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ABSTRACT

Endowing machines with abstract reasoning ability has been a long-term research
topic in artificial intelligence. Raven’s Progressive Matrix (RPM) is widely used
to probe abstract visual reasoning in machine intelligence, where models will an-
alyze the underlying rules and select one image from candidates to complete the
image matrix. Participators of RPM tests can show powerful reasoning ability
by inferring and combining attribute-changing rules and imagining the missing
images at arbitrary positions of a matrix. However, existing solvers can hardly
manifest such an ability in realistic RPM tests. In this paper, we propose a deep
latent variable model for answer generation problems through Rule AbstractIon
and SElection (RAISE). RAISE can encode image attributes into latent concepts
and abstract atomic rules that act on the latent concepts. When generating an-
swers, RAISE selects one atomic rule out of the global knowledge set for each
latent concept to constitute the underlying rule of an RPM. In the experiments
of bottom-right and arbitrary-position answer generation, RAISE outperforms the
compared solvers in most configurations of realistic RPM datasets. In the odd-
one-out task and two held-out configurations, RAISE can leverage acquired latent
concepts and atomic rules to find the rule-breaking image in a matrix and handle
problems with unseen combinations of rules and attributes.

1 INTRODUCTION

The abstract reasoning ability is pivotal to abstracting the underlying rules from observations
and quickly adapting to novel situations (Cattell, 1963; Zhuo & Kankanhalli, 2021; Małkiński &
Mańdziuk, 2022a), which is the foundation of cognitive processes (Gray & Thompson, 2004) like
number sense (Dehaene, 2011), spatial reasoning (Byrne & Johnson-Laird, 1989), and physical rea-
soning (McCloskey, 1983). Intelligent systems may benefit from human-like abstract reasoning
when leveraging acquired skills in unseen tasks (Barrett et al., 2018), for example, generalizing the
law of object collision in the simulation environment to real scenes. Therefore, endowing intelli-
gent systems with abstract reasoning ability is the cornerstone of higher-intelligence systems and a
long-lasting research topic of artificial intelligence (Chollet, 2019; Małkiński & Mańdziuk, 2022b).

Raven’s Progressive Matrix (RPM) is a classical test of abstract reasoning ability for human and
intelligent systems (Małkiński & Mańdziuk, 2022a), where participators need to choose one im-
age out of eight candidates to fill in the bottom-right position of a 3×3 image matrix (Raven &
Court, 1998). Previous studies demonstrate that participators can display powerful reasoning ability
by directly imagining the missing images (Hua & Kunda, 2020; Pekar et al., 2020), and answer-
generation tasks can more accurately reflect the model’s understanding of underlying rules than
answer-selection ones (Mitchell, 2021). For example, some RPM solvers find shortcuts in discrimi-
native tasks by selecting answers according to the bias of candidate sets instead of the given context.

To solve answer-selection problems, many solvers fill each candidate to the matrix for score estima-
tion and can hardly imagine answers from the given context (Barrett et al., 2018; Hu et al., 2021).
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Some generative solvers have been proposed to solve answer-generation tasks (Pekar et al., 2020;
Zhang et al., 2021b;a). They generate solutions for bottom-right images and select answers by com-
paring the solutions and candidates. However, some generative solvers do not parse interpretable
attributes and attribute-changing rules from RPMs (Pekar et al., 2020), and usually introduce artifi-
cial priors in the processes of representation learning or abstract reasoning (Zhang et al., 2021b;a).
On the other hand, most generative solvers are trained with the aid of candidate sets in training,
bringing the potential risk of learning shortcuts (Hu et al., 2021; Benny et al., 2021).

Deep latent variable models (DLVMs) (Kingma & Welling, 2013; Sohn et al., 2015) can capture
underlying structures of noisy observations via interpretable latent spaces (Edwards & Storkey,
2017; Eslami et al., 2018; Garnelo et al., 2018; Kim et al., 2019). Previous work (Shi et al., 2021)
solves generative RPM problems by regarding attributes and attribute-changing rules as latent con-
cepts, which can generate solutions by executing attribute-specific predictive processes. Through
conditional answer-generation processes that consider the underlying structure of RPM panels, the
distractors are not necessary to train DLVM-based solvers. Although previous work has achieved
answer generation in RPMs with continuous attributes, understanding complex discrete rules and
abstracting global rules in realistic datasets is still challenging for DLVMs.

This paper proposes a DLVM for generative RPM problems through Rule AbstractIon and SElection
(RAISE) 1. RAISE encodes image attributes (e.g., object size and shape) as independent latent con-
cepts to bridge high-dimensional images and latent representations of rules. The underlying rules
of RPMs are decomposed into subrules in terms of latent concepts and abstracted into atomic rules
as a set of learnable parameters shared among RPMs. RAISE picks up proper rules for each latent
concept and combines them into the integrated rule of an RPM to generate the answer. The con-
ditional generative process of RAISE indicates how to use the global knowledge of atomic rules
to imagine (generate) target images (answers) interpretably. RAISE can automatically parse latent
concepts without meta information of image attributes to reduce artificial priors in the learning pro-
cess. RAISE can be trained under semi-supervised settings, requiring only a small amount of rule
annotations to outperform the compared models in non-grid configurations. By predicting the target
images at arbitrary positions, RAISE does not require distractors of candidate sets in training and
supports generating missing images at arbitrary and even multiple positions.

RAISE outperforms the compared solvers when generating bottom-right and arbitrary-position an-
swers in most configurations of datasets. We interpolate and visualize the learned latent concepts
and apply RAISE in odd-one-out problems to demonstrate its interpretability. The experimental
results show that RAISE can detect the rule-breaking image of a matrix through interpretable la-
tent concepts. Finally, we evaluate RAISE on two out-of-distribution configurations where RAISE
retains relatively higher accuracy when encountering unseen combinations of rules and attributes.

2 RELATED WORK

Generative RPM Solvers. While selective RPM solvers (Zhuo & Kankanhalli, 2021; Barrett et al.,
2018; Wu et al., 2020; Hu et al., 2021; Benny et al., 2021; Steenbrugge et al., 2018; Hahne et al.,
2019; Zhang et al., 2019b; Zheng et al., 2019; Wang et al., 2019; 2020; Jahrens & Martinetz, 2020)
focus on answer-selection problems, generative solvers predict representations or images at missing
positions (Pekar et al., 2020; Zhang et al., 2021b;a). Niv et al. extract image representations through
Variational AutoEncoder (VAE) (Kingma & Welling, 2013) and design a relation-wise perception
process for answer prediction (Pekar et al., 2020). With interpretable scene representations, ALANS
(Zhang et al., 2021b) and PrAE (Zhang et al., 2021a) adopt algebraic abstract and symbolic logical
systems as the reasoning backends. These generative solvers predict answers at the bottom-right
position. LGPP (Shi et al., 2021) and CLAP (Shi et al., 2023) learn hierarchical latent variables
to capture the underlying rules of RPMs with random functions (Williams & Rasmussen, 2006;
Garnelo et al., 2018), and can generate answers at arbitrary positions on RPMs with continuous
attributes. RAISE is a variant of DLVM to realize generative abstract reasoning on realistic RPM
datasets with discrete attributes and rules through atomic rule abstraction and selection.

Bayesian Inference with Global Latent Variables. DLVMs (Kingma & Welling, 2013; Sohn et al.,
2015; Sønderby et al., 2016) can capture underlying structures of high-dimensional data in latent

1Code is available at https://github.com/FudanVI/generative-abstract-reasoning/tree/main/raise
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(a) Graphical model of RAISE
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(b) Abstract reasoning process

Figure 1: An overview of RAISE. The graphical model in (a) displays the generative process (solid
black lines) and inference process (dashed red lines). Panel (b) shows the computational details of
the abstract reasoning process and highlights the rule selection, rule execution, and global knowledge
with blue, yellow, and red backgrounds, respectively.

spaces, regard shared concepts as global latent variables, and introduce local latent variables condi-
tioned on the shared concepts to distinguish each sample. GQN (Eslami et al., 2018) captures entire
3D scenes via global latent variables to generate 2D images of unseen perspectives. With object-
centric representations (Yuan et al., 2023), global latent variables can explain layouts of scenes
(Jiang & Ahn, 2020) or object appearances for multiview scene generation (Chen et al., 2021; Kabra
et al., 2021; Yuan et al., 2022; Gao & Li, 2023; Yuan et al., 2024). Global concepts can describe
common features of elements in data with exchange invariance like sets (Edwards & Storkey, 2017;
Hewitt et al., 2018; Giannone & Winther, 2021). NP family (Garnelo et al., 2018; Kim et al., 2019;
Foong et al., 2020) constructs different function spaces through global latent variables. DLVMs can
generate answers at arbitrary positions of an RPM by regarding the concept-changing rules as global
concepts (Shi et al., 2021; 2023). RAISE holds a similar idea of modeling underlying rules as global
concepts. Unlike previous works, RAISE attempts to abstract the atomic rules shared among RPMs.

3 METHOD

In this paper, an RPM problem is (xS ,xT ) where xS and xT are mutually exclusive sets of images,
S indexes the given context images, and T indexes the target images to predict (T can index multiple
images). The objective of RAISE is to maximize the log-likelihood log p(xT |xS) while learning
atomic rules shared among RPMs. In the following sections, we will introduce the generative and
inference processes of RAISE that can abstract and select atomic rules in the latent space.

3.1 CONDITIONAL GENERATION

The generative process is the foundation of answer generation, including the stages of concept learn-
ing, abstract reasoning, and image generation.

Concept Learning. RAISE extracts interpretable image representations for abstract reasoning and
image generation in the concept learning stage. Previous studies have emphasized the role of ab-
stract object representations in the abstract reasoning of infants (Kahneman et al., 1992; Gordon &
Irwin, 1996) and the benefit of disentangled representations for RPM solvers (Van Steenkiste et al.,
2019), which reflect the compositionality of human cognition (Lake et al., 2011). RAISE realizes
compositionality by learning latent representations of attributes (Shi et al., 2021; 2023). RAISE
regards image attributes as latent concepts and decomposes the rules of RPMs into atomic rules
based on the latent concepts. Since the description of attributes is not provided in training, the latent
concepts learned by RAISE are not exactly the same as the realistic attributes defined in the dataset.
RAISE extracts C context latent concepts zs = {zcs}Cc=1 for each context image xs (s ∈ S):

µ1:C
s = genc

θ (xs) , s ∈ S,
zcs ∼ N

(
µcs, σ

2
zI
)
, c = 1, .., C, s ∈ S.

