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Abstract

Vision-language contrastive learning frameworks such as CLIP enable learning representa-
tions from natural language supervision and provide strong zero-shot classification capabil-
ities. However, due to the nature of the supervisory signal in these paradigms, they lack
the ability to learn localized features, leading to degraded performance on dense predic-
tion tasks such as segmentation and detection. On the other hand, self-supervised learning
methods have shown the ability to learn granular representations, complementing the high-
level features in vision-language training. In this work, we present Harmony, a framework
that combines vision-language training with discriminative and generative self-supervision
to learn visual features that can be generalized across different downstream vision tasks. Our
framework is specifically designed to work on web-scraped data by not relying on negative
examples in the self-supervised learning path and addressing the one-to-one correspondence
issue using soft CLIP targets generated by an EMA model. Moreover, Harmony optimizes
for five different objectives simultaneously, efficiently utilizing the supervision in each data
example, making it even more suited in data-constrained settings. We comprehensively eval-
uate Harmony across various vision downstream tasks and find that it significantly outper-
forms the baseline CLIP and outperforms the previously leading joint self- and weakly super-
vised methods, SLIP, MaskCLIP, and DetailCLIP. Specifically, when compared against these
methods, Harmony shows superior performance in linear-probing, fine-tuning, and zero-shot
classification on ImageNet-1k, semantic segmentation on ADE20K, and both object detec-
tion and instance segmentation on MS-COCO, when pre-training a ViT-B on CC3M. We
also show that Harmony outperforms SILC on detection, linear and fine-tuning classification,
and outperforms other self-supervised learning methods like iBOT and MAE across all tasks
evaluated. Our code is publicly available at https://github.com/MohammedSB/Harmony.

1 Introduction

Self-supervised and weakly-supervised pre-training have recently shown remarkable success at learning visual
representations without direct supervision (Radford et al., 2021; Oquab et al., 2024; Caron et al., 2021b; Chen
et al., 2020a;b; He et al., 2020; Grill et al., 2020; Zhou et al., 2022; He et al., 2021; Mu et al., 2021; Dong et al.,
2023). As vision training datasets continue to scale, it becomes progressively more difficult and expensive to
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Figure 1: Performance comparison across different tasks. Harmony significantly outperforms CLIP, SLIP,
MaskCLIP, and DetailCLIP across all tasks, and generally has a larger improvement in performance as we
scale the ViT size, except for DetailCLIP which is low performing at ViT-S. Moreover, for classification
and detection, the small version of Harmony outperforms the base version of the other methods. We used
MS-COCO for object detection, ADE20K for semantic segmentation, and ImageNet for classification, using
linear-probing. See Table 1 for numerical values.

provide manual supervision in the form of labels, making the development of robust self-supervised learning
(SSL) and weakly-supervised learning (WSL) techniques more integral.

Weakly-supervised learning, specifically language-guided or language-supervised learning, was popularized
by CLIP (Radford et al., 2021) and learns visual and textual representations using contrastive loss by
maximizing the similarity between image-captions pairs and minimizing the similarity of non-paired image-
captions (Radford et al., 2021; Cherti et al., 2022). Because this approach relies on semantic captions
as a supervisory signal, language-supervised models are strong at high-level tasks like image classification,
but significantly underperform on dense, low-level prediction tasks that require localized features (Radford
et al., 2021; Wang et al., 2024; 2022). In other words, these paradigms are good at learning what objects are
present in a visual input, but not where they are. One approach of introducing local information into WSL
frameworks is to combine it with self-supervised learning (Dong et al., 2023; Mu et al., 2021; Yuan et al.,
2021). Unlike language-supervised learning that maps across modalities (e.g. image to text), SSL maps to
the same visual modality, making it more granular and localized for visual tasks (Caron et al., 2021b; He
et al., 2021; Assran et al., 2023).

Recent works in self-supervised learning formulate the pre-training task as either discriminative or generative
(Ozbulak et al., 2023; Doersch et al., 2016). For discriminative SSL methods, the model learns visual rep-
resentations from images by differentiating between positive images pairs, and optionally repelling negative
pairs (Chen et al., 2020a; Grill et al., 2020; Caron et al., 2021b; Oquab et al., 2024; He et al., 2020; Chen
et al., 2020b). On the other hand, generative approaches learn visual representations by masking certain
parts of an image and learning to reconstruct the missing parts, given the original image (He et al., 2021;
Tong et al., 2022; Gupta et al., 2023). Because SSL methods do not require manually annotated labels, they
can be used for training large neural networks on huge image datasets scraped from the web (Oquab et al.,
2024).
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Figure 2: Harmony compared to previous methods. We show our Harmony approach next to previously
leading joint methods MaskCLIP (Dong et al., 2023) and SLIP (Mu et al., 2021). Harmony optimizes five
different objectives simultaneously, outperforming the other approaches across all vision downstream tasks.

Combining language-supervised and self-supervised learning has led to superior learning paradigms (Dong
et al., 2023; Mu et al., 2021; Yuan et al., 2021; Naeem et al., 2024; Monsefi et al., 2024). For example,
SLIP (Mu et al., 2021) combines CLIP with SimCLR, leading to better zero-shot capabilities and overall
more accurate models across multiple downstream tasks. MaskCLIP (Dong et al., 2023) combines CLIP
with masked self-distillation, leading to further improvements in a variety of downstream evaluations. More
recently, SILC (Naeem et al., 2024) combined CLIP with DINO (Caron et al., 2021b) to learn more localized
image features for dense prediction tasks. DetailCLIP (Monsefi et al., 2024) combines A-CLIP (Yang et al.,
2023) with MAE (He et al., 2021) and iBOT (Zhou et al., 2022), outperforming all three methods in isolation.

Building on the aforementioned works, we present a novel framework, which we will call Harmony, that
combines discriminative and generative self-supervision with language-supervised learning in order to learn
general purpose visual representations from image-captions pairs gathered from the web. Our approach is
designed to learn semantic visual representations useful for high-level vision tasks and fine-grained, low-level
representation for dense prediction tasks at the same time.

Previous approaches like MaskCLIP (Dong et al., 2023) and SLIP (Mu et al., 2021) rely on one-to-one
correspondences and hard negative examples which fail to model the inherent semantic relationship between
non-paired samples (Andonian et al., 2022). This is because for a certain image, captions of other images
in the batch could still describe this image with varying degrees, especially when the batch size is large.
Moreover, particularly in an uncurated data setting, the caption paired with a certain image could simply
be incorrect, or the description could be only loosely associated with the image. To remedy these issues,
we designed our framework to utilize one-to-many relationships by incorporating soft CLIP targets, and to
not rely on negative examples by using self-distillation methods like iBOT (Zhou et al., 2022) rather than
SimCLR (Chen et al., 2020a) like in SLIP (Mu et al., 2021). We argue that this makes Harmony better
designed for web-scraped data like CC3M (Sharma et al., 2018).

We summarize our main contributions in this paper as follows:

• We present Harmony, a joint self-supervised and weakly-supervised framework that learns global and
local features, generalizing across vision tasks including classification, segmentation, and detection.
Harmony optimizes for five different objectives simultaneously, fully leveraging each data example,
which makes our method particularly suited for data-constrained settings.
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• We introduce an EMA-based method for generating soft-targets for CLIP and a lightweight text self-
distillation objective for learning textual representation, improving CLIP’s zero-shot capabilities.

