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Abstract

We introduce a new type of informative and
yet cognitively lightweight query mechanism
for collecting human feedback, called the
perceptual adjustment query (PAQ). The PAQ
combines advantages from both ordinal and car-
dinal queries. We showcase the PAQ mechanism
by collecting observations on a metric space in-
volving an unknown Mahalanobis distance, and
consider the problem of learning this metric from
PAQ measurements. This gives rise to a type
of high dimensional, low-rank matrix estimation
problem under a new measurement scheme to
which standard matrix estimators cannot be ap-
plied. Consequently, we develop a two-stage esti-
mator for metric learning from PAQs, and provide
sample complexity guarantees for this estimator.
We demonstrate the performance along with var-
ious properties of the estimator by extensive nu-
merical simulations.

1. Introduction

Should we query cardinal or ordinal data from people? This
question arises in a broad range of applications, such as
in conducting surveys (Rankin & Grube, 1980; Harzing
et al., 2009; Yannakakis & Hallam, 2011), grading assign-
ments (Shah et al., 2013; Raman & Joachims, 2014), and
evaluating employees (Goffin & Olson, 2011), to name a
few. Cardinal data refer to numerical scores. For example,
teachers score writing assignments in the range of 0-100,
and survey respondents express their agreement with a state-
ment on a scale of 1 to 7. Ordinal data refer to relations
between items, such as pairwise comparisons (choosing the
better item in a pair) and rankings (ordering all or a subset
of items). There is no free lunch, and both cardinal and
ordinal queries have pros and cons.
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On the one hand, collecting ordinal data is typically more
efficient in terms of worker time and cognitive load (Shah
et al., 2016), and surprisingly often matches or exceeds the
accuracy of cardinal data (Rankin & Grube, 1980; Shah
et al., 2016). The information contained in ordinal queries,
however, is fundamentally limited and lacks expressiveness.
On the other hand, cardinal data are more expressive (Wang
& Shah, 2019). For example, scoring two items 1 and 2
conveys a very different message from scoring them 9 and
10 or 1 and 10, although all yield the same pairwise compar-
ison outcome. However, the expressiveness of cardinal data
often comes at the cost of miscalibration: Prior work has
shown that different people have different scales (Griffin
& Brenner, 2008), and even one person’s scale can drift
over time (e.g., Harik et al., 2009; Myford & Wolfe, 2009).
These inter-person and intra-person discrepancies make it
challenging to interpret and aggregate raw scores effectively.

The goal of this paper is to study whether one can combine
the advantages of cardinal and ordinal queries to achieve
the best of both worlds. Specifically, we pose the research
question:

Can we develop a new paradigm for human data
elicitation that is expressive, accurate, and cogni-
tively lightweight?

Towards this goal, we extract key features of both cardinal
and ordinal queries, and propose a new type of query scheme
that we term the perceptual adjustment query (PAQ). As a
thought experiment, consider the task of learning an individ-
ual’s preferences. The query can take the following forms:

* Ordinal: Do you prefer a $2 bus ride that takes 40 min-
utes or a $25 taxi that takes 10 minutes?

* Cardinal: On a scale of 0 to 1, how much do you value a
$2 bus ride that takes 40 minutes?

* Proposed approach: To reach the same level of prefer-
ence for a $2 bus trip that takes 40 minutes, a taxi that
takes 10 minutes would cost $z.

A user interface for the proposed approach is shown in Fig-
ure 1 (top). We present the user a reference item (a $2 bus
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Figure 1: The user interface for preference learning (top)
and similarity learning (bottom).

ride that takes 40 minutes), and a sliding bar representing
the number of dollars (x) for the 10 minute taxi cost. As the
user adjusts the slider, the value of x starts with 0 and grad-
ually increases on a continuous scale. The user is instructed
to place the slider at a point where they equally prefer a $2
bus ride and a taxi ride of x dollars. The PAQ thus com-
bines cardinal and ordinal elicitation, by asking the user to
make cognitive judgments in a relative sense by compar-
ing items, while reporting a numerical value derived from
the location of the slider. The ordinal reasoning endows
the query with accuracy and efficiency, while the cardinal
output enables a more expressive response. Moreover, this
cardinal output mitigates miscalibration, because instead of
asking to rate on a subjective and ambiguous notion (i.e.,
preference), we provide the user a reference object to anchor
their rating scale (i.e., the taxi ride amount that gives the
same preference as the bus ride).

In this paper, we apply the PAQ scheme in the framework of
metric learning for human perception. In this model, items
are represented by points in a (possibly high-dimensional)
space, and the goal is to learn a distance metric such that
a smaller distance between a pair of items means that they
are semantically and perceptually closer, and vice versa.
Figure 1 (bottom) presents a PAQ for collecting similarity
data for metric learning, where the user is instructed to place
the slider at the precise point where the object appears to
transition from being similar to dissimilar. This sequence of
images could be generated by traversing a path in the latent
space of a generative model — given a latent feature vector,
the model can synthesize a corresponding image.