(1)

The encoder genc
θ outputs the mean of context latent concepts. The standard deviation is controlled

by a hyperparameter σz to keep training stability. Each context image is processed through genc
θ
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independently, making it possible to extract latent concepts for any set of input images. In this stage,
the encoder does not consider any relationships between images and focuses on concept learning.

Abstract Reasoning. As illustrated in Figure 1b, RAISE predicts target latent concepts zT from
context latent concepts zS in the abstract reasoning stage, involving rule abstraction, rule selection,
and rule execution processes. To abstract atomic rules and build the global knowledge set, RAISE
adopts K global learnable parameters ψ = {ψk}Kk=1, each indicating an atomic rule shared among
RPMs. In rule selection, we use categorical indicators {rc}Cc=1 (rc = 1, ...,K) to select a proper
rule out of ψ for each concept. Inferring the indicators from zS correctly is critical to rule selection.
RAISE creates a 3×3 representation matrix Zc for each concept, initializing the representations of
context images with the corresponding context latent concepts and those of target images with zero
vectors. Then RAISE extracts the row-wise and column-wise representations:

pci = f row
φ1

(
Zci,1:3

)
, qci = f col

φ2

(
Zc1:3,i

)
, i = 1, 2, 3, c = 1, ..., C. (2)

RAISE averages the representations via p̄c = (pc1 + pc2 + pc3)/3 and q̄c = (qc1 + qc2 + qc3)/3 to
obtain integrated representations of row and column rules. We concatenate p̄c and q̄c to acquire the
probability of selecting atomic rules out of the global knowledge set:

rc ∼ Categorical (πc1:K) , πc1, ..., π
c
K = f ind

φ3

(
p̄c, q̄c

)
, c = 1, ..., C. (3)

We denote the learnable parameters as φ = {φ1, φ2, φ3} for convenience. In rule execution, RAISE
selects and executes an atomic rule on each concept to predict the target latent concepts:

µcT = h (Zc;ψrc) , c = 1, ..., C,

zct ∼ N
(
µct , σ

2
zI
)
, t ∈ T, c = 1, ..., C.

(4)

RAISE instantiates h by selecting the rc-th learnable parameters from the global knowledge set ψ to
convert the zero-initialized target representations in Zc into the mean of target latent concepts. As
in the concept learning stage, the standard deviation of target latent concepts is controlled by σz . h
consists of convolution layers to aggregate information from neighbor context latent concepts on the
matrix and update target latent concepts. Each learnable parameters in ψ indicates a type of atomic
rule. See Appendix C.1 for the detailed description of h.

Image Generation. Finally, RAISE decodes the target latent concepts predicted in the abstract
reasoning stage into the mean of target images:

xt ∼ N
(
Λt, σ

2
xI
)
, Λt = gdec

ϕ

(
z1:C
t

)
, t ∈ T. (5)

RAISE generates each target image independently to make the decoder focus on image reconstruc-
tion. We control the noise of target images by setting the standard deviation σx as a hyperparameter.

According to Figure 1a, we decompose the conditional generative process as

pΘ(h,xT |xS) =
∏
t∈T

pϕ(xt|zt)
C∏
c=1

(
pψ(zcT |rc, zcS)pφ(rc|zcS)

∏
s∈S

pθ(z
c
s|xs)

)
(6)

where h is the set of all latent variables and Θ = {θ, φ, ψ, ϕ} are learnable parameters of RAISE.

3.2 VARIATIONAL INFERENCE

RAISE approximates the untractable posterior with a variational distribution q(h|xT ,xS) (Kingma
& Welling, 2013), which consists of the following distributions.

q(zcs|xs) = N
(
µ̃cs, σ

2
zI
)
, s ∈ S, c = 1, ..., C,

q(zct |xt) = N
(
µ̃ct , σ

2
zI
)
, t ∈ T, c = 1, ..., C,

q(rc|zcS , zcT ) = Categorical (π̃c1:K) , c = 1, ..., C.

(7)

Since RAISE shares the encoder between the generative and inference processes to reduce the model
parameters, we compute context latent concepts µ̃1:C

s and target latent concepts µ̃1:C
t via the same

process described in Equation 1. In the inference process, RAISE reformulates the variational dis-
tribution of the categorical indicator rc as q(rc|zcS , zcT ) ∝ p(zcT |rc, zcS)p(rc|zcS). That is, RAISE
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predicts the prior probabilities πc1:K of p(rc|zcS) from the context latent concepts zcS and compute
the likelihood p(zcT |rc, zcS) by executing the atomic rule rc (rc = 1, · · · ,K) on zcS . In this way,
we can estimate the variational distribution q(rc|zcS , zcT ) by considering both the prior probabilities
and the likelihoods of K atomic rules, which reduces the risk of model collapse (e.g., always select-
ing one atomic rule from ψ). We provide more details of q(rc|zcS , zcT ) in Appendix A.1. Letting
Ψ = {θ, φ, ψ}, we factorize the variational distribution as

qΨ(h|xT ,xS) =

C∏
c=1

(
qφ,ψ(rc|zcS , zcT )

∏
s∈S

qθ(z
c
s|xs)

∏
t∈T

qθ(z
c
t |xt)

)
. (8)

3.3 PARAMETER LEARNING

We update the parameters of RAISE by maximizing the evidence lower bound (ELBO) of the log-
likelihood log p(xT |xS) (Kingma & Welling, 2013). With the generative process pΘ and the varia-
tional distribution qΨ defined in Equations 6 and 8, the ELBO is (q denotes the variational distribu-
tion, and we omit the parameter symbols Θ and Ψ for convenience)

L = EqΨ(h|xT ,xS)

[
log

pΘ (h,xT |xS)

qΨ(h|xT ,xS)

]
=
∑
t∈T

Eq
[

log p(xt|zt)
]

︸ ︷︷ ︸
Lrec

−
C∑
c=1

Eq
[
log

q(zcT |xT )

p(zcT |rc, zcS)

]
︸ ︷︷ ︸

Rpred

−
C∑
c=1

Eq
[
log

q(rc|zcS , zcT )

p(rc|zcS)

]
︸ ︷︷ ︸

Rrule

(9)

The reconstruction loss Lrec measures the quality of the reconstruction images. The concept regu-
larizerRpred estimates the distance between the predicted target concepts and the concepts directly
encoded from target images. MinimizingRpred will promote RAISE to generate correct predictions
in the space of latent concepts. The rule regularizer Rrule expects RAISE to select the same rules
when given different sets of images in an RPM. The variational posterior q(rc|zcS , zcT ) conditioned
on the entire matrix and the prior p(rc|zcS) conditioned on the context images are expected to have
similar probabilities. The detailed derivation of the ELBO is provided in Appendix A.2.

The abstraction and selection of atomic rules rely on the acquired latent concepts. Therefore, RAISE
introduces auxiliary rule annotations to improve the quality of latent concepts and stabilize the learn-
ing process. We denote rule annotations as v = {va}Aa=1 where A is the number of ground truth
attributes and va indicates the type of rules on the a-th attribute. For example, v = [2, 1, 3] means
that the attributes follow the second, first, and third rules respectively. RAISE does not leverage
the meta-information of attributes in training since the rule annotations only inform the type of rule
on each attribute. The meaning of attributes is automatically learned by RAISE for accurate rule
abstraction and selection. One key to guiding concept learning with rule annotations is determining
the correspondence between latent concepts and attributes. RAISE introduces aA×C binary matrix
M whereMa,c = 1 indicates that the a-th attribute is encoded in the c-th latent concept. Therefore,
the rule predicted on the c-th latent concept is supervised by the rule annotation va, and the auxiliary
loss measures distances between the predicted and ground truth types of rules:

Lsup =
1

2

A∑
a=1

C∑
c=1

Ma,c log
(
πcva + π̃cva

)
. (10)

The auxiliary loss Lsup is the log-likelihood of the categorical distributions considering the attribute-
concept correspondence M . The binary matrix M is derived by solving the following assignment
problem on a batch of RPM samples:

arg max
M

Lsup s.t.


∑C
c=1Ma,c = 1, a = 1, ..., A,∑A
a=1Ma,c = 0 or 1, c = 1, ..., C,

Ma,c = 0 or 1, a = 1, ..., A, c = 1, ..., C.

(11)

Equation 11 allows the existence of redundant latent concepts, which can be solved using the modi-
fied Jonker-Volgenant algorithm (Crouse, 2016). In this case, the training objective becomes

arg max
Θ

Lrec − β1Rpred − β2Rrule + β3Lsup (12)
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Table 1: The accuracy (%) of selecting bottom-right answers on different configurations (i.e.,
Center, L-R, etc) of RAVEN/I-RAVEN. The table displays the average results of ten trials.

