
VLM-Grounder: A VLM Agent for Zero-Shot 3D
Visual Grounding

Runsen Xu1,3 Zhiwei Huang2 Tai Wang3 Yilun Chen3 Jiangmiao Pang3B Dahua Lin1,3,4

1The Chinese University of Hong Kong 2Zhejiang University 3Shanghai AI Laboratory
4Centre for Perceptual and Interactive Intelligence

Abstract: 3D visual grounding is crucial for robots, requiring integration of nat-
ural language and 3D scene understanding. Traditional methods depending on
supervised learning with 3D point clouds are limited by scarce datasets. Recently
zero-shot methods leveraging LLMs have been proposed to address the data issue.
While effective, these methods only use object-centric information, limiting their
ability to handle complex queries. In this work, we present VLM-Grounder, a
novel framework using vision-language models (VLMs) for zero-shot 3D visual
grounding based solely on 2D images. VLM-Grounder dynamically stitches im-
age sequences, employs a grounding and feedback scheme to find the target object,
and uses a multi-view ensemble projection to accurately estimate 3D bounding
boxes. Experiments on ScanRefer and Nr3D datasets show VLM-Grounder out-
performs previous zero-shot methods, achieving 51.6% Acc@0.25 on ScanRefer
and 48.0% Acc on Nr3D, without relying on 3D geometry or object priors. Codes
are available at https://github.com/OpenRobotLab/VLM-Grounder.

Keywords: 3D Visual Grounding, VLM Agent, Zero-Shot Scene Understanding

1 Introduction

3D visual grounding focuses on finding the 3D location of a target object in a scene based on user
queries, which is a fundamental requirement for robots. This task requires integrating natural lan-
guage understanding with 3D scene comprehension. Previous methods mainly rely on supervised
learning using paired 3D point clouds and language data to train end-to-end models. However, ex-
isting visual grounding datasets[1, 2] are scarce and limited to a pre-defined vocabulary, challenging
the development of general models for open-world applications.

To address this issue, recent approaches [3, 4] have utilized large language models (LLMs) [5, 6,
7, 8, 9] in a zero-shot manner for 3D visual grounding. Since LLMs cannot directly process 3D
environments, these methods employ a point cloud-based 3D localization module [10, 11] to detect
objects and convert their attributes into texts. The LLM then selects the target object based on these
texts, as illustrated in Fig. 1. While these methods achieve strong performance, they use only object-
centric information and often miss detailed scene context, making it challenging to handle queries
like “find the room with the most abundant natural light.”

Inspired by the recent advancements in vision-language models (VLMs) [12, 13, 14, 15, 16] that
excel in directly associating language with visual information, we introduce VLM-Grounder, an
agent framework based on VLMs for zero-shot 3D visual grounding. Our approach involves a VLM
that analyzes user queries and sequences of images capturing the scene to locate the target object,
whose 2D mask is projected to determine the 3D bounding box.

Inputting image sequences to the VLM can exceed the VLM’s maximum image limit, overly con-
sume the VLM’s context length, and lead to degraded performance and increased inference latency.
Stitching multiple images is an effective solution, but it may result in information loss. We design a
novel Visual-Retrieval benchmark to quantitatively evaluate how different stitching layouts affect the

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

https://github.com/OpenRobotLab/VLM-Grounder

Point Cloud

LLM-Based Methods

3D Localization

Query: Find the cabinet next to a white one.

Object 1 is a black
cabinet at (x1, y1, z1).

Object 2 is a white
cabinet at (x2, y2, z2).

Object 1

Image Sequence

VLM-Grounder (ours)

3D ObjectTarget MaskLLM VLM

Projection

Text Target ID

Figure 1: Comparison between LLM-based methods and VLM-Grounder.

VLM’s visual processing. Further, we propose a dynamic stitching strategy that dynamically uses
the optimal layouts identified by the benchmark to stitch images, enhancing VLM’s performance.

Given user queries and stitched images, the VLM is responsible for finding the target object. To
fully utilize the VLM’s reasoning capabilities, we develop a grounding and feedback scheme. In
this scheme, the VLM explains its reasoning process across image sequences. Automatic feedback is
provided to for retrying when the VLM gives an invalid response, ensuring more accurate outcomes.

After the target object is found, we extract the fine-grained 2D mask and get the 3D bounding box by
projection. However, estimating a 3D bounding box from a single image can be problematic due to
limited field-of-view and inaccurate depth information. We design a multi-view ensemble projection
module that uses image matching to find additional views of the same target object. These views are
then used together to jointly estimate the 3D bounding box. Additionally, we employ morphological
operations to better handle issues related to inaccurate depth.

We conducted extensive experiments on the widely used ScanRefer [1] and Nr3D [2] datasets. Our
VLM-Grounder outperforms previous zero-shot methods and is even comparable with some super-
vised learning methods, without relying on 3D geometry, such as point clouds or provided object
priors. Specifically, VLM-Grounder achieves an overall Acc@0.25 of 51.6% on the ScanRefer
benchmark and 48.0% overall accuracy on the Nr3D benchmark, surpassing the previous SOTA
methods’ performances of 36.4% and 39.0%, respectively.

2 Related Work

3D visual grounding. 3D visual grounding was first benchmarked by ScanRefer [1] and ReferIt3D
[2] based on ScanNet [17] static point clouds, requiring the output of the target object’s 3D bounding
box specified by a language description. Previous supervised-learning methods primarily follow a
two-stage paradigm: a 3D detection model [1, 18, 19, 20, 21, 22, 23] or a 3D instance segmentation
model [24, 25, 26] generates object proposals, and a language branch encodes the user query for
feature fusion with object features to predict target objects. There are one-stage methods[27, 28]
directly decoding the target object bounding box by an encoder-decoder architecture. Recently,
large language models (LLMs)[9, 7, 8, 29, 30, 31, 5, 32] have been employed as backbones for
selecting or decoding target objects[33, 34, 35, 36]. Unlike end-to-end models, zero-shot methods
leverage LLMs in an agent-based framework. LLM-Grounder [4] parses user queries to identify the
target object type and referenced object type, then uses an open-vocabulary semantic segmentation
model [10, 11] to locate these object types. An LLM is then used to reason which object satisfies the
grounding relationship. ZS3DVG [3] follows a similar pipeline but requires the LLM to write codes
to determine the target object. Despite their great performance, these methods rely on reconstructed
point clouds and are bottlenecked by 3D localization modules. Additionally, they only process text-
based information with the LLM and primarily address user queries involving spatial relationships.

Zero-shot LLM/VLM agents for 3D scene understanding. LLMs/VLMs demonstrate exceptional
abilities in task reasoning, planning, tool use, and code writing, enabling a new type of AI system (AI
agent) that uses LLMs/VLMs to integrate various off-the-shelf modules for 3D scene understanding.
In addition to LLM-Grounder [4] and ZS3DVG [3] leveraging LLMs for 3D visual grounding, scene
graph-based methods such as OSVG[37] and ConceptGraph[38] focus on building scene graphs to
model the relations between objects and search the target object by LLM-parsed query. Recently,

2

Query: Find the cabinet
next to a white one.

Class: cabinet
Conditions: next to
a while one

Query Analysis

View Pre-Selection

Dynamic Stitching

Image Sequence Stitched Images

Grounding

Reasoning: After examining the
images, I identified images
00002, 00003, 00029, …, and
00032 show a dark rectangular
cabinet next to a white cabinet.
Image 00003 clearly shows the
target object.
Target Image ID: 00003
Reference Image IDs: [00002,
00003, …, 00032]

Valid?

Feedback

OV-Detection
&

Visual Prompt

Annotated Target Image

ID: 0
ID: 1

Reasoning: Object 0 is next
to the white cabinet (ID: 1),
it matches the conditions.
Object ID: 0

SAM

Multi-View Matching

Ensemble Projection

Noise Filtering

Get 3D BBox

Multi-View Ensemble Projection
Morphological

Operations

Figure 2: An overview of VLM-Grounder. VLM-Grounder analyzes the user query and dynami-
cally stitches image sequences for efficient VLM processing to locate the target image and object.
A 2D open-vocabulary detection model and the Segment Anything Model generate a fine-grained
mask, which is then projected using a multi-view ensemble strategy to obtain the 3D bounding box.

Agent3D-Zero [39] employs VLMs to understand the bird’s-eye view of a 3D scene, retrieving
different observational views for tasks like question answering and scene captioning. OpenEQA [40]
proposed new question-and-answer datasets to benchmark agents’ scene understanding abilities.
Different from previous works, our VLM-Grounder focuses on object localization with 3D bounding
boxes and directly uses 2D images without requiring a reconstructed 3D scene or 3D localization
models. In the video processing domain, VideoAgent [41, 42] and TraveLER [43] also use LLMs for
processing 2D images. However, they focus on video event understanding and question answering,
rather than scene understanding, and cannot perform 3D localization.

