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ABSTRACT

Contrastive learning has advanced the representation learning of vision, language,
and graphs, yet its success hinges greatly on the data augmentation that helps
preserve semantic contents while providing the view diversities. Multivariate time
series, however, are noisy, non-stationary in nature, and largely opaque to the hu-
man inspection. Therefore, a direct use of the the hand-crafted transforms, such as
jitter and scaling, may unfortunately destroy the critical temporal cues or introduce
false negatives, weakening the performance of downstream tasks. To address this,
we propose ProSAR, a prototype-guided semantic augmentation and refinement
framework for time series contrastive learning. Most critically, ProSAR’s approach
is founded on an information-theoretic principle for co-designing the semantic
data augmentations and learnable prototypes, aiming to generate views that max-
imize the information about an associated semantic prototype while discarding
the prototype-irrelevant content. ProSAR then implements this by introducing
a novel prototype-conditioned semantic segment extraction mechanism, where
the temporal characteristic segments are identified based on their dynamic time
warping (DTW) alignment to these learnable time-domain prototypes, ensuring
that the generated views can capture high-level semantic events. Building upon
these temporal characteristic segments, the targeted augmentations, operating in
both the time and frequency domains and informed by the DTW alignments, can
thus preserve the temporal dynamics while constructing views that adhere to the
information-theoretic objectives. Furthermore, prototypes are dynamically refined
in a feedback loop, where the latent representations of these prototypes are refined
via clustering under the prototypical contrastive training, and in turn guide evolution
of the time-domain prototypes through a decoding consistency mechanism, thus
fostering a progressive learning of robust representations. Experiments on diverse
time-series benchmarks demonstrate that ProSAR outperforms recent contrastive
and self-supervised representation learning methods in the downstream forecasting
and classification tasks.

1 INTRODUCTION

The proliferation of time series data across diverse domains, from healthcare (Miotto et al.,|2016),
finance (Heaton et al., 2017) to industrial IoT (Syafrudin et al., 2018) and human activity recognition
(Wang et al., [2019)), has underscored the imperative need for an analytical tool for the effective
representation learning. However, the high costs and numerous efforts associated with manual
labeling often render the commonly-used supervised learning impractical, motivating the rapid
development of self-supervised learning (SSL) paradigms (Jaiswal et al.| |2020; [Misra & Maatenl
2020). Among them, contrastive learning (CL) has emerged as a particularly successful approach
(Le-Khac et al., 2020; |(Chen et al., [2020; He et al., | 2020), which aims to learn the representations by
maximizing the agreement between different views of the same data instance while minimizing the
agreement with the views of other data instances, where the views are typically generated through
data augmentation (Shorten & Khoshgoftaar, 2019). Alongside some direct efforts to improving
augmentation, the field has advanced on parallel fronts—refining the contrastive objective ((Lee et al.|
2024)), exploiting multi-frequency structure ((Duan et al.,|2024)), and modeling relative similarity
(Xu et al.l 2025)), yet the view-generation module itself remains a fundamental bottleneck.
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Despite the success of CL, its efficacy on the time series data is profoundly challenged by the difficulty
of designing data augmentations that can preserve some crucial temporal semantics, while ensuring a
sufficient view diversity (Wen et al.,|2021; |Luo et al., 2023). Unlike the images or text, where human
intuition can often guide a semantic-preserving transformation, the complex, often non-intuitive,
temporal structures in time series make the augmentation design a formidable task (Zheng et al.| [2024)).
Many existing augmentation methods are either based on the hand-picked heuristics, e.g., jittering,
scaling, permutation (Zhang et al., 2022} |Yue et al., [2022; |[Eldele et al., [2021)), or a direct adaptation
from the other modalities, at the risk of incurring distortion or destruction of the pivotal temporal
patterns and semantic information (Tian et al.l 2025)). This cross-modality incompatibility may lead
to mismatched patterns and even inadvertent generation of false negative pairs, thus hindering the
learning of a robust representation (Meng et al.l 2023 |Chuang et al., 2020).

To address this, current CL. methodologies for time series has strived for the semantic augmentation
from an information-theoretic perspective. Theoretical groundwork like the InfoMin principle (Tian
et al., |2020) posits that desirable views reduce the mutual information while preserving the task-
relevant signals. InfoTS (Luo et al.| [2023) extends InfoMin with a criteria to balance between the
augmentation fidelity and variety, by further introducing a meta-learner for the adaptive selection.
Frameworks such as AutoTCL (Zheng et al.,[2024) learn to factorize the instances for augmentation,
by separating the informative parts from the task-irrelevant ones. Additionally, FreRA (Tian et al.,
2025)) learns the frequency-importance, by preserving critical subbands while perturbing non-critical
ones to produce the semantics-preserving views. Nonetheless, despite these advances in the semantic-
aware augmentation, the preserved content is still learned and inferred indirectly, rather than tied
to the explicit and temporally aligned anchors, thus limiting the interpretability and controllability,
which can be alleviated by prototype-based anchors. Concurrently, a parallel line of research has
utilized prototypes within the contrastive objective to mitigate the false negative problem inherent in
instance-wise comparisons (Chuang et al.,[2020). Methods such as Prototypical Contrastive Learning
(L1 et al.l 2021a) and MHCCL (Meng et al., 2023) have shown this to be effective for learning
a structured latent space. However, they use prototypes typically at the objective level, without
leveraging them to guide the upstream data augmentation process.

We are thus motivated to propose in this paper a novel contrastive learning framework for time
series, named ProSAR, i.e., prototype-guided semantic augmentation and refinement. ProSAR’s
core innovation lies in its information-theoretic foundation for the co-design of semantic data
augmentations and learnable prototypes. Theoretically, we formalize the semantic data augmentation
through lens of the information bottleneck (IB) principle (Tishby et al.| 2000), positing that the
optimal views for augmentation should maximize the information about their associated semantic
prototype, while discarding prototype-irrelevant content from the original instance. Specifically,
We further operationalize this theoretical principle by employing learnable time-domain prototypes
in conjunction with the dynamic time warping (DTW) technique (Cuturi & Blondel, [2017), to
explicitly identify and extract semantically coherent segments from the raw time series. We then
apply an augmentation strategy to these segments, informed by their alignment with the time-domain
prototypes and by incorporating the time-frequency characteristics, to construct views that adhere to
our information-theoretic objectives. We also utilize the latent-space prototypes, refined via clustering
of instance representations under the prototypical contrastive training, to guide evolution of the
time-domain prototypes through a decoding consistency mechanism, thus creating a positive feedback
loop. In contrast to the prior augmentation methods, ProSAR elevates prototypes to serve as explicit
anchors for a more interpretable view generation. Furthermore, unlike prototypical CL approaches
that primarily utilize prototypes at the objective level, ProSAR establishes a feedback loop where
these refined prototypes can actively guide the augmentation policy. Our main contributions can be
summarized as follows:

* We propose a novel CL framework for time series, named ProSAR, which leverages the information
bottleneck principle to guide a co-design of the data augmentation and prototype learning.

* We design a prototype-guided semantic view generation mechanism that employs learnable time-
domain prototypes to explicitly distinguish between task-relevant and irrelevant temporal segments.
Guided by our information-theoretic objective, this mechanism then augments these identified
segments to selectively preserve semantic content while discarding task-irrelevant variations.

» We further develop a dual-prototype refinement strategy that establishes a positive feedback loop.
Under the prototypical contrastive training, the latent-space prototypes learned via clustering are
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used to guide the update of the time-domain prototypes through a decoding consistency mechanism,
ensuring that the augmentations become progressively aligned with the evolving semantic structure.

* We conduct comprehensive experimental evaluation to demonstrate that ProSAR achieves a superior
performance over the state-of-the-art methods in learning discriminative and semantically grounded
time series representations.

2 RELATED WORK

Self-Supervised and Contrastive Representation Learning for Time Series. Early sequence
SSL demonstrate that temporal structure can be learned without labels via predictive or contrastive
objectives, e.g., CPC (Oord et al., 2018)) and TLoss (Franceschi et al., 2019). For time series,
methods exploit the temporal neighborhoods (TNC) (Tonekaboni et al., 2021)), multi-level context and
subseries consistency (TS2Vec) (Yue et al.| 2022, disentangled seasonal—trend factors (CoST) (Woo
et al., [2022)), and Transformer encoders for multivariate sequences (TST) (Zerveas et al., [2021)). For
vision data, SImCLR (Chen et al.}[2020) and MoCo (He et al.,|2020) catalyze the modern contrastive
learning. Recent time-series advances include SoftCLT, which uses soft assignments at instance
and timestamp levels (Lee et al., 2024}, and MF-CLR, which imposes cross-frequency consistency
with a hierarchical mechanism (Duan et al., 2024). TimesURL integrates the frequency-temporal
augmentation, hard negatives, and joint reconstruction (Liu & Chen| |2024). PPT emphasizes that
patch order matters for time series, and introduces a patch-order prediction pretext task to learn
temporally aware representations (Kim et al.| [2025).

Augmentation and View Generation for Contrastive Learning. Constructing views that are both
diverse and semantics-preserving is central to contrastive learning (Tian et al., 2020). Surveys of
time-series augmentation systematize common hand-crafted transforms and analyze their limitations
(Wen et al.;,|2021). TS-TCC adopts heuristic policies, using jitter and scaling as weak transformations
and permutation with jitter as strong ones (Eldele et al.| [2021). TF-C promotes view quality by
aligning time- and frequency-domain representations during pretraining, encouraging consistency
across complementary domains (Zhang et al.,|2022). From an information-theoretic perspective,
InfoMin prescribes reducing mutual information between views while retaining task-relevant content
(Tian et al., 2020). Building upon this, InfoTS scores the candidate transforms and adaptively
selects them to balance between the fidelity and diversity (Luo et al.,|2023)). AutoTCL factorizes
each instance into informative and task-irrelevant components, and learns parametric augmenters to
target these parts (Zheng et al.l 2024). A frequency-aware line further learns the band importance:
FreRA preserves the critical bands while perturbing non-critical ones to form semantics-preserving
views (Tian et al.| 2025). Beyond augmentation itself, AutoCL automatically searches for the data
augmentations, embedding transformations, contrastive pair construction, and contrastive losses (Jing
et al.l [2024).