Models Average Center L-R U-D O-IC O-IG 2×2Grid 3×3Grid

GCA-I 12.0/24.1 14.0/30.2 7.9/22.4 7.5/26.9 13.4/32.9 15.5/25.0 11.3/16.3 14.5/15.3
GCA-R 13.8/27.4 16.6/34.5 9.4/26.9 6.9/28.0 17.3/37.8 16.7/26.0 11.7/19.2 18.1/19.3
GCA-C 32.7/41.7 37.3/51.8 26.4/44.6 21.5/42.6 30.2/46.7 33.0/35.6 37.6/38.1 43.0/32.4
ALANS 54.3/62.8 42.7/63.9 42.4/60.9 46.2/65.6 49.5/64.8 53.6/52.0 70.5/66.4 75.1/65.7

PrAE 80.0/85.7 97.3/99.9 96.2/97.9 96.7/97.7 95.8/98.4 68.6/76.5 82.0/84.5 23.2/45.1

LGPP 6.4/16.3 9.2/20.1 4.7/18.9 5.2/21.2 4.0/13.9 3.1/12.3 8.6/13.7 10.4/13.9
ANP 7.3/27.6 9.8/47.4 4.1/20.3 3.5/20.7 5.4/38.2 7.6/36.1 10.0/15.0 10.5/15.6

CLAP 17.5/32.8 30.4/42.9 13.4/35.1 12.2/32.1 16.4/37.5 9.5/26.0 16.0/20.1 24.3/35.8
Transformer 40.1/64.0 98.4/99.2 67.0/91.1 60.9/86.6 14.5/69.9 13.5/57.1 14.7/25.2 11.6/18.6

RAISE 90.0/92.1 99.2/99.8 98.5/99.6 99.3/99.9 97.6/99.6 89.3/96.0 68.2/71.3 77.7/78.7

where β1, β2, and β3 are hyperparameters. RAISE also supports semi-supervised training settings.
For samples that do not provide rule annotations, RAISE can set β3 = 0 and update parameters via
the unsupervised part Lrec − β1Rpred − β2Rrule.

4 EXPERIMENTS

In the experiments, we compare the performance of RAISE with other generative solvers by gen-
erating answers at the bottom right and, more challenging, arbitrary positions. Then we conduct
experiments to visualize the latent concepts learned from the dataset. Finally, RAISE carries out the
odd-one-out task and is tested in held-out configurations to illustrate the benefit of learning latent
concepts and atomic rules in generative abstract reasoning.

Datasets. The models in the experiments are evaluated on the RAVEN (Zhang et al., 2019a) and
I-RAVEN (Hu et al., 2021) datasets having seven image configurations (e.g., scenes with centric
objects or object grids) and four basic rules. I-RAVEN follows the same configurations as RAVEN
and reduces the bias of candidate sets to resist the shortcut learning of models (Hu et al., 2021). See
Appendix B for details of datasets.

Compared Models. In the task of bottom-right answer selection, we compare RAISE with the
powerful generative solvers ALANS (Zhang et al., 2021b), PrAE (Zhang et al., 2021a), and the
model proposed by Niv et al. (called GCA for convenience) (Pekar et al., 2020). RAISE selects the
candidate closest to the predicted result in the latent space as the answer. We apply three strategies
of answer selection in GCA: selecting the candidate having the smallest pixel difference to the
prediction (GCA-I), having the smallest difference in the representation space (GCA-R), and having
the highest panel score (GCA-C). Since these generative solvers cannot generate non-bottom-right
answers, we take Transformer (Vaswani et al., 2017), ANP (Kim et al., 2019), LGPP (Shi et al.,
2021), and CLAP (Shi et al., 2023) as baseline models to evaluate the ability to generate answers at
arbitrary positions. We provide more details in Appendix C.

Training and Evaluation Settings. For non-grid layouts, RAISE is trained under semi-supervised
settings by using 5% rule annotations. RAISE leverages 20% rule annotations on O-IG and full rule
annotations on 2×2Grid and 3×3Grid. The powerful generative solvers use full rule annotations and
are trained and tested on each configuration respectively. We compare RAISE with them to illustrate
the acquired bottom-right answer selection ability of RAISE under semi-supervised settings. The
baselines can generate answers at arbitrary positions but cannot leverage rule annotations since they
do not explicitly model the category of rules. We compare RAISE with the baselines to illustrate
the benefit of learning latent concepts and atomic rules for generative abstract reasoning. Since the
training of RAISE and the baselines do not require the candidate sets, and RAVEN/I-RAVEN only
differ in the distribution of candidates, we train RAISE and the baselines on RAVEN and test them
on RAVEN/I-RAVEN directly. See Appendix C for detailed training and evaluation settings.

4.1 BOTTOM-RIGHT ANSWER SELECTION

This experiment conducts classical RPM tests that require models to find the missing bottom-right
images in eight candidates. Table 1 illustrates RAISE’s outstanding generative abstract reason-
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Figure 2: Selection accuracy at arbitrary positions. The selection accuracy of RAISE (purple),
Transformer (orange), CLAP (green), ANP (blue), and LGPP (black) in arbitrary positions. The
x-axis of each plot indicates the number of candidates, and the y-axis is the selection accuracy.

Figure 3: Answer generation at arbitrary positions. The prediction results on RAVEN are high-
lighted (red box) to illustrate the arbitrary-position generation ability. Due to the existence of noise,
some predictions may differ from the original sample, but they still follow the correct rules.

ing ability on RAVEN/I-RAVEN. By comparing the difference between predictions and candidates,
RAISE outperforms the compared generative solvers in most configurations of RAVEN/I-RAVEN,
even if the distractors in candidate sets are not used in training. All the powerful generative solvers
take full rule annotations for training, while RAISE in non-grid configurations only requires a small
amount of rule annotations (5% samples) to achieve high selection accuracy. RAISE attains the high-
est selection accuracy compared to the baselines which can generate answers at arbitrary positions.
By comparing the results on RAVEN/I-RAVEN, we find that generative solvers are more likely to
have accuracy improvement on I-RAVEN, because I-RAVEN generates distractors that are less sim-
ilar to correct answers to avoid significant biases in candidate sets. For grid-shaped configurations,
we found that the noise in datasets will significantly influence the model performance. By removing
the noise in object attributes, RAISE achieves high selection accuracy on three grid-shaped config-
urations using only 20% rule annotations. See Appendix D.1 for the detailed experimental results.

4.2 ANSWER SELECTION AT ARBITRARY POSITIONS

The above generative solvers can hardly generate answers at non-bottom-right positions. In this
experiment, we probe the ability of RAISE and baselines to generate answers at arbitrary positions.
We first generate additional candidate sets in the experiment because RAVEN and I-RAVEN do not
provide candidate sets for non-bottom-right images. To this end, we sample a batch of RPMs from
the dataset and split the RPMs into target and context images in the same way. For each matrix, we

7



Published as a conference paper at ICLR 2024

(a) Visualization of latent concepts

(b) Odd-one-out in RPMs

(c) Held-out configurations

◯✓✓
✓✓✓
✓✓✓
✓✓✓

Type Color Size

✓✓✓✓✓
✓✓✓✓✓
◯◯◯✓✓
◯◯◯✓✓

Type
Out

Size
Out

Type
In

Const

Prog

Arith

Dist3

Size
In

Color
In

✓ training and 
validation rules

◯ test rules

Center-Held-Out O-IC-Held-Out

Const

Prog

Arith

Dist3

Const: Constant

Prog: Progression

Arith: Arithmetic

Dist3: Distribute Three

legend

Rules

Figure 4: Panel (a) shows the interpolation results of latent concepts and the correspondence between
the concepts and attributes. Panel (b) provides an example of RPM-based odd-one-out tests and
displays the prediction deviations in concepts of each image. Panel (c) illustrates the strategy to split
rule-attribute combinations in held-out configurations.

use the target images of other Nc samples in the batch as distractors to generate a candidate set with
Nc+1 entries. This strategy can adapt to the missing images at arbitrary and even multiple positions,
and we can easily control the difficulty of answer selection through the number of distractors

Figure 2 displays the accuracy of RAISE and baselines when generating answers at arbitrary and
multiple positions. RAISE maintains high accuracy in all configurations. Although Transformer has
higher accuracy than the other three baselines, especially in non-grid scenes, the prediction accuracy
drops significantly on 2×2Grid and 3×3Grid. Figure 3 provides the qualitative prediction results on
RAVEN. It is difficult for ANP and LGPP to generate clear answers. CLAP can generate answers
with partially correct attributes in simple cases (e.g., CLAP generates an object with the correct color
but the wrong size and shape in the sample of Center). RAISE produces high-quality predictions and
can solve RPMs with multiple missing images. By predicting multiple missing images at arbitrary
positions, The qualitative results intuitively reveal the in-depth generative abstract reasoning ability
in models, which the bottom-right answer generation task does not involve.

4.3 LATENT CONCEPTS

Latent concepts bridge atomic rules and high-dimensional observations. Figure 4a visualizes the
latent concepts learned from Center and O-IC by traversing concept representations of an image in
the latent space. If the concepts are well decomposed, decoding the interpolated concept represen-
tations will change one attribute of the original image. Besides observing visualization results, we
can find the correspondence between concepts and attributes with the aid of the binary matrix M .
As shown in Figure 4a, RAISE can automatically set some redundant concepts when there are more
concepts than attributes. (e.g., the first concept of Center). The visualization results illustrate the
concept learning ability of RAISE, which is the foundation of abstracting and selecting atomic rules
shared among RPMs.

4.4 ODD-ONE-OUT IN RPM

In odd-one-out tests, RAISE attempts to find the rule-breaking image in a panel. To generate RPM-
based odd-one-out problems, we replace the bottom-right image of an RPM with a random distractor
in the candidate set. Taking Figure 4b as an example, we change the object color from white to
black by replacing the bottom-right image. RAISE takes each image in an RPM as the target, gets
the prediction results, and computes the prediction error on latent concepts. The right panel of

8
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Table 2: Selection accuracy (%) on two held-out configurations.

OOD Settings RAISE PrAE ALANS GCA-C GCA-R GCA-I Transformer ANP LGPP CLAP-NP

Center-Held-Out 99.2 99.8 46.9 35.0 14.4 12.1 12.1 10.6 8.6 19.5
O-IC-Held-Out 56.1 40.5 33.4 10.1 5.3 4.9 15.8 7.5 4.6 8.6

Figure 4b shows the concept-level prediction errors, and we find that the 7th concept of the bottom-
right image deviates the most. According to Figure 4a, the 7th concept on Center represents the
attribute Color, which is indeed the attribute modified when constructing the test. The last row
has relatively higher concept distances since the incorrect image tends to influence the accuracy of
answer generation at the most related positions. Because of the independent latent concepts and
concept-specific reasoning processes of RAISE, the high concept distances only appear in the 7th
concept. By solving RPM-based odd-one-out problems, we explain how concept-level predictions
improve the interpretability of answer selection. Although RAISE is tasked with generating answers,
it can handle answer-selection problems by excluding candidates violating the underlying rules.