3 Methodology

In this section, we present the overall framework of VLM-Grounder (Sec. 3.1), and detail the mo-
tivations and specifics of three key modules: dynamic stitching (Sec. 3.2), grounding and feedback
(Sec. 3.3), and multi-view ensemble projection (Sec. 3.4).

3.1 VLM-Grounder

VLM-Grounder processes image sequences of the scanned scene along with a user query to predict
the 3D bounding box of the target object. For each scene, we assume access to the intrinsic and
extrinsic camera parameters and the depth image for each image. These can be obtained online
via RGB-D sensors with (visual-inertial) odometry [44, 45, 46, 47], or RGB-based dense SLAM
[48, 49], or offline with SfM [50] and MVS [51]. VLM-Grounder does not depend on reconstructed
point clouds or object priors, offering a broader application compared to previous methods.

VLM-Grounder is an agent framework where the VLM is equipped with various tools and modules
to enable its grounding capability. In this work, we use GPT-4V as the VLM. Given a user query,
each step of VLM-Grounder’s process is illustrated in Fig. 2 and described sequentially below.

Query analysis. VLM analyzes the query to identify the target class label and grounding conditions.

View pre-selection and dynamic stitching. Image sequences scanning the scene are pre-selected
using a 2D open-vocabulary detector to retain only those with the target class. These images are then
annotated with IDs, stitched, and resized into fewer images using our dynamic stitching strategy.

3

Grounding and feedback. VLM receives the analyzed and original query, and the stitched images
to locate the target image and object. If VLM predicts an invalid target, feedbacks are added to the
message history, and VLM retries until finding a valid target or reaching the retry limit M .

Open-vocabulary detection and visual prompt. After the VLM predicts the target image, a 2D
open-vocabulary detector detects the image with the target class. If the target image contains mul-
tiple instances of the same class, unique IDs are annotated at the center of the detected bounding
boxes as visual prompts. VLM then uses these IDs to determine and select the correct target object.

Multi-view ensemble projection. The target image and bounding box are input into the Segment
Anything Model (SAM) [52] to obtain a fine-grained mask. Other images of the same object are
found via image matching, and their masks are also extracted. All masks are post-processed by mor-
phological operations and projected using camera parameters with the depth map to create projected
point clouds. These point clouds are filtered for noise to determine the final 3D bounding box.

3.2 Dynamic Stitching

Using VLM to process image sequences presents several problems: 1) VLMs have a maximum
image limit (e.g., GPT-4V allows only 10 images for Tier-1 users). 2) Inputting many images quickly
consumes the VLM’s context length, limiting output content and potentially affecting performance.
3) More images increase inference costs, including token usage, latency, and timeout risk.

To address these issues, we conduct view pre-selection to filter images, but this still leaves too many
images. Therefore, we stitch multiple images into a single image with a grid layout and resize it
according to the VLM’s settings. Stitching may lead to information loss, and the chosen layout
affects the total number of images sent to the VLM, influencing its understanding of the image
sequences. To study the effects of stitching, we designed a novel benchmark called the Visual-
Retrieval Benchmark, detailed in Sec. 4.3.

From the benchmark results, we identified the top three layouts for GPT-4V with minimal informa-
tion loss: (4, 1), (2, 4), and (8, 2), where (4, 1) means 4 rows and 1 column per stitched image.
One straightforward approach is to use the best layout (4, 1) as a fixed layout. However, it only
accommodates 4 images, which is insufficient for sequences containing many images. To maximize
performance, we propose a dynamic stitching strategy that dynamically utilizes the top three layouts.

Specifically, we set a soft limit of the maximum number of stitched images L allowed for the VLM.
Given an image sequence with n images, we first attempt to use the (4, 1) layout while keeping
the number of stitched images within L. If this is not feasible, we stitch some images using larger
layouts like (2, 4) and (8, 2). For example, with n = 40 and L = 6, six stitched images using the (4,
1) layout are insufficient, so we use two (4, 1) and four (2, 4) stitched images. If the total number of
images exceeds (8 × 2)L, we exceed the soft limit and use a larger and also effective layout of (9,
3). Pseudo-code for the dynamic stitching strategy is provided in the supplementary material.

3.3 Grounding and Feedback

VLM receives the analyzed and original query along with stitched images to identify the image
containing the target object. Since determining whether the grounding conditions are met may
require considering multiple views, we prompt the VLM to explain its reasoning process and provide
the referenced images used.

After the VLM predicts a target image, we check its validity. If the target image does not exist,
we append “image-invalid” feedback to the message history and prompt the VLM to reselect. If
the target image exists but the 2D open-vocabulary detection model does not detect any objects of
the target class, we append “object-not-existing” feedback and prompt the VLM to reselect. When
the image and candidate objects are valid, we annotate the target image with different object IDs
and prompt the VLM to select the target object ID. If the VLM predicts an invalid object ID, we
append “object-ID-invalid” feedback and the VLM should reselect. If the VLM cannot predict a

4

valid image with a valid object ID after M retries, the process is considered a failure. Details of
different feedbacks are provided in the supplementary material.

3.4 Multi-View Ensemble Projection

Using a single image for 3D projection may result in incomplete point clouds and low IoU with the
ground truth bounding box due to the limited field of view. To address this, we employ multi-view
images showing the same target object for joint estimation. We use the image matching method
PATS [53] to match the target object mask (anchor) with other images to obtain matched pixel pairs,
indicating the same spatial points between images. Using the matching results, these images are
processed by a 2D open-vocabulary detector and SAM to get the matched masks. Each mask is
projected to obtain its corresponding point clouds. In total, we use N images together.

In scenes with many objects of identical appearance, the image-matching module may produce
mismatched results. To filter these mismatched pairs, we calculate the L2 Chamfer Distance of
these point clouds with the anchor point clouds and filter out those having a distance larger than 0.1.
The final point clouds are the union of these valid point clouds, which are then filtered for noise, and
an axis-aligned 3D bounding box is calculated as the final prediction.

It is worth noting that SAM may produce noisy masks, and depth maps may not be accurate, espe-
cially at object borders. These issues result in noisy point clouds that cannot be filtered. To address
this, each mask undergoes two morphological operations: 1) Erosion to remove noise and shrink
the mask border to avoid inaccurate depth at the border. 2) Component selection to retain the top
2 largest connected components of the predicted mask, removing incorrect masks while preserving
most of the correct mask. These operations mitigate the effects of over-segmentation and inaccurate
depth, improving overall 3D localization accuracy.

4 Experimental Results

4.1 Experimental Settings

Datasets. Following [3], we experiment on the ScanRefer [1] and Nr3D [2] datasets. ScanRefer an-
notates ScanNet [17] with 51,583 human-written query-target object pairs. Queries are categorized
as “Unique”, with only one object of the target class in the scene, or “Multiple”, with other objects
of the same class (distractors) present. The Nr3D dataset, part of ReferIt3D [2], contains 41,503
queries for ScanNet scenes. All target objects in Nr3D have at least one distractor; “Easy” samples
have one, while “Hard” samples have two or more. Queries are also classified as “View-Dependent”
or “View-Independent” based on the presence of view-dependent relations like “left” or “right”. To
reduce costs, we randomly select 250 validation samples from each dataset for testing. We report the
performance of the baselines from their original papers, and the results on the same 250 validation
samples are provided in the supplementary material.

Evaluation metrics. The ScanRefer benchmark requires predicting the 3D bounding box of the
target object from scene point clouds and queries. Metrics are Acc@0.25 and Acc@0.5, indicating
the percentage of samples where the predicted bounding box has an IoU greater than 0.25 or 0.5 with
the ground truth. In contrast, the Nr3D benchmark provides ground truth bounding boxes (without
class labels) for all objects, focusing on top-1 accuracy in selection. VLM-Grounder does not need
such priors for input, so we match our predicted box to the ground truth box with the closest center
and use this matched box as our model’s prediction.

Implementation details. For our experiments, we sample one frame from every 20 frames of
the original ScanNet image sequences. We use GPT-4o-2024-05-13 [54] as the VLM, setting the
temperature to 0.1 and top p to 0.3 to balance randomness and creativity. The retry limit is M = 3,
the image count limit is L = 6, and the ensemble image number is N = 7. We employ SAM-Huge
[52] and Grounding DINO-1.5 [55] as the 2D open-vocabulary detectors. The erosion kernel size is

5

Table 1: 3D visual grounding results on ScanRefer. Without using geometric information from
point clouds, VLM-Grounder outperforms previous zero-shot methods and achieves performance
comparable to supervised learning baselines. * indicates that the evaluation is based on 2D masks.