Prototype- and Cluster-Aware Contrastive Objectives. Incorporating prototypes or cluster struc-
ture into the objective can inject semantic priors beyond instance discrimination. For example, PCL
introduces ProtoNCE to pull samples towards the assigned prototypes (Li et al., [2021a). SwAV
contrasts cluster assignments via online clustering and assignment consistency (Caron et al., [2020)).
Contrastive Clustering jointly performs the instance- and cluster-level contrast (Li et al., 2021b)),
and Graph Contrastive Clustering extends the cluster-aware contrast to graphs (Zhong et al., 2021)).
For time series, MHCCL uses the hierarchical clustering with downward/upward masking to refine
prototypes and perform cluster-wise contrast (Meng et al., |2023). AimTS proposes a two-level
prototype-based contrast with series—image cross-modal contrast to better leverage existing aug-
mentations, but does not use the prototypes to drive augmentation itself (Chen et al., 2025). Our
approach differs by elevating the learnable prototypes to explicit semantic carriers that guide upstream
view generation under the information-theoretic co-design. Departing from the prior augmentation
strategies, ProSAR utilizes prototypes as explicit guides for a more interpretable view generation
process. Moreover, extending beyond prototypical methods that use prototypes solely at the objective
level, ProSAR implements a closed-loop mechanism, where these prototypes are dynamically refined
to steer the augmentation policy.
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3 PROPOSED METHOD

In this section, we introduce ProSAR, a novel self-supervised framework for learning semantically
rich representations of time series. ProSAR distinctively integrates learnable prototypes into the
information-theoretic design of data augmentations. We first establish the theoretical principles in
Section demonstrating how prototypes can guide the creation of semantically consistent views
and how, in turn, these views are used to refine the prototypes. Subsequently, Section [3.2]details the
architectural components and learning objectives that implement this co-design, culminating in a
robust and theoretically grounded approach to time series representation learning. For clarity, the key
notations employed throughout this paper are summarized in Table|T]

3.1 INFORMATION-THEORETIC FOUNDATIONS FOR PROTOTYPE-ENHANCED SEMANTIC
AUGMENTATION

We begin by formalizing semantic data augmentation through the lens of information theory. Our
objective is to generate the augmented views X of an input time series X that preserve its essential
semantic content represented by a latent variable C, while discarding irrelevant information. A core
challenge in self-supervised learning is that C' is unknown. This motivates our introduction of the
learnable prototypes P (specifically, the latent prototypes {p7, }) as tractable proxies for C, enabling a
co-design of the augmentation strategies and prototype refinement.

3.1.1 INFORMATION BOTTLENECK AND ITS CHALLENGE IN SELF-SUPERVISED LEARNING

We let X denote a random variable representing a raw time series, and C' be a latent variable
encapsulating its core semantic information. An augmentation 7' generates an augmented view
X = T(X). The design of T is guided by the Information Bottleneck (IB) principle, which employs
mutual information (MI) to quantify dependence between variables. The principle formalizes this
objective as a trade-off: maximizing the MI with the latent semantics 7(C; X) to retain essential
meaning, while simultaneously minimizing the MI with the input I(.X; X ) to achieve compression:

max [(C; X) — BI(X; X), (M
where 3 > 0 balances semantic fidelity and compression. This aligns with the InfoMin principle for

contrastive learning (Tian et al.|[2020). In SSL, C' is unknown, rendering direct optimization of Eq.
(T) infeasible and necessitating a data-driven proxy for C'.

3.1.2 PROTOTYPES AS SEMANTIC PROXIES AND CONDITIONAL INFORMATION BOTTLENECK

To address the unknown C’, we introduce X learn- Typle 1: Key Notations for ProSAR, where RV
able prototypes, P, representing distinct semantic .1 4s for Random Variable.

clusters (see Table[I). A prototype assignment

variable P € {1,..., K} indicates the semantic ["Symbol Description
cluster most associated with an input time series | X, z Time series (RV, instance)
X. In our framework, this assignment is opera- | X 7 Augmented views of X, z
tionalized in the input space: P is determined by | C Latent semantic variable
identifying the time-domain prototype pj, thatbest | P = {pj} | Setof K latent prototypes
aligns with X. Thus, P remains a deterministic | P Prototype assignment index
function of X (i.e., P = assign(X, {p{})). Sub- | fo Encoder network
stituting P for C' in Eq. (1) yields the prototype- | * Latent representation vector
conditioned IB objective for augmentation design: | Pk Time-domain prototype
- ~ D Latent prototype
max I (P; X) — BI(X; X). 2) | zs,zN Semantic, non-semantic parts of

o T . . M, Binary mask on instance x
This links augmentation design to the learned pro- | 7(4; B) Mutual Information
totypes, setting the stage for their co-design. Com- | 3 IB objective hyperparameter
pared with PCL (Li et al.||2021a) that uses proto- | Lo Overall loss function
types at the objective level, ProSAR distinctively | T Augmentation transformation
leverages these prototypes to actively guide the | Dy Decoder network

augmentation generation process itself through an information-theoretic lens.

To analyze Eq. , we first decompose I(X; X ) by using the fact that P is a function of X.
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Proposition 3.1. If P is determined by X (i.e., P = 9(X) for some function g), then I(X; X') =
I(P;X)+ I(X; X | P).

Substituting this decomposition into Eq. (2)), the objective becomes:
max I(P; X) = BI(P; X) + I(X; X | P)) = max(1 - §)I(P; X) — BI(X; X | P). (3)

This transformed objective leads to the following characterization of an optimal augmentation strategy
with respect to the current prototype assignments P.

Proposition 3.2 (Prototype-Optimal Augmentation). For 5 € (0, 1), an augmentation T™* optimizing
Eq. @) aims to satisfy:

(i) I(X; X | P) = 0: X retains minimal X -information not explained by P;
(ii) I(P;X) — I(P; X): X is maximally informative about P.

Please refer to Appendix [E] for the detailed proof. Proposition [3.2]implements the InfoMin principle
(Tian et al.l 2020) by using the prototypes. It implies that as prototype assignments P (derived
from fp and P) evolve, the optimal augmentation 7™ must also co-evolve. Condition (i) requires
the augmentation to discard information within X that is irrelevant to the prototype assignment
P, thereby isolating the informative part from the task-irrelevant part. Concurrently, Condition (i7)
ensures that X remains maximally informative about P, preserving the core semantic signal, which
is analogous to AutoTCL (Zheng et al.} 2024). However, ProSAR explicitly defines this part through
its relevance to the learned prototypes P.

3.1.3 CO-DESIGN AND ITERATIVE REFINEMENT OF PROTOTYPES AND AUGMENTATIONS

Eq. () underscores the critical interdependency for co-design: the optimal augmentation 7" depends
on the quality of the time-domain prototypes {p} } that determine the assignment P, while these
prototypes are themselves refined by learning from the augmented views. This creates a synergistic
and iterative process.

Data Augmentation Guided by Time-Domain Prototypes: Proposition [3.2]indicates that augmen-
tations should make views highly informative about their assigned prototype P, while discarding
P-irrelevant information from X. Since P is determined by alignment with time-domain prototypes
{p} }, this motivates us to transform X based on the segments that are semantically relevant to these
time-domain anchors.

Dual Prototype Refinement via Augmentations: The refinement of the time-domain prototypes
{p}} is achieved through a synergistic process involving the encoder fy and a corresponding set of
latent prototypes {p7,}. Specifically, the encoder learns from augmented views to produce robust
latent representations (z, z2). These representations are then used to update the latent prototypes
{p}.} to better capture high-level semantic clusters. In turn, these refined latent prototypes guide the
evolution of the time-domain prototypes {p} }, creating an indirect but powerful refinement pathway.

This interplay between the time-domain guidance and latent-space learning fosters a positive feedback
loop: i) better time-domain prototypes lead to more semantically focused augmentations; ii) these
augmentations provide clearer signals for learning improved latent representations and, consequently,
more accurate latent prototypes; and ii7) finally, refined latent prototypes enable the generation of
higher-quality time-domain prototypes. The term —5I(X; X | P) in Eq. (3) actively drives this loop
by promoting challenging positive views that are dissimilar to X in P-irrelevant aspects. Please refer
to Appendix [E] for more details and proofs.

3.2 PROSAR: FRAMEWORK IMPLEMENTATION

Building upon the information-theoretic principles of co-design and iterative refinement from Sec-
tion [3.1] we implement ProSAR in a practical framework. Specifically, Figure [I|provides a visual
schematic of the ProSAR architecture, detailing the main components and their interactions, which
are further elaborated in the subsequent sections.
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Figure 1: Overview of the ProSAR framework. The left panel details the prototype-guided semantic
view generation process. The right panel illustrates the overall training architecture, including
augmentation, encoding, contrastive objectives, and the prototype refinement loop.

3.2.1 PROTOTYPE-GUIDED SEMANTIC VIEW GENERATION

To implement Proposition [3.2] without access to the true C, we employ learnable time-domain
prototype sequences {p}.} (Table .These act as semantic anchors in the input space, whose learning
and conqectiog to latent prototypes p7, are detailed in Section@ An augmented view Z is generated
from an input instance x, as follows.

(a) Semantic Segment Identification: Multiple informative segments, denoted as a set { S, j},
are identified within the input time series x. This process leverages the alignment of x with relevant
time-domain prototypes {pj}, }, computed using Dynamic Time Warping (DTW) (Cuturi & Blondel,
2017). For the input time series x, we first identify its best-matching time-domain prototype via
DTW. Subsequently, sub-segments of x with a high-quality alignment (i.e., low cumulative DTW
path cost) to this specific prototype are considered candidate semantic segments. These candidates
are then typically filtered based on their DTW alignment scores to select the most relevant segments.
Optionally, to further refine this selection by explicitly seeking portions of z most semantically
related to the concepts embodied by the prototypes, a measure of mutual information between a
candidate segment and its guiding prototype can be maximized. A binary mask M, is then defined,
where M, (t) = 1 if time step ¢ falls within any of the selected semantic segments Sy, ;, and
M, (t) = 0 otherwise. This mask identifies the semantic part zs = = ® M, and the non-semantic
part zy =z ® (1 — M,). This entire step utilizes prototypes to estimate the informative parts of
relevant to its underlying semantic structure as captured by the prototype assignments P.

(b) Transformation: Once x g and z are defined, the augmented view Z is constructed by trans-
forming these parts to satisfy the conditions of Proposition 3.2}

1. Transform Semantic Part (xs): The identified semantic part zg undergoes the following two

transformations to produce .

* DTW-Guided Temporal Alignment in the Frequency Domain: The DTW alignment path between
xg and the guiding pj, reveals local temporal misalignments. This information is used to apply
phase compensation in the frequency domain. Identified local time shifts can be compensated by
adjusting the phase of the STFT representation of xg. This aims to normalize temporal variations,
preserving semantic integrity and helping to ensure I(P;2') ~ I(P;zg).