4.5 HELD-OUT CONFIGURATIONS

To explore the abstract reasoning ability on out-of-distribution (OOD) samples, we construct two
held-out configurations based on RAVEN (Barrett et al., 2018) as illustrated in Figure 4c. (1)
Center-Held-Out keeps the samples of Center following the attribute-rule tuple (Size, Constant) as
test samples, and the remaining constitute the training and validation sets. (2) O-IC-Held-Out keeps
the samples of O-IC following the attribute-rule tuples (Type In, Arithmetic), (Size In, Arithmetic),
(Color In, Arithmetic), (Type In, Distribute Three), (Size In, Distribute Three), and (Color In, Dis-
tribute Three) as test samples. The results given in Table 2 indicate that RAISE maintains relatively
higher selection accuracy when encountering unseen combinations of attributes and rules. RAISE
learns interpretable latent concepts to conduct concept-specific reasoning, by which the learning of
rules and concepts are decoupled. Thus RAISE can tackle OOD samples via compositional gener-
alization. Although RAISE has not ever seen the attribute-rule tuple (Size, Constant) in training, it
can still apply the atomic rule Constant learned from other attributes to Size in the test phase.

5 CONCLUSION AND DISCUSSION

This paper proposes a generative RPM solver RAISE based on conditional deep latent variable mod-
els. RAISE can abstract atomic rules from PRMs, keep them in the global knowledge set, and predict
target images by selecting proper rules. As the foundation of rule abstraction and selection, RAISE
learns interpretable latent concepts from images to decompose the integrated rules of RPMs into
atomic rules. Qualitative and quantitative experiments show that RAISE can generate answers at ar-
bitrary positions and outperform baselines, showing outstanding generative abstract reasoning. The
odd-one-out task and held-out configurations verify the interpretability of RAISE in concept learn-
ing and rule abstraction. By using prediction deviations on concepts, RAISE can find the position
and concept that breaks the rules in odd-one-out tasks. By combining the learned latent concepts
and atomic rules, RAISE can generate answers on samples with unseen attribute-rule tuples.

Limitations and Discussion. The noise in data is a challenge for the models based on conditional
generation. In the experiment, we find that the noise of object attributes in grids will influence the
selection accuracy of generative solvers like RAISE and Transformer on 2×2Grid. The candidate
sets can provide clearer supervision in training to reduce the impact of noise. Deep latent variable
models (DLVMs) can potentially handle noise in RPMs since RAISE works well on Center and
O-IC with noisy attributes like Rotation. In future works, exploring appropriate ways to reduce the
influence of noise is the key to realizing generative abstract reasoning in more complicated scenes.
For generative solvers that do not rely on candidate sets or are completely unsupervised, whether
using datasets with large amounts of noise benefits the acquisition of generative abstract reasoning
ability is worth exploring since the noise can make a generative problem have numerous solutions
(e.g., PGM (Barrett et al., 2018)). In Appendices B.2 and D.1, we conduct an initial experiment and
discussion on the impact of noise, but a more systematic and in-depth study will be carried out in the
follow-up works. Some recent neural approaches attempt to solve similar systematic generalization
problems (Rahaman et al., 2021; Lake & Baroni, 2023). We provide a discussion on the Bayesian
and neural approaches of concept learning in Appendix E.
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A PROOFS AND DERIVATIONS

A.1 REFORMULATION OF THE POSTERIOR DISTRIBUTION

According to Bayes’ theorem, the posterior distribution of rule indicators q(rc|zcS , zcT ) is the product
of the conditional prior q(rc|zcS) and the likelihood p(zcT |rc, zcS):

q(rc|zcS , zcT ) =
p(zcT |rc, zcS)p(rc|zcS)∑K

k=1 p(z
c
T |rc = k,zcS)p(rc = k|zcS)

∝ p(zcT |rc, zcS)p(rc|zcS). (13)

Considering that p(zcT |rc, zcS) is an isotropic GaussianN
(
h (Zc;ψrc) , σ

2
zI
)
, Equation 13 becomes

q(rc|zcS , zcT ) ∝ 1√
2πσ

D(zcT )
z

exp

(
− 1

2σ2
z

∥∥∥zcT − h (Zc;ψrc)
∥∥∥2

2

)
p(rc|zcS)

∝ exp

(
− 1

2σ2
z

∥∥∥zcT − h (Zc;ψrc)
∥∥∥2

2

)
p(rc|zcS),

(14)

where D(zcT ) is the size of zcT . In practice, RAISE predicts unnormalized logits l̃c1:K instead of the
probabilities π̃c1:K . Therefore, we use the logarithmic version of Equation 14:

log q(rc|zcS , zcT ) = − 1

2σ2
z

∥∥∥zcT − h (Zc; Ψrc)
∥∥∥2

2
+ log p(rc|zcS) + C (zcS , z

c
T ) . (15)

Since the constant C(zcS , z
c
T ) in Equation 15 will not influence the results of normalization, RAISE

ignores the constant term and predicts the unnormalized logits via

l̃ck = − 1

2σ2
z

∥∥∥zcT − h (Zc; Ψk)
∥∥∥2

2
+ log p(rc = k|zcS)

= − 1

2σ2
z

∥∥∥zcT − h (Zc; Ψk)
∥∥∥2

2
+ log πck, k = 1, ...,K.

(16)

Finally, the variational distribution q(rc|zcS , zcT ) is parameterized by

q(rc|zcS , zcT ) = Categorical (π̃c1:K) , where π̃ck =
exp

(
l̃ck

)
∑K
k=1 exp

(
l̃ck

) for k = 1, ...,K. (17)

A.2 DERIVATION OF THE ELBO

With the variational distribution qΨ(h|xT ,xS), the ELBO L is (Sohn et al., 2015)

log pΘ (xT |xS) ≥ EqΨ(h|xT ,xS)

[
log

pΘ (h,xT |xS)

qΨ(h|xT ,xS)

]
= L. (18)

Considering the generative and inference processes

pΘ(h,xT |xS) =
∏
t∈T

pϕ(xt|zt)
C∏
c=1

(
pψ(zcT |rc, zcS)pφ(rc|zcS)

∏
s∈S

pθ(z
c
s|xs)

)
,

qΨ(h|xT ,xS) =

C∏
c=1

(
qφ,ψ(rc|zcS , zcT )

∏
s∈S

qθ(z
c
s|xs)

∏
t∈T

qθ(z
c
t |xt)

)
,

(19)

13



Published as a conference paper at ICLR 2024

Equation 18 is further decomposed by

L = EqΨ(h|xT ,xS)

[
log
∏
t∈T

pϕ(xt|zt)

]

− EqΨ(h|xT ,xS)

[
log

C∏
c=1

qφ,ψ(rc|zcS , zcT )
∏
s∈S qθ(z

c
s|xs)

∏
t∈T qθ(z

c
t |xt)

pψ(zcT |rc, zcS)pφ(rc|zcS)
∏
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c
s|xs)

]

=
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t∈T

EqΨ(h|xT ,xS)

[
log pϕ(xt|zt)

]
−

C∑
c=1

EqΨ(h|xT ,xS)
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log

qθ(z
c
T |xT )

pψ(zcT |rc, zcS)

]

−
C∑
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EqΨ(h|xT ,xS)
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log
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pφ(rc|zcS)

]
−

C∑
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∑
s∈S

EqΨ(h|xT ,xS)

[
log

qθ(z
c
s|xs)

pθ(zcs|xs)

]
.

(20)

Since the encoder is shared between the generative and inference processes, we have qθ(zcs|xs) =
pθ(z

c
s|xs) and

C∑
c=1

∑
s∈S

EqΨ(h|xT ,xS)

[
log

qθ(z
c
s|xs)

pθ(zcs|xs)

]
= 0. (21)

Therefore, the ELBO is

L =
∑
t∈T

EqΨ(h|xT ,xS)

[
log pϕ(xt|zt)

]
︸ ︷︷ ︸

Lrec

−
C∑
c=1

EqΨ(h|xT ,xS)

[
log

qθ(z
c
T |xT )

pψ(zcT |rc, zcS)

]
︸ ︷︷ ︸

Rpred

−
C∑
c=1

EqΨ(h|xT ,xS)

[
log

qφ,ψ(rc|zcS , zcT )

pφ(rc|zcS)

]
︸ ︷︷ ︸

Rrule

.

(22)

A.3 MONTE CARLO ESTIMATOR OF THE ELBO

For a given RPM problem (xS ,xT ), we sample the latent variables r̃, z̃S , and z̃T from the variatonal
posterior qΨ(h|xT ,xS) to compute the ELBO:

z̃cs ∼ N
(
µ̃cs, σ

2
zI
)
, s ∈ S, c = 1, ..., C,

z̃ct ∼ N
(
µ̃ct , σ

2
zI
)
, t ∈ T, c = 1, ..., C,

r̃c ∼ Categorical (π̃c1:K) , c = 1, ..., C.

(23)

µ̃1:C
s = genc

θ (xs) and µ̃1:C
t = genc

θ (xt) are means of latent concepts computed by the encoder. π̃c1:K
is given by 17 and the indicator r̃c is sampled through the Gumbel-Softmax distribution (Jang et al.,
2016). Using the Monte Carlo estimator, L can be approximated by the sampled latent variables.

A.3.1 RECONSTRUCTION LOSS

Lrec ≈
∑
t∈T

log pϕ(xt|z̃t) = − 1

2σ2
x

∑
t∈T

∥∥∥xt − Λ̃t

∥∥∥2

2
+ Crec, where Λ̃t = gdec

ϕ (z̃1:C
t ) (24)
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A.3.2 CONCEPT REGULARIZER

Rpred =

C∑
c=1

Eqθ(zcT |xT )
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2
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(25)

Trained with rule annotations, RAISE can quickly approach the real distribution p?(rc|x) provided
in rule annotations after the early learning stage. Therefore, we regard the real distribution as
the predicted rule distribution, which is related to the matrix rather than conditional on the latent
concepts. That is, we assume that samples from p?(r

c|x) are similarly distributed to those from
qφ,ψ(rc|z̃cS , z̃cT ) after a few learning epochs. By replacing the qφ,ψ(rc|z̃cS , z̃cT ) to p?(r

c|x), we
move the inner expectation on rc to the front. In this way, the inner expectation becomes the KL
divergence between Gaussians and has a closed-form solution, reducing the additional noise in the
sampling process.