• Harmony is built to avoid negative examples in the self-supervised learning path and reduce reliance
on strict one-to-one correspondences in the text-guided contrastive path, achieving superior or com-
petitive performance with leading methods when pre-trained on the web-scraped CC3M dataset.

• We provide a unified codebase for all methods that is composable, allowing users to combine any
subset of our predefined set of methods, and with our own implementation of SILC and MaskCLIP,
which were not previously open-sourced.

2 Related Works

Discriminative self-supervision. Recent discriminative SSL approaches learn visual representations by
discriminating between images that are positive pairs of each other, usually defined as different augmentations
of the same image, and optionally pushing away negative pairs. (Grill et al., 2020; Caron et al., 2021b; He
et al., 2020; Chen et al., 2020b;a). Methods like SimCLR (Chen et al., 2020a) and MoCo (He et al., 2020; Chen
et al., 2020b) use contrastive learning to maximize the embedding similarity between positive pairs while
simultaneously reducing the similarity of negative pairs. These approaches ignore the inherent similarity
between different images and treat the discriminative problem as a one-to-one scheme, where an image is
only similar to its positive pair. Other approaches like BYOL (Grill et al., 2020) and DINO (Caron et al.,
2021b) use self-distillation to only maximize agreement between positive pairs, avoiding that issue. These
methods use a momentum encoder, usually refereed to as a target or teacher encoder, to generate embedding
targets for an online or student encoder that is trained simultaneously with the teacher encoder. The learning
task in these paradigms is to maximize the similarity between embeddings from both the teacher and student
encoders given positive image pairs. Self-distillation methods regularly outperform contrastive methods, and
reach accuracies that are competitive with supervised learning (Caron et al., 2021b; Zhou et al., 2022; Grill
et al., 2020).

Generative self-supervision. Rather than discriminating between images, generative SSL methods learn
visual representations by masking certain parts of an images (or certain images in a video) and then learn
to reconstruct the masked portions given the original signal (He et al., 2021; Tong et al., 2022; Gupta et al.,
2023). This reconstruction task can be viewed as a proxy for learning about visual features from images,
improving representation ability and, therefore, performance on downstream tasks. A common approach in
this paradigm is called Masked Autoencoder (MAE) (He et al., 2021), which utilizes ViT’s patching paradigm
to mask a certain percentage of patches (usually 75%) and minimizes the L2 loss on predicted pixels from
the masked patches. Generative SSL approaches are highly scalable due to their lightweight memory usage
compared to discriminative approaches, and reach fine-tuning accuracies rivaling those methods (He et al.,
2021).

Joint self-supervision methods. Many previous works have combined discriminative and generative self-
supervised learning objectives, resulting in improved performance on downstream classification and semantic
segmentation tasks (Chen et al., 2023; Huang et al., 2024; Mishra et al., 2022). CMAE (Huang et al.,
2024) and CAE (Chen et al., 2023) combine MAE’s pixel reconstruction task with contrastive learning,
outperforming either method in isolation. CAN (Mishra et al., 2022) further add a noise prediction task and
masks both views in the contrastive learning objective. These works highlight the fact that SSL paradigms
can be complementary to each other.

Language-guided and self-supervised learning. Other works have combined SSL and language-guided
learning to learn more generalized representations (Mu et al., 2021; Dong et al., 2023; Yuan et al., 2021).
Yuan et al. (2021) combine vision-language training with contrastive SSL to learn visual representations
from multimodal, image-text data. SLIP (Mu et al., 2021) builds on this work further by showing that
combining SimCLR (Chen et al., 2020a) with CLIP (Radford et al., 2021) objectives outperforms both
methods in isolation by relatively large margins across multiple downstream tasks. SILC (Naeem et al.,
2024) replaces SimCLR with DINO in SLIP, outperforming SLIP. In addition, MaskCLIP (Dong et al.,
2023) presents a masked self-distillation approach combined with contrastive vision-language pre-training,

4



Published in Transactions on Machine Learning Research (06/2025)

further outperforming CLIP and other joint WSL and SSL methods. More recently, DetailCLIP (Monsefi
et al., 2024) combines A-CLIP (Yang et al., 2023) with MAE and iBOT to learn more localized visual
features for fine-grained tasks. We further build on these works by going an extra step of combining five
different objectives, including self-distillation, pixel reconstruction, text-guided contrastive learning, and two
additional text-only losses: masked-language modeling and text self-distillation.

3 Harmony

We introduce Harmony, a joint self-supervised and weakly-supervised framework for learning semantic and
localized visual representations in the wild. The main components of our framework are shown in Figure 2.
Namely we define vision student and teacher encoders, EV and ĒV , text student and teacher encoders, ET

and ĒT , and vision and text decoders, DV and DT . Our teacher encoders are used to generate self-distillation
and soft targets, and are defined as being the exponential moving average (EMA) of the students. The
vision and text decoders are used to map from embedding space to pixel and word token space, respectively.
All components use the Transformer (Vaswani et al., 2023) architecture, and we use the standard vision
transformer (ViT) implementation for processing images (Dosovitskiy et al., 2021).

Our framework optimizes five different objectives simultaneously with the goal of learning robust general-
purpose visual representations from web-scraped images-caption pairs. Our losses are (1) text-guided con-
trastive learning that is identical to CLIP (Radford et al., 2021) but with added soft targets, (2) feature
self-distillation following iBOT (Zhou et al., 2022), (3) pixel prediction following MAE (He et al., 2021),
(4) word prediction or MLM (Devlin et al., 2019), and (5) text self-distillation, which is similar to iBOT’s
patch-level objective but applied on word embeddings (Zhou et al., 2022). In the following sections, we detail
each objective in our framework.

3.1 Text-guided Contrastive Learning with Soft Targets

Our first objective in Harmony is image-text contrastive learning with soft targets. We begin by defining
a vision encoder EV and a text encoder ET . We attach a single layer projection head h to each encoder,
resulting in h : g = h ◦ f , where f is either EV or ET . Given a batch of image-text pair collections
{(v1, t1), (v2, t2), ..., (vN , tN )} where N is the batch size, we extract image and text embeddings vi = gv(vi)
and ti = gt(ti), where gv and gt are the student vision encoder EV and student text encoder ET with the
attached projection heads, respectively.

We maximize the similarity between paired embedding sets, vi and tj where i = j and minimize the similarity
between unpaired sets where i ̸= j. More formally, we define the InfoNCE loss as our training objective
van den Oord et al. (2019) following CLIP Radford et al. (2021), where LInfoNCE = Lv + Lt and

Lv = − 1
N

N∑
i=1

N∑
j=1

Iij log Pv(vi, tj; τ) . (1)

Iij is an element in the identity matrix IN so it is set to one when i = j or when the image-text embeddings
are paired, and to zero otherwise. Pv is the softmax function applied per image:

Pv(vi, tj ; τ) = exp(cos(vi, tj)/τ)∑N
k=1 exp(cos(vi, tk)/τ)

. (2)

The function sim(vi, tj) is the cosine similarity, sim(vi, tj) = vi
T tj, and τ is a learnable temperature param-

eter. The loss Lt and function Pt are defined in a symmetrical way van den Oord et al. (2019). Since the
above LInfoNCE uses hard targets (1s and 0s), we will refer to it as LHard.