* Controlled Noise Injection: Further, controlled noise, specifically by perturbing frequency domain
amplitudes, is applied to the temporally-aligned segment. x'y is obtained after this step, where
the noise helps in reducing superficial information in x g not essential for identifying P, thereby
contributing to reducing I(X; X | P). Let the result of the two transformations on zg be z's.

2. Perturb Non-Semantic Part (x): The non-semantic part x is heavily modified to produce
a'y. This involves first applying strong noise perturbation to z, followed by random sub-segment
masking within z. This two-fold process aims to thoroughly corrupt information in x  that is
irrelevant to P for these non-semantic regions.

3. Construct Augmented View z: The final augmented view is assembled by combining the
transformed semantic part and the perturbed non-semantic part: & = (z's © M) + (zly © (1 — My)).
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Effectively, x largely preserves the prototype-relevant semantics from x g while minimizing other
information from xg and heavily disrupting x .

This adaptive process, which precisely manipulates the prototype-relevant part x s and the irrelevant
part xn based on guidance from pj, is a direct attempt to instantiate the optimal augmentation
strategy. The nature and learning of these time-domain prototypes p}, and their intrinsic link to latent
prototypes p?, are crucial for semantic consistency and are further detailed below.

3.2.2 PROTOTYPE REFINEMENT STRATEGY

Dynamic prototype updates are crucial for capturing evolving semantic structures. The primary
mechanism for refining latent prototypes p7, is Latent-Space Clustering, aligning with the iterative
improvement principles in Section[3.1.3] We employ the FINCH (Sarfraz et al.,[2019) hierarchical
clustering algorithm, applied to a combined set of instance representations from original views
{zi = fo(x;)} and their corresponding augmented views {Z; = fy(Z;)}. Unlike methods such as
MHCCL (Meng et al.,|2023)) that filter false negatives during clustering, ProSAR tackles this challenge
at its source. By using prototypes to guide the semantic augmentation process (Section[3.2.T)), our
framework generates more coherent positive pairs, intrinsically minimizing the risk of false negatives.
Following clustering, a set of representative cluster centroids is computed. These centroids then guide
the update of the resident latent prototypes p7,. Specifically, each computed cluster centroid is utilized
to update the closest latent prototype pj, via an Exponential Moving Average (EMA), which ensures
a smooth evolution of these resident prototypes.

The refinement of these latent prototypes p7, is coupled with strategies for obtaining and refining the
time-domain prototypes pj, that directly guide augmentation. Two complementary approaches support
this: Input-Space Anchoring and Latent-to-Time-Domain Decoding Consistency. The influence of
these can be adaptively managed.

* Input-Space Anchoring (ISA): This strategy provides initial, data-driven estimates for time-
domain patterns. Raw input segments Sy, are clustered in the time domain. The resulting cluster
centroids, denoted as {c, }, serve as direct, empirically derived reference points.

* Latent-to-Time-Domain Decoding Consistency: This ensures refined latent prototypes pj, map
to meaningful time-domain patterns. A decoder D, generates time series p, = D, (p7.) from each
latent prototype.

The final active time-domain prototypes pj}, are then updated by fusing information from both sources:
a weighted combination of the empirically derived centroids {cj, } from ISA and the decoder outputs
{p} }. This comprehensive and adaptive strategy aims to refine both latent and time-domain prototypes
to robustly capture true semantics, supporting the iterative improvement principles.

3.2.3 LEARNING OBJECTIVES

The encoder fy learns representations z; = fy(x;) and Z; = f»(Z;). The learning process is driven
by a two-component contrastive loss function. The first component is an intra-instance temporal
contrastive 10ss (Linya), inspired by the local contrast mechanism (Tonekaboni et al.,|2021)), designed
to model fine-grained temporal patterns. The second component is an inter-instance semantic
contrastive 1oss (Liner). This loss learns robust semantic relationships by contrasting instances based
on their association with learned prototypes, effectively aligning instances to these semantic anchors.
The detailed expressions for these losses are provided in Appendix [A]

The overall learning objective is a weighted sum of these components:

Etolal = )\intraLinlra + )\interLinter' (4)

4 EMPIRICAL EVALUATION

To thoroughly evaluate the performance of ProSAR, we conduct extensive experiments on both the
time series forecasting and classification tasks. Furthermore, detailed ablation studies are performed
to analyze the contribution of each component within the ProSAR framework. Our experimental
setup, including hyperparameter configurations and full results, is detailed in Appendix
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Table 2: Univariate time series forecasting results.

ProSAR AutoTCL FreRA PPT TimesURL InfoTS TS2Vec TNC TS-TCC CoST
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
ETTh; 0.068 0.198 0.076 0207 0.079 0213 0.087 0221 0.090 0219 0091 0227 0.110 0.252 0.150 0303 0.168 0316 0.091 0228
ETTh, 0.142 0.289 0.158 0299 0.171 0315 0.159 0303 0.I51 0295 0.149 0299 0.170 0.321 0.168 0322 0298 0428 0.161 0.307
ETTm; 0.045 0.151 0.046 0.154 0.051 0.162 0.062 0.174 0.053 0.175 0.050 0.157 0.069 0.186 0.069 0.191 0.158 0299 0.054 0.164
Elec 0.338  0.328 0366 0.345 0360 0.339 0389 0369 0374 0356 0.368 0348 0393 0370 0378 0359 0511 0.603 0375 0.353
WTH 0.160 0.285 0.160 0.287 0.169 0.301 0.177 0307 0.177 0.302 0.176 0.304 0.181 0308 0.175 0.303 0.302 0442 0.183 0.307

Avg. 0.151 0.250 0.161 0.258 0.166 0266 0.175 0275 0.169 0.269 0.167 0.267 0.185 0.287 0.188 0296 0.287 0418 0.173 0.272

Dataset

Table 3: Multivariate time series forecasting results.

ProSAR AutoTCL FreRA PPT TimesURL InfoTS TS2Vec TNC TS-TCC CoST
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
ETTh;  0.625 0.566 0.656 0.590 0.646 0.584 0.750 0.650 0.731 0.645 0.784 1.622 0.788 0.646 0904 0.702 0.748 0.635 0.650 0.585
ETTh, 1.213 0819 1191 0.815 1397 0.893 1529 0928 1.514 0926 1474 0914 1566 0.937 1869 1.053 2120 1.109 1.283 0.851
ETTm; 0.396 0.434 0409 0441 0445 0467 0562 0580 0.561 0.584 0.568 0.521 0.628 0.553 0.740 0.599 0.612 0.564 0409 0.439
Elec 0.159 0.264 0.175 0.272 0.182 0278 0.213 0312 0202 0299 0289 0.376 0319 0397 0.387 0446 0.511 0.602 0.165 0.268
WTH 0.412 0451 0423 0457 0429 0462 0445 0466 0447 0469 0455 0472 0451 0474 0441 0466 0483 0535 0430 0.464

Avg 0.561 0.507 0571 0.515 0.620 0.537 0.700 0.587 0.691 0.585 0.714 0.781 0.750 0.601 0.868 0.653 0.895 0.689 0.587 0.521

Dataset

4.1 TIME SERIES FORECASTING

Datasets and Baselines. Our forecasting evaluation leverages five widely adopted benchmark
datasets: ETTh1, ETTh2, ETTm1, Electricity, Weather, which have been extensively utilized for
benchmarking and publicly available (Zhou et al.,[2021). We compare ProSAR against the state-of-
the-art self-supervised time-series methods: TNC (Tonekaboni et al.| [2021)), TS-TCC (Eldele et al.|
2021),TS2Vec (Yue et al., 2022), CoST (Woo et al., 2022), InfoTS (Luo et al., 2023), AutoTCL
(Zheng et al., [2024),TimesURL (Liu & Chen, 2024), PPT (Kim et al}[2025]) and FreRA (Tian et al.|
2025)).

Experimental Setup. The encoder architecture for ProSAR follows CoST (Woo et al. [2022]),
utilizing a multi-layer dilated CNN backbone, from which we omit the seasonal feature disentangler
module to isolate the impact of our proposed augmentation and prototype mechanisms. The fore-
casting tasks aim to predict L,, future time steps given the preceding L, observations. Following the
evaluation protocol of [Yue et al.| (2022)), representations learned by the pretrained encoder are frozen,
and a linear model with L2 regularization is trained to make the predictions. This linear evaluation
protocol is applied uniformly across all contrastive learning baselines for fair comparison. Outputs
are L,-dimensional for univariate and L, x F'-dimensional for multivariate series . Performance is
quantified using standard Mean Squared Error (MSE) and Mean Absolute Error (MAE) metrics over
the various prediction lengths L.

Quantitative Results. The average forecasting performance across all the datasets for univariate
and multivariate settings is presented in Table [2| and Table ProSAR consistently surpasses
AutoTCL, indicating that the prototype-guided semantic augmentation performs better than the other
augmentation schemes. In the univariate setting, ProSAR achieves a 6.2% lower MSE and a 3.5%
lower MAE, reflecting stronger representations that preserve key dynamics while ensuring view
diversity. In the multivariate setting, ProSAR also leads on average with a 1.8% MSE reduction and
a 1.6% MAE reduction, winning on 4 of 5 datasets when averaging across prediction lengths per
dataset.

4.2 TIME SERIES CLASSIFICATION

Datasets and Baselines. For the time series classification task, ProSAR is evaluated on the compre-
hensive UEA multivariate time series archive (Dau et al.,|2019). We compare ProSAR against the
state-of-the-art self-supervised time-series methods: TNC (Tonekaboni et al., 2021), TS-TCC (Eldele
et al., [2021)), TS2Vec (Yue et al., [2022)), InfoTS (Luo et al., [2023)), AutoTCL (Zheng et al., [2024]),
TimesURL (Liu & Chen, [2024), PPT (Kim et al., [2025) and FreRA (Tian et al.l 2025)).

Experimental Setup. The encoder architecture from TS2Vec (Yue et al.l [2022) is adopted for
ProSAR in these classification experiments. The self-supervised pretraining strategy follows the
forecasting tasks. Evaluation proceeds in a standard supervised manner: a Radial Basis Function



Under review as a conference paper at ICLR 2026

Table 4: Classification result of the UEA dataset.

Metric ProSAR AutoTCL FreRA PPT TimesURL InfoTS TS2Vec TNC TS-TCC

Avg. ACC 0.764 0.742 0.754 0.735 0.752 0.730 0.704  0.670 0.668
Avg. RANK  1.867 3.067 2.900 3.200 2.233 3.133 4367  5.500 5.367

Table 5: Ablation studies.