A.3.3 RULE REGULARIZER

Rrule =

C∑
c=1

Eqθ(zcT |xT )
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.

(26)

A.3.4 ELBO

Ignoring the constant terms Crec and Cpred, the approximation of ELBO is

L ≈ − 1

2σ2
x

∑
t∈T

∥∥∥xt − Λ̃t

∥∥∥2

2︸ ︷︷ ︸
Lrec

− 1
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−
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K∑
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π̃ck log
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Rrule

.
(27)

B DATASETS

B.1 RAVEN AND I-RAVEN

Figure 5 displays seven image configurations of RAVEN (Zhang et al., 2019a). The image attributes
include Number/Position, Type, Size, and Color, which can follow the rules Constant, Progress,
Arithmetic, and Distribution Three. Each configuration contains 6000 training samples, 2000 vali-
dation samples, and 2000 test samples. RAVEN provides eight candidate images and attribute-level
rule annotations for each RPM problem. Previous work pointed out the existence of bias in candi-
date sets of RAVEN (Hu et al., 2021), which allows models to find shortcuts for answer selection.
I-RAVEN uses Attribute Bisection Tree (ABT) to generate candidate sets to resist shortcut learning
(Hu et al., 2021). The experiment shows that the models trained with only the candidate sets of
I-RAVEN have a selection accuracy close to the random guesses, which evidences the effectiveness
of the candidate generation strategy.
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Figure 5: Different configurations of RAVEN. In each figure, the top panel is an RPM where the
target images are highlighted in red boxes; the middle panel is a candidate set with eight candidate
images; and the bottom panel shows the attribute-changing rules in the RPM.

B.2 ATTRIBUTE NOISE OF RAVEN AND I-RAVEN

RAVEN and I-RAVEN introduce noise to some attributes to increase the complexity of problems.
In Center, L-R, U-D, and O-IC, the rotation of objects is the noise attribute. We can keep objects
unchanged in rows or make random rotations. Figure 6 displays the noise of object grids on O-
IG, 2×2Grid, and 3×3Grid, including the noise of object attributes (i.e., objects in Figure 6c can
have different colors and rotations), and the noise of object positions (Figure 6d). The candidate
set ensures that only one candidate image is the correct answer. To explore the influence of noise
on selection accuracy, we remove the noise of object attributes from object grids, keep the noise of
object positions, and generate three configurations O-IG-Uni, 2×2Grid-Uni, and 3×3Grid-Uni.

16



Published as a conference paper at ICLR 2024

Figure 6: The illustration of attribute noise. (a) is an RPM from 2×2Grid; (b) is the candidate
set; (c) and (d) visualize two possible types of noise in the RPM. In this case, the image is correct as
long as there are two pentagons of the correct size. The color, rotation, and position of objects will
not influence the correctness of the image.

C MODELS

C.1 RAISE

This section introduces the architectures and hyperparameters of RAISE. The network architectures
are introduced in the order of genc

θ , f row
φ1

, f col
φ2

, f ind
φ3

, h, and gdec
ϕ .

• genc
θ . RAISE used a convolutional neural network to downsample images and extract the mean

of latent concepts. Denoting the number and size of latent concepts as C and dz , the encoder is

– 4 × 4 Conv, stride 2, padding 1, 64 BatchNorm, ReLU
– 4 × 4 Conv, stride 2, padding 1, 128 BatchNorm, ReLU
– 4 × 4 Conv, stride 2, padding 1, 256 BatchNorm, ReLU
– 4 × 4 Conv, stride 2, padding 1, 512 BatchNorm, ReLU
– 4 × 4 Conv, 512 BatchNorm, ReLU
– ReshapeBlock, 512
– Fully Connected, C × dz

The ReshapeBlock flattens the feature map of the shape (512, 1, 1) to the vector with 512 dimen-
sions, which is projected and split into the mean of C latent concepts.

• f row
φ1

and f col
φ2

. The two networks have the same architecture to extract the row and column
representations from RPMs:

– Fully Connected, 512 ReLU
– Fully Connected, 512 ReLU
– Fully Connected, 64

where the input size is 3× dz and the size of output row and column representations is 64.

• f ind
φ3

. This network converts the overall row and column representations of an RPM to the logits
of selection probabilities for atomic rule selection:

– Fully Connected, 64 ReLU
– Fully Connected, 64 ReLU
– Fully Connected, K

where K is the number of atomic rules. Since the row and column representations are concate-
nated as the input, the input size of the network is 128.

• h(Zc;ψk). This network is a fully convolutional network, which predicts the means of target
latent concepts from the representation matrix Zc:

– 3 × 3 Conv, stride 1, padding 1, 128 ReLU
– 3 × 3 Conv, stride 1, padding 1, 128 ReLU
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– 3 × 3 Conv, stride 1, padding 1, dz
h adopts convolutional layers with 3×3 kernels, stride 1, and padding 1 to keep the shape of the
3×3 representation matrix. The global knowledge set ψ1:K stores K learnable parameters of h,
which represents K atomic rule respectively.

• gdec
ϕ . The decoder accepts all latent concepts of an image as input and outputs the mean of the

pixel values for image reconstruction. The architecture is

– ReshapeBlock, (C × dz, 1, 1)

– 1 × 1 Deconv, 256 BatchNorm, LeakyReLU
– 4 × 4 Deconv, 128 BatchNorm, LeakyReLU
– 4 × 4 Deconv, stride 2, padding 1, 64 BatchNorm, LeakyReLU
– 4 × 4 Deconv, stride 2, padding 1, 32 BatchNorm, LeakyReLU
– 4 × 4 Deconv, stride 2, padding 1, 32 BatchNorm, LeakyReLU
– 4 × 4 Deconv, stride 2, padding 1, 1 Sigmoid

where the negative slope of LeakyReLU is 0.02. Since the images of RAVEN and I-RAVEN are
grayscaled, the decoder output only one image channel and uses the Sigmoid activation function
to scale the range of pixel values to (0, 1).

For all configurations of RAVEN, we set learning rate as 3 × 10−4, batch size as 512, K = 4,
σx = 0.1, σz = 0.1, C = 8, dz = 8, β1 = 5, β2 = 20, and β3 = 10. RAISE is insensitive
when increasing C since it can generate redundant latent concepts. When C is too small to encode
all attributes, the selection accuracy will decline significantly. We can set a large C and reduce it
until the number of redundant latent concepts is reasonable. In general, we choose K by directly
counting the number of unique labels in rule annotations. RAISE updates the parameters through
the RMSprop optimizer (Hinton et al., 2012). To select the best model, we watch the performance
on the validation set after each training epoch and save the model with the highest accuracy.

C.2 POWERFUL GENERATIVE SOLVERS

ALANS (Zhang et al., 2021b) We train ALANS on the codebase released by the authors 2, setting
the learning rate as 0.95× 10−4 and the coefficient of the auxiliary loss as 1.0. Since the model can
hardly converge from the initialized parameters, we initialize the parameters of ALANS with the
pretrained checkpoint provided by the authors. More details can be seen in the repository.

PrAE (Zhang et al., 2021a) For PrAE, we use the commended hyperparameters that the learning
rate is 0.95× 10−4 and the weight of auxiliary loss is 1.0. The implementation of PrAE is based on
the official repository 3.

GCA (Pekar et al., 2020) The official code of GCA 4 only implements the auxiliary loss on the
PGM dataset (Barrett et al., 2018). Therefore, we modify the output size of the auxiliary network to
the size of one-hot rule annotations in RAVEN/I-RAVEN. We set the latent size in GCA as 64 and
the learning rate as 2× 10−4.

C.3 BASELINES

Transformer (Vaswani et al., 2017) To improve the model capability, we first apply the encoder
and decoder to project images into low-dimensional representations and then predict the targets in
the representation space via Transformer. Transformer uses the same encoder and decoder struc-
tures as RAISE. The hyperparameters of Transformer are chosen through grid search. We set the
learning rate as 1× 10−4 from {5× 10−4, 1× 10−4, 5× 10−5}, the representation size as 256 from
{512, 256, 128}, and the number of Transformer blocks as 4 from {2, 4, 6}. In addition, the number
of attention heads is 4, the hidden size of feedforward networks is 1024, and the dropout is 0.1. All
parameters are updated by the Adam (Kingma & Ba, 2015) optimizer.

2https://github.com/WellyZhang/ALANS
3https://github.com/WellyZhang/PrAE
4https://github.com/nivPekar/Generating-Correct-Answers-for-Progressive-Matrices-Intelligence-Tests
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Table 3: Learning rates of ANP on RAVEN/I-RAVEN.

Center L-R U-D O-IC O-IG 2×2Grid 3×3Grid

5× 10−5 1× 10−5 1× 10−5 5× 10−6 5× 10−6 3× 10−5 3× 10−5

Table 4: Hyperparameters of CLAP. We give the number of concepts, weights in the ELBO (βt,
βf , and βTC), and standard deviation σz on RAVEN/I-RAVEN.

Hyperparameters Center L-R U-D O-IC O-IG 2×2Grid 3×3Grid

#Concepts 5 10 10 6 8 8 10
βt 100 50 50 30 30 30 80
βf 100 50 50 60 30 30 80
βTC 100 50 50 50 30 30 80
σz 0.1 0.1 0.1 0.4 0.1 0.3 0.3

ANP (Kim et al., 2019) For all configurations, we set the size of the global latent as 1024 and the
batch size as 512. Table 3 shows the configuration-specific learning rates. Other hyperparameters
and the model architecture remain the same as the 2D regression configuration in the original paper
(Kim et al., 2019).