This example showcases two additional advantages of the
PAQ mechanism. First, PAQs provide “hard examples” by
design and thus allow effective learning. Consider Fig-
ure 1 (bottom): Items on the left of the spectrum are apples
(clearly similar to the reference), and items on the right are
pears (clearly dissimilar to the reference), and only a small
subset of items in the middle appear ambiguous. PAQs col-
lect information precisely about “confusing” items in this
ambiguous region. On the other hand, if a pairwise compar-
ison samples the target item uniformly at random from the

ones shown, it rarely falls in the ambiguous region. Without
information about confusing items, it is difficult to learn a
metric capable of disambiguating categories of items.

A second advantage is that the PAQ provides users with
the context of a specific dimension along which items vary.
For example, consider a pairwise comparison between the
reference item and the “yellow apple  selected in Figure 1.
They have similar shapes, but different colors, so the user
lacks context to judge whether they should be considered
similar or dissimilar. In contrast, the full spectrum provided
in the PAQ tells the user that the similarity judgment is
apples vs. pears. The access to such context improves self-
consistency in user responses (Canal et al., 2020).

1.1. Our contributions

We propose the perceptual adjustment query (PAQ), which
combines cardinal reporting and ordinal reasoning using
a sliding bar for relational questions. We demonstrate the
applicability of this query to metric learning under a Maha-
lanobis metric. We first present a mathematical formulation
of this in Section 2. We then show that the sliding bar re-
sponse can be viewed as an inverted measurement of the
metric matrix that we want to estimate, and this allows us
to restate our problem as that of estimating a low-rank ma-
trix from a specific type of trace measurements (Section 3).
However, our PAQ formulation differs from classical matrix
estimation due to two technical challenges: (a) the sensing
matrices and noise are correlated, and (b) the sensing ma-
trices are heavy-tailed. We propose a query procedure and
estimator that overcome these two challenges via sample
averaging and truncation (Section 3), and we prove statis-
tical error bounds on the estimator error (Section 4). The
unconventional nature of the sensing model and estimator
causes surprising behaviors in our error bounds; we present
simulations verifying that these behaviors in practice in
Section 5.

1.2. Related work

In metric learning, prior work considers using paired com-
parison (of the form “are these two items similar or dissim-
ilar”) (Ying et al., 2009; Bian & Tao, 2012; Guo & Ying,
2014; Bellet & Habrard, 2015) and triplet comparisons (of
the form “which of the two items @ and @’ is more similar
to the reference item x(?”’) (Mason et al., 2017). The met-
ric learning from triplets problem is generalized by Xu &
Davenport (2020) to consider an unknown reference point
(referred to as an “ideal point”) that captures different in-
dividual preferences. Tuple queries (Canal et al., 2020)
extends triplets to ranking more than two items with respect
to a reference item. PAQ can be viewed as extending this
set of items to a continuous spectrum. However, the goal
of tuple queries is to rank the items, whereas in PAQ the
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Figure 2: Given a reference item x and a query vector a, a
continuous path of items is formed {x + va : v € [0,00)}.
A user is asked to pick the first item along this path that is
dissimilar to the reference item, denoted « + va.

ranking is provided by the feature space and we ask people
to identify a transition point (similar vs. dissimilar) in this
ranking.

Our theoretical formulation (presented in Section 3) resem-
bles the problem of low-rank matrix estimation from trace
measurements (e.g., Recht et al., 2010; Negahban & Wain-
wright, 2011; Tsybakov & Rohde, 2011; Candes & Plan,
2011; Negahban et al., 2012; Cai & Zhang, 2013), and in
particular, when the sensing matrix is of rank one (Cai &
Zhang, 2015; Chen et al., 2015; Kueng et al., 2017; McRae
et al., 2022). However, our model presents two important
distinctions from prior literature. In our case, the sens-
ing matrices are both heavy-tailed and correlated with the
measurement noise. The heavy-tailed matrices violate the
assumptions of much prior work that relies on sub-Gaussian
or sub-exponential assumptions on the sensing matrices. We
draw particular inspiration from Fan et al. (2021), which
studies applying truncation to control heavy-tailed behavior
in a number of problem settings. However, in the low-rank
matrix estimation setting, Fan et al. (2021) only analyzes
the case of heavy-tailed noise under a sub-Gaussian design,
meaning their methodology and results are not applicable to
our problem setting.

2. Model

In this section, we present our model for the
perceptual adjustment query (PAQ) in metric learning.