Metric ProSAR (Full) GST No-zs-T No-xzn-T StaticProto RandAug Jitter Cutout
Avg. MSE 0.151 0.172 0.182 0.176 0.180 0.189 0.183 0.184
Avg. MAE 0.250 0.272 0.281 0.276 0.278 0.289 0.282 0.283

(RBF) kernel Support Vector Machine (SVM) classifier is trained on the representations of the training
set and subsequently evaluated on the test set. Performance is reported in terms of classification
accuracy (ACC) and average rank (RANK) across datasets.

Quantitative Results. Classification results across the 30 UEA datasets is provided in Table
ProSAR attains the highest mean accuracy (0.764) and the best mean rank (1.867) among all methods.
Relative to the best accuracy baseline FreRA, ProSAR yields a 0.01 gain in mean accuracy. It also
improves over the best mean-rank baseline TimesURL by 0.366. These results indicate that ProSAR
learns more discriminative representations for time-series classification.

4.3 ABLATION STUDIES AND MODEL ANALYSIS

To evaluate ProSAR’s core components, we compare the following methods: the full ProSAR; apply-
ing semantic-part transformations globally without segmentation (GST); removing transformations
on identified semantic parts (No-zg-T) or on non-semantic parts (No-z-T); disabling prototype
refinement and using static clustered prototypes (StaticProto); and replacing ProSAR’s augmentation
with Jitter, Cutout, or a random policy (RandAug). As summarized in Table E} all these variants de-
grade from the full ProSAR model, indicating that each component is contributive. GST is close to the
full model but still worse, showing that segmentation-aware transformation provides additional gains
beyond the global semantic transforms. Removing non-semantic transformations is modestly harmful,
while StaticProto is competitive and outperforms No-zg-T and other augmentations, underscoring
the necessity of our proposed transformations and prototype refinement. Jitter/Cutout sit between the
targeted variants and RandAug, highlighting the value of structured, learned augmentations.

5 CONCLUSION

This paper presented ProSAR, a novel self-supervised learning framework for time series that empha-
sizes semantic understanding. ProSAR uniquely incorporated the information-theoretic principles
with learnable prototypes to guide semantic segment extraction via DTW and apply tailored aug-
mentations. Its dual-prototype refinement, where the latent clustering informed the time-domain
prototypes, has fostered a robust representation learning. Comprehensive experiments have demon-
strated ProSAR’s state-of-the-art performance on forecasting and classification benchmarks, showing
the benefits of its explicit semantic-guided approach. Despite its strong performance, ProSAR may
have the following limitations. The DTW-based segmentation can be computationally intensive, and
the framework involves several hyperparameters requiring careful tuning. Furthermore, ensuring
the learned prototypes to optimally capture diverse semantics and achieve high interpretability re-
mains an area for the further investigation. Additionally, this study does not leverage the large-scale
pre-trained models for time series. Future work will explore the incorporation of ProSAR with the
pretrained foundation models. Another promising future direction will be focusing on enhancing
the computational efficiency, exploring a robust hyperparameter optimization, and improving the
prototype management and interpretability.
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ETHICS STATEMENT

This work presents ProSAR, a self-supervised framework for time series representation learning. We
acknowledge the ethical considerations inherent in such a technology. The datasets utilized in our
experiments are publicly available benchmarks, which may contain societal or measurement biases
that the model could inadvertently learn and perpetuate. Potential misuse in sensitive domains like
finance or healthcare, for applications such as unfair market forecasting or discriminatory assessments,
might be a concern. The computational resources required for training such models may also entail a
non-negligible environmental footprint. We emphasize the importance of developing and deploying
such technologies with careful consideration for fairness, data provenance, and societal impact.

REPRODUCIBILITY STATEMENT

We aim to make ProSAR easy to reproduce. The full training loop and loss definitions are given
in Algorithm[I]in Appendix [A} the architectural/backbone choices and the linear/SVM evaluation
protocols are described in Section ] and Appendix and the datasets and preprocessing for
forecasting (ETTh1/2, ETTml, Electricity, Weather) and UEA classification are detailed in Ap-
pendix [B} Hyperparameter ranges and default parameter settings (including temperatures, prototype
counts, DTW/augmentation settings) are summarized in Table[6] and the computing environment
details (Python/PyTorch/CUDA, GPUs) are provided in Appendix Theoretical assumptions
and complete proofs for our information-theoretic results (e.g., the decomposition used to derive
Proposition [3.2)) are given in Appendix [E| Additional ablations, sensitivity analyses, and per-horizon
breakdowns are provided in Appendix [C|
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Appendix

This appendix provides supplementary material to the main paper, organized into the following five
main sections. Section [A]offers a comprehensive description of our ProSAR algorithm, detailing the
overall training framework and the specific formulations of the intra-instance and inter-instance con-
trastive loss functions. Section[B]outlines the experimental setup, covering baseline implementations,
ProSAR'’s hyperparameter configurations, evaluation protocols for both forecasting and classification,
and the computational environment. Section [C] presents extensive additional experimental results.
This includes detailed performance tables for all forecasting and classification benchmarks, results
from ablation studies, discussion on network architectures, parameter sensitivity analysis, and model
convergence plots. Finally, Section [D|provides qualitative insights through various visualizations,
illustrating learned prototypes, alignment mechanisms, and the step-by-step augmentation process.
Detailed theoretical derivations and proofs (Section [E) are also provided at the end of this appendix.

A  ALGORITHM DETAILS

A.1 OVERALL PROSAR ALGORITHM

The ProSAR framework operates through an iterative process that synergistically refines prototypes
and guides semantic augmentation. The overall training loop is detailed in Algorithm

Algorithm 1 ProSAR training algorithm

Require: Raw time series dataset D; Encoder fy; Decoder D,,; Number of prototypes /'; Number
of time-domain prototypes K;; Learning rates ny; Batch size B; Number of epochs F,, 4.

1: Initialize encoder fg, decoder D,.
2: Initialize latent prototypes {p7 }2<_,.
3: Initialize time-domain prototypes {p§ }j{:tl
4: for epoch =1 to F,,,, do
5: for each batch Xz C D do
6: // Step 1: Prototype-Guided Semantic View Generation (Sec 3.2.1 in main paper)
7: For each z € Xp:
8: Identify semantic segments {Syq.,;} in = using current {p§} and DTW alignment.
9: Define semantic part xg = x ©® M, and non-semantic part xy =z ® (1 — M,).
10: Transform zg — x'y (DTW-guided temporal alignment, frequency domain noise).
11: Perturb x y — 2’y (strong noise, random masking).
12: Assemble augmented view Z = (2’ © M) + (z/y © (1 — My)). Let X g be the batch
of augmented views.
13: // Step 2: Encoder Update & Contrastive Loss (Sec 3.2.3 in main paper)
14: Obtain latent representations Zp = fo(Xp), Zp = fo(XB).
15: Calculate intra-instance temporal contrastive 10ss Liy, (see Appendix [A.2.1).
16: Calculate inter-instance semantic contrastive 10ss Liyer (see Appendix |A.2.2)).
17: »Ctotal = AintraLintra + )\interLinter-
18: Update fy by minimizing L (using optimizer with learning rate 7).
19: // Step 3: Prototype Refinement Strategy (Sec 3.2.2 in main paper)
20: Update latent prototypes {p7 }:
21: Cluster Zp U Zp using FINCH to get new cluster centroids {.}.
22: Update {p7,} via EMA towards the closest new centroids { . }.
23: Update time-domain prototypes {p7 }:
24: Input-Space Grounding (ISG): Extract raw segments S...,, from X p, cluster them to
get centroids {c}*}.
25: Latent-to-Time-Domain Decoding Consistency: Generate pi, = D, (p;) for each
updated p7.
26: Update {p?} by fusing {c;*} and relevant {j5}.}.

27: return Trained fo, refined {pj }, {pf}.
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A.2 Loss FUNCTION DETAILS

The overall learning objective is L1 = Aintra Lintra + Ainter Linter-

A.2.1 INTRA-INSTANCE TEMPORAL CONTRASTIVE LOSS (Lintra)

The intra-instance temporal contrastive 1oss (Liy,) is designed to model fine-grained temporal
patterns by enforcing consistency between representations of nearby timestamps within the same
augmented instance, while distinguishing them from representations of distant timestamps. This is
inspired by the local contrast mechanism (Tonekaboni et al.,|2021) and similar to approaches like
TNC (Tonekaboni et al., [2021)) or the local module in TS2Vec (Yue et al .} [2022).

Given an augmented view Z and its latent representation sequence Z = (Z1, 2, .. ., 1), where T” is
the length of the latent sequence. For each anchor timestamp ¢,, we sample a positive timestamp
t,, from its temporal neighborhood (e.g., within a window W;,,¢,.,) and a set of negative timestamps
{tn,;} from outside this neighborhood. The loss for a single anchor Z;, in an instance can be
formulated using InfoNCE:

exp(sim(ita s th )/Tint'ra)

Linga(Zt,) = —log — P
intra (Z2,,) exp(sim(Zt,, 2t,)/ Tintra) +Zj exp(sim(Zs,, Zt, ;) /Tintra)

where sim(-, -) is a similarity function (e.g., cosine similarity) and 7;,,., is a temperature hyperpa-
rameter. The total L., is averaged over all anchor timestamps and all instances in the batch. This
loss encourages the model to learn representations that are smooth over short temporal ranges yet
discriminative over longer ranges.

A.2.2 INTER-INSTANCE SEMANTIC CONTRASTIVE LOSS (Lnrer)

The inter-instance semantic contrastive loss (Liner) leverages learned latent prototypes {p; } to learn
robust semantic relationships. It comprises two components: an inter-instance term (Linter inst) and an
instance-to-prototype term (Linter_proto)» Such that Liner = Linter_inst + Linter_proto- These components
are inspired by principles from PCL (Li et al., | 2021a) and MHCCL (Meng et al., | 2023).

For a batch of instances X p with representations Zp = fy(X ) (and augmentations Zp = fo (X B)),
each z; (or z;) is assigned to its closest prototype plc (i)

Inter-instance Contrastive Loss (Linter inst) This term promotes similarity for an anchor z; with
its augmentation Z; and other instances/augmentations z;, z; assigned to the same prototype plc( i) It

distinguishes them from instances/augmentations zj, zj of different prototypes. The positive set for
an anchor z; is Posing (2;) = {Z;} U {2, %; | ¢(j) = c(4),j # ¢ and z;, Z; from batch}. The negative
set Neg, . (z;) = {zk, 2k | c(k) # ¢(¢) and 2y, Z), from batch}. The InfoNCE loss for z; is:
Zepeposm(zi) exp(sim(z;, €p)/ Tinst)

ep EPOSIng (i) exp(sim(z;, ep)/Tinst) + Ee" ENeg,, () exp(sim(z;, €n) /Tinst)

Linter_inst(zi) = - IOg Z
where Tipg 1S @ temperature. Liner inst 1S the batch-averaged loss, considering both z; and Z; as anchors.