Overall Unique Multiple

Methods Zero-Shot w/o. PC Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5

ScanRefer[1] é é 37.3 24.3 65.0 43.3 30.6 19.8
TGNN[57] é é 34.3 29.7 64.5 53.0 27.0 21.9
InstanceRefer[24] é é 40.2 32.9 77.5 66.8 31.3 24.8
3DVG-Transformer[18] é é 47.6 34.7 81.9 60.6 39.3 28.4
BUTD-DETR[28] é é 52.2 39.8 84.2 66.3 46.6 35.1

OpenScene[10] Ë é 13.2 6.5 20.1 13.1 11.1 4.4
LLM-Grounder[4] Ë é 17.1 5.3 - - - -
ZS3DVG[3] Ë é 36.4 32.7 63.8 58.4 27.7 24.6
VLM-Grounder (ours) Ë Ë 51.6 32.8 66.0 29.8 48.3 33.5

VLM-Grounder* (ours) Ë Ë 62.4 53.2 87.2 76.6 56.7 47.8

15, and we use Open3D’s[56] statistical outlier removal with nb = 5 and std = 1 for point cloud
filtering. All prompts and complete demos for VLM-Grounder are in the supplementary material.

4.2 3D Visual Grounding Results

ScanRefer. Our VLM-Grounder significantly outperforms all previous zero-shot approaches on the
ScanRefer benchmark as shown in Tab. 1. Specifically, it surpasses the previous SOTA method,
ZS3DVG[3], by a large margin. For overall Acc@0.25, VLM-Grounder achieves 51.6%, compared
to ZS3DVG’s 36.4%, reflecting a substantial improvement of 15.2. Even without using point clouds,
VLM-Grounder demonstrates superior performance. In contrast, using an open-vocabulary instance
segmentation model alone, such as OpenScene[10], results in poor performance (13.2% Acc@0.25),
likely because it fails to understand object relationships and relies on a bag-of-words approach for
visual grounding [4]. While VLM-Grounder still lags behind one of the SOTA supervised-learning
models BUTD-DETR (52.2% Acc@0.25), it achieves comparable performance to earlier baselines
like InstanceRefer (40.2%) and 3DVG-Transformer (47.6%) without any training.

Our method shows a notable gap between Acc@0.25 and Acc@0.5. This discrepancy arises because
VLM-Grounder operates directly on 2D images and projects the 2D masks into 3D using camera
intrinsic and extrinsic parameters along with depth values. These estimated parameters often contain
noise, causing inaccuracies in the predicted 3D bounding boxes, e.g., a single outlier can result in
an overly large bounding box. Although our multi-view ensemble projection module helps mitigate
this issue, it cannot entirely eliminate it. Previous methods rely on reconstructed point clouds and
point cloud-based localization models to provide precise object locations, which offer geometric
information and bring advantages for evaluation based on 3D bounding box. Nevertheless, VLM-
Grounder still outperforms ZS3DVG on the Multiple split for both Acc@0.25 and Acc@0.5.

To further isolate the effects of imperfect projection and better evaluate grounding accuracy, we also
assess VLM-Grounder’s performance by comparing the IoU of the predicted 2D masks against the
ground truth 2D masks. Results show that VLM-Grounder’s grounding capability surpasses that of
previous zero-shot methods and even outperforms the supervised method BUTD-DETR from a 2D
perspective. Additionally, VLM-Grounder exhibits significant improvement in the more challenging
Multiple splits, highlighting its superior grounding ability across various scenarios.

Nr3D. For the Nr3D benchmark, previous methods use GT 3D bounding boxes as input. This pro-
vides an important advantage as it serves as a strong prior. In contrast, VLM-Grounder operates
without relying on any object priors or point cloud information, yet still outperforms previous zero-
shot methods and even some supervised learning approaches. VLM-Grounder achieves an over-
all accuracy of 48.0%, surpassing the previous zero-shot SOTA, ZS3DVG, which reaches 39.0%.

6

Table 2: 3D visual grounding results on Nr3D. VLM-Grounder surpasses the previous SOTA zero-
shot method without requiring access to point clouds or ground-truth bounding box priors.

Methods Zero-Shot w/o. PC w/o. GT BBox Overall Easy Hard VD VID

ReferIt3D[2] é é é 35.6 43.6 27.9 32.5 37.1
TGNN[57] é é é 37.3 44.2 30.6 35.8 38
InstanceRefer[24] é é é 38.8 46.0 31.8 34.5 41.9
3DVG-Transformer[18] é é é 40.8 48.5 34.8 34.8 43.7
BUTD-DETR[28] é é é 54.6 60.7 48.4 46.0 58.0

ZS3DVG[3] Ë é é 39.0 46.5 31.7 36.8 40.0
VLM-Grounder (ours) Ë Ë Ë 48.0 55.2 39.5 45.8 49.4

The improvement is reflected consistently across various query categories. Without model train-
ing, VLM-Grounder’s overall performance also competes with supervised learning methods like
InstanceRefer (38.8%) and 3DVG-Transformer (40.8%).

4.3 Visual-Retrieval Benchmark

Stitching multiple images into one can reduce the number of images input to a VLM, but its impact
on the VLM’s visual understanding and the existence of optimal layouts are unclear. To explore this,
we propose a Visual-Retrieval Benchmark. While our findings are specific to GPT-4V and ScanNet
images, the benchmark is general and can be applied to other settings to draw relevant conclusions.

4.3.1 Benchmark Settings

Annotate & Stitch

Retrieve the ID and the
corresponding block
color from each image.

IDs: [00000, 00001, 00002, 00003]
Colors: [yellow, white, green, yellow]

GT IDs: [00000, 00001, 00002, 00003]
GT Colors: [yellow, white, green, blue]

Accuracy: 0.75

Figure 3: Visual-Retrieval benchmark.

We randomly select 1,000 images from the ScanNet
dataset, each annotated with a unique ID. Addition-
ally, a block of random color is generated and placed
at a random position within each image. These
images are then stitched using various layouts and
fed into the VLM, which retrieves all image IDs
and the corresponding block colors, as illustrated in
Fig. 3. This benchmark allows us to assess the extent
of information loss caused by the stitching strategy
through retrieval accuracy. We focus primarily on
two factors: stitching layouts and the number of im-
ages. Additionally, we measure the retrieval time for
different numbers of input images. More details are
provided in the supplementary material.

4.3.2 Observations

Stitching layouts. As shown in Fig. 4(a), we could identify the top three layouts used by VLM-
Grounder: (4, 1), (2, 4), and (8, 2), with (4, 1) achieving perfect retrieval. Accuracy significantly
declines for layouts denser than (5, 5), suggesting a “resolution” upper bound for effective image
stitching. This decline is likely due to GPT-4V’s pre-processing step, which resizes images to ensure
the long side is less than 2048 pixels and the short side is less than 768 pixels, resulting in lower
resolution for each image in denser layouts.

Number of images. We use the top five layouts and observe how accuracy varies with the number of
images sent to GPT-4V in one request. From Fig. 4(b), increasing the number of images only slightly
reduces retrieval accuracy. As shown in Fig. 4(c), the request time increases linearly with the number
of images, which is favorable. However, adding more images is not always beneficial because
sending too many images (e.g., more than 20) can lead to timeouts and unsuccessful experiments,
as indicated by the incomplete results for layouts (3, 3) and (8, 2) and the spikes in Fig. 4(c).

7

(a) Accuracy with stitching layouts. (b) Accuracy with image counts. (c) Request time with image counts.

Timeout

1 0
1.00

亡一－－的I；血勹匾96009511 I 400

c、l

0 .“贮E.....”“．一．．比＂一·黯勺置星一·屙已』”· U,OO U O3 J ｀斗丘且矗诅 U.O~L U 0乙U
0.99

、 I

寸 旨厦“'I'■，配切谭心1戎·”“'.rll 0 啊948 U.826 U 929 I,!垦岛斗 U8(8 U 81U

\/
~U) 300
~_,

5
。` 。 0 902 0 882 0.933 0 853 0 905 0 851 0 797 E

巴 F
O 0.994 0 994 0.991 0.909 0 872 0 825 0 828 0 819 0 851 0.804 厂勹

龙:::J 0.98 ~ 200
二｝
cr

卜． 1，配｝北冒，配切，星r，配Jl:I O 892 0 782 0.754 lW1劝卫画H颐I，片H＇4, 足
07

Layout
CO I，配LEI谭“'1:1;11谒宝 0.912 0 780 l!J也正，1t•;tl;t1f .. ,;If■f .. 'T...匾...下句 | 0.97 —4x1 —2x4

100

O') I，配r＂噩，配r丘噩讥出切 0891 0 801 ~屯泣,,.｀肥”｀■＂屯忙噩I贰出9■，配比Ill •• —8x1
05 —3x3

己 ，，配I芯噩I配”“四 0877 0.766 0 609 0 392 0 341 0 315 0 333 . —8x2
03 0.96 。

1 2 3 4 5 6 7 8 9 10 10 20 30 1 10 20 30

Columns Number of Images Number of Images

Figure 4: Benchmark accuracy and request time for different stitching layouts and image counts.