Notice that Lv (and Lt given the symmetry) is the cross-entropy function H(a, b) = −a log b applied across
image caption pairs. Because of that, we can rewrite Lv as H(IN, P (VTT ; τ)) where V, T ∈ RN×d are
matrices that contain a batch of image and text embeddings, with d being the embedding size. P is the
vectorized version of Pv and Pt in Equation 2, where the cosine similarities, cos(vi, tj), are calcualted through
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matrix multiplication. Therefore, LHard can be rewritten as

LHard = H(IN, P (VTT ; τ)) +H(IN, P (TVT ; τ)) . (3)

Soft targets. The loss function in the original CLIP implementation Radford et al. (2021) assumes that
there is a one-to-one correspondence between image and caption pairs. This is because the target in the
cross entropy function in Equation 3 is the identity matrix IN. This means that, given an image embedding
vi and a set of textual embeddings {t1, t2, . . . , tN}, minimizing the objective can be viewed as an N -way
multi-class classification problem. This assumption does not always accurately represent the relationship
between image-captions sets, especially in the case of uncurated data. Certain captions can describe many
different images with varying degrees, regardless of their original pairing, and the target should reflect some
function of how semantically similar an image-caption set is.

Recent works have tried to mitigate this issue by incorporating soft instead of hard targets (Andonian et al.,
2022; Gao et al., 2023; Scotti et al., 2023). This is a non-trivial task since generating soft targets assumes
some pre-existing knowledge about how semantically similar image-caption pairs are. Gao et al. (2023) relies
on a pre-trained object detection model to generate soft similarity targets, while Andonian et al. (2022) used
a self-distillation approach to dynamically generate soft targets without pre-training. In the latter approach
the same model is used to both generate soft targets and make predictions for calculating the loss, by
splitting the mini-batch into student and teacher targets. Instead, we use an EMA self-distillation method
for generating soft-targets, motivated by the fact that our framework already defines an EMA model for
feature self-distillation in Section 3.2, so the addition of soft targets comes at little computational expense.

To generate soft targets, we define vision and text teacher models, ĒV and ĒT , respectively, and their
corresponding ḡv and ḡt, which are the encoders with the attached projection heads. We do not propagate
gradients through the parameters of either ĒV or ĒT and instead update their weights using the EMA of the
students. Given the same image-text pair collections {(v1, t1), (v2, t2), ..., (vN , tN )}, we generate embedding
targets v̄i = ḡv(vi) and t̄i = ḡt(ti). We can represent these targets as the matrices V̄ and T̄ like in Equation
3, with AV = P (V̄T̄T ; τ̄) and AT = P (T̄V̄T ; τ̄). Our soft CLIP loss, LSoft is then defined as

LSoft = H(AV , P (VTT ; τ)) +H(AT , P (TVT ; τ)) . (4)

We set the teacher temperature τ̄ to 0.1. Our final contrastive loss is a the sum of the two losses LHard
and LSoft, where we progressively increase the influence of the soft loss LSoft throughout training. In other
words, the contrastive loss is defined as

LC = αcLHard + (1− αc)LSoft. (5)

We start with αc = 1 and progressively decrease it to αc = 0.2 using a cosine scheduler in the first 10 epochs
of pre-training.

3.2 Feature Self-distillation

On top of the contrastive objective LC , we add a self-supervised feature self-distillation loss following iBOT
(Zhou et al., 2022), which we find can significantly boost performance across all downstream tasks evaluated
(see Table 4). This loss consists of both global and local objectives that go hand-in-hand to learn generalized
visual features. Conceptually, the goal of this loss in our framework is to learn visual features that might
not be described in the caption of the contrastive loss, and learn more localized features by adding a local
objective that operates at the patch level.

Global objective. Following (Caron et al., 2021b; Oquab et al., 2024; Grill et al., 2020; Zhou et al., 2022)
we utilize a teacher encoder ĒV that is defined as the EMA of a student encoder EV , which is trained
with gradient optimization. The teacher and student models, ĒV and EV , are the same models used in the
contrastive loss from Section 3.1. Just like in (Caron et al., 2021b; Zhou et al., 2022), we attach a multi-layer
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perceptron (MLP) projection head h, such that h : g = h ◦ f , where f is either ĒV or EV , resulting in ḡ and
g models, respectively. Given an input image x we generate two different augmentations, x1 and x2, defined
as random crops or views of x. We feed these two augmentations to ḡ and g, and optimize the following loss
function:

LCLS = −H(P̄ (x1), P (x2)) +H(P̄ (x2), P (x1))
2 , (6)

where H is the cross entropy function and P is a softmax function, defined as

P (x) = exp(g(x)/τ)∑K
k=1 exp(g(xk)/τ)

. (7)

τ is a non-trainable temperature parameter that controls output distribution sharpness. P̄ (x) is defined in
the same way but with ḡ instead of g and τ̄ instead of τ .

Local objective. Equation 6 is applied on the class token (CLS) of the vision transformer (Dosovitskiy et al.,
2021), which is why we refer to it as LCLS. Since CLS tokens aggregate information across different patches
into a single token, minimizing LCLS learns more global features, sometimes disregarding granular details
that are helpful for dense prediction tasks like semantic segmentation. On top of this global-level objective
we aim to learn localized features by employing a patch-level loss using masked image modeling (MIM),
following iBOT (Zhou et al., 2022). More precisely, given the sequence of image tokens x = {x1, x2, . . . , xN}
being processed by a ViT, we sample from the masking set m ∈ {0, 1}N according to a ratio r. If mi = 1,
we replace the original xi with a special mask token xm, resulting in a masked view x̂ formalized as x̂ ≜
{x̂i ((1−mi)xi + mixm)}N

i=1 (Zhou et al., 2022). We subsequently feed x and x̂ to ḡ and g, respectively,
optimizing the loss function over all patch tokens:

LMIM = −
N∑

i=1
miH(P̄ (xi), P (x̂i)) . (8)

As shown in (Zhou et al., 2022), adding the patch-level loss LMIM on top of LCLS, which is originally from
DINO (Caron et al., 2021b), improves downstream performance on both dense prediction and classification
tasks.

Moreover, we also minimize the cross entropy loss between the embeddings of x1 and x2 extracted by the
teacher model ĒV and embeddings of smaller, local crops {y1, y2, . . . , yL} extracted by the student model EV

and generated using a multi-crop augmentation strategy (Caron et al., 2021a), which is shown to increase
performance in (Caron et al., 2021b; Zhou et al., 2022). This multi-crop optimization is added only to LCLS.

The final self-distillation loss LD is as the average of LCLS and LMIM, i.e.,

LD = 1
2(LCLS + LMIM) . (9)

3.3 Pixel Reconstruction

The LD loss is applied on the feature space. On top of this, we add another pixel level loss for learning
more granular features, which we find slightly improve performance for segmentation tasks (see Table 4).
Specifically, we follow the approach in MAE (He et al., 2021) in that, given a sequence of patch token
{x1, x2, . . . , xN}, we mask (remove) P number of the patch tokens at random (as opposed to replacing them
with xm like in Section 3.2). We feed the remaining (L − P ) + 1 of tokens, where the 1 is the xCLS token
and L is the total number of patches in the original images, to EV , which is the same encoder used in the
contrastive objective (Section 3.1) and feature self-distillation (Section 3.2). We end up with a sequence
of image embeddings e = {eCLS, e1, e2, . . . , eM}, where M = L − P + 1. We then add P number of mask
tokens xm to e in the same position (or index) they were removed from to obtain the masked embedding ê.
Subsequently, ê is passed to a decoder DV , which will up-sample the embeddings from dD to the H ×W ,
where dD is the embedding size of DV , H and W are the height and width of the original patch size,
respectively. We set P = L× 0.75, following He et al. (2021).
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The loss is then calculated as the Mean Squared Error between the predicted pixels pi and the L2 normalized
pixels of the original target in a patch p̂i. In other words, the loss becomes:

LR = 1
L

L∑
i=1

mi (pi − p̂i)2 . (10)

3.4 MLM and Text Self-distillation

Even though the goal of this work is visual representation learning, improving textual representations can
have a significant impact on zero-shot evaluations as supported by results from Dong et al. (2023) and our
Table 4. As a result, we added two textual objectives that the text encoder ET will now optimize on top of
the contrastive loss. These objectives are masked language modeling and text self-distillation.