Instance-to-Prototype Contrastive Loss (Linter proto) This term aligns an anchor representation
z; with its assigned prototype plc( 2 (positive) and separates it from all other prototypes pf, k # c(%)
(negatives). The loss for an anchor z; is:

eXp(Sim(Ziypi(i))/Tproto)

8 =K ;
Zk:l eXp(Slm(Zi, pz)/Tproto)

Linter_proto(zi) =—lo

where K is the number of prototypes and 7o is a temperature. Liner_proto 18 the batch-averaged loss,
considering both z; and Z; as anchors.

Thus, the total Liy.; encourages both intra-prototype instance cohesion and precise instance-prototype
alignment.
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B EXPERIMENTAL SETTINGS

B.1 BASELINE IMPLEMENTATION DETAILS

For most baselines, we adopt results reported in their original papers or established benchmark
papers if experimental setups are identical. The linear evaluation protocol for contrastive methods in
forecasting follows Yue et al.[(2022).

B.2 HYPERPARAMETER SETTINGS FOR PROSAR

Key hyperparameters for ProSAR are carefully tuned to achieve optimal performance. Table [6]
summarizes common settings or search ranges for these crucial parameters. This includes aspects
such as the general training setup (like batch size and optimizer); configurations for the encoder and
decoder networks; parameters for ProSAR’s prototype system; details of the semantic augmentation
process; and settings for the contrastive loss functions. Specific values used for each reported result
will be available. As noted in the main paper, ProSAR’s encoder for forecasting is based on a modified
CoST backbone (Woo et al.,2022) (with its seasonal disentangler module omitted to isolate ProSAR’s
contributions), while the TS2Vec (Yue et al.| 2022) encoder architecture is adopted for classification
tasks.

Table 6: Hyperparameter ranges/settings for ProSAR.

Hyperparameter Value Range / Setting Notes

General Setup

Batch Size {32, 64, 128, 256} Depends on memory constraints
Epochs 50 -200 Early stopping based on validation performance
Optimizer AdamW Betas (0.9, 0.999), Weight decay 10—4
Encoder Architecture (fy)

Encoder Learning Rate {1e-5, 5e-5, le-4, 5e-4}  For fy

Backbone Type CoST/ TS2Vec As per main paper

Dropout Rate {0.1,0.2,0.3,0.5} Within encoder backbone

Decoder Architecture (D)

Architecture Type MLP As described in main paper

Layers 3 Implementation specific

Hidden Dimension 128 Implementation specific

Prototype System

Number of Prototypes (K) 32 Dataset dependent, tune via validation
Number of Time-Domain Prototypes (/;) 32 Dataset dependent, tune via validation
Latent Proto. EMA Momentum (c,) 0.99 For p} update; typically high for stability
Time Proto. Update Fusion Weight («;) 0.5 For combining ISG and decoded p,
Augmentation Parameters

Frequency Noise Level (zg) 0.1 For semantic part transform
Non-Semantic Part Noise Level (x ) 0.1 For perturbation of z

Non-Semantic Part Masking Ratio (z ) 0.3 For sub-segment masking in z
Contrastive Loss

Lintre Temp. Tintra 0.1 For intra-instance loss

Linter Temp. Tinter 0.1 For inter-instance loss

Aintra (LOss weight) {0.1, ..., 1.0} Weight for L;pirq

Ainter (LoOss weight) {0.1, ..., 1.0} Weight for L;pier

B.3 EVALUATION PROTOCOL DETAILS

For forecasting tasks, representations learned by the pretrained ProSAR encoder are frozen. A linear
model with L2 regularization is then trained to map these representations to the future L, time steps.
This linear evaluation protocol is applied uniformly across all contrastive learning baselines for fair
comparison. Performance is measured using Mean Squared Error (MSE) and Mean Absolute Error
(MAE). For classification tasks, following established protocols (Yue et al.,[2022), a Radial Basis
Function (RBF) kernel Support Vector Machine (SVM) classifier is trained on the representations
of the training set and evaluated on the test set. Performance is reported as classification accuracy
(ACC) and average rank (RANK) across datasets.
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B.4 COMPUTE RESOURCES

All experiments were conducted on a Linux machine equipped with 4 NVIDIA RTX3090 GPUs,
each with 24GB of memory. The software environment included CUDA 12.x (inferred from
nvidia-cuda-runtime-cul2 12.6.77 and other cul2 packages in our environment list)
and an NVIDIA Driver Version compatible with CUDA 12.x. We used Python 3.9.21 and PyTorch
2.7.0 to construct our project. Key supporting libraries included NumPy 1.24.4, pandas 2.2.3, and
scikit-learn 1.6.1.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 FORECASTING: DETAILED RESULTS
This section provides the full forecasting performance tables. Table[7] will show detailed univariate

results, and Table[8]will show detailed multivariate results, presenting MSE and MAE for all prediction
horizons across all datasets and compared methods.

Table 7: Univariate time series forecasting results.

ProSAR AutoTCL FreRA PPT TimesURL InfoTS TS2Vec TNC TS-TCC CoST
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

24 0.035 0.142 0.037 0.148 0.039 0.151 0.038 0.146 0.036 0.142 0.039 0.149 0.039 0.152 0.057 0.184 0.103 0237 0.040 0.152
48 0.051 0.169 0.176  0.058 0.183 0.058 0.184 0.054 0.146 0.056 0.179 0.062 0.191 0.094 0239 0.139 0279 0.060 0.186
ETTh; 168 0.074 0.205 0.210 0.081 0.221 0.092 0.238 0.096 0.233 0.100 0239 0.134 0282 0.171 0329 0253 0408 0.097 0236
336 0.082 0.221 0.231 0.102 0.245 0.113 0257 0.121 0.267 0.117 0264 0.154 0310 0.192 0357 0.155 0318 0.112 0258
720 0.100 0.253 0272 0.116 0.267 0.132 0.282 0.145 0.307 0.141 0302 0.163 0327 0.235 0408 0.190 0337 0.148 0.306

24 0.075 0.203 0.206 0.085 0.216 0.081 0.211 0.083 0.219 0.081 0215 0.090 0229 0.097 0238 0239 0391 0.079 0207
48 0.111 0.250 0.255 0.134 0268 0.115 0.252 0.116 0.219 0.115 0261 0.124 0273 0.131 0281 0.260 0.405 0.118 0.259
ETTh, 168 0.166 0.313 0.319 0205 0.357 0.178 0325 0.175 0332 0.171 0327 0.208 0360 0.197 0354 0291 0420 0.189 0.339
336 0.178 0.338 0344 0211 0363 0205 0357 0.188 0.347 0.183 0341 0213 0369 0.207 0366 0.336 0453 0.206 0.360
720 0.182 0.343 0.373 0220 0.371 0215 0371 0.186 0.352 0.194 0.357 0214 0374 0207 0370 0362 0472 0214 0.371

24 0014 0.083 0.091 0.015 0.087 0.015 0.086 0.013 0.084 0.014 0.087 0.015 0.092 0.019 0.103 0.089 0228 0.015 0.088
48 0.024 0.114 0.120 0.025 0.118 0.026 0.121 0.024 0.177 0. 0.117 0.027 0.126 0.036 0.142 0.134 0280 0.025 0.117
ETTm; 96  0.035 0.141 0.145 0.039 0.149 0.045 0.163 0.037 0.145 0.142 0.044 0.161 0.054 0.178 0.159 0305 0.038 0.147
288 0.066 0.195 0.191 0.073 0.212 0.091 0.232 0.080 0.214 0.071 0200 0.103 0246 0.098 0244 0204 0327 0.077 0209
672 0.088 0.223 0.225 0.102 0.243 0.133 0.267 0.114 0.255 0.102 0240 0.156 0307 0.136 0.290 0.206 0354 0.113 0.257

24 0237 0.257 0.262 0.259 0246 0.268 0245 0275 0245 0269 0.260 0288 0.252 0278 0.379 0561 0243 0.264
48 0.278 0.284 0.292 0.285 0.288 0.306 0.311 0295 0.307 0.294 0.301 0.319 0324 0300 0.308 0453 0.600 0.292 0.300
168 0.383 0.352 0.365 0.393 0.368 0.428 0.386 0.408 0.379 0402 0.367 0427 0394 0412 0384 0575 0.616 0405 0.375
336 0.452 0.420 0.460 0.521 0442 0.575 0.511 0.548 0464 0.533 0453 0.565 0474 0.548 0.466 0.637 0.633 0.560 0.473
24 0.091 0.208 0.211  0.093 0.210 0.096 0.213 0.093 0211 0.101 0222 0.09 0215 0.102 0221 0221 0386 0.096 0213
48 0131 0.256 0.256 137 0261 0.141 0262 0.131 0255 0.141 0266 0.139 0264 0.139 0255 0406 0.138 0.262
WTH 168 0.180 0.309 0.311 0.197 0.327 0205 0.336 0.199 0327 0.199 0328 0.198 0328 0.198 0339 0458 0207 0.334
336 0.193 0.323 0.325 0201 0.347 0211 0349 0224 0351 0220 0351 0231 0360 0215 0372 0491 0230 0.356
720 0.205 0.330 0.330 0215 0.358 0.231 0373 0236 0.365 . 0.219 0353 0.219 0322 0467 0242 0.370

Avg. 0.151  0.250 0.258 0.166 0.266 0.175 0.275 0.169 0.269 0.167 0267 0.185 0287 0.188 0.287 0418 0.173 0.272

Dataset L,

Elec.

Table 8: Multivariate time series forecasting results.