Table 3: Stitching strategies.
Strategy Acc@0.25

Fix (1, 1) N.A.
Fix (8, 2) 48.4
Square 49.2
Dynamic Stitching 51.6

Table 4: Number of images.
Images Acc@0.25

6 51.6
8 50.8

10 51.2
12 48.4

Table 5: Projection operations.
Operations Acc@0.25

Baseline 40.8
+Morpho. Ops 45.2
+Point Filtering 48.4
+Multi-View 51.6

4.4 Ablation Studies

Stitching strategies. To validate the effectiveness of our dynamic stitching strategy, we compared
it with various stitching approaches: no stitching (1, 1), a fixed layout (8, 2), and a square strategy.
The square strategy calculates a stitching layout that approximates a square shape while staying
within the image limit. As shown in our results, the proposed dynamic stitching outperforms the
others, demonstrating its efficacy. Without stitching, the system often encounters timeouts and fails
to complete the task, underscoring the necessity of an effective stitching strategy.

Image limits. We experimented with different values for the soft image limit L as shown in Tab. 4.
Results indicate that performance remains similar for limits below 10. However, as discussed in
Sec. 4.3, increasing the number of images leads to higher inference costs and a greater risk of time-
outs. Consequently, we set L = 6 in our main experiments to balance performance and efficiency.

Projection operations. To assess the impact of different operations within the multi-view ensem-
ble projection module, we incrementally added operations to a baseline and measured their effect.
These operations include morphological processing, point cloud filtering, and multi-view ensem-
ble estimation. Tab. 5 shows a clear performance improvement with each additional component,
confirming the importance and effectiveness of these operations.

Additional ablations, such as using YOLOv8-World [58] instead of Grounding DINO-1.5[55] as the
open-vocabulary detector, are provided in the supplementary material.

5 Conclusion and Limitations

In this paper, we presented VLM-Grounder, a VLM agent that excels in zero-shot 3D visual ground-
ing. We introduced a novel Visual-Retrieval benchmark to evaluate the impact of stitching operations
on VLM’s visual understanding. VLM-Grounder has several appealing properties: it leverages foun-
dation models from the language and 2D domains without training, and offers a more transparent
and explainable grounding process than end-to-end models. However, it has limitations. The accu-
racy of 3D grounding is affected by imprecise camera parameters and depth maps, and targets can
be missed if the open-vocabulary detector fails to identify them. Further discussions on limitations,
error analysis, inferencing time, and qualitative results are provided in the supplementary material.

8

Acknowledgements. We sincerely thank Tianhe Ren and Lei Zhang from The International Digital
Economy Academy (IDEA) for providing access to the Grounding DINO-1.5 model. This research
was partially supported by the Centre for Perceptual and Interactive Intelligence (CPII) Ltd. under
the Innovation and Technology Commission (ITC)’s InnoHK and Shanghai AI Laboratory.

References
[1] D. Z. Chen, A. X. Chang, and M. Nießner. Scanrefer: 3d object localization in rgb-d scans

using natural language. In ECCV, 2020.

[2] P. Achlioptas, A. Abdelreheem, F. Xia, M. Elhoseiny, and L. Guibas. Referit3d: Neural listen-
ers for fine-grained 3d object identification in real-world scenes. In ECCV, 2020.

[3] Z. Yuan, J. Ren, C.-M. Feng, H. Zhao, S. Cui, and Z. Li. Visual programming for zero-shot
open-vocabulary 3d visual grounding. In CVPR, 2024.

[4] J. Yang, X. Chen, S. Qian, N. Madaan, M. Iyengar, D. F. Fouhey, and J. Chai. Llm-grounder:
Open-vocabulary 3d visual grounding with large language model as an agent. In ICRA, 2024.

[5] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière,
N. Goyal, E. Hambro, F. Azhar, et al. Llama: Open and efficient foundation language models.
arXiv preprint arXiv:2302.13971, 2023.

[6] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[7] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners. In NeurIPS,
2020.

[8] OpenAI. Gpt-4 technical report. arXiv:2303.08774, 2023.

[9] OpenAI. Chatgpt. https://openai.com/blog/chatgpt, 2022.

[10] S. Peng, K. Genova, C. Jiang, A. Tagliasacchi, M. Pollefeys, T. Funkhouser, et al. Openscene:
3d scene understanding with open vocabularies. In CVPR.

[11] J. Kerr, C. M. Kim, K. Goldberg, A. Kanazawa, and M. Tancik. Lerf: Language embedded
radiance fields. In ICCV, 2023.

[12] OpenAI. Gpt-4v. https://openai.com/index/gpt-4v-system-card/, 2023.

[13] Z. Chen, J. Wu, W. Wang, W. Su, G. Chen, S. Xing, M. Zhong, Q. Zhang, X. Zhu, L. Lu, B. Li,
P. Luo, T. Lu, Y. Qiao, and J. Dai. Internvl: Scaling up vision foundation models and aligning
for generic visual-linguistic tasks. In CVPR, 2024.

[14] H. Liu, C. Li, Q. Wu, and Y. J. Lee. Visual instruction tuning. In NeurIPS, 2023.

[15] W. Dai, J. Li, D. Li, A. M. H. Tiong, J. Zhao, W. Wang, B. Li, P. N. Fung, and S. Hoi. Instruct-
blip: Towards general-purpose vision-language models with instruction tuning. In NeurIPS,
2023.

[16] R. Xu, X. Wang, T. Wang, Y. Chen, J. Pang, and D. Lin. Pointllm: Empowering large language
models to understand point clouds. In ECCV, 2024.

[17] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and M. Nießner. Scannet: Richly-
annotated 3d reconstructions of indoor scenes. In CVPR, 2017.

[18] L. Zhao, D. Cai, L. Sheng, and D. Xu. 3dvg-transformer: Relation modeling for visual ground-
ing on point clouds. In ICCV, 2021.

9

https://openai.com/blog/chatgpt
https://openai.com/index/gpt-4v-system-card/

[19] D. Z. Chen, Q. Wu, M. Nießner, and A. X. Chang. D3net: A unified speaker-listener architec-
ture for 3d dense captioning and visual grounding. In ECCV, 2022.

[20] Z. Yang, S. Zhang, L. Wang, and J. Luo. Sat: 2d semantics assisted training for 3d visual
grounding. In ICCV, 2021.

[21] J. Roh, K. Desingh, A. Farhadi, and D. Fox. Languagerefer: Spatial-language model for 3d
visual grounding. In CoRL, 2022.

[22] S. Huang, Y. Chen, J. Jia, and L. Wang. Multi-view transformer for 3d visual grounding. In
CVPR, 2022.

[23] S. Chen, P.-L. Guhur, M. Tapaswi, C. Schmid, and I. Laptev. Language conditioned spatial
relation reasoning for 3d object grounding. NeurIPS, 2022.

[24] Z. Yuan, X. Yan, Y. Liao, R. Zhang, S. Wang, Z. Li, and S. Cui. Instancerefer: Coopera-
tive holistic understanding for visual grounding on point clouds through instance multi-level
contextual referring. In ICCV, 2021.

[25] Z. Zhu, X. Ma, Y. Chen, Z. Deng, S. Huang, and Q. Li. 3d-vista: Pre-trained transformer for
3d vision and text alignment. In ICCV, 2023.

[26] B. Jia, Y. Chen, H. Yu, Y. Wang, X. Niu, T. Liu, Q. Li, and S. Huang. Sceneverse: Scaling 3d
vision-language learning for grounded scene understanding. In ECCV, 2024.

[27] T. Wang, X. Mao, C. Zhu, R. Xu, R. Lyu, P. Li, X. Chen, W. Zhang, K. Chen, T. Xue, et al.
Embodiedscan: A holistic multi-modal 3d perception suite towards embodied ai. In CVPR,
2024.

[28] A. Jain, N. Gkanatsios, I. Mediratta, and K. Fragkiadaki. Bottom up top down detection trans-
formers for language grounding in images and point clouds. In ECCV, 2022.

[29] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,
K. Slama, A. Ray, et al. Training language models to follow instructions with human feedback.
In NeurIPS, 2022.

[30] I. Team. Internlm: A multilingual language model with progressively enhanced capabilities.
https://github.com/InternLM/InternLM, 2023.

[31] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W.
Chung, C. Sutton, S. Gehrmann, et al. Palm: Scaling language modeling with pathways. In
JMLR, 2023.

[32] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J.
Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. In JMLR,
2020.

[33] Z. Yin, J. Wang, J. Cao, Z. Shi, D. Liu, M. Li, X. Huang, Z. Wang, L. Sheng, L. Bai, et al.
Lamm: Language-assisted multi-modal instruction-tuning dataset, framework, and bench-
mark. In NeurIPS, 2023.

[34] Y. Hong, H. Zhen, P. Chen, S. Zheng, Y. Du, Z. Chen, and C. Gan. 3d-llm: Injecting the 3d
world into large language models. In NeurIPS, 2023.

