
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TELEPORTATION WITH NULL SPACE GRADIENT
PROJECTION FOR OPTIMIZATION ACCELERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Optimization techniques have become increasingly critical due to the ever-
growing model complexity and data scale. In particular, teleportation has emerged
as a promising approach, which accelerates convergence of gradient descent-based
methods by navigating within the loss invariant level set to identify parameters
with advantageous geometric properties. Existing teleportation algorithms have
primarily demonstrated their effectiveness in optimizing Multi-Layer Perceptrons
(MLPs), but their extension to more advanced architectures, such as Convolutional
Neural Networks (CNNs) and Transformers, remains challenging. Moreover, they
often impose significant computational demands, limiting their applicability to
complex architectures. To this end, we introduce an algorithm that projects the
gradient of the teleportation objective function onto the input null space, effec-
tively preserving the teleportation within the loss invariant level set and reducing
computational cost. Our approach is readily generalizable from MLPs to CNNs,
transformers, and potentially other advanced architectures. We validate the ef-
fectiveness of our algorithm across various benchmark datasets and optimizers,
demonstrating its broad applicability.

1 INTRODUCTION

Consider an optimization problem where the objective function, denoted by L (ω), is parameterized
by ω ∈ Ω. When L (ω) is non-convex, gradient-based methods are commonly used to find a set
of parameters corresponding to local minimums in the loss landscape. The standard update rule for
gradient descent is given by:

ωt+1 ← ωt − η∇L (ωt) , (1)

where ωt represents the parameter values at ieration t and η > 0 is the learning rate. As a first-
order method, gradient descent is computationally efficient but often suffers from slow convergence.
In contrast, second-order methods, such as Newton’s method, incorporate higher-order geometric
information, resulting in faster convergence. However, this comes with significant computational
cost, particularly due to the need to compute and invert the Hessian matrix (Hazan, 2019). To this
end, teleportation is motivated by the need to leverage higher-order geometry while relying only on
gradient information.

Teleportation is based on the premise that multiple points in the parameter space can yield the same
loss, which forms the loss invariant level set of parameters (Du et al., 2018; Kunin et al., 2020).
This assumption is particularly feasible in modern deep learning, where most advanced models
are highly over-parameterized (Sagun et al., 2017; Tarmoun et al., 2021; Simsek et al., 2021). By
identifying the level set, parameters can be teleported within it to enhance the gradient norm,
thereby accelerating the optimization process (Kunin et al., 2020; Grigsby et al., 2022).

Related Work. Zhao et al. (2022) indicates that the behavior of teleportation, despite utilizing only
gradient information, closely resembles that of Newton’s method. An alternative perspective on tele-
portation is that it mitigates the locality constraints of the gradient descent algorithm, resembling the
dynamics of warm restart algorithms (Loshchilov & Hutter, 2016; Dodge et al., 2020; Bouthillier
et al., 2021; Ramasinghe et al., 2022). Under this context, each step of gradient descent is equiv-
alent to a proximal mapping (Combettes & Pesquet, 2011). Teleportation periodically relaxes the
proximal restriction, allowing the algorithm to restart at a distant location with desirable geometric

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

properties. Compared to warm restart algorithms, teleportation incurs minimal to no increase in
loss while providing greater control over the movement of parameters. Notably, the field of telepor-
tation reveals a gap between theoretical developments and practical applications. Zhao et al. (2022)
shows that gradient descent (GD) with teleportation can achieve mixed linear and quadratic conver-
gence rates on strongly convex functions. Mishkin et al. (2024) proves that, for convex functions
with Hessian stability, GD with teleportation attains a convergence rate faster than O(1/K). How-
ever, both approaches encounter limitations when applied to empirical studies involving highly
non-convex functions, which are a common characteristic of modern architectures. Specifically,
Zhao et al. (2022) develops a symmetry teleportation algorithm only for Multi-Layer Perceptrons
(MLPs) using group actions (Armenta & Jodoin, 2021; Ganev et al., 2021; Armenta et al., 2023) .
However, challenges persist in terms of its generalizability to other contemporary architectures and
its relatively low efficiency. Mishkin et al. (2024), on the other hand, tackled a sequential quadratic
programming by using linear approximations of the level set, which can lead to error accumulation
when the architecture becomes more complicated and the number of teleportation steps increase (see
Figure 1 for a visual comparision). Moreover, both studies have primarily concentrated on empirical
results involving MLPs and the vanilla Stochastic Gradient Descent (SGD) optimizer.

Figure 1: From left to right: symmetry teleport (slow and limited to MLPs), linear approximation
of level set (prone to error), our algorithm that projects gradient onto the input null space (fast and
accurate).

Contributions. Our work seeks to overcome these challenges by designing an algorithm not only
generalizes to other modern architectures, but also is efficient and accurate. To be more specific,
we eliminate the need for the bottleneck group action transformations of Zhao et al. (2022) by
utilizing a more efficient gradient projection technique. Moreover, instead of taking on the errors
introduced by linear approximations of the level set, we project the gradient of the teleportation
objective onto the input null space, ensuring an accurate search on the level set thus minimal to no
change in loss value. Specifically, our contributions are:

• We propose a novel algorithm that utilizes gradient projection to offer improved computa-
tional efficiency and parallelization capabilities.

• The proposed algorithm is a general framework that can be easily applied to various mod-
ern architectures, including MLPs, Convolutional Neural Networks (CNNs), transformers,
and potentially linear time series models such as Mamba (Gu & Dao, 2023) and TTT (Sun
et al., 2024). As a result, our work is the first work to extend teleportation to CNNs and
transformers.

• We present extensive empirical results to demonstrate its effectiveness, spanning a range
of benchmark datasets, including MNIST, FashionMNIST, CIFAR-10, CIFAR-100, Tiny-
ImageNet, multi-variate time series datasets (electricity and traffic), and Penn Treebank
language dataset. We also evaluate the algorithm with multiple modern optimizers, such as
SGD (Robbins & Monro, 1951), Momentum (Polyak, 1964), Adagrad (Duchi et al., 2011),
and Adam (Kingma, 2014), whereas previous studies primarily focused on the vanilla SGD.