ProSAR AutoTCL FreRA PPT TimesURL InfoTS TS2Vec TNC TS-TCC
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

24 0381 0432 0389 0439 0386 0437 0482 0511 0494 0518 0.564 0520 0599 0534 0.708 0592 0.516 0.508
48 0438 0469 0447 0477 0442 0471 0552 0.561 0539 0.557 0.607 0.553 0.629 0.555 0.749 0.619 0.644 0.579
ETTh; 168 0.603 0.564 0.615 0.574 0.628 0.579 0.698 0.625 0.680 0.619 0.746 0.638 0.755 0.636 0.884 0.699 0.678 0.619
336 0.780 0.657 0.802 0.671 0.815 0.674 0916 0.722 0.891 0.713 0904 0.722 0.907 0.717 1.020 0.768 0.967 0.754
720 0.925 0.708 1.028 0.789 0.961 0.761 1.102 0.832 1.051 0818 1.098 0811 1.048 0790 1.157 0830 0.935 0.715

24 0345 0438 0.337 0433 0405 0472 0517 0525 0524 0530 0.383 0462 0.398 0461 0.612 0595 0.782 0.666
48 0591 0582 0.572 0.576 0.695 0.688 0.681 0.639 0.679 0.631 0.567 0.582 0578 0.573 0.840 0.716 1357 0.881
ETTh, 168 1.489 5 1470 0947 1.783 1.042 1.812 1.048 1.847 1.052 1789 1.048 1901 1.065 2359 1.213 4318 1.728
336 1715 1.685 1.027 1962 1.099 2281 1.213 2.129 1.182 2.120 1.161 2304 1215 2782 1349 2097 1.145
720 1.926 1.890 1.092 2.142 1.166 2352 1217 2391 1233 2511 1316 2650 1373 2753 1394 2047 1.127
24 0247 0327 0256 0339 0279 0357 0362 0434 0387 0461 0391 0408 0443 0436 0.522 0472 0403 0455

48 0324 0384 0339 039 0376 0420 0438 0.547 0450 0.558 0.503 0475 0582 0.515 0.695 0.567 0.618 0.552
ETTm; 96  0.367 0422 0405 0443 0562 0.579 0.555 0.574 0.537 0503 0.622 0549 0.731 0.595 0.607 0.572

Dataset L.

288  0.452 0.484 0501 0.510 0.674 0.641 0.657 0.636 0.653 0.579 0.709 0.609 0.818 0.649 0.722 0.638

672 0.591 0.566 0.665 0.605 0.773 0.698 0.754 0.690 0.757 0.642 0.786 0.655 0.932 0.712 0.708 0.601

24 0.136 0.250 0.162 0.258 0.193 0.285 0.182 0.276 0255 0.350 0287 0.374 0.354 0423 0379 0.561

Elec. 48 0.149 0.260 0.176 0.269 0.208 0.307 0.199 0.291 0.279 0.368 0.307 0.388 0.376 0.438 0.453 0.600
; 168 0.165 0.275 0.183 0.278 0213 0314 0205 0303 0.302 0385 0.332 0407 0402 0456 0.575 0.616
336 0.187 0.297 0209 0.305 0.238 0.341 0223 0326 0320 0399 0349 0420 0417 0466 0.637 0.633

24 0.287 0364 0293 0.354 0313 0364 0315 0367 0316 0369 0307 0363 0.320 0373 0.356 0.463

48 0.348 0412 0355 0406 0372 0412 0377 0418 0381 0420 0374 0418 0.380 0421 0429 0.500

WTH 168 0.442 0.484 0464 0491 0478 0493 0485 0498 0490 0501 0491 0.501 0479 0495 0511 0.550
336 0.471 0.505 0.498 0.517 0512 0518 0519 0524 0532 0527 0.502 0507 0.505 0514 0.575 0.584

720 0513 0.519 0536 0.543 0.548 0.543 0.541 0538 0.545 0577 0519 0552 0.533 0542 0.556 0.525

Avg. 0.561 0.515 0.620 0.537 0.700 0.587 0.691 0.585 0.714 0.781 0.750 0.601 0.868 0.653 0.895 0.689
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C.2 CLASSIFICATION: DETAILED RESULTS

Table[9]presents the comprehensive classification accuracy results on the 30 UEA datasets for ProSAR
and all baseline methods. ProSAR demonstrates a strong average rank and high accuracy across many

datasets.
Table 9: Classification result of the UEA dataset.

Dataset ProSAR AutoTCL FreRA PPT TimesURL InfoTS TS2Vec TNC TS-TCC
ArticularyWordRecognition  0.993 0.983 0.990 0.987 0.990 0.993 0.987 0.973 0.953
AtrialFibrillation 0.600 0.467 0.467 0.400 0.400 0.267 0200 0.133 0.267
BasicMotions 1.000 1.000 1.000 1.000 1.000 1.000 0.975 0.975 1.000
CharacterTrajectories 0.995 0976  0.991 0.990  0.990 0987 0.995 0.967 0.985
Cricket 1.000 1.000 1.000 1.000 1.000 1.000 0.972 0958 0.917
DuckDuckGeese 0.680 0.700  0.760 0.680 0.720 0.600 0.680 0.460 0.380
EigenWorms 0.901 0.901 0.863 0.847 0.870 0.748 0.847 0.840 0.779
Epilepsy 0.978 0.978 0.993 0.978 0.978 0993 0.964 0.957 0.957
ERing 0.953 0.944 0919 0.944 0.985 0.953 0.874 0.852 0.904
EthanolConcentration 0.354 0.354 0.323 0.346 0.304 0.323 0.308 0.297 0.285
FaceDetection 0.585 0.581 0.581 0.664 0.608 0.525 0.501 0.536 0.544
FingerMovements 0.660 0.640 0.610 0.620 0.660 0.620 0.480 0.470 0.460
HandMovementDirection 0.473 0.432  0.514 0.432 0.432 0.514 0.338 0.324 0.243
Handwriting 0.572 0.384  0.593 0.242 0.462 0.554 0.515 0.249 0.498
Heartbeat 0.824 0.785 0.785 0.766 0.746 0.771 0.683 0.746 0.751
JapaneseVowels 0.984 0.984  0.965 0.984 0.989 0.986 0.984 0.978 0.930
Libras 0911 0.833 0911 0.889 0.922 0.889 0.867 0.817 0.822
LSST 0.635 0.554  0.494 0.595 0.602 0.593 0.537 0.595 0474
MotorImagery 0.620 0.570  0.550 0.610 0.680 0.610 0.510 0.500 0.610
NATOPS 0.939 0.944  0.900 0.917 0.961 0.939 0.928 0911 0.822
PEMS-SF 0.821 0.838 0.746 0.821 0.821 0.757 0.682 0.699 0.734
PenDigits 0.989 0.984 0.973 0.984 0.989 0.989 0.989 0.979 0.974
PhonemeSpectra 0.237 0.218 0.274 0.233 0.237 0.233 0.233 0.207 0.252
RacketSports 0.862 0.914 0.888 0.862 0.862 0.829 0.855 0.776 0.816
SelfRegulationSCP1 0.891 0.891 0.908 0.932 0.908 0.887 0.812 0.799 0.823
SelfRegulationSCP2 0.622 0.578 0.622 0.561 0.600 0.527 0.578 0.550 0.533
SpokenArabicDigits 0.988 0.925 0.984 0.981 0.985 0988 0932 0.934 0.970
StandWalkJump 0.467 0.533 0.667 0.467 0.467 0.467 0.467 0400 0.333
UWaveGestureLibrary 0.903 0.893 0.900 0.856 0.919 0.906 0.884 0.753 0.753
InsectWingbeat 0.488 0.488 0.462 0.472 0.473 0472 0466 0.469 0.264
Avg. ACC 0.764 0.742  0.754 0.735 0.752 0.730 0.704 0.670 0.668
Avg. RANK 1.867 3.067 2.900 3.200 2.233 3.133 4367 5500 5.367

C.3 ABLATION STUDIES: DETAILED RESULTS

The main paper summarizes the average forecasting performance of ablation studies. Detailed
per-dataset results for these ablations (ProSAR (Full), GST, No-xs-T, No-x 5-T, StaticProto, and
comparisons with Jitter, Cutout, RandAug are provided in Table[TI0] These results underscore the
contribution of each component of ProSAR, particularly the prototype-guided segmentation and
transformation, and the dynamic prototype refinement.

C.4 NETWORK ARCHITECTURE CHOICES

ProSAR employs distinct encoder architectures for its forecasting and classification tasks, primarily
to ensure fair comparisons with state-of-the-art methods by using established backbones relevant to
each task domain.

For time series forecasting, the encoder architecture in ProSAR is designed to mirror that of CoST
(Woo et al., [2022). This involves a multi-layer dilated Convolutional Neural Network (CNN) as its
backbone and we remove the seasonal feature disentangler module. For time series classification
experiments, ProSAR adopts the encoder architecture from TS2Vec (Yue et al., [2022). This allows
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Table 10: Ablation study results for univariate forecasting tasks.

ProSAR (Full) GST No-zg-T No-zn-T StaticProto RandAug Jitter Cutout
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

24 0.035 0.142 0.047 0.161 0.052 0.168 0.050 0.164 0.055 0.173 0.056 0.185 0.054 0.176 0.053 0.172
48 0.051 0.169 0.067 0.191 0.074 0.200 0.071 0.196 0.078 0.206 0.080 0219 0.076 0210 0.074 0.205
ETTh; 168 0.074 0.205 0.097 0.229 0.107 0240 0.103 0.235 0.113 0.248 0.116 0264 0.110 0.253 0.107 0.246
336 0.082 0.221 0.113 0.248 0.125 0.260 0.120 0255 0.132 0270 0.136 0.287 0.129 0.277 0.126  0.269
720 0.100 0.253 0.133 0.283 0.147 0.299 0.141 0292 0.155 0308 0.160 0.327 0.152 0.315 0.148 0.307

24 0.075 0203 0.093 0.219 0.103 0.230 0.099 0225 0.109 0238 0.112 0.254 0.106 0.244 0.103 0.238
48 0111 0.250 0.138 0272 0.152 0.286 0.146 0.279 0.161 0294 0.165 0312 0.157 0.301 0.153 0.293
ETTh, 168 0.166 0313 0.211 0.349 0233 0368 0224 0360 0.247 0380 0.253 0404 0241 0388 0.235 0.379
336 0.178 0.338 0.236 0.379 0.260 0400 0250 0.391 0276 0412 0283 0438 0.269 0420 0262 0411
720 0.182 0.353 0.238 0.384 0.263 0405 0253 0396 0279 0418 0285 0443 0.271 0425 0264 0416

24 0.014 0.083 0.016 0.090 0.018 0.094 0.017 0.092 0.019 0.09 0.019 0.104 0.018 0.101 0.018 0.098
48 0.024 0.114 0.029 0.123 0.032 0.130 0.030 0.126 0.033 0.135 0.034 0.143 0.032 0.137 0.031 0.134
ETTm; 96  0.035 0.141 0.042 0.153 0.047 0.161 0.045 0.157 0.049 0.167 0.051 0.177 0.048 0.170 0.047 0.166
288 0.066 0.195 0.081 0.213 0.089 0.225 0.086 0219 0.095 0233 0.098 0.247 0.093 0.238 0.090 0.232
672 0.088 0.223 0.109 0.243 0.121 0.257 0.116 0251 0.128 0266 0.131 0.282 0.125 0.272 0.122 0.265

