appendix
	Pseudocode
	Implementation Details
	Visualization of Matrix Multiplication Representation for CNNs
	Brief Explanation of The Multi-variate Time Series Regression Datasets