2 PRELIMINARY

2.1 SYMMETRY TELEPORTATION

In this section, we describe the general framework of teleportation through a state-of-the-art algo-
rithm, symmetry teleportation (Zhao et al., 2022; 2023).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Let G be a set of symmetries that preserves the loss value L, i.e., let ω = (X,W),

L(X,W) = L(g · (X,W)),∀g ∈ G, (2)

where X represents data and W represents parameters of the deep learning model. Define a teleport
schedule K ⊂ {0, 1, ..., Tmax}, where Tmax is the maximum training epochs. Prior to each epoch
in K, teleportation is applied by searching for g ∈ G which transforms the parameter W to W ∗ with
greater gradient norm within the loss invariant level set.

When the group G is continuous, the search process can be conducted by parameterizing the group
action g and performing gradient ascent on g with the teleportation objective function defined as
the gradient norm of the current parameter W . For example, general linear group transformations
g ∈ GLd(R) can be parameterized as g = I + ϵM , where ϵ≪ 1 and M is an arbitrary matrix.

Zhao et al. (2022; 2023) designs a loss invariant group action specifically for MLPs with bijective
activation function σ. Assuming the invertibility of (k − 2)-th layer’s output, hk−2, the following
group action g ∈ GLd(R) on k-th and (k − 1)-th layers ensures the output of the entire network
unchanged:

gm ·Wk =


Wmg−1

m if k = m,

σ−1 (gmσ (Wm−1hm−2))h
−1
m−2 if k = m− 1,

Wk if k /∈ {m,m− 1}.

In practice, each teleportation update applies the above group action to every layer of an MLP,
requiring two bottleneck inverse operations per update. Denote Dmax as the largest width of the
MLPs, and n the sample size, assuming Dmax > n. The time complexity of calculating pseudo-
inverse for each layer is O(D2

maxn). Therefore, the total time complexity for l layers, b batches, and
t teleport updates per batch is O(D2

maxnlbt). The need for pseudo-inverse computations and the
dependencies between layers render the algorithm relatively slow and unsuitable for parallelization.
Additionally, there is no straightforward method to generalize this design from MLPs to CNNs or
transformers.

2.2 MATRIX APPROXIMATION WITH SVD

An arbitrary matrix A ∈ R(m,n) can be decomposed using the singular value decomposition
(SVD) Klema & Laub (1980) as A = UΣV T , where U ∈ R(m,m) consists of orthonormal eigen-
vectors of AAT , Σ ∈ R(m,n) is a diagonal matrix containing sorted singular values, and V ∈ R(n,n)

contains orthonormal eigenvectors of ATA. The matrix A can be expressed as
∑r

i=1 σiuiv
T
i , where

r = min(m,n), and (ui, vi) are the column and row vectors of U, V respectively.

In this work, we consider the matrix approximation Ak of A defined as Ak =
∑k

i=1 σiuiv
T
i , where

k = argmin
k

{
k : ||Ak||2F ≥ τ ||A||2F

}
, (3)

with ∥ · ∥F denotes the Frobenius norm and τ ∈ [0, 1] being a threshold hyper-parameter.

3 TELEPORT WITH NULL SPACE GRADIENT PROJECTION

Our objective is to develop a generalizable and efficient algorithm that avoids reliance on specific
group action designs. Moreover, it should avoid any (linear) approximation of the level set with
uncontrollable errors, as these could otherwise result in suboptimal performance. Considering the
common architectural design in modern neural networks, which typically employ a linear relation-
ship between weights and inputs of each layer, the technique of gradient projection on to the input
null space of each layer is well-suited for this purpose. We next elaborate on it.

Gradient Projection. To incorporate the geometric landscape and accelerate optimization using
only gradient information, the objective function for teleportation is defined as the squared gradient
norm of the loss function of the primary task with respect to the model parameter W ,

Lteleport =
1

2
∥∇WLprimary∥2. (4)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

During each teleportation step, in contrast to symmetry teleportation, the gradient ascent is applied
directly on the model parameter Wl of each layer l instead of relying on an intermediate group action
g, i.e., we have

Wl,t+1 = Wl,t + ηπl(∇Wl
Lteleport), (5)

where η is the learning rate for teleportation update, and πl is the layerwise projection operator
onto the null space of each layer’s input. We have distinct projection operators for different model
architectures. We will derive πl for MLPs, CNNs and transformes in the sequel. The validity of
this projection is based on the assumption that the gradient resides within the span of each layer’s
input for certain structures, which will also be elaborated in a subsequent section.

Section Organization. We first define and provide notations for MLPs, CNNs, and transformers.
Next, we demonstrate that the gradient in Equation 5 indeed resides within the input space of these
architectures, thus satisfying the required assumption of gradient projection. Finally, we present
our proposed approach and provide a detailed explanation of how to derive the projection operators
for each of these architectures.

3.1 DEEP LEARNING ARCHITECHTURES

3.1.1 MULTI-LAYER PERCEPTRONS

We define the l-th layer of an MLP (Rumelhart et al., 1986). Denote the input of the layer as
xl−1 ∈ R(dl−1,1), the parameter as Wl ∈ R(dl,dl−1), the output as xl ∈ R(dl,1). We incorporate
the bias term into Wl and xl−1 by adding an additional column to Wl and unity to xl−1. Then the
output of l-th layer is defined as

xl = σ(Wlxl−1),

where σ is an activation function, e.g. ReLU (Nair & Hinton, 2010).