Masked language modeling. The first additional textual objective is masked language modeling, as
described in BERT (Devlin et al., 2019), which predicts masked words given the context of surrounding
words. MLM can be viewed analogously as pixel prediction, in the sense that both optimize outputs that are
in the same level as original inputs (tokenized words in the context of MLM and pixels in pixel prediction).

We feed a masked view t̂ of a tokenized caption t to the student text encoder ET , where word tokens are
randomly masked using a Bernoulli distribution m ∼ Bernoulli(p) with p = 0.2, with m being the mask
vector that is applied on a caption t to generate t̂. Unlike BERT (Devlin et al., 2019), we don’t replace
words with random words, nor keep some predicted words unchanged. Masked word tokens are replaced
with a mask token tm to generate t̂. Our final MLM loss is then formulated as

LM =
C∑

i=1
miH(ti, DT (ET (t̂i))) , (11)

where C is the context length of the transformer model EV and mi = 1 only if t̂i is masked.

Text self-distillation. On top of the MLM loss, we add a self-distillation loss by utilizing the student and
teacher text encoders, ET and ĒT , motivated by iBOT’s patch-level objective (Zhou et al., 2022). Unlike
the MLM loss, this objective will function at the embedding level, which offers softer targets for the student
text encoder compared to MLM. We attach MLP projection heads to ET and ĒT , resulting in g and ḡ,
respectively. We then optimize the equation

LT D = −
C∑

i=1
miH(P̄ (ti), P (t̂i)) , (12)

where P and P̄ are the softmax functions in Equation 7, but with the text instead of vision encoders.

3.5 Harmony’s Objective

Our finalized framework, Harmony, optimizes the five described objectives simultaneously. In other words,
our final loss is a linear combination of all five losses or the equation:

LH = LC + αLD + βLR + γLM + δLT D . (13)

The parameters α, β, γ, and δ allow for weighting of the different losses. However, in our experiments (see
Table 6), choosing identical weights has usually been sufficient.

4 Experiments

Here, we experimentally evaluate Harmony against the baseline methods CLIP (Johnson et al., 2016), SigLIP
(Zhai et al., 2023), iBOT (Zhou et al., 2022), and MAE (He et al., 2021), as well as previously leading joint
SSL and WSL methods, SLIP (Mu et al., 2021), SILC (Naeem et al., 2024), MaskCLIP (Dong et al., 2023),
and DetailCLIP (Monsefi et al., 2024). We start in Section 4.1 by describing our model architecture and
training setup, then we present our results in Section 4.2, and finally end with an ablation and hyper-
parameter tuning study in Section 4.3.
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(a) Scaling ViT size. The gap in 0-shot performance between
Harmony and CLIP increases as we increase model size, sug-
gesting that Harmony scales better with respect to model size.

(b) Scaling data size. The performance gap between Harmony
and CLIP narrows as dataset size increases. CC12M6M indi-
cates using 6M images from CC12M. ViT-B was used for all
experiments.

Figure 3: Zero-shot performance comparison between Harmony and CLIP when scaling ViT size and data. (a)
With increasing model size, Harmony’s advantage grows. (b) With increasing dataset size, the performance
gap narrows, though Harmony maintains an edge. Appendix B shows zero-shot results on CC12M across 8
other datasets.

4.1 Training Setup

Model architecture. Six transformer networks (Vaswani et al., 2023), three of which are vision transformers
(Dosovitskiy et al., 2021), of different sizes and configurations, make up our final framework: (1, 2) student
and teacher vision encoders, EV and ĒV ; (3, 4) student and teacher text encoders, ET and ĒT ; (5) vision
decoder DV ; and (6) text decoder DT . For the vision encoders, EV and ĒV , we use ViT sizes small (S),
base (B), and large (L). For the text encoders, ET and ĒT , we use 12 layers, 512 embedding dimensions,
and 8 heads, following CLIP (Radford et al., 2021). The number of text tokens is fixed to 77 with necessary
truncations or paddings. Moreover, following He et al. (2021), we define our vision decoder DV as an 8-
layer, 512-embedding dimension, and 16-head ViT. Finally, our text decoder DT , is made of up 4 layers, 512
embedding dimension, and 8 heads.

Pre-training. We pre-train a ViT-S, ViT-B, and ViT-L using Harmony on CC3M for 25 epochs. We use
an AdamW optimizer (Loshchilov & Hutter, 2019) with an ϵ value of 1e−6 to improve training stability using
mixed precision (Micikevicius et al., 2018). We set the number of global crops per given image to 2 and the
local crops to 8. We use a masking ratio of 75% for the pixel prediction task and pre-train up to 16 32GB
V100 GPUs. Further information about our pre-training setup can be found in Appendix A.

Downstream. To asses the generalizability of learned features using our proposed method, we evaluate
our model on a variety of datasets, including ImageNet-1k (Russakovsky et al., 2015) for fine-tuning, linear-
probing, and zero-shot classifications, ADE20K (Zhou et al., 2017) for semantic segmentation, MS-COCO
(Lin et al., 2015) for object detection and instance segmentation, as well as many other datasets for zero-shot
evaluations (see Table 2). We fine-tune for 100 epochs on ImageNet-1k and for 160k iterations for ADE20K,
using UperNet (Xiao et al., 2018). For object detection and instance segmentation, we use a Cascade Mask
R-CNN (Cai & Vasconcelos, 2019) and fine-tune for 12 epochs. Further details on downstream settings can
be found in Appendix A.

4.2 Results

We begin our evaluation of Harmony by analyzing its downstream performance for a variety of visual tasks
in different settings. We start in Table 1 by presenting our main result for classification, segmentation,
and detection tasks. We show that Harmony significantly outperforms CLIP and SigLIP and outperforms
iBOT (Zhou et al., 2022) and MAE (He et al., 2021) in all high-level and low-level tasks evaluated. We also
show that Harmony outperforms SLIP (Mu et al., 2021), MaskCLIP (Dong et al., 2023), and DetailCLIP
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Table 1: Comparing Harmony against baseline SSL and previous best methods. All methods are pre-trained
on CC3M for 25 epochs. We used the same pre-training settings for MAE, iBOT, CLIP, SigLIP, SILC and
Harmony. To reproduce SLIP, and DetailCLIP, we used their public code base (Mu et al., 2021; Monsefi
et al., 2024). We reproduced MaskCLIP and SLIC ourselves since their code was not publicly available
(see Appendix C for further detail on MaskCLIP). FT: fine-tuning; LIN: linear-probing; SSEG: semantic
segmentation; DET: object detection; ISEG: instance segmentation.