[35] H. Huang, Y. Chen, Z. Wang, R. Huang, R. Xu, T. Wang, L. Liu, X. Cheng, Y. Zhao, J. Pang,
et al. Chat-scene: Bridging 3d scene and large language models with object identifiers. In
NeurIPS, 2024.

[36] Y. Chen, S. Yang, H. Huang, T. Wang, R. Lyu, R. Xu, D. Lin, and J. Pang. Grounded 3d-llm
with referent tokens. arXiv preprint arXiv:2405.10370, 2024.

10

https://github.com/InternLM/InternLM

[37] H. Chang, K. Boyalakuntla, S. Lu, S. Cai, E. Jing, S. Keskar, S. Geng, A. Abbas, L. Zhou,
K. Bekris, et al. Context-aware entity grounding with open-vocabulary 3d scene graphs. In
CoRL, 2023.

[38] Q. Gu, A. Kuwajerwala, S. Morin, K. M. Jatavallabhula, B. Sen, A. Agarwal, C. Rivera,
W. Paul, K. Ellis, R. Chellappa, C. Gan, C. M. de Melo, J. B. Tenenbaum, A. Torralba,
F. Shkurti, and L. Paull. Conceptgraphs: Open-vocabulary 3d scene graphs for perception
and planning. In ICRA, 2024.

[39] S. Zhang, D. Huang, J. Deng, S. Tang, W. Ouyang, T. He, and Y. Zhang. Agent3d-zero: An
agent for zero-shot 3d understanding. arXiv preprint arXiv:2403.11835, 2024.

[40] A. Majumdar, A. Ajay, X. Zhang, P. Putta, S. Yenamandra, M. Henaff, S. Silwal, P. Mcvay,
O. Maksymets, S. Arnaud, et al. Openeqa: Embodied question answering in the era of foun-
dation models. In CVPR, 2024.

[41] Y. Fan, X. Ma, R. Wu, Y. Du, J. Li, Z. Gao, and Q. Li. Videoagent: A memory-augmented
multimodal agent for video understanding. arXiv preprint arXiv:2403.11481, 2024.

[42] X. Wang, Y. Zhang, O. Zohar, and S. Yeung-Levy. Videoagent: Long-form video understand-
ing with large language model as agent. arXiv preprint arXiv:2403.10517, 2024.

[43] C. Shang, A. You, S. Subramanian, T. Darrell, and R. Herzig. Traveler: A multi-lmm agent
framework for video question-answering. arXiv preprint arXiv:2404.01476, 2024.

[44] A. Dai, M. Nießner, M. Zollhöfer, S. Izadi, and C. Theobalt. Bundlefusion: Real-time globally
consistent 3d reconstruction using on-the-fly surface reintegration. In ACM Transactions on
Graphics, 2017.

[45] D. Chen, N. Wang, R. Xu, W. Xie, H. Bao, and G. Zhang. Rnin-vio: Robust neural inertial
navigation aided visual-inertial odometry in challenging scenes. In ISMAR, 2021.

[46] R. Mur-Artal and J. D. Tardós. ORB-SLAM2: an open-source SLAM system for monocular,
stereo and RGB-D cameras. IEEE Transactions on Robotics, 2017.

[47] X. Liu, Y. Li, Y. Teng, H. Bao, G. Zhang, Y. Zhang, and Z. Cui. Multi-modal neural radiance
field for monocular dense slam with a light-weight tof sensor. In ICCV, 2023.

[48] Z. Zhu, S. Peng, V. Larsson, Z. Cui, M. R. Oswald, A. Geiger, and M. Pollefeys. Nicer-slam:
Neural implicit scene encoding for rgb slam. In 3DV, 2024.

[49] H. Li, X. Gu, W. Yuan, L. Yang, Z. Dong, and P. Tan. Dense rgb slam with neural implicit
maps. In ICLR, 2023.

[50] J. L. Schönberger and J.-M. Frahm. Structure-from-motion revisited. In CVPR, 2016.

[51] J. L. Schönberger, E. Zheng, M. Pollefeys, and J.-M. Frahm. Pixelwise view selection for
unstructured multi-view stereo. In ECCV, 2016.

[52] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead,
A. C. Berg, W.-Y. Lo, et al. Segment anything. In ICCV, 2023.

[53] J. Ni, Y. Li, Z. Huang, H. Li, H. Bao, Z. Cui, and G. Zhang. Pats: Patch area transportation
with subdivision for local feature matching. In CVPR, 2023.

[54] OpenAI. Gpt-4o. https://openai.com/index/hello-gpt-4o/, 2024.

[55] T. Ren, Q. Jiang, S. Liu, Z. Zeng, W. Liu, H. Gao, H. Huang, Z. Ma, X. Jiang, Y. Chen, et al.
Grounding dino 1.5: Advance the” edge” of open-set object detection, 2024.

11

https://openai.com/index/hello-gpt-4o/

[56] Q.-Y. Zhou, J. Park, and V. Koltun. Open3d: A modern library for 3d data processing. arXiv
preprint arXiv:1801.09847, 2018.

[57] P.-H. Huang, H.-H. Lee, H.-T. Chen, and T.-L. Liu. Text-guided graph neural networks for
referring 3d instance segmentation. In AAAI, 2021.

[58] T. Cheng, L. Song, Y. Ge, W. Liu, X. Wang, and Y. Shan. Yolo-world: Real-time open-
vocabulary object detection. arXiv preprint arXiv:2401.17270, 2024.

[59] G. Jocher, A. Chaurasia, and J. Qiu. Ultralytics YOLO, Jan. 2023. URL https://github.

com/ultralytics/ultralytics.

12

https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics

VLM-Grounder: A VLM Agent for Zero-Shot 3D Visual
Grounding

Supplementary Material

A Dynamic Stitching 13

B Visual-Retrieval Benchmark Settings 13

C VLM-Grounder Prompts 15

D More Results and Analyses 17

D.1 Ablation on 2D Detectors . 17

D.2 Results on Selected 250 Samples . 17

D.3 Inference Time . 18

D.4 Success Rates and Error Analysis . 19

D.5 Summary of Limitations . 22

D.6 Full Demos . 22

A Dynamic Stitching

We employ a dynamic stitching algorithm to organize images into various layouts, with the pseu-
docode provided in Algorithm 1. The process begins by calculating the largest layout that should be
used. Given an image sequence with n images, and a maximum number of stitched images L, we
first compute the quantity of each layout. We use the variables n4, n8, n16, and n27 to represent the
number of (4, 1), (2, 4), (8, 2), and (9, 3) layouts, respectively.

For example, assuming n = 84 and L = 6, we know n ≤ 16L. First, we calculate the minimum
number of (8, 2) layouts required. Each (8, 2) layout accommodates 8 more images than a (2, 4)
layout, so we divide the number of images exceeding what six (2, 4) layouts can store by 8 to find
the minimum number of (8, 2) layouts needed. In this example, it is 5. Next, we compute the layout
needed for the remaining images. We update the remaining image count to 84 − 5 ∗ 8 ∗ 2 = 4 and
the stitched image count to 6− 5 = 1. Similarly, we determine that we need zero (2, 4) layouts and
one (4, 1) layout for the remaining images. Thus, we have determined the number of each layout
required. We then generate the stitched images in ascending order of layout size to ensure that only
the largest layout may have unused space, thereby minimizing resolution waste.

It is important to note that if the number of images is too large to be accommodated by L images
of the largest layout, we select the largest layout to minimize the total number of stitched images.
For any excess images, we maximize utilization efficiency by invoking the dynamic stitching

function again to find the appropriate layout, setting the fixed number to 1 to minimize the count of
stitched images. In this case, we first generate (9, 3) layouts and then recursively call the function to
generate the remaining layouts, which may result in some unused space in smaller layouts.