3.1.2 CONVOLUTIONAL NEURAL NETWORK

We define the l-th layer of a CNN (LeCun et al., 1998). Denote the input to the l-th convolu-
tional layer as xl−1 ∈ RCi×hi×wi , convolutional kernel as Wl ∈ RCo×Ci×k×k, and output as
xl ∈ RCo×ho×wo , where Ci, hi, wi(Co, ho, wo) are the input (output) channel, height, and width,
respectively, and k is the kernel size. If xl−1 (e.g., with padding, striding, etc) is reshaped into
(ho×wo)× (Ci× k× k) as Xl−1, and Wl is reshaped to (Ci× k× k)×Co, then the convolutional
layer can be expressed as a matrix multiplication

xl = σ(Xl−1Wl),

where xl ∈ R(xo×wo)×Co is the output of l-th layer, and σ an activation function. See Appendix A.3
for a visual explanation of the matrix multiplication.

3.1.3 TRANSFORMER

We define the self-attention and multi-head self-attention layers (Vaswani, 2017). Denote the input
sequence of the l-th self-attention layer as Xl−1 ∈ RT×Di , with sequence length T and dimension
Di. The l-th self-attention layer is parameterized by the query matrix Wl,q ∈ R(Di,Dk), the key
matrix Wl,k ∈ R(Di,Dk), and the value matrix Wl,v ∈ R(Di,Do). Then, the self-attention layer maps
the sequence from dimension Di to Do by

Attention(Q,K, V) = softmax(
QKT

√
Dk

)V,

where Q = Xl−1Wl,q,K = Xl−1Wl,k, V = Xl−1Wl,v , and Dk is the dimension of the model.

The multi-head attention is realized by replicating and concatenating Nh heads of low-rank self-
attentions before applying an output projection, defined as

MultiHead(Xl−1) = concati∈[Nh][H
(i)]Wl,o (6)

H(i) = Attention(Xl−1W
(i)
l,q , Xl−1W

(i)
l,k , Xl−1W

(i)
l,v), (7)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where W
(i)
l,q ∈ R(Di,

Dk
Nh

), W (i)
l,k ∈ R(Di,

Dk
Nh

), W (i)
l,v ∈ R(Di,

Dk
Nh

) are parameters for each head. The
output projection matrix Wl,o ∈ R(Dk,Do) maps the concatenation of heads to the desired output
dimension.

3.2 INPUT AND GRADIENT SPACE

Now we establish that the gradient of the teleportation objective function resides within the space
spanned by the input of each layer. Following the notation established in Section 3.1, we can read-
ily express the gradient of the teleportation objective function with respect to the model parameter
Wl:

MLP : ∇Wl
LTeleport = ∇(Wlxl−1)LTeleport · ∇Wl

(Wlxl−1)

= δMLPx
T
l−1

CNN : ∇Wl
LTeleport = ∇Wl

(Xl−1Wl) · ∇(Xl−1Wl)LTeleport

= XT
l−1 · δCNN

Self-Attention : ∇
W

(i)
l,·

LTeleport = ∇W
(i)
l,·

(Xl−1W
(i)
l,·) · ∇(Xl−1W

(i)
l,·)

LTeleport

= XT
l−1 · δAttention,

where δMLP ∈ R(dl,1), δCNN ∈ R(ho×wo,Co), and δAttention ∈ R(T,Dk) are some error terms de-
termined by both the loss function of the primary task and the objective function of the teleportation.
Here, it can be observed that all gradients above can be written as the matrix multiples involving
the input X of each layer and another matrix. Thus, the gradient of the teleportation objective
function indeed resides within the space spanned by the input of each layer for MLPs, CNNs, and
transformer, which is a composition of attention layers and MLP layers.

3.3 ALGORITHM

Step 1. We first construct the representation matrix for each layer l based on a given teleportation
batch of data:

MLP : Rl
MLP = [xl−1,1, xl−1,2, · · · , xl−1,n] (8)

CNN : Rl
CNN = [XT

l−1,1, X
T
l−1,2, · · · , XT

l−1,n] (9)

Self-Attention : Rl
Attention = [XT

l−1,1, X
T
l−1,2, · · · , XT

l−1,n], (10)

where n is the batch size. Each representation matrix Rl
MLP ∈ R(dl−1,n), Rl

CNN ∈
R(Ci×k×k,ho×wo×n), and Rl

Attention ∈ R(Di,T×n) contains columns of feature vectors, which are
captured at each layer during the forward pass through the network using a random teleportation
batch of size n.

Step 2. For all model architectures, we apply SVD on the representation matrix Rl, followed by
a low-rank approximation (Rl)k =

∑k
i=1 σl,iul,iv

T
l,i based on the criterion in Equation 3, using a

predefined threshold τ . The orthonormal column vectors [ul,1, ul,2, . . . , ul,k], from SVD of Rl, con-
sist of the eigenvectors corresponding to the top k singular values of the representation matrix. We
define the subspace spanned by these eigenvectors as the space of significant representation (Saha
et al., 2021b).

During a teleportation step, the goal is to ensure that the gradient update in Equation 5 preserves
the correlation between the weights and the space of significant representation as much as possi-
ble. Given that the gradient space lies within the input space, we can partition the gradient space
into two orthogonal subspaces of the input space: the Core Gradient Space (CGS) and the Resid-
ual Gradient Space (RGS) (Saha et al., 2021a), which are spanned by [ul,1, ul,2, · · · , ul,k] and
[ul,k+1, ul,k+2, · · · , ul,r] respectively. By construction, projecting the gradient onto CGS will lead
to the greatest interference in the correlation between the weights and the space of significant repre-
sentation, while projecting onto RGS will result in minimal or no interference in this correlation.
To preserve model parameters on the loss-invariant level set during teleportation steps, we project
the gradient of teleportation objective function∇WLTeleport onto the RGS before each update.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Step 3. Given the orthonormal basis Bl = [ul,1, ul,2, · · · , ul,k] of the CGS for the l-th layer, the
gradient∇Wl

LTeleport is initially projected onto the CGS and then removed from itself to yield the
projection onto the RGS. Specifically, the projection operator πl is defined as follows:

MLP : πl(∇Wl
LTeleport) = ∇Wl

LTeleport − (∇Wl
LTeleport)BlB

T
l (11)

CNN : πl(∇Wl
LTeleport) = ∇Wl

LTeleport −BlB
T
l (∇Wl

LTeleport) (12)

Self-Attention : πl(∇W
(i)
l,·

LTeleport) = ∇W
(i)
l,·

LTeleport −BlB
T
l (∇W

(i)
l,·

LTeleport) (13)

The teleportation step is completed by substituting the projection operator back into Equation 5.
The complete training process is outlined in the pseudo-code presented in appendix A.1.