Method ViT INet-1K ADE20K COCO
0-Shot LIN FT SSEG DET ISEG

MAE S — 14.6 70.9 26.9 28.9 25.6
iBOT S — 58.2 79.5 37.0 44.9 39.0
CLIP S 17.2 57.0 76.7 35.3 41.0 35.7
SigLIP S 16.0 57.0 76.8 36.2 40.8 35.6
MaskCLIP S 17.7 56.1 77.0 34.5 39.4 34.5
DetailCLIP S 18.2 50.2 77.7 28.7 42.5 37.1
SLIP S 18.1 51.5 76.5 35.0 40.0 35.0
SILC S 20.1 62.8 78.2 38.1 44.0 38.3
CLIP B 19.0 61.4 79.8 40.7 42.5 37.0
SigLIP B 18.0 61.8 79.9 40.7 42.5 37.0
MaskCLIP B 19.1 58.6 79.5 38.2 40.2 35.1
DetailCLIP B 21.1 63.2 81.6 40.9 45.5 39.5
SLIP B 19.1 63.0 80.3 42.0 42.0 36.8
SILC B 23.3 68.1 81.6 44.0 45.9 39.8

Harmony S 20.8 64.4 79.5 37.5 45.6 39.5
B 23.3 69.6 82.4 44.5 48.1 41.6
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Table 2: Zero-shot evaluations. We compare ViT-B Harmony against CLIP, SLIP, SILC, MaskCLIP, and
DetailCLIP on general and natural image benchmarks for 0-shot classification. Harmony outperforms the
other methods on average.

Average Cal1011 STL-102 Kin7003 MNIST4 CLEVR5 INet-A6 INet-O7 INet-R8

CLIP 28.9 53.9 87.2 17.4 10.1 12.8 4.5 24.2 21.4
MaskCLIP 28.2 49.8 84.9 15.7 12.1 14.2 4.0 24.8 20.0
DetailCLIP 29.9 55.2 89.1 17.1 11.6 11.6 4.4 27.3 22.9
SLIP 28.3 50.5 85.2 16.2 10.8 13.3 4.9 23.7 22.2
SILC 32.7 58.6 91.5 19.8 15.1 12.4 6.9 29.2 28.4
Harmony 32.9 60.3 94.3 22.5 10.1 12.3 7.6 26.1 29.8

(Monsefi et al., 2024), which are joint methods similar to ours. We also show that Harmony is compettive
with SILC (Naeem et al., 2024) on zero-shot classification, but outperforms SILC on other tasks such
detection, linear and fine-tuning classification. Interestingly, MAE performs substantially worse than the
other methods, which could be due to the distribution of the web-scraped data in CC3M. Even then, using
the pixel reconstruction objective in MAE still complements the features for Harmony (shown as an ablation
in Table 4). Moreover, SLIP performs worse than expected on classification tasks, which could be due to the
small batch size for SimCLR’s contrastive loss (Chen et al., 2020a) (768 vs 4096 in the original SLIP (Mu
et al., 2021)). This issue is less prominent in methods that use self-distillation such as Harmony and SILC
(Dong et al., 2023; Naeem et al., 2024) because they do not rely on negative examples in the batch in their
self-supervised losses.

Scaling Harmony. In Figure 3 we present the performance of Harmony and CLIP as we scale model sizes
from small to base and large, and as we scale data size from CC3M to CC12M. As we scale the model, the
performance gap increases at an increasing rate, which is a sign that Harmony scales better than CLIP with
respect to ViT size. The same trend is also shown in Figure 1, going from ViT-S to ViT-B for other tasks.

When scaling the dataset size, the performance gap between Harmony and CLIP narrows. This reduction is
expected, as improvements become harder to achieve at higher accuracy levels. However, it may also suggest
that CLIP benefits more from larger datasets and begins to close the gap with Harmony as the data scale
increases. Appendix B shows zero-shot results on CC12M across 8 other datasets.

Zero-shot evaluations across datasets. Moreover, we compare the 0-shot capabilities of Harmony to
CLIP, SLIP, SILC, MaskCLIP, and DetailCLIP across diverse datasets. We focus on general and natural
datasets (as opposed to domain specific like StanfordCars (Yang et al., 2015) and FGVC-Aircraft (Maji et al.,
2013)), and ImageNet robustness datasets like ImageNet-R. We present our results in Table 2. Harmony
outperforms all other methods in 5 out of the 8 datasets, and performs better on average compared to
all methods except SILC, where it is competitive. We show qualitative examples between Harmony’s and
CLIP’s zero-shot predictions in Appendix 4.

Retrieval. We also evaluate Harmony for image-text zero-shot retrievals on MS-COCO (Lin et al., 2015)
and Flickr30K (Young et al., 2014). The results are presented in Table 3. We observe that for top 5 (R@5)
and top 10 retrievals, the gap between Harmony and the other methods grows rapidly, indicating that our
method is more robust, since it still generates higher probabilities for the correct retrieval, even if it can’t
retrieve it within the first examples.

1Li et al. (2022)
2Coates et al. (2011)
3Carreira et al. (2022)
4Lecun et al. (1998)
5Johnson et al. (2016)
6Hendrycks et al. (2021b)
7Hendrycks et al. (2021b)
8Hendrycks et al. (2021a)
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Table 3: Results of zero-shot image-text retrieval on Flickr30K and MS-COCO datasets.

Flickr30K MS-COCO
Image-to-Text Text-to-Image Image-to-Text Text-to-Image

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CLIP 4.9 13.8 20.2 4.6 12.6 18.1 15.4 36.2 48.0 13.8 32.9 43.9
MaskCLIP 4.8 14.0 20.5 4.7 12.5 17.9 16.1 36.3 48.1 13.4 32.0 42.8
DetailCLIP 6.4 16.8 24.2 5.8 14.8 20.7 17.9 39.4 51.3 14.8 33.7 44.8
SLIP 5.4 15.4 22.3 5.0 13.5 19.1 15.4 38.0 50.3 13.4 32.3 43.2
SILC 7.6 20.4 28.9 7.3 18.4 25.4 20.6 44.5 56.5 17.9 39.7 51.4

Harmony 9.8 23.7 32.6 8.6 20.7 28.1 22.1 46.9 58.7 19.1 42.1 53.8

Table 4: Ablation study for Harmony. The upper section represents the addition of the main three objectives
of our framework. The feature prediction task (LD) is described in Section 3.2, soft targets (LSoft) in Section
3.1 and pixel reconstruction (LR) in Section 3.3. The lower part shows the addition of the two text losses:
Masked language modeling (LM ) and text self-distillation (LT D). We train a ViT-S for 25 epochs and a
batch size 768 for all ablations. †Text losses are compared to the original CLIP baseline.

Method Compute INet-1K ADE20K
Mem Time 0-Shot FT LIN SSEG

CLIP 1.0x 1.0x 17.2 76.7 57.0 36.5
+ LD 2.3x 3.0x 19.8 ↑2.6 78.2 ↑1.5 61.7 ↑4.7 37.9 ↑1.4

+ LSoft 2.3x 3.2x 20.4 ↑0.6 79.4 ↑1.2 64.3 ↑2.6 37.0 ↓0.9

+ LR 2.4x 3.9x 20.4 ↑0.0 79.5 ↑0.1 64.4 ↑0.1 38.0 ↑1.0

Text †

+ LM 1.1x 1.3x 17.7 ↑0.5 76.8 ↑0.1 — 35.8 ↓0.7

+ LT D 1.1x 1.4x 18.6 ↑0.9 77.1 ↑0.3 — 36.4 ↑0.6

= LH 2.5x 4.2x 20.8 ↑3.6 79.5 ↑2.8 64.4 ↑7.4 37.5 ↑1.0
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Table 5: Equal compute comparison. Performance of CLIP, SLIP, and MaskCLIP when trained with the same
hyperparameters and the same computational resources (light gray) as Harmony. We saved a checkpoint
every 10 epochs and reported results for the highest performance on zero-shot classification, because the
models were overfitting due to the larger number of epochs. Total memory is calculated across all GPUs
used, and GPU hour is calculated for a single GPU.