LGPP (Shi et al., 2021) In the experiments, we use the official code of LGPP 5 by setting the
learning rate as 5×10−4 and the batch size as 256. In terms of model architecture, we set the size of
axis latent variables as 4, the size of axis representations as 4, and the input size of the RBF kernel
as 8. The network that converts axis latent variables to axis representations has hidden sizes [64,
64]. The network to extract the features for RBF kernels has hidden sizes [128, 128, 128, 128]. The
hyperparameter β that promotes disentanglement of LGPP is set to 10. For the configuration Center,
the number of concepts is 5, while the others use 10 concepts.

CLAP (Shi et al., 2023) Here we adopt the model architecture of the CRPM configuration in the
official repository 6 and adjust the learning rate to 5 × 10−4, the batch size to 256, and the concept
size to 8. Other hyperparameters are displayed in Table 4.

C.4 COMPUTATIONAL RESOURCE

All the models are trained on the server with Intel(R) Xeon(R) Platinum 8375C CPUs, 24GB
NVIDIA GeForce RTX 3090 GPUs, 512GB RAM, and Ubuntu 18.04.6 LTS. RAISE is implemented
with PyTorch (Paszke et al., 2019).

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 BOTTOM-RIGHT ANSWER SELECTION

We generate new configurations by removing the noise in object attributes to analyze the influence
of noise attributes. As shown in Table 5, RAISE achieves the highest accuracy on all three config-
urations. When we introduce more noise to RPMs, the number of solutions that follow the correct
rules will increase. In this case, the provided candidate set with one correct answer and seven dis-
tractors can act as clear supervision in model training. Without the assistance of candidate sets in
training, it is challenging to catch rules from noisy RPMs with multiple potential solutions. There-
fore, RAISE and Transformer have significant accuracy improvements on configurations with less
noise attributes. Overall, the experimental results show that reducing noise can bring significant
improvements for the models trained without distractors in candidate sets (such as Transformer and
RAISE). RAISE only requires 20% rule annotations to learn atomic rules from low-noise samples.

5https://github.com/FudanVI/generative-abstract-reasoning/tree/main/rpm-lgpp
6https://github.com/FudanVI/generative-abstract-reasoning/tree/main/clap
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Table 5: The accuracy (%) of selecting bottom-right answers on O-IG-Uni, 2×2Grid-Uni, and
3×3Grid-Uni.

Models O-IG-Uni 2×2Grid-Uni 3×3Grid-Uni

GCA-I 21.2/36.7 19.5/23.3 20.6/21.6
GCA-R 20.7/36.3 21.9/28.1 25.9/25.2
GCA-C 53.8/37.7 58.8/35.6 67.0/27.5
PrAE 29.1/45.1 85.4/85.6 26.8/47.2

ALANS 29.7/41.5 66.2/55.3 84.0/73.3

LGPP 3.4/12.3 4.1/13.0 4.0/13.1
ANP 31.5/34.0 10.0/15.6 12.0/16.3

CLAP 14.4/31.7 22.5/39.1 12.1/32.9
Transformer 70.6/57.9 73.3/73.0 34.2/37.0

RAISE 95.8/99.0 87.6/97.9 95.3/93.2

Table 6: The accuracy (%) of selecting bottom-right answers on different configurations (i.e.,
Center, L-R, etc) of RAVEN/I-RAVEN. In this table, RAISE is trained without the supervision of
rule annotations (-aux) to illustrate the abstract reasoning ability in the unsupervised training setting.
The table displays the average results of ten trials.

Models Average Center L-R U-D O-IC O-IG 2×2Grid 3×3Grid

LGPP 6.4/16.3 9.2/20.1 4.7/18.9 5.2/21.2 4.0/13.9 3.1/12.3 8.6/13.7 10.4/13.9
ANP 7.3/27.6 9.8/47.4 4.1/20.3 3.5/20.7 5.4/38.2 7.6/36.1 10.0/15.0 10.5/15.6

CLAP 17.5/32.8 30.4/42.9 13.4/35.1 12.2/32.1 16.4/37.5 9.5/26.0 16.0/20.1 24.3/35.8
Transformer 40.1/64.0 98.4/99.2 67.0/91.1 60.9/86.6 14.5/69.9 13.5/57.1 14.7/25.2 11.6/18.6

RAISE (-aux) 54.5/67.7 30.2/56.6 47.9/80.8 87.0/94.9 96.9/99.2 56.9/83.9 30.4/30.5 32.0/27.8

We also provide the selection accuracy of unsupervised RAISE in Table 6. The average accuracy of
unsupervised RAISE lies between the unsupervised arbitrary-generation baselines (i.e., LGPP, ANP,
CLAP, and Transformer) and the powerful generative RPM solvers trained with full rule annotations
(i.e., GCA, ALANS, and PrAE).

D.2 ANSWER SELECTION AT ARBITRARY POSITION

In this section, we give additional results for arbitrary-position answer generation. Figure 8 provides
the detailed results of arbitrary-position answer generation for all seven configurations of RAVEN,
for example, the prediction results when |T | = 1 (Figure 8a) and |T | = 2 (Figure 8b). In the
visualization results, RAISE can generate high-quality predictions when |T | = 1 and |T | = 2.
The performance of Transformer varies significantly among different configurations. Transformer
predicts accurate answers on Center, while the predictions on 3×3Grid deviate significantly from
the ground truth images. In most cases, ANP, LGPP, and CLAP tend to generate incorrect images.
Figure 7 provides the selection accuracy on I-RAVEN with different numbers of target images (|T | =
1, 2) and different numbers of distractors in candidate sets (Nc = 1, 3, 7, 15). We can make further
analysis through the selection accuracy with test errors in Tables 8 and 9, where RAISE outperforms
other baseline models on all image configurations of RAVEN and I-RAVEN.

D.3 LATENT CONCEPTS

As mentioned in the main text, concept learning is an important component of RAISE. This section
shows the interpolation results of latent concepts on all image configurations and the correspon-
dences between latent concepts and real attributes in Figures 9 and 10. In most configurations,
RAISE can learn independent latent concepts and the binary matrix M that accurately reflects the
concept-attribute correspondences. RAISE does not assign the latent concepts encoding object rota-
tions to any attribute since the noise attributes are not included in rule annotations. This experiment
illustrates the interpretability of the acquired latent concepts, which benefits the prediction of correct
answers and the following experiment of odd-one-out.
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Figure 7: Selection accuracy at arbitrary positions on I-RAVEN. Each plot contains the selection
accuracy of RAISE (purple), Transformer (orange), CLAP (green), ANP (blue), and LGPP (black).
The x-axis is the number of candidates, and the y-axis is the selection accuracy.

Table 7: The accuracy (%) using different strategies of answer selection.

Models Average Center L-R U-D O-IC O-IG 2×2Grid 3×3Grid

RAISE-latent 90.0/92.1 99.2/99.8 98.5/99.6 99.3/99.9 97.6/99.6 89.3/96.0 68.2/71.3 77.7/78.7
RAISE-pixel 72.9/77.8 95.2/96.8 90.6/95.8 96.6/98.5 80.4/90.6 69.1/81.1 40.1/42.6 38.1/39.5

D.4 ODD-ONE-OUT IN RPM

In this experiment, we provide the additional results of odd-one-out on different configurations
where RAISE picks out rule-breaking images interpretably via prediction errors on latent concepts.
Figure 11 visualizes the experimental results of odd-one-out. RAISE will display larger prediction
errors at odd concepts, which is important evidence when solving odd-one-out problems. It should
be pointed out that forming such concept-level prediction errors requires the model to parse inde-
pendent latent concepts and conduct concept-specific abstract reasoning correctly. RAISE can apply
the atomic rules in the global knowledge set to tasks like out-one-out and has interpretability in
generative abstract reasoning.

D.5 STRATEGY OF ANSWER SELECTION

In this experiment, we evaluate RAISE with two strategies of answer selection: comparing candi-
dates and predictions in pixel space (RAISE-pixel) and latent space (RAISE-latent). Table 7 reports
higher accuracy when candidates and predictions are compared in latent space. Due to the noise in
attributes, there can be multiple solutions to a generative RPM problem. Assume that the answer
to an RPM is the image having two triangles, the answer images may significantly differ from each
other in the pixel space by generating two triangles in various positions. However, they still point to
the same concepts Number=2 and Shape=Triangle in the latent space. Therefore, selecting answers
by comparing candidates and predictions in the latent space can be more accurate than comparing
in the pixel space.

E DISCUSSION ON BAYESIAN AND NEURAL CONCEPT LEARNING

The learning objective. A recent neural approach MLC (Lake & Baroni, 2023) uses meta-learning
objectives to solve systematic generalization problems. Grant et al. (Grant et al., 2018) have reported
a connection between meta-learning and hierarchical Bayesian models. The discussion section of
MLC has also mentioned that the hierarchical Bayesian modeling can be explained from the view
of meta-learning. In this perspective, the global atomic rules in RAISE act as global latent variables
in hierarchical modeling. Although RAISE and MLC have different motivations for model design,
there are potential connections and similarities between their learning objectives if we explain the
reasoning process of RAISE from the perspective of hierarchical Bayesian modeling and meta-
learning.
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Interpretability of latent variables. Both Bayesian and neural approaches can define basic mod-
ules in the learning processes, e.g., Functions in Neural Interpreters (Rahaman et al., 2021) and
atomic rules in RAISE. Bayesian approaches usually design interpretable latent variables in gener-
ative processes, e.g., RAISE uses categorical random variables to indicate the types of the selected
rules explicitly. While Neural Interpreters route inputs to different Functions by calculating specific
scores. DLVM provides a powerful learning framework to learn interpretable latent structures from
data, e.g., RAISE defines latent concepts to capture image attributes. In this way, visual scenes
are decomposed into a simple set of latent variables, which may reduce the complexity of abstract
reasoning and enable systematic generalization on attribute-rule combinations.

Solving multi-solution problems. There can be multiple solutions for one generative reasoning
problem due to the noise in data. DLVMs can handle multi-solution problems by stochastic sampling
from the generative and inference processes. For example, RAISE can produce results different from
the original sample but still follow the correct rules. Instead of making deterministic predictions,
DLVMs attempt to provide probabilities of generating specific answers and capture randomness and
uncertainty in abstract reasoning.
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Table 8: Answer generation at arbitrary positions on RAVEN. We provide the average accuracy
(%) and test errors (%) of ten trials on RAVEN for RAISE and baselines.