4 EXPERIMENTS

In this section, we demonstrate the effectiveness of our method across MLPs, CNNs, and transform-
ers, utilizing a wide range of benchmark datasets. Additionally, we evaluate our approach using a
variety of optimizers, such as the vanilla SGD, first-moment optimizer like SGD with momentum,
second-moment optimizers like Adagrad and Adam.

We showcase the efficiency of our algorithm compared to the state-of-the-art method, symmetry
teleportation, across multiple teleportation hyperparameters. Furthermore, if any approximation of
the level set is needed, we demonstrate the capability of our approach to control the error in null
space approximation, which subsequently improves the accuracy of level set approximation during
the teleportation.

4.1 MLP EXPERIMENTS

Datasets. To demonstrate the effectiveness of our method with MLPs, we conduct experiments
using the MNIST digit image classification dataset and its clothing variant, FashionMNIST. Both
datasets are split into 60, 000 samples for training and 10, 000 samples for testing. The input images,
with dimensions of 28×28 pixels, are flattened into vectors before being fed into the MLPs models.

Implementation Detail. We use a 3-layer MLPs with hidden dimensions [1024, 1024], ReLU acti-
vation function, and cross-entropy loss. Following the convention in Zhao et al. (2022)’s work, we
schedule teleportation for the first 5 epochs of the primary training phase. For each teleportation in
the schedule, we randomly sample 32 batches of data and perform 8 teleport updates per batch. The
SVD threshold is set to 1, i.e., the gradients are projected onto the exact input null space. Learn-
ing rates are set differently depending on the optimizer used. See the appendix A.2 for complete
implementation details.

Experiment Results. With teleportation, in Figure 2, we observe a faster convergence rate for
both training and test loss, ultimately converging to a lower loss compared to their non-teleportation
counterparts. This behavior suggests that teleportation may have the potential to not only accelerate
the convergence rate but also help in finding a better local minimum.

4.2 CNN EXPERIMENTS

Datasets. We use the CIFAR-10, CIFAR-100, and Tiny-Imagenet datasets to evaluate the effective-
ness of our algorithm on CNNs. Both CIFAR datasets are split into 50,000 training samples and
10,000 test samples. The image size for CIFAR datasets is 3× 32× 32. The Tiny-Imagenet dataset
is a smaller version of the full Imagenet dataset, containing 200 image classes with 100, 000 training
images and 20, 000 validation/test images. The image size for the Tiny-Imagenet dataset is kept the
same as the full Imagenet dataset, i.e., 3× 224× 224.

Implementation Detail. For the CIFAR datasets, we use a 3-layer CNNs with chan-
nels [3, 16, 32, 64], max pooling after each layer, ReLU activation function, and cross-
entropy loss. For the Tiny-Imagenet dataset, we utilize a residual network with channels
[3, 64, 64, 64, 128, 128, 128, 256, 256, 256], and 3 residual connections between channels of same
shape. Instead of max pooling, we use larger strides to reduce the feature size, a common practice
in the design of residual networks. A classification head is connected after the final channel for

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
Epoch

4.0

1.6

0.7

0.3

0.1

Lo
ss

MNIST
SGD train
SGD test
SGD+teleport train
SGD+teleport test

0 20 40 60 80 100
Epoch

4.0

1.6

0.7

0.3

0.1

Lo
ss

MNIST
momentum train
momentum test
momentum+teleport train
momentum+teleport test

0 20 40 60 80 100
Epoch

1

0.6

0.3

0.16

0.08

Lo
ss

MNIST
Adagrad train
Adagrad test
Adagrad+teleport train
Adagrad+teleport test

0 20 40 60 80 100
Epoch

4

0.9

0.3

0.1

0.03

Lo
ss

MNIST
Adam train
Adam test
Adam+teleport train
Adam+teleport test

0 20 40 60 80 100
Epoch

4

2

1

0.5

0.25

Lo
ss

FashionMNIST
SGD train
SGD test
SGD+teleport train
SGD+teleport test

0 20 40 60 80 100
Epoch

4

2

1

0.5

0.25
Lo

ss

FashionMNIST
momentum train
momentum test
momentum+teleport train
momentum+teleport test

0 20 40 60 80 100
Epoch

1

0.7

0.5

0.36

0.25

Lo
ss

FashionMNIST
Adagrad train
Adagrad test
Adagrad+teleport train
Adagrad+teleport test

0 20 40 60 80 100
Epoch

2

1.1

0.7

0.4

0.25

Lo
ss

FashionMNIST
Adam train
Adam test
Adam+teleport train
Adam+teleport test

Figure 2: Loss trajectories of training MLPs on the MNIST and FashionMNIST datasets. Each
experiment is repeated 3 times, with the average loss plotted and the standard deviation of loss
represented as the shaded area.

both architectures. The teleportation scheduling and threshold τ remains the same as in the MLPs
experiments. See appendix A.2 for complete implementation details.