B Visual-Retrieval Benchmark Settings

We randomly selected 1,000 images from the ScanNet dataset, assigning each a unique ID ranging
from 00000 to 00999. Each image ID was annotated in red at the top-left corner. Additionally, a
color block was generated at a random position within each image, using one of six colors: red,

13

Algorithm 1: Dynamic Stitching Algorithm
1 Function dynamic stitching(imgs, L):

// candidate layouts: (4, 1), (2, 4), (8, 2), (9, 3)
Input: image sequence imgs, the maximum number of stitched images L
Output: stitched image sequence res

2 n← len(imgs);
3 res← [];
4 if n ≤ 4L then // (4, 1) layout is enough
5 res← stitch image(imgs, (4, 1));
6 else if n ≤ 8L then // at least one (2, 4) layout is used
7 n8 ← ⌈(n− 4L)/4⌉;
8 n4 ← L− n8;
9 res← res+stitch image(imgs[0 ... 4n4 − 1], (4, 1));

10 res← res+stitch image(imgs[4n4 ...], (2, 4));
11 else if n ≤ 16L then // at least one (8, 2) layout is used
12 n16 ← ⌈(n− 8L)/8⌉;
13 n← max(n− 16n16, 0) ; // number of images remaining
14 n4,8 ← L− n16 ; // number of (4, 1), (2, 4) layouts
15 n8 ← ⌈(n− 4n4,8)/4⌉;
16 n4 ← n4,8 − n8;
17 res← res+stitch image(imgs[0 ... 4n4 − 1], (4, 1));
18 res← res+stitch image(imgs[4n4 ... 4n4 + 8n8 − 1], (2, 4));
19 res← res+stitch image(imgs[4n4 + 8n8 ...], (8, 2));
20 else if n ≤ 27L then // at least one (9, 3) layout is used
21 n27 ← ⌈(n− 16L)/11⌉;
22 n4,8,16 ← L− n27 ; // number of (4, 1), (2, 4), (8, 2) layouts
23 n← max(n− 27n27, 0) ; // number of images remaining
24 n16 ← ⌈(n− 8n4,8,16)/8⌉;
25 n4,8 ← n4,8,16 − n16 ; // number of (4, 1), (2, 4) layouts
26 n← max(n− 16n16, 0);
27 n8 ← ⌈(n− 4n4,8)/4⌉;
28 n4 ← n4,8 − n8;
29 res← res+stitch image(imgs[0 ... 4n4 − 1], (4, 1));
30 res← res+stitch image(imgs[4n4 ... 4n4 + 8n8 − 1], (2, 4));
31 res← res+stitch image(imgs[4n4 + 8n8 ... 4n4 + 8n8 + 16n16 − 1], (8, 2));
32 res← res+stitch image(imgs[4n4 + 8n8 + 16n16 ...], (9, 3));
33 else // use more than L stitched images
34 n27 ← ⌊n/27⌋;
35 res← res+stitch image(imgs[0 ... 27n27 − 1], (9, 3));
36 res← res+dynamic stitching (imgs[27n27 ...], 1);
37 return res;

14

green, blue, yellow, white, or black. The images were then stitched using specific layouts, forming
the basic image sets sent to the VLM. The VLM’s task was to identify all images, retrieve their
IDs, and determine the color of the blocks. The VLM was required to return two lists—IDs and
corresponding colors—as demonstrated in Fig.3. of the main paper.

Occasionally, the VLM might retrieve the same ID from different images, leading to conflicts where
multiple ID-color pairs exist for the same ID. In such cases, if at least one retrieved ID matches the
ground truth, it is considered correct. In other words, we calculated the Recall as the accuracy in
this benchmark. For instance, in Fig.3. of the main paper, if four images were input and the VLM
retrieved four pairs, but the pair 00003-yellow was incorrect (the ground truth being 00003-blue),
the accuracy for this benchmark would be 0.75.

The benchmark investigated two primary variables:

Stitching layout. The stitching layout defines the rows and columns in which images are stitched,
which can be regarded as “visual resolution”.

Visual length. The number of stitched images included in a single conversation, which can be
regarded as “visual context length”.

We also measured the request time cost. By duplicating an image from 1 to 30 times within a request,
we conducted 10 trials for each duplication count and calculated the average request time cost.

C VLM-Grounder Prompts

We used several prompts in our work, as shown in the Tab. 6, including query analysis prompt,
grounding system prompt, input prompt, bbox select prompt, image ID invalid prompt, and de-
tection not exist prompt.

For each query, we utilize the query analysis prompt to extract the category and associated condi-
tions of the target object, such as position, shape, color, or relative relationships with other objects.
In the grounding and feedback process, we first employed the grounding system prompt to guide
VLM in performing visual grounding tasks. Then, we utilize the input prompt to provide infor-
mation such as our image, query statement, target object category, and grounding conditions, with
stitched images appended. VLM would return the query results in the specified JSON format.

If the target image ID in the returned results does not contain any target object, we use the detec-
tion not exist prompt to inform VLM and request it to make a new selection. In case the image ID
provided cannot find the corresponding image, we employ the image ID invalid prompt to notify
VLM for a fresh selection. Furthermore, if there are multiple target objects in the chosen image, we
use the bbox select prompt to instruct VLM in selecting the correct bounding box ID.

Table 6: Prompts of VLM-Grounder. The placeholders in the table represent different variables. {query}
denotes the user query, while {pred target class} and {conditions} represent the target object’s category
and grounding conditions, respectively. {num view selections} refers to the total number of images, and
{num candidate bboxes} indicates the number of candidate bounding boxes. In the image ID invalid prompt
and detection not exist prompt, {image id} refers to the image ID selected by the VLM.

query analysis prompt

15

You are working on a 3D visual grounding task, which involves receiving a query that specifies a particular
object by describing its attributes and grounding conditions to uniquely identify the object. Here, attributes
refer to the inherent properties of the object, such as category, color, appearance, function, etc. Grounding
conditions refer to considerations of other objects or other conditions in the scene, such as location, relative
position to other objects, etc. Now, I need you to first parse this query, return the category of the object to be
found, and list each of the object’s attributes and grounding conditions. Each attribute and condition should
be returned individually. Sometimes the object’s category is not explicitly specified, and you need to deduce
it through reasoning. If you cannot deduce after reasoning, you can use ‘unknown’ for the category. Your
response should be formatted as a JSON object. Here are some examples:
Input:
Query: this is a brown cabinet. it is to the right of a picture.
Output:
{
“target class”: “cabinet”,
“attributes”: [“it’s brown”],
“conditions”: [“it’s to the right of a picture”]
}
...(two more examples)
Ensure your response adheres strictly to this JSON format, as it will be directly parsed and used.
Query: {query}

grounding system prompt

You are good at finding objects specified by user queries in indoor rooms by watching the videos scanning the
rooms.

bbox select prompt

Great! Here is the detailed version of your selected image. There are {num candidate bboxes} candidate
objects shown in the image. I have annotated each object at the center with an object ID in white color text
and black background. Do not mix the annotated IDs with the actual appearance of the objects. Please give
me the ID of the correct target object for the query. Reply using JSON format with two keys “reasoning” and
“object id” like this:
{
“reasoning”: “your reasons”, // Explain the justification why you select the object ID.
“object id”: 0 // The object ID you selected. Always give one object ID from the image, which you are the
most confident of, even you think the image does not contain the correct object.
}

image ID invalid prompt

The image {image id} you selected does not exist. Did you perhaps see it incorrectly? Please reconsider and se-
lect another image. Remember to reply using JSON format with the three keys “reasoning”, “target image id”,
and “reference image ids” as required before.

detection not exist prompt

The image {image id} you selected does not seem to include any objects that fall into the category of
{pred target class}. Please reconsider and select another image. Remember to reply using JSON format with
the three keys “reasoning”, “target image id”, and “reference image ids” as required before.

16

input prompt

Imagine you are in a room and are asked to find one object. Given a series of images from a video scanning an
indoor room and a query describing a specific object in the room, you need to analyze the images to locate the
object mentioned in the query within the images. You will be provided with multiple images, and the top-left
corner of each image will have an ID indicating the order in which it appears in the video. Adjacent images
have adjacent IDs. Please note that to save space, multiple images have been combined into one image with
dynamic layouts. You will also be provided with a query sentence describing the object that needs to be found,
as well as a parsed version of this query describing the target class of the object to be found and the conditions
that this object must satisfy. Please find the ID of the image containing this object based on these conditions.
Note that I have filtered the video to remove some images that do not contain objects of the target class. To
locate the target object, you need to consider multiple images from different perspectives and determine which
image contains the object that meets the conditions. Note, that each condition might not be judged based on just
one image alone. Also, the conditions may not be accurate, so it’s reasonable for the correct object not to meet
all the conditions. You need to find the most possible object based on the query. If you think multiple objects
are correct, simply return the one you are most confident of. If you think no objects are meeting the conditions,
make a guess to avoid returning nothing. Usually the correct object is visible in multiple images, and you
should return the image in which the object is most clearly observed. Your response should be formatted as a
JSON object with three keys “reasoning”, “target image id”, and “reference image ids” like this:
{
“reasoning”: “your reasoning process” // Explain the process of how you identified and located the target object.
If reasoning across different images is needed, explain which images were used and how you reasoned with
them.
“target image id”: “00001”, // Replace with the actual image ID (only one ID) annotated on the image that
contains the target object.
“reference image ids”: [“00001”, “00002”, ...] // A list of IDs of images that are used to determine wether the
conditions are met or not.
}
Here is a good example:
query: Find the black table that is surrounded by four chairs.
{
“reasoning”: “After carefully examining all the input images, I found image 00003, 00005, and 00021 contain
different tables, but only the tables in image 00003 and 00021 are black. Further, I found image 00001, image
00002, image 00003, and image 00004 show four chairs and these chairs surround the black table in image
00003. The chair in image 00005 does not meet this condition. So the correct object is the table in image
00003”,
“target image id”: “00003”,
“reference image ids”: [“00001”, “00002”, “00003”, “00004”]
}
Now start the task:
Query: “{query}”
Target Class: {pred target class}
Conditions: {conditions}
Here are the {num view selections} images for your reference.