Center (|T | = 1) Center (|T | = 2)

Model Nc = 1 Nc = 3 Nc = 7 Nc = 15 Nc = 1 Nc = 3 Nc = 7 Nc = 15

LGPP 55.8 ± 2.5 30.8 ± 1.9 17.1 ± 2.0 9.1 ± 1.2 53.8 ± 1.4 28.9 ± 1.6 15.4 ± 1.2 8.3 ± 0.6
ANP 61.4 ± 0.7 38.0 ± 0.7 23.5 ± 0.9 14.5 ± 0.7 58.3 ± 0.5 34.7 ± 1.3 20.5 ± 1.0 12.2 ± 0.7

CLAP 91.5 ± 0.7 80.1 ± 1.6 67.2 ± 1.8 53.8 ± 1.7 90.8 ± 2.1 80.3 ± 3.4 67.7 ± 6.0 55.3 ± 6.2
Transformer 99.6 ± 0.2 99.1 ± 0.2 98.5 ± 0.3 97.3 ± 0.5 97.2 ± 2.3 91.1 ± 5.7 88.0 ± 4.0 90.2 ± 5.5

RAISE 99.9 ± 0.1 99.6 ± 0.2 99.1 ± 0.2 98.1 ± 0.3 99.5 ± 0.2 98.7 ± 0.3 97.5 ± 0.7 96.5 ± 0.5
L-R (|T | = 1) L-R (|T | = 2)

Model Nc = 1 Nc = 3 Nc = 7 Nc = 15 Nc = 1 Nc = 3 Nc = 7 Nc = 15

LGPP 56.8 ± 2.3 32.7 ± 3.2 18.7 ± 2.0 9.6 ± 1.3 57.4 ± 2.1 31.9 ± 1.9 18.4 ± 2.0 9.4 ± 1.1
ANP 59.0 ± 0.6 34.6 ± 1.4 20.6 ± 0.9 11.7 ± 0.5 60.5 ± 1.2 36.3 ± 1.1 21.7 ± 0.9 12.6 ± 0.7

CLAP 79.5 ± 0.9 60.7 ± 1.2 45.6 ± 1.3 32.4 ± 0.9 80.3 ± 1.3 62.6 ± 2.6 46.4 ± 3.8 33.9 ± 2.6
Transformer 99.4 ± 0.2 98.8 ± 0.3 98.1 ± 0.4 97.1 ± 0.3 95.8 ± 1.6 90.5 ± 2.3 87.2 ± 2.8 81.4 ± 4.9

RAISE 99.9 ± 0.0 99.9 ± 0.0 99.9 ± 0.0 99.9 ± 0.1 99.9 ± 0.1 99.7 ± 0.2 99.3 ± 0.4 98.8 ± 0.7
U-D (|T | = 1) U-D (|T | = 2)

Model Nc = 1 Nc = 3 Nc = 7 Nc = 15 Nc = 1 Nc = 3 Nc = 7 Nc = 15

LGPP 57.5 ± 2.3 32.8 ± 2.0 19.7 ± 4.1 10.3 ± 1.3 57.6 ± 1.5 32.5 ± 1.5 18.0 ± 1.2 10.2 ± 1.1
ANP 58.3 ± 1.1 34.3 ± 0.6 19.4 ± 0.8 10.7 ± 0.9 59.6 ± 0.6 35.6 ± 1.4 20.8 ± 0.5 11.9 ± 0.8

CLAP 78.8 ± 0.7 59.1 ± 1.2 43.1 ± 1.3 30.2 ± 1.1 78.4 ± 1.6 59.9 ± 2.8 42.9 ± 2.8 31.5 ± 2.8
Transformer 98.9 ± 0.2 97.9 ± 0.3 96.5 ± 0.4 94.8 ± 0.3 92.3 ± 1.7 85.2 ± 1.7 75.6 ± 3.1 70.6 ± 1.9

RAISE 99.9 ± 0.0 99.9 ± 0.0 99.9 ± 0.0 99.9 ± 0.0 99.6 ± 0.2 99.1 ± 0.3 98.2 ± 0.5 97.1 ± 1.1
O-IC (|T | = 1) O-IC (|T | = 2)

Model Nc = 1 Nc = 3 Nc = 7 Nc = 15 Nc = 1 Nc = 3 Nc = 7 Nc = 15

LGPP 50.5 ± 1.3 25.8 ± 0.5 13.2 ± 0.7 6.6 ± 0.5 49.8 ± 1.3 25.7 ± 1.1 12.8 ± 0.5 6.7 ± 0.4
ANP 62.0 ± 1.2 39.8 ± 0.7 26.5 ± 0.6 17.1 ± 0.6 61.6 ± 1.1 38.6 ± 1.3 24.3 ± 1.2 15.2 ± 0.9

CLAP 91.3 ± 1.1 81.1 ± 1.8 68.1 ± 2.2 54.1 ± 2.2 90.9 ± 2.2 81.4 ± 2.4 68.8 ± 4.8 57.5 ± 6.5
Transformer 97.6 ± 0.4 95.0 ± 0.6 90.1 ± 0.5 82.3 ± 0.7 96.7 ± 1.7 92.1 ± 3.3 90.2 ± 3.8 80.2 ± 5.0

RAISE 99.9 ± 0.0 99.9 ± 0.0 99.9 ± 0.1 99.8 ± 0.1 99.9 ± 0.0 99.9 ± 0.1 99.9 ± 0.2 99.8 ± 0.1
O-IG (|T | = 1) O-IG (|T | = 2)

Model Nc = 1 Nc = 3 Nc = 7 Nc = 15 Nc = 1 Nc = 3 Nc = 7 Nc = 15

LGPP 49.9 ± 0.6 25.0 ± 1.2 12.0 ± 0.6 6.1 ± 0.3 50.0 ± 0.9 25.1 ± 1.2 12.1 ± 0.7 6.4 ± 0.5
ANP 66.1 ± 1.1 45.1 ± 1.1 30.1 ± 2.0 20.2 ± 0.5 66.5 ± 1.0 44.0 ± 1.4 28.5 ± 0.8 18.0 ± 0.9

CLAP 77.8 ± 1.5 58.4 ± 1.8 43.2 ± 1.9 30.5 ± 1.0 80.5 ± 1.6 63.1 ± 3.4 47.6 ± 3.2 35.2 ± 2.4
Transformer 97.9 ± 0.4 95.2 ± 0.5 90.6 ± 0.9 82.8 ± 0.9 93.2 ± 1.7 88.5 ± 1.6 80.4 ± 3.7 75.5 ± 3.8

RAISE 99.9 ± 0.0 99.9 ± 0.1 99.7 ± 0.1 99.5 ± 0.3 99.9 ± 0.0 99.9 ± 0.0 99.9 ± 0.1 99.9 ± 0.1
2×2Grid (|T | = 1) 2×2Grid (|T | = 2)

Model Nc = 1 Nc = 3 Nc = 7 Nc = 15 Nc = 1 Nc = 3 Nc = 7 Nc = 15

LGPP 51.3 ± 1.0 26.7 ± 0.7 13.6 ± 0.8 6.9 ± 0.6 52.6 ± 1.4 27.0 ± 0.9 13.8 ± 0.7 7.2 ± 0.6
ANP 54.8 ± 0.9 30.8 ± 0.7 18.2 ± 0.5 9.5 ± 0.6 55.5 ± 1.0 31.7 ± 0.8 18.4 ± 0.8 10.5 ± 0.6

CLAP 64.5 ± 1.1 39.9 ± 1.5 24.5 ± 1.2 15.0 ± 0.9 64.9 ± 1.9 41.8 ± 1.5 25.2 ± 1.5 16.9 ± 1.4
Transformer 64.3 ± 1.2 44.0 ± 1.4 30.3 ± 1.5 21.6 ± 1.2 63.1 ± 1.0 43.3 ± 1.5 28.8 ± 1.4 20.9 ± 1.5

RAISE 97.2 ± 0.3 93.5 ± 0.7 89.8 ± 0.6 85.9 ± 1.1 96.5 ± 0.4 92.1 ± 1.9 87.5 ± 2.1 83.2 ± 1.7
3×3Grid (|T | = 1) 3×3Grid (|T | = 2)

Model Nc = 1 Nc = 3 Nc = 7 Nc = 15 Nc = 1 Nc = 3 Nc = 7 Nc = 15

LGPP 53.2 ± 1.3 28.3 ± 0.9 14.8 ± 0.4 8.1 ± 1.0 52.8 ± 1.2 27.9 ± 1.2 14.8 ± 0.9 7.8 ± 0.6
ANP 53.9 ± 1.0 29.7 ± 0.9 16.7 ± 0.2 9.4 ± 0.7 55.0 ± 1.2 31.3 ± 1.4 17.9 ± 0.7 10.4 ± 0.4

CLAP 86.2 ± 1.0 71.2 ± 1.3 56.4 ± 1.8 43.9 ± 1.2 86.1 ± 1.3 72.3 ± 2.8 60.9 ± 3.4 47.1 ± 4.0
Transformer 59.4 ± 0.8 37.8 ± 1.1 24.3 ± 0.8 16.2 ± 0.4 59.5 ± 0.8 36.6 ± 1.3 23.6 ± 0.8 16.4 ± 1.1

RAISE 99.5 ± 0.2 98.5 ± 0.2 97.0 ± 0.2 95.1 ± 0.6 98.4 ± 0.4 97.2 ± 1.0 95.4 ± 1.0 93.6 ± 1.2
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Table 9: Answer generation at arbitrary positions on I-RAVEN. We provide the average accuracy
(%) and test errors (%) of ten trials on I-RAVEN for RAISE and baselines.