0 20 40 60 80 100
Epoch

3.5

2.1

1.3

0.8

0.5

Lo
ss

CIFAR10
SGD train
SGD test
SGD+teleport train
SGD+teleport test

0 20 40 60 80 100
Epoch

3.5

2.1

1.3

0.8

0.5

Lo
ss

CIFAR10
momentum train
momentum test
momentum+teleport train
momentum+teleport test

0 20 40 60 80 100
Epoch

2.3

1.9

1.5

1.2

1.0

Lo
ss

CIFAR10
Adagrad train
Adagrad test
Adagrad+teleport train
Adagrad+teleport test

0 60 120 180 240 300
Epoch

2.6

2.2

1.8

1.5

1.2
Lo

ss

CIFAR10
Adam train
Adam test
Adam+teleport train
Adam+teleport test

0 80 160 240 320 400
Epoch

5

3.6

2.7

2

1.5

Lo
ss

CIFAR100
SGD train
SGD test
SGD+teleport train
SGD+teleport test

0 80 160 240 320 400
Epoch

5

3.6

2.7

2

1.5

Lo
ss

CIFAR100
momentum train
momentum test
momentum+teleport train
momentum+teleport test

0 80 160 240 320 400
Epoch

5

4.2

3.6

3

2.5

Lo
ss

CIFAR100
Adagrad train
Adagrad test
Adagrad+teleport train
Adagrad+teleport test

0 80 160 240 320 400
Epoch

5

4.2

3.6

3.1

2.6

Lo
ss

CIFAR100
Adam train
Adam test
Adam+teleport train
Adam+teleport test

Tiny Tiny Tiny Tiny

Figure 3: Loss trajectories of training CNNs on CIFAR datasets and Tiny-Imagenet dataset. Each
experiment is repeated 3 times, with the average loss plotted and the standard deviation of loss
represented as the shaded area.

Experiment Results. With teleportation, we observe in Figure 3 a marked acceleration in optimiza-
tion in the beginning of each training, coinciding with the application of teleportation. The test loss
with teleportation tends to converge to the same value as the non-teleportation counterpart, while
the training loss with teleportation continues to decrease at a faster rate even after the test loss has
plateaued. This behavior is expected, as the teleportation objective is defined as the squared norm of
the gradient, which prioritizes faster convergence on the training set rather than improving general-
ization. The teleportation framework is highly flexible, allowing the teleportation objective function
to be adjusted to other reasonable choices, such as the curvature of the parameter landscape, which
has been shown to enhance generalization (Zhao et al., 2023).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.3 TRANSFORMER EXPERIMENTS

Datasets. We first consider the MNIST dataset as a sequential classification task, with a sequence
length of 28× 28 and a data dimension 1.

Next, we evaluate on two publicly available multi-variate time series regression datasets: electric-
ity and traffic. The electricity dataset consists of 321 dimensions with a total sequence length of
26, 304. The sample sequence length is set to 7 × 24, representing a week’s worth of data. The
regression target is the data point of the same dimension 24 hours after the input sample. The traffic
dataset consists of 862 dimensions, with a total sequence length of 17, 544. The data is similarly
manipulated to regress a week’s worth of data to the data 24 hours after the week. See Appendix
A.4 for a detailed explanation.

We also evaluate on the Penn Treebank (PTB) language corpus. We use the default train/test split
of the PTB dataset, where the training set contains approximately 950, 000 words and the test set
approximately 80, 000 words. We use the TreebankWord tokenizer from the nltk Library and set
the sequence length to 256. As is common practice, we formulate the problem as a causal self-
supervised learning task, where the label is the input shifted to the right by one.

Implementation Detail. For the sequential MNIST dataset, we use a small Transformer model
with 2 heads, each having a dimension of 64, stacked across two layers. For the regression and
language datasets, we use a transformer with 4 heads, each with a dimension of 64, stacked across 4
layers without pooling, followed by a linear output. See appendix A.2 for complete implementation
details.

0 80 160 240 320 400
Epoch

5

1.6

0.50.5

0.13

0.03

Lo
ss

sMNIST
SGD train
SGD test
SGD+teleport train
SGD+teleport test

0 80 160 240 320 400
Epoch

5

1.6

0.50.5

0.13

0.03

Lo
ss

sMNIST
momentum train
momentum test
momentum+teleport train
momentum+teleport test

0 80 160 240 320 400
Epoch

2

0.8

0.3

0.1

0.03

Lo
ss

sMNIST
Adagrad train
Adagrad test
Adagrad+teleport train
Adagrad+teleport test

0 80 160 240 320 400
Epoch

5

1.9

0.7

0.25

0.1
Lo

ss

sMNIST
Adam train
Adam test
Adam+teleport train
Adam+teleport test

0 10 20 30 40 50
Epoch

0.02

0.05

0.11

0.25

0.6

Lo
ss

electricity
SGD train
SGD test
SGD+teleport train
SGD+teleport test

0 10 20 30 40 50
Epoch

0.02

0.05

0.11

0.25

0.6

Lo
ss

electricity
momentum train
momentum test
momentum+teleport train
momentum+teleport test

0 10 20 30 40 50
Epoch

0.004

0.008

0.015

0.03

0.05

Lo
ss

electricity
Adagrad train
Adagrad test
Adagrad+teleport train
Adagrad+teleport test

0 10 20 30 40 50
Epoch

0.004

0.015

0.05

0.16

0.5

Lo
ss

electricity
Adam train
Adam test
Adam+teleport train
Adam+teleport test

0 10 20 30 40 50
Epoch

0.01

0.027

0.08

0.25

0.6

Lo
ss

traffic
SGD train
SGD test
SGD+teleport train
SGD+teleport test

0 10 20 30 40 50
Epoch

0.01

0.027

0.08

0.25

0.6

Lo
ss

traffic
momentum train
momentum test
momentum+teleport train
momentum+teleport test

0 10 20 30 40 50
Epoch

0.003

0.0053

0.0095

0.017

0.03

Lo
ss

traffic
Adagrad train
Adagrad test
Adagrad+teleport train
Adagrad+teleport test

0 10 20 30 40 50
Epoch

0.003

0.009

0.028

0.085

0.25

Lo
ss

traffic
Adam train
Adam test
Adam+teleport train
Adam+teleport test

0 40 80 120 160 200k
Step

5.6

6.3

7.1

8

9

Lo
ss

Penn Treebank
SGD test
SGD train
SGD+teleport test
SGD+teleport train

0 40 80 120 160 200k
Step

5.6

6.3

7.1

8

9

Lo
ss

Penn Treebank
momentum test
momentum train
momentum+teleport test
momentum+teleport train