24 0.237 0257 0240 0.271 0.259 0.278 0.255 0270 0270 0277 0280 0306 0.268 0.284 0.265 0.285
Elec 48  0.278 0.284 0283 0.299 0306 0.307 0.301 0.299 0.318 0.306 0.331 0337 0316 0313 0312 0314
: 168 0383 0.352 0.390 0.374 0422 0384 0414 0374 0440 0.383 0455 0421 0435 0390 0429 0.394

336 0.523 0.440 0.536 0476 0.580 0.490 0.570 0.477 0.604 0489 0.624 0.536 0.596 0.497 0.589 0.502

24 0.091 0208 0.113 0.227 0.125 0.240 0.120 0233 0.132 0248 0.136 0.263 0.129 0.253 0.126 0.247
48 0131 0256 0.165 0284 0.182 0300 0.175 0.292 0.193 0310 0.198 0329 0.188 0.316 0.183 0.308
WTH 168 0.180 0.309 0.223 0.337 0.247 0.356 0.237 0.348 0261 0368 0.267 0390 0.254 0.375 0.248 0.366
336 0193 0.323 0240 0352 0.265 0.372 0254 0363 0280 0385 0286 0409 0.272 0.393 0.266 0.383
720 0.198 0.330 0.248 0.364 0.274 0.385 0.263 0376 0290 0398 0.297 0422 0.282 0406 0276 0.396

Avg. 0.151  0.250 0.172 0272 0.182 0281 0.176 0.276 0.180 0.278 0.189 0.289 0.183 0.282 0.184 0.283

Dataset L

for a consistent comparison framework with other methods evaluated using this common backbone
for classification benchmarks. The main forecasting results presented in Section 4.1 of the paper
utilize the ProSAR framework primarily with the CoST-derived backbone. Table[IT]serves as an
illustrative results for univariate forecasting tasks, comparing the performance of ProSAR’s core
methodology when integrated with the CoST backbone versus the TS2Vec backbone. As indicated by
the metrics, a slight decrease in performance is observed when the TS2Vec backbone is used for these
forecasting tasks instead of the CoST backbone, highlighting the effective synergy of the selected
CoST-based architecture for ProSAR’s forecasting setup. This also demonstrates the adaptability of
the ProSAR framework’s core components, which are potentially compatible with other encoders,
with such integrations being subjects for future exploration.

Table 11: Univariate forecasting results with different backbones.

Method ETTh; ETThy ETTm, Elec. WTH
ProSAR (CoST backbone) 0.068/0.198 0.142/0.289 0.045/0.151 0.338/0.328 0.160/0.285
ProSAR (TS2Vec backbone) | 0.072/0.208 0.150/0.305 0.048/0.160 0.370/0.350 0.167/0.301

C.5 PARAMETER SENSITIVITY ANALYSIS

This section explores ProSAR’s sensitivity to key hyperparameters. We vary parameters of loss
component weights (Ainga, Ainter) OVer reasonable ranges and observe their impact on performance on
the ETTh1 dataset. Figure 2] presents this analysis, showing Mean Squared Error (MSE) and Mean
Absolute Error (MAE) versus hyperparameter values. This analysis helps understand the robustness
of ProSAR and provides guidance for hyperparameter selection.

C.6  CONVERGENCE ANALYSIS

To demonstrate the training stability of ProSAR, we plot the training loss curves for five representative
datasets. FigureE] shows the evolution of the total loss Ly, as well as its main components Lipy,
and Liyer (Linter_inst a0d Liner_proto), OVer training epochs. The curves across these diverse datasets
indicate that ProSAR generally converges smoothly.
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Figure 2: Sensitivity analysis of ProSAR on the ETThl dataset, illustrating the impact of key
hyperparameter variations on (a) Mean Squared Error (MSE) and (b) Mean Absolute Error (MAE).
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Figure 3: Convergence of ProSAR training losses on five representative datasets: ETTh1, ETTh2,
ETTml, Electricity, and WTH. Each subfigure shows the total loss (L) and its primary components

over epochs.
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D VISUALIZATIONS AND QUALITATIVE ANALYSIS

This section provides visual examples and qualitative analysis of ProSAR’s key mechanisms, using the
Cricket dataset as a representative example for illustration. These visualizations aim to offer a clearer
understanding of how ProSAR identifies semantic content and generates diverse, yet semantically
consistent, augmented views.

D.1 VISUALIZATION OF LEARNED TIME-DOMAIN PROTOTYPES

To offer insight into the patterns ProSAR learns to recognize, Figure [ illustrates the evolution
of time-domain prototypes {p} }. The visualizations compare example prototypes from an early
stage of training (left column), where they might appear more noisy or less defined, with their
counterparts from a later, more converged stage of training (right column) on the Cricket dataset.
This comparison aims to show how these prototypes gradually learn to capture more distinct and
semantically meaningful temporal structures as training progresses, refining their ability to guide the
augmentation process effectively.

L 08 L 08
2 0.4 2 0.4
02 02

0 20 40 60 8 100 120 0 20 40 60 8 100 120
Time Step Time Step

(a) Time-Domain Prototype Example 1 (b) Time-Domain Prototype Example 2

Figure 4: Visualizations of learned time-domain prototypes.

D.2 VISUALIZATION OF LATENT SPACE PROTOTYPES

To understand the structure of the learned semantic anchors in the latent space, Figure [5] presents
two t-SNE visualizations of the latent prototypes {pj } derived from the Cricket dataset after training
ProSAR. An effective set of latent prototypes should ideally be well-distributed in the latent space,
indicating that they capture diverse semantic clusters. These visualizations (from different training
stages) help assess the separation and grouping of these latent concepts, which underpins the model’s
ability to differentiate between semantically distinct time series patterns.

oo
o
s

SNE Component 2
s
™
o
o
Prototype Index
SNE Component 2
3
o
o~
o
oy
Prototype Index

u

—30 20 10 20 —40 —20 20 40

0 0
tSNE Component 1 tSNE Component 1

(a) Latent Prototypes Visualization (View 1) (b) Latent Prototypes Visualization (View 2)

Figure 5: Visualizations of learned latent space prototypes.
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D.3 VISUALIZATION OF DTW ALIGNMENT MATRIX

Dynamic Time Warping (DTW) alignment is crucial for ProSAR’s semantic segment identification,
enabling the model to find correspondences between an input series and a time-domain prototype
despite temporal variations. Figure[6|shows examples of DTW alignment matrices. In these matrices,
paths that run horizontally or vertically for extended periods indicate significant time insertions
or deletions, often corresponding to non-semantic or misaligned segments that might be "broken"
or excluded from the core semantic segment. Conversely, paths that approximate a diagonal line,
even with local deviations, signify strong temporal alignment and are considered part of the aligned
semantic structure.
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(a) DTW Alignment Example 1 (Color) (b) DTW Alignment Example 1 (Binarized)
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Alignmer

00

T_y (Length of sequence Y) T_y (Length of sequence Y)

(c) DTW Alignment Example 2 (Color) (d) DTW Alignment Example 2 (Binarized)

Figure 6: Visualizations of DTW alignment matrices (color indicating path costs) and their binarized
counterparts used for segmentation.

D.4 VISUALIZATIONS OF SEMANTIC SEGMENT IDENTIFICATION AND AUGMENTATION

Figure[7|provides a detailed, step-by-step illustration of ProSAR’s prototype-guided augmentation
mechanism applied to a sample time series from the Cricket dataset. This process aims to preserve
core semantic content while introducing diversity, guided by the information-theoretic principles
outlined in the main paper. The stages are: (a) The original input series x. (b) The specific time-
domain prototype p}, selected by DTW as most similar to x. (c) The identified semantic segment
zrg = & ® M,, extracted from x based on high-quality alignment with p’. M, is the binary mask
derived from DTW. (d) The original non-semantic part zy = 2 ® (1 — M,,), representing regions of
x with poor alignment to p%.. (e) The transformed semantic segment 2y This involves DTW-guided
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temporal alignment normalization and controlled noise injection in the frequency domain, designed
to preserve essential semantics while discarding P-irrelevant nuisance variability. (f) The perturbed
non-semantic part zy. This part is heavily modified through noise and random sub-segment masking
to corrupt P-irrelevant information. (g) The final augmented view Z, constructed by combining the
transformed semantic part and the perturbed non-semantic part: & = (z's © M) + (zly © (1 — My)).
This visual walkthrough clarifies how learnable prototypes and DTW-guided segmentation enable
ProSAR to generate semantically coherent and diverse augmentations.
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Figure 7: Step-by-step visualization of ProSAR’s prototype-guided semantic augmentation process
(a-g).

E THEORETICAL DERIVATIONS AND PROOFS

This appendix provides complete and self—contained proofs for the theoretical claims in the main
paper. For ease of cross-referencing we follow the numbering of the propositions and theorems used
in the main text while introducing additional appendix-only labels where necessary.

Notation recap. X: raw time series; X = 7'(X): augmented view; Z = f5(X): latent representa-
tion; P = g(X): hard assignment to prototypes; 3 € (0, 1): IB trade-off parameter.

E.1 PROOF OF PROPOSITION@ (SEMANTIC INFORMATION DECOMPOSITION)

We must show I(X; X) =I(P;X) + I(X; X | P).

Step 1 (chain rule). For any triplet (V7, V5, V3) the chain rule for mu~tua1 information states
I(Vy, Va3 Vs) = I(Vh; Vs) + I(Va; Vs | Vh). Setting (Vi, Vo, V3) = (P, X, X) yields

I(P,X;X)=1(P;X)+I(X;X | P). 5)
Step 2 (deterministic prototype map). Because I’ = g(X) is deterministic, H (P, X) = H(X) +
H(P | X) = H(X), and similarly, H(P, X | X) = H(X | X) + H(P | X,X) = H(X | X).
Hence I(P, X; X) = H(X) — H(X | X) = I(X; X).

Step 3 (substitution). Substituting the above equality into equation [3|proves the desired identity. H
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E.2 PROOF OF PROPOSITION[3.2] (PROTOTYPE-OPTIMAL AUGMENTATION)

Recall the optimization objective

L(T)=(1-B)I(P;X) — BI(X;X|P), 0<B<1. (©)

Term 1. Because of the data—processing inequality (DPI) for the Markov chain P < X — X,
I(P; X) < I(P; X). The upper bound is attained iff X retains every bit of information that X
contains about P, ie. I(P; X) = I(P; X).

Term 2. The conditional mutual information I(.X; X | P) > 0 with equality iff X and X are
conditionally independent given P (X <> P+ X).

Optimality conditions. Maximizing equation [6]therefore requires simultaneously

@) I(X;X | P) =0,
(i) I(P; X) — I(P; X).