Method GPU Hour Total Memory (GB) Batch Size Epochs 0-Shot FT
CLIP 90 76 768 25 17.2 76.7
CLIP 413 209 2400 120 17.9 77.7
SLIP 167 184 768 25 18.1 76.5
SLIP 426 240 1024 65 18.4 77.7
MaskCLIP 105 197 768 25 17.0 77.0
MaskCLIP 417 202 800 100 19.6 78.4
Harmony 414 219 768 25 20.8 79.5

4.3 Ablations

Building Harmony. To quantify the improvements from each objective in Harmony, we rebuild Harmony’s
architecture step-by-step, starting at CLIP (Radford et al., 2021). The results for pre-training a CLIP on
CC3M (Sharma et al., 2018) are shown in Table 4. We continue by adding a visual feature prediction task
in the form of self-distillation (LD). This substantially boosts the accuracies across all tasks. Subsequently,
we add soft targets (LSoft) by utilizing the same teacher network ĒV used in the feature prediction, further
increasing performance. However, we notice a degradation in the SSEG performance. To remedy this, we
add the pixel reconstruction loss (LR) from MAE (He et al., 2021), which operates in the pixel space, leading
to more granular pixel-level features being learned, increasing SSEG closer its value after feature prediction.

Moreover, we investigate the effect of adding our two text losses to the original CLIP. Starting from the same
baseline show in Table 4, adding both MLM (LM ) and text self-distillation (LT D) objectives increases the
0-shot classification by +1.4% compared to CLIP. This is likely due to a boost in representation ability of the
text encoder ET , and the introduction of an EMA teacher text encoder ĒT . However, even in downstream
tasks that do not utilize text encoders like FT, there is still a slight increase in performance, likely due to
the making the contrastive learning task more meaningful by enhancing textual representations, leading to
more reflective similarity matrices in Equation 3.

Hyper-parameter tuning. We tune the introduced αc parameter of Equation 5 that controls the weight of
soft and hard CLIP targets, and the parameters in Equation 13 that control the influence of each objective in
Harmony. In Appendix D, we provide additional experiments such as the effect of (1) passing the two global
crops compared to a single image to our pixel reconstruction objective, (2) using iBOT’s data augmentation
with CLIP, (3) using a mask scheduler to change the MAE mask ratio throughout training, and (4) masking
the images passed to CLIP (Li et al., 2023; Yang et al., 2023).

Influence of αc for soft targets. For the αc parameter in the contrastive loss, we compare two situations: A
higher alpha value (αc = 0.2) reached early in the training (10 epochs) results in a 0-shot accuracy of 20.5,
while a lower alpha (αc = 0.05), reached later in the training (15 epochs) results in a 0-shot accuracy of 16.6.

Loss weight. In Table 6, we adjust the weight parameter for each of the four loss functions added on top
of the contrastive loss. We observe slight performance changes, with setting the weight to one generally
performing better.

Batch size. We investigated the effect of changing the batch size for Harmony, using a ViT-S. Table 7 shows
the results. The performance for 0-shot classification gradually increases as we go from a batch size of 512
to 1024, but then decreases when we go to 2048.

Equal compute. As shown in Table 4, Harmony uses 2.5 times more compute and takes 4.2 times more
time to train for the same number of epochs, compared to CLIP, SLIP and MaskCLIP. This makes a direct
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Table 6: ImageNet-1k 0-shot accuracy for different Loss Weighting. We observe that setting the weight to
one performs slightly better. We compare CLIP + iBOT for α, CLIP + MAE for β, CLIP + MLM for γ,
and CLIP + MLM + TextDist for δ with γ set to 1.

Weight α β γ δ
0.5 1 0.5 1 0.1 1 0.2 1

0-Shot 19.1 19.2 16.8 17.2 17.1 17.3 17.8 18.0

comparison between the two methods, while controlling for the number of epochs is unintuitive. Instead, in
Table 5, we control for memory and time rather than the number of epochs. We increase the batch size to
use more memory for the other methods. Harmony still significantly outperforms the other methods, which
seem to plateau after 25 epochs, increasing their accuracy only by 1% or less (except MaskCLIP). For each
run, checkpoints were saved every 10 epochs, and only the best result is shown, because the models were
overfitting due to the larger number of epochs.

Table 7: Influence of changing Harmony’s batch size.
Batch Size 512 768 1024 2048

0-Shot 20.3 20.8 21.1 20.6

5 Conclusion

We present Harmony, a joint self-supervised and weakly-supervised method for learning generalized visual
features from web-scraped data, introducing a soft loss and a text self-distillation method. Harmony outper-
forms or is competitive with leading methods and baselines across classification, segmentation, and detection
tasks, highlighting how our multiple training objectives can complement each other to learn stronger visual
representations.
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A Experimental Details

Pre-training.

We use the AdamW optimizer (Loshchilov & Hutter, 2019), and mixed precision with FP16, in all our pre-
training experiments. Following DINO (Caron et al., 2021b) and iBOT (Zhou et al., 2022) we scale the
learning rate with the batch size through lr = 5e−4×batchsize/256. The learning rate is ramped up linearly
from 0 to the value in the formula in the first 3 epochs, then decreases to 1e−6 using a cosine scheduler, by
the end of training. For iBOT and DINO heads, we set the output dimension to 8192, and we share weights
in both the iBOT and DINO heads for both the student and teacher. We also normalize the last layer for
stability, and set the momentum parameter for the teacher to 0.996. For the masked image modeling in
iBOT (Zhou et al., 2022), we follow the settings in their ViT-B ImageNet-22k experiments. Specifically,
the prediction ratio is selected randomly as either 0 and 0.3 plus an added variation of ±0.2. Masking is
performed block-wise. For the CLS objective in Equation 6, we set the temperature parameter τ to 0.04.
For the MLM objective shown in Equation 8, the temperature parameter is linearly scaled from 0.04 to 0.07
in 10 epochs. We use a weight decay that is scaled with a cosine scheduler from 0.04 to 0.4, and use gradient
clipping with a max gradient norm value of 3.0.

For data augmentation, we likewise follow the settings in iBOT (Zhou et al., 2022). For the global crops,
we use a cropping with a scale uniformly sampled from [0.32, 1]. In all our experiments, we use 8 local crops
in the global objective, with cropping scale sampled from [0.05, 0.32]. For the first global crop, we always
apply a Gaussian blur, while we randomly apply it to the second crop with a probability of 0.1. We also
randomly solarize the second crop with a probability of 0.2 and threshold of 128. We also apply a horizontal
flipping to both crops with a probability of 0.5, a color jitter with probability of 0.8, and grayscaling with
probability 0.2. For the local crops, we take random crops of size 96 × 96, and apply the same horizontal
flipping and color jitter. We also apply a Gaussian blur with probability 0.5.

For the MAE pixel reconstruction objective, we randomly mask (remove) 75% of all patch tokens following
He et al. (2021). We reconstruct both global crops from iBOT (see Table 12). The final pixel reconstruction
loss is then calculated as the addition of the loss of both global crops. For the MLM, objective, each token
is randomly masked with 20% probability.