0 40 80 120 160 200k
Step

4.5

4.9

5.4

5.9

6.5

Lo
ss

Penn Treebank
Adagrad train
Adagrad test
Adagrad+teleport train
Adagrad+teleport test

0 40 80 120 160 200k
Step

4.8

5.6

6.5

7.5

9

Lo
ss

Penn Treebank
Adam test
Adam train
Adam+teleport test
Adam+teleport train

Figure 4: Loss trajectories of training Transformers on sequential MNIST, electricity, traffic, and
Penn Treebank datasets. Each experiment is repeated 3 times, with the average loss plotted and the
standard deviation of loss represented as the shaded area.

Experiment Results. In addition to the observations from previous experiments, in Figure 4, we
notice that teleportation remains effective across different problem settings, including regression
problems and language modeling. Significant acceleration is observed in the regression datasets,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

particularly with the SGD and momentum optimizers, where the loss with teleportation converges
within the first few epochs, while the non-teleportation counterpart takes more than 50 epochs to
converge on the traffic dataset. Furthermore, the acceleration with teleportation in language model-
ing is particularly notable during the initial phase of training, even though both approaches eventu-
ally converge to the same loss. These results highlight the potential of applying teleportation to the
training of large language models.

4.4 EFFICIENCY IMPROVEMENT

In this section, we demonstrate the efficiency of our algorithm compared to the state-of-the-art sym-
metry teleportation algorithm.

Recall that the time complexity of symmetry teleportation is O(d2nlbt), where d is the feature
dimension of layers, n is the batch size, l is the number of layers, b is the number of batches, and t
is the number of teleport steps per batch. Note that the pseudo-inverse is calculated using SVD for
Pytorch Library, thus sharing the same time complexity as SVD operation. However, in our method,
only one SVD is needed for each batch of data, which reduces the bottleneck and brings the time
complexity down to O(d2nlb). Ideally, by leveraging our algorithm’s layer-independent property,
computations can be parallelized across all layers, further reducing the time complexity to O(d2nb).
However, we leave such engineering optimizations for future work.

0 50 100 150 200 250

t: teleport step
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ti
m

e(
s)

symmetry teleport
ours

0 500 1000 1500 2000 2500 3000 3500 4000

d: feature dimension
0

2

4

6

8

10

12

14

16

Ti
m

e(
s)

symmetry teleport
ours

0 100 200 300 400 500

n: batch size

2

4

6

8

10

12

14

Ti
m

e(
s)

symmetry teleport
ours

1 2 3 4 5 6

l: number of layers

5

10

15

20

25

30

35

40

Ti
m

e(
s)

symmetry teleport
ours

0 10 20 30 40 50 60 70

b: number of batches
0

20

40

60

80

100

120

Ti
m

e(
s)

symmetry teleport
ours

Figure 5: From left to right: a comparison between symmetry teleport and our algorithm using
MLPs in terms of the scaling of runtime with respect to t, d, n, l, and b.

In practice, as demonstrated in Figure 5, our algorithm exhibits linear scaling with respect to t, l, and
b, while the runtime of the symmetry teleportation increases at a significantly faster rate. Notably,
for d and n, our approach achieves near-constant runtime in contrast to the linear-to-polynomial
runtime of the symmetry teleport. Ideally, once the layer parallelization is fully implemented, we
anticipate that constant runtime will also be achieved with an increasing number of layers, thereby
enhancing overall performance.

4.5 ERROR CONTROL

In addition to its efficiency, our algorithm provides a distinct advantage in controlling the error
associated with increased loss during teleportation. Figure 6a records the information of the input
space of the second layer in MLPs, CNNs, and Transformers (with the same architechtures used
in experiments) across all datasets. Most variance of input is captured by the space of significant
representation of a relatively small proportion of total dimensions, represented by the percentages
of sorted eigenvectors in SVD. Consequently, even without approximating the input null space,
sufficient dimensions are typically available in the null space to facilitate gradient projection and
search. This validates our choice of setting τ to be 1 in most cases. Figure 6b further confirms that
when the threshold τ is set to 1, meaning the exact null space is utilized, the gradient norm increases
steadily during teleportation while the loss remains constant. Moreover, as τ decreases, the gradient
is projected onto an approximated null space with a significantly larger number of dimensions, yet
capturing only slightly more variance with minimal impact on the loss. A remarkable increase in
the gradient norm ascending speed is observed when τ is set to 0.99, with the loss still remaining
constant. (Experiments in Figure 6b are conducted using transformer on sMNIST dataset.)

5 DISCUSSION AND CONCLUSION

In this paper, we propose a novel algorithm that generalizes the application of teleportation from
MLPs to other modern architectures such as CNNs and transformers. The algorithm demonstrates

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) Input variance captured by eigenvectors.
(b) Effect of teleport step on increase of gradient norm and loss
value.

Figure 6: A majority of the input variance is captured by a relatively small proportion of the input
space. As we approximate a larger input null space, the gradient norm increases more rapidly during
teleportation, while the loss remains constant when τ is greater than 0.99.

improved computational efficiency and introduces explicit error control during the level set approx-
imation, if such an approximation is employed.

Gradient projection proves to be a powerful tool for modern AI, as most contemporary architec-
tures rely on a linear modeling between inputs and weights. Consequently, our framework has the
potential to be generalized to emerging time-series architectures such as Mamba and TTT.

Despite its promising performance, teleportation still faces challenges when applied broadly in the
deep learning field. One of the major challenges is the selection of hyperparameters. Identifying
a generalizable set of hyperparameters suitable for all architectures and datasets remains difficult.
Developing a simple and effective hyperparameter selection strategy will significantly enhance the
overall efficiency of teleportation.