D More Results and Analyses

D.1 Ablation on 2D Detectors

As Grounding DINO-1.5 [55] is a closed-source model, we can only request detections through its
API. For open-source research, we also employ the widely-used open-source alternative YOLOv8-
World [58, 59] for our experiments. Results on the ScanRefer [1] dataset are presented in Tab. 7.

D.2 Results on Selected 250 Samples

We reproduced previous zero-shot methods and the supervised-learning method BUTD-DETR[28],
evaluating their performances using the same 250 validation samples from ScanRefer[1] as VLM-
Grounder, with their official codebases. The results are shown in Tab. 8. We use ground-truth
bounding boxes for ZS3DVG[3], which produces the upper bound results. Using the same evaluation

17

Table 7: 3D visual grounding results with YOLOv8-World and Grounding DINO 1.5. * indi-
cates that the evaluation is based on 2D masks.

Overall Unique Multiple

Methods Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5

VLM-Grounder (YOLOv8-World) 44.8 28.4 57.5 31.9 41.9 27.6
VLM-Grounder (GDINO-1.5) 51.6 32.8 66.0 29.8 48.3 33.5

VLM-Grounder* (YOLOv8-World) 53.2 45.2 74.5 63.8 48.3 40.9
VLM-Grounder* (GDINO-1.5) 62.4 53.2 87.2 76.6 56.7 47.8

Table 8: Baseline results on the selected 250 samples.

Overall Unique Multiple

Methods Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5

BUTD-DETR[28] 54.0 38.4 80.9 61.7 47.8 33.0

OpenScene[10] 18.8 5.2 27.2 7.5 0.0 0.0
LLM-Grouner[4] 12.0 4.4 12.1 4.0 11.7 5.2
ZS3DVG[3] 31.2 31.2 55.3 55.3 25.6 25.6
VLM-Grounder (ours) 51.6 32.8 66.0 29.8 48.3 33.5

data, we can verify that our VLM-Grounder outperforms previous zero-shot methods and achieves
comparable performance to one of the SOTA supervised-learning methods.

D.3 Inference Time

We calculated the average processing time of each modules, detailed in Tab. 9. The average pro-
cessing time per sample is 38.3 seconds or 50.3 seconds, depending on whether VLM needs to be
queried again to select the target instance, i.e., when the selected image contains multiple instances
of the same categories.

It’s worth noting that our work focuses on building a research prototype and verifying its effective-
ness in solving the zero-shot 3D visual grounding problem. The processing time has the potential to
be significantly improved for the following reasons:

Implementation improvements. As we focus on building a research prototype, we prioritize easy-
to-understand implementation over cost-optimized implementation. For example, the dynamic-
stitching costs about 33% of the total processing time because we use the matplotlib library, which
requires initializing a plotting canvas and plotting and annotating the images one by one. Avoiding
the use of matplotlib could reduce this time.

Local deployment of VLMs. Currently, we use OpenAI’s APIs for query analysis, image selection,
and instance selection, which involves sending texts and images over the internet, resulting in delays
due to network speed. However, deploying VLMs locally on edge devices or robots is an active
research direction with promising results from industry efforts. We expect that in future deployment
of VLM-Grounder, local VLMs can be used to significantly reduce processing time.

Efficient 2D foundation models. Although we use 2D foundation models, they do not necessarily
introduce processing time bottlenecks, as there are capable models optimized for efficiency. For
example, the open-vocabulary 2D detection model Yolov8-world can run in real time. In this work,
we use SAM-Huge for image segmentation for better performance, which takes 0.6 seconds to
process one image. However, we have tried using SAM-Base, which takes only 0.2 seconds per
image with minimal performance sacrifice (31.6 vs. 32.8 overall acc@0.5 on ScanRefer).

18

Table 9: Inference time of different modules (unit: seconds).

Query Analysis View-Preselection Dynamic Stitching Img. Selection by VLM

1.1 1.1 12.8 16

OV Detection Ins. Selection by VLM (optional) Img. Seg. Image Matching

0.1 12 0.6 0.4

Ens. Ims. Seg. (7 imgs) Projection Outlier Removal Overall

5 0.4 0.8 38.3 or 50.3

Table 10: Success rates of different modules.

Query Analysis View Pre-Selection Image Selection by VLM OV-Detection

100% 96% 77% 92%

Instance Selection by VLM Image Segmentation Multi-View Ensemble Projection Overall Acc@0.5

100% 82% 61% 34%

D.4 Success Rates and Error Analysis

We randomly sampled 50 samples from the ScanRefer evaluation data and manually inspected the
results of each step across the framework. The success rates are shown in Tab. 10. The standards for
each step to be regarded as successful are illustrated as follows:

• Query analysis. The analyzed query correctly identifies the target category and conditions.

• View pre-selection. The pre-selected views contain the target object.

• Image selection by VLM. The selected view contains the target object.

• OV-detection. The detection results contain the correct detections of the target category.

• Instance selection by VLM. The target object is selected.

• Image segmentation: The instance mask of the target object predicted by SAM is neither
over-segmented nor under-segmented.

• Multi-view ensemble projection: The IoU3D of the predicted bounding box and the GT
bounding box is greater than or equal to 0.5.

We found that the main errors occur in the grounding (image selection by VLM), OV-detection,
image segmentation, and projection modules. We provide more detailed error analyses and visual-
izations of these errors.

VLM grounding module. Typical failure cases of the VLM grounding module are listed below,
and the corresponding illustrations are in Fig. 5.

• Incorrect condition analysis. In Fig. 5(1), the VLM is tasked with finding the table be-
tween the rug and the carpet. However, it fails to consider all conditions and finds the table
on the carpet.

• Misidentification of the target. In Fig. 5(2), the VLM is asked to identify a black keyboard
in front of a monitor. It mistakenly identifies the box in image 00017 as a keyboard and
overlooks the positional context.

• Ambiguous query descriptions. There are queries in the ScanRefer dataset that specify
objects using view-dependent relations such as left or right, but these queries do not specify
the view direction. In such cases, it’s difficult for the VLM to correctly find the target
object. In Fig. 5(3), the query states that the chair is on the right side of the table, which is
insufficient to locate the target due to its ambiguity from different viewpoints.

19

Open-vocabulary detection module. The open-vocabulary detection module may fail due to in-
correct semantic analysis, as shown in Fig. 6. It’s possible that the training data in such detection
models lack corresponding samples. For example, there are more samples with toilets but very few
with toilet flush buttons.

Image segmentation module. Fig. 7 illustrates the failure cases of the SAM (Segment Anything
Model) module. SAM occasionally over-segments instances due to similar textures. For example, in
Fig. 7(1), SAM over-segments the shadow of the pillow, and in Fig. 7(3), it over-segments the table
near the target chair. Additionally, in Fig. 7(3), SAM under-segments the target chair, missing the
chair legs under the table—again due to similar textures. Sudden changes in color can also lead to
under-segmentation, as demonstrated in Fig. 7(2), where the part of the curtain with bright lighting
is missed.

Projection module. In Fig. 8, we present a typical failure case of the projection module, which is
caused by an inaccurate depth map. As shown in Fig. 8(1), the depth of the chair edge is incorrectly
estimated, leading to the projection of the pixels at the edge turning into a long “tail” (as shown
in Fig. 8(2)) in the point cloud. This results in the predicted 3D bounding box (red bounding box
in the figure) being larger than the ground-truth bounding box (green bounding box in the figure).
Such outliers are difficult to remove using outlier removal algorithms because they are numerous.
We also attempted to use clustering methods like DBSCAN to filter these outliers, but since they
are connected with inliers, the clustering algorithm may either produce clusters that are too large
(as shown in Fig. 8(3)) or too small (as shown in Fig. 8(4)). We adopted image morphological
operations to shrink the instance mask, which significantly alleviated the problem but could not
completely eliminate it. Such noisy point clouds may also come from inaccurate camera poses.