Center (|T | = 1) Center (|T | = 2)

Model Nc = 1 Nc = 3 Nc = 7 Nc = 15 Nc = 1 Nc = 3 Nc = 7 Nc = 15

LGPP 55.0 ± 2.9 30.0 ± 2.1 16.8 ± 1.6 9.0 ± 1.9 54.3 ± 1.3 28.7 ± 1.5 15.7 ± 1.4 8.4 ± 0.8
ANP 77.1 ± 1.2 63.1 ± 1.0 53.0 ± 1.1 45.3 ± 0.7 64.5 ± 0.8 42.3 ± 1.0 28.0 ± 0.8 18.1 ± 0.8

CLAP 91.6 ± 1.3 79.6 ± 1.3 67.1 ± 2.0 53.4 ± 1.9 90.8 ± 2.2 80.8 ± 4.6 69.2 ± 4.4 51.7 ± 4.2
Transformer 99.8 ± 0.1 99.4 ± 0.2 98.9 ± 0.3 97.8 ± 0.5 95.2 ± 2.2 93.1 ± 4.2 87.6 ± 7.9 85.8 ± 6.1

RAISE 99.9 ± 0.1 99.7 ± 0.1 99.3 ± 0.2 98.3 ± 0.3 99.5 ± 0.2 98.8 ± 0.4 97.8 ± 0.4 96.1 ± 1.3
L-R (|T | = 1) L-R (|T | = 2)

Model Nc = 1 Nc = 3 Nc = 7 Nc = 15 Nc = 1 Nc = 3 Nc = 7 Nc = 15

LGPP 57.1 ± 2.9 31.9 ± 3.3 19.4 ± 2.3 11.2 ± 1.1 56.7 ± 1.9 32.5 ± 2.2 18.7 ± 1.7 11.0 ± 1.0
ANP 71.4 ± 1.0 49.8 ± 1.3 35.4 ± 1.0 24.0 ± 1.3 68.7 ± 1.3 46.3 ± 1.0 30.8 ± 0.8 20.4 ± 0.9

CLAP 80.0 ± 1.6 61.5 ± 1.3 45.9 ± 1.7 33.3 ± 1.3 80.5 ± 1.6 63.2 ± 2.6 47.4 ± 2.8 35.1 ± 2.5
Transformer 99.7 ± 0.1 99.4 ± 0.1 99.0 ± 0.2 98.8 ± 0.3 96.4 ± 1.3 93.1 ± 1.6 89.3 ± 2.5 86.9 ± 6.1

RAISE 99.9 ± 0.0 99.9 ± 0.0 99.9 ± 0.0 99.9 ± 0.0 99.9 ± 0.1 99.7 ± 0.1 99.4 ± 0.3 99.3 ± 0.5
U-D (|T | = 1) U-D (|T | = 2)

Model Nc = 1 Nc = 3 Nc = 7 Nc = 15 Nc = 1 Nc = 3 Nc = 7 Nc = 15

LGPP 58.5 ± 2.5 33.3 ± 2.0 19.2 ± 3.8 10.8 ± 1.5 56.1 ± 2.6 32.6 ± 2.2 19.6 ± 2.0 10.7 ± 1.5
ANP 69.5 ± 1.4 49.1 ± 1.2 33.8 ± 0.9 23.0 ± 1.3 66.7 ± 1.1 44.1 ± 1.3 29.2 ± 1.1 18.9 ± 0.6

CLAP 79.5 ± 0.9 60.4 ± 1.5 44.8 ± 1.4 32.3 ± 1.4 79.8 ± 2.0 59.9 ± 2.0 47.0 ± 2.4 32.0 ± 2.4
Transformer 99.5 ± 0.1 99.0 ± 0.3 98.5 ± 0.4 97.7 ± 0.3 94.8 ± 1.2 87.6 ± 1.0 82.0 ± 3.1 76.5 ± 5.5

RAISE 99.9 ± 0.0 99.9 ± 0.0 99.9 ± 0.0 99.9 ± 0.0 99.6 ± 0.2 99.1 ± 0.3 98.1 ± 0.5 96.9 ± 0.8
O-IC (|T | = 1) O-IC (|T | = 2)

Model Nc = 1 Nc = 3 Nc = 7 Nc = 15 Nc = 1 Nc = 3 Nc = 7 Nc = 15

LGPP 51.4 ± 1.0 25.4 ± 0.7 12.9 ± 0.9 6.7 ± 0.5 50.5 ± 1.3 25.8 ± 0.7 13.1 ± 0.7 6.6 ± 0.5
ANP 81.5 ± 0.7 69.4 ± 1.0 59.5 ± 0.9 51.1 ± 1.1 71.6 ± 1.2 51.5 ± 1.3 37.9 ± 1.6 26.9 ± 2.0

CLAP 91.7 ± 0.9 81.4 ± 1.3 68.6 ± 2.3 57.8 ± 4.3 91.5 ± 1.6 82.3 ± 2.7 72.1 ± 4.9 57.1 ± 3.7
Transformer 99.1 ± 0.2 98.0 ± 0.3 95.9 ± 0.4 92.9 ± 0.9 97.9 ± 1.5 96.6 ± 1.6 94.2 ± 2.5 90.0 ± 5.2

RAISE 99.9 ± 0.0 99.9 ± 0.0 99.9 ± 0.1 99.9 ± 0.1 99.9 ± 0.0 99.9 ± 0.0 99.9 ± 0.1 99.8 ± 0.1
O-IG (|T | = 1) O-IG (|T | = 2)

Model Nc = 1 Nc = 3 Nc = 7 Nc = 15 Nc = 1 Nc = 3 Nc = 7 Nc = 15

LGPP 50.0 ± 1.3 24.8 ± 1.0 12.6 ± 0.6 6.2 ± 0.7 49.7 ± 0.7 24.9 ± 0.8 12.4 ± 0.6 6.7 ± 0.4
ANP 82.6 ± 0.7 70.2 ± 1.1 60.3 ± 1.2 51.5 ± 0.9 75.9 ± 0.8 57.5 ± 1.2 42.1 ± 2.4 29.9 ± 1.5

CLAP 79.0 ± 1.8 60.2 ± 1.1 44.2 ± 1.1 32.2 ± 1.9 81.0 ± 1.7 64.2 ± 1.3 49.0 ± 2.1 36.4 ± 2.6
Transformer 99.0 ± 0.3 97.8 ± 0.3 95.6 ± 0.4 91.8 ± 0.7 96.6 ± 0.9 93.0 ± 1.1 87.9 ± 2.5 83.5 ± 1.8

RAISE 99.9 ± 0.0 99.9 ± 0.0 99.9 ± 0.1 99.8 ± 0.1 99.9 ± 0.0 99.9 ± 0.1 99.9 ± 0.1 99.9 ± 0.1
2×2Grid (|T | = 1) 2×2Grid (|T | = 2)

Model Nc = 1 Nc = 3 Nc = 7 Nc = 15 Nc = 1 Nc = 3 Nc = 7 Nc = 15

LGPP 51.3 ± 0.8 26.6 ± 1.0 13.9 ± 0.5 7.1 ± 0.5 51.9 ± 1.0 26.4 ± 0.6 13.7 ± 0.4 6.8 ± 0.5
ANP 54.9 ± 1.0 31.4 ± 1.0 18.0 ± 1.0 9.9 ± 0.7 55.6 ± 0.7 31.4 ± 0.9 18.4 ± 1.0 10.5 ± 1.0

CLAP 63.9 ± 1.4 40.2 ± 1.5 25.4 ± 1.2 14.8 ± 1.0 64.8 ± 1.7 42.5 ± 2.0 26.6 ± 1.8 16.1 ± 2.1
Transformer 65.7 ± 1.4 45.3 ± 1.4 32.1 ± 1.1 24.2 ± 0.8 64.2 ± 0.3 44.1 ± 1.9 31.5 ± 1.4 22.7 ± 2.2

RAISE 97.5 ± 0.4 95.0 ± 0.6 91.1 ± 0.7 87.0 ± 0.7 96.4 ± 0.9 93.2 ± 1.4 89.0 ± 1.6 85.5 ± 2.3
3×3Grid (|T | = 1) 3×3Grid (|T | = 2)

Model Nc = 1 Nc = 3 Nc = 7 Nc = 15 Nc = 1 Nc = 3 Nc = 7 Nc = 15

LGPP 52.4 ± 1.3 27.2 ± 1.3 14.9 ± 1.4 8.0 ± 0.9 52.4 ± 1.0 28.2 ± 0.9 15.0 ± 0.8 8.1 ± 0.6
ANP 54.2 ± 1.2 29.5 ± 1.0 16.6 ± 0.8 10.1 ± 0.9 54.5 ± 1.1 30.6 ± 0.7 17.4 ± 1.1 10.2 ± 0.5

CLAP 85.9 ± 1.2 71.7 ± 1.3 56.6 ± 2.0 42.6 ± 1.5 85.6 ± 1.1 70.4 ± 3.0 60.0 ± 1.2 46.4 ± 3.0
Transformer 59.7 ± 1.3 37.7 ± 0.8 25.0 ± 0.7 17.2 ± 0.5 59.7 ± 1.0 37.4 ± 1.0 24.5 ± 1.1 16.0 ± 0.6

RAISE 99.6 ± 0.1 98.8 ± 0.2 97.5 ± 0.3 95.5 ± 0.6 98.8 ± 0.5 97.0 ± 0.9 94.8 ± 1.5 92.2 ± 2.5
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(a) The results of answer generation when |T | = 1

(b) The results of answer generation when |T | = 2

Figure 8: Answer generation at arbitrary positions. The predictions are given in red boxes to
illustrate the ability of (a) arbitrary-position and (b) multiple-position answer generation.
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Figure 9: Concept learning on RAVEN. The table shows the interpolation results of latent concepts
and the binary matrices indicating the correspondence between concepts and attributes on L-R and
U-D.
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Figure 10: Concept learning on RAVEN. The table shows the interpolation results of latent con-
cepts and the binary matrices indicating the correspondence between concepts and attributes on
O-IG, 2×2Grid, and 3×3Grid.
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Figure 11: Odd-one-out based on RPMs. The plots display how to construct odd-one-out tests
from different configurations of RPMs and how to find the odd image according to the prediction
errors on latent concepts.
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