REFERENCES

Marco Armenta and Pierre-Marc Jodoin. The representation theory of neural networks. Mathemat-
ics, 9(24), 2021. ISSN 2227-7390. doi: 10.3390/math9243216. URL https://www.mdpi.
com/2227-7390/9/24/3216.

Marco Armenta, Thierry Judge, Nathan Painchaud, Youssef Skandarani, Carl Lemaire, Gabriel
Gibeau Sanchez, Philippe Spino, and Pierre-Marc Jodoin. Neural teleportation. Mathematics,
11(2):480, 2023.

Xavier Bouthillier, Pierre Delaunay, Mirko Bronzi, Assya Trofimov, Brennan Nichyporuk, Justin
Szeto, Nazanin Mohammadi Sepahvand, Edward Raff, Kanika Madan, Vikram Voleti, et al. Ac-
counting for variance in machine learning benchmarks. Proceedings of Machine Learning and
Systems, 3:747–769, 2021.

Patrick L Combettes and Jean-Christophe Pesquet. Proximal splitting methods in signal processing.
Fixed-point algorithms for inverse problems in science and engineering, pp. 185–212, 2011.

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali Farhadi, Hannaneh Hajishirzi, and Noah Smith.
Fine-tuning pretrained language models: Weight initializations, data orders, and early stopping.
arXiv preprint arXiv:2002.06305, 2020.

Simon S Du, Wei Hu, and Jason D Lee. Algorithmic regularization in learning deep homogeneous
models: Layers are automatically balanced. Advances in neural information processing systems,
31, 2018.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Iordan Ganev, Twan van Laarhoven, and Robin Walters. Universal approximation and model com-
pression for radial neural networks. arXiv preprint arXiv:2107.02550, 2021.

10

https://www.mdpi.com/2227-7390/9/24/3216
https://www.mdpi.com/2227-7390/9/24/3216

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

J Elisenda Grigsby, Kathryn Lindsey, Robert Meyerhoff, and Chenxi Wu. Functional dimension of
feedforward relu neural networks. arXiv preprint arXiv:2209.04036, 2022.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Elad Hazan. Lecture notes: Optimization for machine learning. arXiv preprint arXiv:1909.03550,
2019.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Virginia Klema and Alan Laub. The singular value decomposition: Its computation and some appli-
cations. IEEE Transactions on automatic control, 25(2):164–176, 1980.

Daniel Kunin, Javier Sagastuy-Brena, Surya Ganguli, Daniel LK Yamins, and Hidenori Tanaka.
Neural mechanics: Symmetry and broken conservation laws in deep learning dynamics. arXiv
preprint arXiv:2012.04728, 2020.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Aaron Mishkin, Alberto Bietti, and Robert M Gower. Level set teleportation: An optimization
perspective. arXiv preprint arXiv:2403.03362, 2024.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814,
2010.

Boris T Polyak. Some methods of speeding up the convergence of iteration methods. Ussr compu-
tational mathematics and mathematical physics, 4(5):1–17, 1964.

Sameera Ramasinghe, Lachlan MacDonald, Moshiur Farazi, Hemanth Saratchandran, and Simon
Lucey. How you start matters for generalization. arXiv preprint arXiv:2206.08558, 2022.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathemati-
cal statistics, pp. 400–407, 1951.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors. nature, 323(6088):533–536, 1986.

Levent Sagun, Utku Evci, V Ugur Guney, Yann Dauphin, and Leon Bottou. Empirical analysis of
the hessian of over-parametrized neural networks. arXiv preprint arXiv:1706.04454, 2017.

Gobinda Saha, Isha Garg, Aayush Ankit, and Kaushik Roy. Space: Structured compression and
sharing of representational space for continual learning. IEEE Access, 9:150480–150494, 2021a.

Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projection memory for continual learning.
arXiv preprint arXiv:2103.09762, 2021b.

Berfin Simsek, François Ged, Arthur Jacot, Francesco Spadaro, Clément Hongler, Wulfram Gerst-
ner, and Johanni Brea. Geometry of the loss landscape in overparameterized neural networks:
Symmetries and invariances. In International Conference on Machine Learning, pp. 9722–9732.
PMLR, 2021.

Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois, Xinlei
Chen, Xiaolong Wang, Sanmi Koyejo, et al. Learning to (learn at test time): Rnns with expressive
hidden states. arXiv preprint arXiv:2407.04620, 2024.

Salma Tarmoun, Guilherme Franca, Benjamin D Haeffele, and Rene Vidal. Understanding the
dynamics of gradient flow in overparameterized linear models. In International Conference on
Machine Learning, pp. 10153–10161. PMLR, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Bo Zhao, Nima Dehmamy, Robin Walters, and Rose Yu. Symmetry teleportation for accelerated
optimization. Advances in neural information processing systems, 35:16679–16690, 2022.

Bo Zhao, Robert M Gower, Robin Walters, and Rose Yu. Improving convergence and generalization
using parameter symmetries. arXiv preprint arXiv:2305.13404, 2023.

A APPENDIX

A.1 PSEUDOCODE

Algorithm 1 Teleportation with Input Null Space Gradient Projection
Input: Loss function L(w), number of epochs for primary task T , teleport learning rate η, teleport
batch number b, teleport step number t, teleport schedule K, threshold maximum gradient norm
value CAP, initialized parameters w0.
Output: wT .