For all ViT-S and ViT-B experiments, we use between 8 and 16 V100 GPUS running for a day. For the
ViT-L run, we use 16 80GB A100 GPUs instead, running for a day.

Fine-tuning on ImageNet-1k. For fine-tuning evaluations, we use the pipeline in iBOT (Zhou et al.,
2022), which follows the fine-tuning protocol from BEiT (Bao et al., 2022). We fine-tune for 100 epochs in
all experiments using the AdamW (Loshchilov & Hutter, 2019) optimizer, with a batch size of 1024. We
linearly warmup the learning rate to 4e−3 in 20 epochs then lower it with a cosine scheulder to a final value
of 1e−6. We use a layer-wise decay of 0.65, and a weight decay of 0.05. We do not use layer scale. We use 8
32GB V100 GPUs for our fine-tuning experiments.

Linear-probing classification on ImageNet-1k. For our linear-probing experiments, we mostly follow
DINO (Caron et al., 2021b) and DINOv2 (Oquab et al., 2024). We train for 100 epochs and a batch size of
8192 in all our experiments. We use the CLS token only from the last layer of the ViT encoder. Following
Oquab et al. (2024), we instantiate multiple linear layers that all take the same encoder output, but are
trained with different learning rates for efficiency. This way, the larger backbone inference is done once per
iteration, while multiple inferences are done on the much lighter linear layers. We specifically span learning
rate values of {1e−5, 2e−5, 5e−5, 1e−4, 2e−4, 5e−4, 1e−3, 2e−3, 5e−3, 1e−2, 2e−2, 5e−2, 1e−1}, and we linearly
scale them using the formula lr × batchsize/256. We report the best performing value. We use a stochastic
gradient descent optimizer with the momentum set to 0.9 and no weight decay. We use 8 32GB V100 GPUs
for our linear-probing experiments.

ADE20K semantic segmentation. In our semantic segmentation evaluations, we also use the iBOT
(Zhou et al., 2022) pipeline, which follows BEiT (Bao et al., 2022). Specifically, we use UperNet (Xiao et al.,
2018) from the implementation in mmsegmentaion (Contributors, 2020). We fine-tune for 160k iterations
using a batch size of 16 and image size of 512 × 512. The AdamW optimizer is used with an initial learning

19



Published in Transactions on Machine Learning Research (06/2025)

rate of 8e−4 that is linearly warmed in the first 1500 epochs, then decays to 0 throughout training. We
use a layer decay rate of 0.65 and weight decay of 0.05. We use Feature Pyramid Networks (FPNs) of four
different scales to modify the feature map sizes generated by the ViT. Specifically, we upsample the output
feature of the 4th block and 6th block by 4x and 2×, respectively, keep the output from the 8th block the
same, and downsample the output feature of the 12th block by 2×. For data augmentation, we adopt the
default settings in mmsegmentation, which includes random horizontal flipping, random re-scaling with a
ratio range of [0.5, 2.0], and random photometric distortion. We use 4 32GB V100 GPUs for our semantic
segmentation experiments.

COCO object detection and instance segmentation. For object detection and instance segmentation,
we use a Cascade Mask R-CNN (Cai & Vasconcelos, 2019; He et al., 2018) implementation with mmdetection
(Chen et al., 2019), which produces both bounding boxes and instance masks. We follow the settings in
iBOT (Zhou et al., 2022) in that we use multi-scale training with the shorter size between 480 and 800
while the longer size is not larger than 1333. We use a learning rate of 1e−4, a weight decay of 0.05, and
fine-tune for 12 epochs with the learning rate decayed with a rate of 0.1 at epochs 9 and 11. We use a layer
decay rate of 0.75 and a batch size of 16. We generate hierarchical feature maps by taking the outputs from
layers 4, 6, 8, and 12, and passing them to two deconvolutions, one deconvolution, identity mapping, and
max-pooling, respectively. We do not use multi-scale testing. We use 4 32GB V100 GPUs for our object
detection experiments.

Zero-shot classification. For zero-shot classification, we follow the standard implementation (Radford
et al., 2021; Mu et al., 2021) of encoding class labels in a description, such as "a photo of a {label}," and
calualting the consine similarity between the text and image embeddings. We consider the highest generated
similarity for each image-label pair to be the predicted class. For Harmony, we use the teacher text encoder.
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B CC12M Zero-shot classification performance

We evaluate zero-shot classification performance of Harmony and CLIP, both trained on the CC12M dataset,
across a diverse set of general vision benchmarks. As shown in Table 8, Harmony outperforms CLIP on
average.

Table 8: Zero-shot evaluations on CC12M. We compare ViT-B Harmony against CLIP across a range of
general and natural image benchmarks for zero-shot classification. Harmony continues to outperform CLIP
on average.

Average Cal101 STL-10 Kin700 MNIST CLEVR INet-A INet-O INet-R
CLIP 36.6 72.8 94.8 26.6 10.7 16.2 7.9 39.5 44.1
Harmony 39.6 76.0 96.7 30.5 9.6 12.7 12.2 36.0 54.2
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C Reproducing MaskCLIP

As of writing this paper, the code for MaskCLIP’s implementation is not yet public so we had to reproduce
it ourselves. To do that, we followed the approach in their original paper (Dong et al., 2023). Namely,
we define two vision encoders, student EV and teacher ĒV , and a text encoder ET . We optimize CLIP’s
contrastive loss, masked self-distillation loss, and masked language modeling simultaneously.

C.1 Implementation of Masked Self-distillation

We pass a masked image to the student encoder, and the full image to the teacher encoder and optimized
the the cross-entropy between masked student patches and unmasked patches from the teacher. More
specifically, given an image x, we obtain a masked embedding from the student encoder by em = D(E(xm)),
where xm is a masked view of x and D is a transformer decoder with 1 layer, 16 attention heads, and with
the same embedding dimension as the student encoder E. We also obtain a target embedding from the
teacher encoder Ē by e = Ē(x). Given a masked vector m with indices corresponding to masked patches,
the masked self-distillation loss function then becomes

LMaskDist = − 1
∥m∥

N∑
i=1

miH(P (e), P (em)) . (14)

P is the softmax function, and we used a masking ratio of 75%, removing all mask tokens, just like in
MaskCLIP (Dong et al., 2023). For the teacher encoder, we use a momentum parameter of 0.999 that
linearly increased to 0.9999 throughout training, and we use minimal augmentation with cropping of scale
[0.6, 1] and normalization only. We use the same learning rate parameters in MaskCLIP, and use a loss
weight of 0.05 for the masked self-distillation and MLM objectives.

C.2 Ablation of MaskCLIP

Additionally, we try out different parameters and architectures to further improve the performance of the
framework. Namely, we try (1) adding the iBOT head (Zhou et al., 2022), which maps the ViT outputs to
vectors of size 8192 using MLP layers, (2) adding the CLS-level objective from iBOT (Zhou et al., 2022)
(Our Equation 6), and (3) adjusting the weight for the masked self-distillation and mlm losses. We show our
results in Table 9. Having no CLS objective is almost identical to the original MaskCLIP implementation,
depending on if centering and sharpening from DINO (Caron et al., 2021b) is done, which is not explicitly
described in their paper. Removing the CLS objective and adding the iBOT head result in identical 0-shot
performances, both of which are only marginal improvements. We opt to use the iBOT head because it
resulted in better generalization across values for our Table 2.