These two conditions are exactly those stated in the main text. ]

E.3 INFORMATION-THEORETIC INTERPRETATION OF PROTOTYPE UPDATES

Prototype refinement can be viewed through the Information Bottleneck (IB) lens. Assume the
downstream target is an (unknown) random variable Y,y that depends on the representation Z =
fo(X). A good assignment variable P should

(a) retain as much information as possible about Y, i.e. maximise I(P; Y5k );

(b) yet be a compressed summary of Z, controlled by I(P; Z).

IB formulation. This trade-off is formalized by

max [I(P;Y; — ~I(P; Z), > 0. 7
a(P|Z) ( task) Y ( ) Y ()

Self-supervised surrogate. Because Y, is unavailable in self-supervised pre-training, we adopt a
common surrogate: maximise I(P; Z) while penalising the complexity of P. Two equivalent forms
appear in the literature:

(i) arate-distortion variant max, I(P;Z) — AH (P) with fixed X;
(i) a capacity-constrained variant max, I(P; Z) s.t. H(P)<C.

Remark. In PROSAR we simply fix the prototype count to [; this enforces a constant upper bound
H(P) <log K, so the capacity-constrained form is satisfied implicitly and we do not write H (P)
explicitly in later proofs.

Remark. In the absence of labels, keeping the original —vI(P; Z) term would drive P to discard all
information. Hence we replace the supervised fidelity term I (P; Yi,) by I(P; Z) and moves the
compression pressure to a separate regulariser such as H (P) or a fixed cluster count K.

On the use of prototypes as semantic proxies. In Eq. (3) the unknown semantic variable C is
replaced by the prototype index P = ¢(X). This mirrors the replacement of Y« by Z in the
information—bottleneck objective: both substitutions turn unobservable quantities into deterministic
proxies that are refined during training. Because P is a deterministic function of X, substituting
C — P does not affect the mutual-information identities, while the iterative refinement loop
guarantees that the quality of this proxy can only improve. Extensive experiments confirm that the
learned prototypes indeed capture task—relevant semantics.
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Hard clustering as a variational IB solver. Let the encoder outputs be i.i.d. samples from an
isotropic Gaussian mixture, p(z | P = k) = N (uux, 0%I) with uniform priors. The log-likelihood
of data is log p(Z | {ux}) = —50z Yk Doicc, I12i — pkl|3 + const. Maximising this likelihood
under hard assignments (P =k | z) = 1]k = argmin; ||z — p;||] is precisely Lloyd’s distortion
minimization equation E} Moreover,

I(P;Z)=H(Z)— H(Z | P) (definition)

K

d (®)
>H(Z)- N E E log(%6 lz: — ,u;g||§) (Gaussian max—entropy bound)
k=1ieC}

so decreasing distortion increases a lower bound on I(P; Z). Hence any algorithm that monotonically
decreases equation ] performs a greedy ascent on the IB surrogate equation[7} This directly connects
to Theorem [E.T| proved next.

Having established the IB perspective, we now formalise the guarantee for arbitrary distor-
tion—decreasing hard-clustering (Theorem [E.T)), and then instantiate it for FINCH and input-space
k-means.

E.4 PROTOTYPE-IB OPTIMALITY FOR DISTORTION-DECREASING HARD CLUSTERING

Below we prove a generic result (Theorem showing that any hard-clustering algorithm that
monotonically decreases the within—cluster /5 distortion also monotonically increases a lower bound
on I(P; Z). Afterwards we instantiate the theorem for FINCH and for vanilla k-means applied in the
input space.

Theorem E.1 (Prototype-IB Optimality). Let Z = {z;}}Y, C R% A hard-clustering iteration
produces assignments P() ¢ [K]N and centroids ug). Define the within—cluster {5 distortion

K
D =Y > |z w3 )

k=1 jec®

where C’,it) ={i: Pi(t) =k} and u,(f) = Z z;. If the algorithm guarantees Dy 1 < Dy

()
G| iec®

for every t, then

H(z|P"Y) < H(z|PY), 1(P*V;2z) > 1(PY;Z).

Consequently the sequence {1 (P(t); Z) }4>0 is monotone non-decreasing and converges at a (possibly
local) minimum of D.

Proof. Upper bound on H(Z | P). For each cluster k the empirical conditional distribution pj,
has covariance matrix ¥; = ﬁ Y ico, (i — pi) (i — ) . Maximum-entropy principle gives
h(pr) < 3log[(2me)?det X;]. Using A.M.~G.M. inequality det £, < (4tr;)? and tr¥), =
107 2iecy, |12 — 1k 3, we obtain the bound

H(Z|P) < %Z Zlog(z—:;e ||zi—uk||§)- (10)

k €Cy
The right-hand side is a strictly increasing function of every squared distance and hence of the
aggregate distortion D;.

Monotone decrease of H(Z | P). Because D;y; < D; by assumption, equation |10| implies
H(Z | PO < H(Z | PW).

Monotone ascent of I(P; Z). H(Z) is dataset-constant, therefore I(P(*+1); Z) — I(P®); Z)
H(Z| P®)Y—H(Z | Pt1) > 0. Since distortion is bounded below, { D; } and hence {I(P"); Z)
converge.

o=
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E.5 CONSEQUENCES FOR FINCH AND INPUT-SPACE k-MEANS

Corollary E.2 (FINCH updates). Each merge operation in FINCH (Sarfraz et al.|, |2019) strictly

decreases the distortion equation@ hence by Theorem the sequence 1 (Péi{VCH; Z) is monotone
non-decreasing.

Proof. Let clusters A, B be merged because A’s centroid is B’s nearest neighbour and vice-versa.
Writing n 4, np for the sizes and p 4, 1 for the centroids, standard variance decomposition gives

Do M= mausld =D lle = palls + Yl — usl + ||NA — nall3.

z€ AUB z€A z€B
Because A, B are mutual nearest neighbours, the cross term is smaller than the distortion that would

be incurred by keeping them separate and measuring each point in A relative to up (or vice-versa).
Hence the global distortion decreases. O

Corollary E.3 (Input-space k-means grounding). Lloyd iterations of (mini-batch) k-means on DTW-
aligned raw segments strictly decrease their within-cluster distortion; therefore Theorem|[E|applies

and I(P, t(ltrzm, Staw ) monotonically increases.

Proof. Classic proof of Lloyd’s algorithm shows that the assignment step followed by centroid re-
estimation never increases distortion; equality holds only at a local optimum. Substituting Z < Sya
gives the present statement. O

E.66 MONOTONIC IMPROVEMENT OF THE JOINT OBJECTIVE

The last two subsections have established that (a) every prototype-update step based on a distor-
tion—decreasing hard-clustering algorithm strictly lowers the conditional entropy H(Z | P) and
therefore raises a provable lower bound on the semantic capacity I(P; Z); and (b) for a fixed set of
prototype assignments P, Proposition [3.2]tells us how to choose an augmentation mapping 7" that
maximises the prototype-conditioned IB functional F (P, T'). We now glue these two facts together
and show that alternating them in a loop produces a training trajectory whose objective value can
never decrease.

Recall the prototype-conditioned objective
F(P,T)=(1-B)I(P;X)-BI(X;X|P), X=T(X),0<p<L

The first term rewards semantic fidelity of the view X, whereas the second term penalises prototype-
irrelevant overlap with the original instance X.

Theorem E.4 (Monotone Improvement Loop). Let the following two-step iteration be applied for
t=0,1,2,...:

(a) Prototype update. Given the current encoder fq) and augmentation T, recompute latent

representations Z() = = fow (X) and obtain new assignments P 1) by a hard-clustering step that
satisfies Dyy1 < D, (e.g. FINCH or Lloyd k-means).

(b) Augmentation update. With the assignments P4+ fixed, choose an augmentation T4+ e
arg maxy F(PUD T)
Define the expected joint objective J*) = Ex [ F (P, TM)]. Then
T > 7O forailt
Proof. Step (a). T and f,., are frozen, hence X is unchanged while we only replace P(*) by
pt+1), By Corollary- / - the prototype update lowers D; and therefore raises I(P; Z).

Because X is a deterministic function of X, the conditional term I(X; X | P) is unaffected by
merely relabeling the cluster index. Hence

]_-(P(tJrl), T(t)) > ]:(p(t)7 T(t)). (11)
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Step (b). With P(+1) fixed, the augmentation step chooses T*t1) as a global maximiser of
F(PFY .); therefore
F(PUAD Dy > p(pU+l) @), (12)

Combine. We chain inequalities [IT] and equation [I2] then take expectation over the minibatch
distribution of X, to obtain the desired monotone sequence ./ ®), O

Interpretation and practice. Theorem[E.4] provides a formal basis for the intuitive positive-
feedback loop inherent in PROSAR’s design: an improved set of prototype assignments P (capturing
semantics in Z more effectively) enables the augmentation module to generate views X that are
more tightly aligned with these underlying semantics (as per Proposition[3.2)). These higher-quality,
semantically focused positive views can sharpen the contrastive loss signals used to train the encoder
fo. Consequently, this leads to a better encoder fy, which in turn produces latent representations
Z with potentially reduced noise and clearer semantic structure. This clearer structure allows the
subsequent clustering step to obtain even better prototypes. The process then repeats, ideally under
progressively improving conditions.

Each full loop iteration is guaranteed, under the assumptions of the theorem, never to decrease the
joint objective .7 (*). This characteristic can contribute to stable convergence behavior in practice and
may reduce the need for delicate scheduling heuristics when alternating between prototype refinement
and augmentation module fine-tuning. The inequality in 7(*+1) > 7 would become an equality
if (a) the clustering step reaches a fixed point in terms of distortion (and thus the I(P; Z) lower
bound), and (b) the current augmentation mapping 7'(*) already satisfies the optimality conditions of
Proposition with respect to P(t+1),

F DECLARATION ON THE USE OF LARGE LANGUAGE MODELS

In the preparation of this manuscript, a large language model (LLM) was employed as a support tool
for a specific, non-core task. Its application was restricted to:

* Language Refinement: Enhancing the clarity, fluency, and grammatical precision of the text.

* Code Structuring: Assisting in the refactoring and commenting of the project’s source code
for improved readability. project.

We wish to clarify that all foundational scientific contributions of this paper—encompassing the cen-
tral concept and architectural design of ProSAR, the novel training methodology, and the subsequent
analysis of results—originated solely from the human authors. The role of the LLM was strictly
confined to the execution-level task of language refinement and did not influence the intellectual
conception or strategic direction of this research. The authors have critically reviewed and edited all
model-assisted text and take full and final responsibility for the entirety of this work.
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