Query: This table is to the left of the couch. It's positioned on the floor between
the rug and the carpet.
VLM Response:
Reasoning: After examining the images, I identified that the table in images
00000, 00001, and 00002 is positioned to the left of the couch and is on the floor
between the rug and the carpet. The table is clearly visible in these images, and it
meets the conditions described in the query.
Target Image ID: 00000
Reference Image IDs: [00000, 00001, 00002]

Query: This is a black keyboard. It is in front of a monitor.
VLM Response:
Reasoning: After examining the images, I found that images 00016, 00017, 00018,
and 00019 show a black keyboard in front of a monitor. The keyboard is most
clearly visible in image 00017, where it is directly in front of the monitor and
meets the conditions specified in the query.
Target Image ID: 00017
Reference Image IDs: [00016, 00017, 00018, 00019]

Query: It is a wooden desk chair. It is the chair that is second to last on the right
side of the table.
VLM Response:
Reasoning: To identify the wooden desk chair that is second to last on the right
side of the table, I first examined the images to locate the table and the chairs
around it. The images 00000 to 00007 show a table with multiple chairs. The
images 00008 to 00015 provide a clearer view of the right side of the table. The
images 00016 to 00032 show the left side of the table. The images 00033 to
00079 show the entire room from different angles. The chair that is second to last
on the right side of the table is visible in images 00008, 00009, 00010, and 00011.
Among these, image 00010 provides the clearest view of the chair. The chair is
wooden and matches the description provided in the query.
Target Image ID: 00010
Reference Image IDs: [00008, 00009, 00010, 00011]

Queries and VLM Responses Wrong Images Correct Images

(1)

(2)

(3)

Figure 5: Failure cases of the VLM grounding module.

20

Target: toilet flush button Target: ottomon
(1) (2)

Figure 6: Failure cases of the open vocabulary detection module.

(1) (2) (3)

Figure 7: Failure cases of the SAM module.

(1) (2)

(3) (4)

Figure 8: A failure case of the projection module.

21

D.5 Summary of Limitations

While VLM-Grounder achieves superior zero-shot 3D visual grounding by directly operating on 2D
images without requiring 3D point clouds or object priors, it has several limitations:

Capabilities of VLMs. VLM-Grounder depends on the vision-language model (VLM) for analyz-
ing grounding conditions and locating target objects in sequences of 2D images. If the VLM lacks
the ability to process multiple images or struggles with scene understanding from real 2D scans,
performance may degrade. In this study, we use the GPT-4o model, which delivers excellent results.
VLM technology is continuously advancing, and VLM-Grounder’s modular design allows us to re-
place the current VLM with more powerful models as they become available, potentially enhancing
future performance.

Noise from 2D models. VLM-Grounder utilizes off-the-shelf 2D open-vocabulary detectors and
segmentation models to filter images and generate detailed image masks for projection. Despite
their strengths, these 2D foundation models are not infallible. Issues like missed detections, false
detections, or incorrect segmentations can prevent VLM-Grounder from identifying the target object,
lead to selecting the wrong object, or produce noisy target masks. This noise can result in inaccurate
3D bounding box projections.

Noise from sensors. VLM-Grounder predicts the 3D bounding box of the target object from 2D
images, relying on accurate camera intrinsics, extrinsics, and depth maps. However, in datasets like
ScanNet [17], these parameters often contain noise. For instance, depth sensors can be inaccurate
at object boundaries, and RGB images may suffer from motion blur. Such sensor noise leads to
inaccuracies in the predicted 3D bounding boxes. While sensor noise is an unavoidable challenge in
robotic vision, VLM-Grounder attempts to mitigate these issues through its grounding and feedback
scheme combined with multi-view ensemble projection. However, it cannot completely eliminate
the effects of sensor inaccuracies. In practical robotic deployments, robots typically have multiple
types of sensors. Using multi-sensor fusion can help reduce noise and improve VLM-Grounder’s
performance.

D.6 Full Demos

In this section, we present three demonstrations to elucidate the capabilities and behavior of
VLM-Grounder in various scenarios. First, in Fig. 9, we illustrate the basic execution process
involving a single target object within a scene. Subsequently, we demonstrate the execution process
in a more complex scene containing multiple target objects, where the VLM is employed to
accurately select the correct object, as in Fig. 10. Lastly, we showcase the execution process in a
scenario where the VLM initially selects an incorrect image, thereby triggering a feedback
mechanism, as shown in Fig. 11. Morphological operations are applied to all the masks including
matched images. In all these examples, we only illustrate four ensemble images and show the result
of the morphological operation on the anchor mask. The system prompt and query analysis are also
omitted in the figures for clarity.

22

... {input prompt}
Now start the task:
Query: "the radiator on the wall. the radiator is next to the toilet."
Target Class: radiator
Conditions: ["it's next to the toilet", "it's on the wall"]
Here are the 15 images for your reference.

reasoning: After examining all the images, I found that images 00056, 00057, 00058, 00059, 00070,
00071, 00072, and 00073 show a radiator on the wall. Among these, images 00056, 00057, 00058,
00059, 00070, and 00071 show the radiator next to a toilet. The radiator is most clearly observed in
image 00058, where it is clearly visible next to the toilet.
target_image_id: 00058,
reference_image_ids: [00056, 00057, 00058, 00059, 00070, 00071]

Ensemble Projection Noise Filtering & Get 3D BBox

Target Bounding Box Morpho. OpsSAM Multi-View Matching

Image Sequence

Dynamic Stitching

View Pre-Selection

Figure 9: Demo of VLM-Grounder.

23

Target Bounding Box

Image Sequence

... {input prompt}
Now start the task:
Query: "There is a rectangular dark cabinet. it is next to a white cabinet."
Target Class: cabinet
Conditions: ["it's rectangular", "it's dark", "it's next to a white cabinet"]
Here are the 35 images for your reference.

… {bbox select prompt}
There are 2 candidate objects shown in the image. I have annotated
each object at the center with an object ID in white color text and
black background.
…

Dynamic Stitching

View Pre-Selection

reasoning: After examining the images, I identified that images 00002, 00003, 00004, 00005, 00029,
00030, and 00032 show a dark rectangular cabinet next to a white cabinet. The dark cabinet is
clearly visible in image 00003, and it is next to a white cabinet. This satisfies all the conditions: the
cabinet is dark, rectangular, and next to a white cabinet.
target_image_id: 00003
reference_image_ids: [00002, 00003, 00004, 00005, 00029, 00030, 00032]

OV-Detection

Visual Prompt

reasoning: The query specifies a rectangular dark cabinet next to a white cabinet. In the image,
object ID:0 is a dark cabinet and object ID:1 is a white cabinet. Since object ID:0 is dark and
rectangular and is next to the white cabinet (ID:1), it meets all the conditions specified in the query.
object_id: 0

Target Image

Ensemble Projection

Morpho. OpsSAM Multi-View Matching

Noise Filtering & Get 3D BBox

Figure 10: Demo of VLM-Grounder with several target objects in the scene.

24

... {input prompt}
Now start the task:
Query: "there is a rectangular computer tower. it is on a stand with wheels
next to a sofa."
Target Class: computer tower
Conditions: ["it's rectangular", "it's on a stand with wheels", "it's next to a
sofa"]
Here are the 57 images for your reference.

reasoning: After examining the images, I found that images 00013, 00014, 00015, 00016, 00017,
00055, 00056, 00057, 00058, 00059, 00060, 00061, 00062, and 00063 show a computer tower that is
rectangular and on a stand with wheels. Additionally, images 00016, 00017, 00060, 00061, 00062,
and 00063 show that this stand is next to a sofa. Among these, image 00061 provides the clearest
view of the computer tower on the stand with wheels next to the sofa.
target_image_id: 00061
reference_image_ids: [00013, 00014, 00015, 00016, 00017, 00055, 00056, 00057, 00058, 00059,
00060, 00061, 00062, 00063]

Ensemble Projection Noise Filtering & Get 3D BBox

Target Bounding Box Morpho. OpsSAM Multi-View Matching

The image 61 you selected does not seem to include any objects that fall into the category of
computer tower. Please reconsider and select another image. Remember to reply using JSON
format with the three keys "reasoning", "target_image_id", and "reference_image_ids" as required
before.

reasoning: Upon re-evaluating the images, I found that images 00013, 00014, 00015, 00016, 00017,
00055, 00056, 00057, 00058, and 00059 show a rectangular computer tower on a stand with wheels.
Additionally, images 00016 and 00017 show that this stand is next to a sofa. Among these, image
00016 provides the clearest view of the computer tower on the stand with wheels next to the sofa.
target_image_id: 00016
reference_image_ids: [00013, 00014, 00015, 00016, 00017, 00055, 00056, 00057, 00058, 00059]

Image Sequence

Dynamic Stitching

View Pre-Selection

Figure 11: Demo of VLM-Grounder with feedback.

25

	Introduction
	Related Work
	Methodology
	VLM-Grounder
	Dynamic Stitching
	Grounding and Feedback
	Multi-View Ensemble Projection

	Experimental Results
	Experimental Settings
	3D Visual Grounding Results
	Visual-Retrieval Benchmark
	Benchmark Settings
	Observations

	Ablation Studies

	Conclusion and Limitations
	Dynamic Stitching
	Visual-Retrieval Benchmark Settings
	VLM-Grounder Prompts
	More Results and Analyses
	Ablation on 2D Detectors
	Results on Selected 250 Samples
	Inference Time
	Success Rates and Error Analysis
	Summary of Limitations
	Full Demos