Table 9: MaskCLIP ablations. The "default" settings uses a both the MIM and CLS objectives and does not
use the iBOT head. The first column after the default shows the effect of removing the CLS objective, the
second column shows the effect of increasing the self-distillation and MLM loss weights from 0.05 to 1, and
the third column shows the result of adding the iBOT head.

Default No CLS obj. Weighting to 1 iBOT head iBOT head & no CLS
INet-1k 0-shot 17.3 17.7 16.7 17.7 17.4
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D Other Ablations

D.1 MAE Masking Scheduler

We tried the idea of increasing the masking ratio for pixel reconstruction throughout pre-training using a
linear scheduler. This idea was motivated by the fact that having a constant masking ratio is not optimal
for scaling the number of iterations, since the task of reconstruction does not become more difficult. This
is unlike self-distillation where the teacher model produces better and better representation targets for the
students to predict throughout training. As a result, we experimented with using a linear masking ratio
scheduler that increases the ratio from 65% to 85% in the first 15 epochs of pre-training. In Table 10
we compare our results to using a static mask ratio of 75%. Classification results mostly stay the same,
but segmentation goes down by 1.2%. Further experimentation of the scaling behavior of using a masking
scheduler (especially scaling the number of iterations), and tuning of hyper-parameters, like using a lower
end value or higher start value, might lead to a different conclusion.

Table 10: Mask scheduler. Classification results stay the same but segmentation goes down by more than
1 percent. The second row linearly scales the masking ratio from 65% to 85 % in the first 15 epochs of
pre-training. Both experiments start with the same baseline of CLIP with soft targets + iBOT + MAE.

Masking Percentage INET-1K ADE20K
0-Shot FT LIN SSEG

75% 20.8 79.5 64.4 36.2
65% → 85% 20.6 79.6 64.5 35.0

D.2 CLIP and MAE Augmentations

We compare different data augmentation strategies on CLIP and MAE. For CLIP, we try using the standard
augmentation of randomly cropping with a scale in the range [0.4, 1] and random horizontal flipping 50% of
the time. We compared this to using the global crop augmentation from DINO and iBOT (Caron et al., 2021b;
Zhou et al., 2022), which we described in Section A. We show the comparison in Table 11. Both strategies
produce comparable accuracies for classification, but iBOT’s augmentation produces higher segmentation
IoU.

Furthermore, we explore the effects of using iBOT’s global crops with MAE. Specifically, we compare two
scenarios: using a standard augmentation as is described above or feeding in both of iBOT’s global crops,
which is more computationally expensive. We showcase our results in Table 12. Reconstructing both crops
substantially improves the fine-tuning performance, so we continue using it in our final Harmony framework.

D.3 Random and Attentive Masking

We also tried adopting ideas from FLIP (Li et al., 2023) and Attentive Mask CLIP (Yang et al., 2023) in an
attempt to improve the efficiency of Harmony. In FLIP (Li et al., 2023), they show that randomly masking

Table 11: CLIP augmentation. Here standard augmentation means random cropping and flipping, with no
color distortions or Gaussian blurs. Both start from the same vanilla CLIP baseline.

Augmentation strategy INET-1K ADE20K
0-Shot FT SSEG

Standard 17.0 76.6 33.8
iBOT Global Crop 16.7 76.8 35.3
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Table 12: MAE augmentation. Here standard augmentation means random cropping and flipping, with no
color distortions or Gaussian blurs. For global crops, we feed both crops and calculate the final loss as the
addition of the MSE from both crops.

Augmentation strategy INET-1K (ACC) ADE20K (IoU)
FT SSEG

Standard 64.2 25.2
iBOT Global Crops 70.9 26.9

Table 13: CLIP masking. Here standard augmentation means random cropping and flipping, with no color
distortions or Gaussian blurs. For global crops, we feed both crops and calculate the final loss as the addition
of the MSE from both crops.

CLIP masking INET-1K 0-shot
No Mask 16.7
Attentive (Yang et al., 2023) 15.9
Random (Li et al., 2023) 14.9

50% of the images being fed to CLIP’s image encoder will retain its performance, while substantially im-
proving efficiency. Attentive Mask CLIP builds on this idea by utilizing a ViT’s attention matrix (generated
using an MAE model, which is our teacher ĒV ) to mask only the patches with lowest relationship to the
caption description. This is calculated using the CLS token of the vision encoder, which will encode semantic
information throughout training because of the nature of CLIP’s objective. Both works used significantly
larger training datasets than ours, so we wanted to evaluate the ideas on a smaller scale.

We trained a CLIP model with 50% random and attentive masking and present our results in Table 13.
Attentive masking performs +1% higher than random masking, but is still worse than no masking. We
therefore continued with no masking for our vision-language contrastive learning objective.
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E Qualitative Results

We show qualitative results for 0-shot classification of Harmony and CLIP in Figure 4. Harmony has a
higher chance of identifying the correct guess. Note, that in the first image, Harmony selected a more
specific category over the ground truth.
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Figure 4: Qualitative results of Harmony and CLIP. For 3 different input images, the top 5 guesses of
Harmony and CLIP are shown. Ground truth labels are marked in green.
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F Pseudocode

We present a general pseudocode for our algorithm. More detailed implementation is shared on the GitHub
repository. A backward step is performed after each loss to free the computational graph, which saves
memory.

Algorithm 1 Harmony Pseudocode
Input:
EV , ĒV // student and teacher vision network
ET , ĒT // student and teacher text network
DV , DT // vision and text decoders
hId

, hTd
// image and text self-distillation heads

m // network momentum
α // hard loss weight

1: for each batch in loader do
2: i, t = batch // get image and text caption
3: u, v ← augment(i), augment(i) // global views
4: û, v̂ ← mask(u), mask(v) // masked image views
5: t̂← mask(t) // mask text for mlm and self-distillation
6: us, vs ← EV (u), EV (v) // extract image and text embeddings using student and teacher.
7: ut, vt ← ĒV (u), ĒV (v)
8: ts, tt ← ET (t), ĒT (t)
9: t̂s, t̂t ← ET (t̂), ĒT (t̂)

10:
11: L ← LD(hId

(us, vs, ut, vt)) // distillation loss
12: L.backward() // performed at each step to save memory
13: L ← αLHard(us, ts) + (1− α)LSoft(us, ts, ut, tt) // soft and hard contrastive loss
14: L.backward()
15: L ← LR(DV (us, vs), i) // pixel reconstruction loss
16: L.backward()
17: L ← LM (DT (t̂s), t) // masked language modeling loss
18: L.backward()
19: L ← LT D(hTd

(t̂s), hTd
(tt)) // text-distillation loss

20: L.backward()
21:
22: update(EV ) // backpropagation based on the above losses
23: update(ET )
24: ĒV .params← m ĒV .params + (1−m), EV .params // EMA teacher update
25: ĒT .params← m ĒT .params + (1−m), ET .params
26: end for
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G Comparison with DINOv2

DINOv2 (Oquab et al., 2024) is an obvious comparison with Harmony, as it is an improved version of iBOT
(Zhou et al., 2022). However, we do not include it in our results, because we observed poor performance when
pre-training DINOv2 on CC3M (linear probing accuracy below 25%), using the publicly shared codebase.
Given that the modifications introduced by DINOv2 beyond iBOT are relatively minor, with many being
just hyperparameter changes (see Table 1 in Oquab et al. (2024)), we would expect similar performance. We
suspect a bug may be present in the code, though we were unable to identify it. As a result, we felt it would
be more fair to exclude this comparison.
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