1: for i← 0 to T − 1 do
2: if i ∈ K then
3: for b batches do
4: Null space projection matrix π ← SVD(batch)
5: for t steps do
6: if ∥∇wL|wi

∥2 < CAP then
7: wi ← wi − ηπ(∇w∥∇wL|wi

∥2|wi
)

8: else
9: break

10: end if
11: end for
12: end for
13: end if
14: Continue the training of the primary task
15: end for
16: return wT

A.2 IMPLEMENTATION DETAILS

In table 1, we summarize the hyper-parameters used in experiments. We denote the base learning
rate for primary task as ηprim, the learning rate for teleportation as ηtele, maximum epoch for pri-
mary task as Tprim, teleport batch size as n, and teleport cap threshold as CAP. The batch size for
the primary task is set to 32, the number of teleport batches set to 32, and the number of teleportation
steps per batch set to 8 throughout all experiments.

For all experiments using CNNs, we perform 40 warm-up steps before the first teleportation to
stabilize the behavior of the gradients.

For the sequential MNIST dataset, we use a small Transformer model with 2 heads, each having
a dimension of 64, stacked across two layers. This is followed by an average pooling layer and a
ten-way linear classification head, optimized using cross-entropy loss. For the electricity and traffic
datasets, we use a transformer with 4 heads, each with a dimension of 64, stacked across 4 layers
without pooling, followed by a linear regression head where the output dimension matches the input
dimension. For the PTB dataset, we use the same Transformer architecture but replace the first
linear layer with an embedding layer and set the output dimension to the vocabulary size, which is
approximately 10, 000.

A.3 VISUALIZATION OF MATRIX MULTIPLICATION REPRESENTATION FOR CNNS

Although filters in CNNs works differently than weights in MLPs, the forward and backward prop-
agations of CNNs are essentially still matrix multiplications (see Figure 7).

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Dataset (Optimizer) ηprim ηtele Tprim n CAP
MNIST (SGD) 2e− 4 2e− 1 100 32 5
MNIST (Momentum) 2e− 4 2e− 1 100 32 5
MNIST (Adagrad) 2e− 4 2e− 1 100 32 5
MNIST (Adam) 2e− 4 2e− 1 100 32 5
FashionMNIST (SGD) 2e− 4 2e− 1 100 32 5
FashionMNIST (Momentum) 2e− 4 2e− 1 100 32 5
FashionMNIST (Adagrad) 2e− 4 2e− 1 100 32 5
FashionMNIST (Adam) 2e− 4 2e− 1 100 32 5
CIFAR10 (SGD) 1e− 4 3e− 3 100 256 40
CIFAR10 (Momentum) 1e− 4 3e− 3 100 256 40
CIFAR10 (Adagrad) 1e− 4 3e− 3 100 256 40
CIFAR10 (Adam) 1e− 5 3e− 3 300 256 40
CIFAR100 (SGD) 1e− 4 3e− 3 400 256 40
CIFAR100 (Momentum) 1e− 4 3e− 3 400 256 40
CIFAR100 (Adagrad) 1e− 4 3e− 3 400 256 40
CIFAR100 (Adam) 3e− 5 3e− 3 400 256 40
Tiny Imagenet (SGD) 2e− 4 3e− 3 400 32 40
Tiny Imagenet (Momentum) 2e− 4 3e− 3 400 32 40
Tiny Imagenet (Adagrad) 2e− 4 3e− 3 400 32 40
Tiny Imagenet (Adam) 5e− 5 3e− 3 400 32 40
sMNIST (SGD) 1e− 3 3e− 3 400 32 10
sMNIST (Momentum) 1e− 3 3e− 3 400 32 10
sMNIST (Adagrad) 1e− 3 3e− 3 400 32 10
sMNIST (Adam) 1e− 4 3e− 3 400 32 10
electricity (SGD) 1e− 4 3e− 3 50 32 10
electricity (Momentum) 1e− 4 3e− 3 50 32 10
electricity (Adagrad) 1e− 4 3e− 3 50 32 10
electricity (Adam) 1e− 4 3e− 3 50 32 10
traffic (SGD) 1e− 4 3e− 3 50 32 10
traffic (Momentum) 1e− 4 3e− 3 50 32 10
traffic (Adagrad) 1e− 4 3e− 3 50 32 10
traffic (Adam) 1e− 4 3e− 3 50 32 10
Penn Treebank (SGD) 2e− 4 5e− 2 20, 000

steps
32 5

Penn Treebank (Momentum) 2e− 4 5e− 2 20, 000
steps

32 5

Penn Treebank (Adagrad) 2e− 4 5e− 2 20, 000
steps

32 5

Penn Treebank (Adam) 5e− 5 5e− 2 20, 000
steps

32 5

Table 1: Summary table for hyper-parameters of all experiments

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Figure 7: Visualization of matrix representation of forward and backward pass for CNNs.

A.4 BRIEF EXPLANATION OF THE MULTI-VARIATE TIME SERIES REGRESSION DATASETS

The electricity dataset tracks electricity consumption in kWh every 15 minutes from 2012 to 2014
for 321 clients, adjusted to reflect hourly consumption. The dataset consists of 321 dimensions
with a total sequence length of 26, 304. The sample sequence length is set to 7 × 24, representing
a week’s worth of data. The regression target is the data point of the same dimension 24 hours
after the input sample. The traffic dataset contains 48 months (2015–2016) of hourly data from
the California Department of Transportation, describing road occupancy rates (between 0 and 1)
measured by various sensors on the San Francisco Bay Area freeway. This dataset consists of 862
dimensions, with a total sequence length of 17, 544. The data is similarly manipulated to regress a
week’s worth of data to the data 24 hours after the week.

14

	Introduction
	Preliminary
	Symmetry Teleportation
	Matrix Approximation With SVD

	Teleport With Null Space Gradient Projection
	Deep Learning Architechtures
	Multi-Layer Perceptrons
	Convolutional Neural Network
	Transformer

	Input and Gradient Space
	Algorithm

	Experiments
	MLP Experiments
	CNN Experiments
	Transformer Experiments
	Efficiency Improvement
	Error Control

	Discussion and Conclusion
	Appendix
	Pseudocode
	Implementation Details
	Visualization of Matrix Multiplication Representation for CNNs
	Brief Explanation of The Multi-variate Time Series Regression Datasets