2.1. Mahalanobis metric learning

We consider a d-dimensional feature space: thus each item
is represented by a point in R?. The distance metric model
for human similarity perception posits that there is a metric
on R? that measures how dissimilar items are perceived
to be. A recent line of work (Xu & Davenport, 2020;
Canal et al., 2022) has modeled the distance metric as a
Mahalanobis metric. If & € R%*? is a symmetric positive
semi-definite (PSD) matrix, the squared Mahalanobis dis-

tance with respect to X between items « and ' € R? is
|z — 2'|% := (x — ') " =(x — «'). The distance repre-
sents the extent of dissimilarity between items x and @’: if
we further have a perceptual boundary value y > 0, this
model posits that items x, ' are perceived as similar if
|l — '||% < y and dissimilar if || — 2'||% > y.

In Mahalanobis metric learning, we assume that perception
is (approximately) governed by an unknown “ground truth”
matrix 3*, and our goal is to estimate X* from user feed-
back. Note that the problem is scale-invariant, in the sense
that for any pair (X, y), the similarity predictions are exactly
the same as those made by the pair (¢X, cy) for any constant
¢ > 0. Hence, one can set y to be any positive value without
loss of generality. We adopt a high-dimensional framework
and, following existing work (Mason et al., 2017; Canal
et al., 2022), assume that the matrix X* is low-rank.

2.2. The perceptual adjustment query (PAQ)

We assume that every point in our feature space R? corre-
sponds to some item (e.g., if the space is the latent space
of a generative model). Recall from Figure 1 that a PAQ
collects similarity data between a pair of items, where a
reference item is fixed, and a spectrum of target items is
generated from a one dimensional path in the feature space.
Denote the reference item by & € R?. The target items
can be generated by any path in R?, but for simplicity, we
consider straight lines. For any vector a € R, we construct
the line {x + ya : v € [0,00)}. We call this vector a the
query vector. The PAQ traverses this line by increasing the
value of + starting from 0, as shown in Figure 2. In the user
interface, v represents the distance between the leftmost
possible location of the slider, and its current location, i.e.,
the length that the slider has traversed.

The PAQ instructs the user to slide to the transition point
where the target item transitions from being similar to dis-
similar with the reference item. According to our model,
this transition point occurs when the ¥*-Mahalanobis dis-
tance between the target item and the reference item is y.
According to our model, the ideal location, denoted by .,
at which the user stops the slider satisfies the equation

y=|z—(r+7.a)% =1a’Ta. (1

Note that the ideal PAQ response v, does not depend on
the specific reference item x but rather only on the query
direction a and the (unknown) metric matrix X*. When
querying users with PAQs, the practitioner has control over
how the query vectors a are selected. We discuss how to
select a in Section 3.2.

2.3. Noise model

Human responses are noisy. We model this noise as fol-
lows: in the PAQ response equation (1), we replace the



boundary value y by y + 1, where n € R represents noise.
Thus the user provides a noisy response v whose value sat-
isfies y2a " X*a = y + 1. This noise model implies that if
a' X*a is large, then in the user interface Figure 1 (bottom),
the semantic meaning of the item changes rapidly as the
user moves the slider along the direction a. In this case, the
slider ends up within a small interval around the true transi-
tion point. On the other hand, if a'X*a is small, then the
image changes slowly as the user moves the slider. In this
case, it is hard to distinguish where exactly the transition
occurs, so the slider ends up in a larger interval around the
transition point.

3. Methodology

In this section, we formally present the statistical estimation
problem for metric learning from PAQ data, and we develop
our algorithm for estimating the true metric matrix 3*.

3.1. Statistical estimation

Assume we make N PAQ response, using IV query vectors
{a;}}, that we can specify. Denote the noise associated
with these queries by random variables 71, ..., ny € R. We
obtain PAQ responses, denoted by 71, . . ., v, that satisfy

e Srai=y+m, i=1,...,N. 2)

We assume the noise variable 7 is independent.

Given the query directions {a;}}, and the PAQ responses
{7} |, we want to estimate the matrix 3*. We first rewrite
our measurement model as follows: denote the matrix inner
product by (A, B) := tr (A" B) for any two matrices A
and B of compatible dimension. Then, from (2), we write

2 _ yT‘f‘?? __ytn 3)
a’¥*a (aal,¥*)
Plugging this once more into (2), we have
y+n= (A" %),
where
A™ = ~2aa’ = MaaT. 4)

a'X*a

Hence, our problem resembles trace regression, and, in par-
ticular, low-rank matrix estimation from rank-one measure-
ments (because the matrix A™ has rank 1) (Cai & Zhang,
2015; Chen et al., 2015; Kueng et al., 2017; McRae et al.,
2022). We call A™ the sensing matrix, and a the sensing
vector. Classical trace regression assumes we make (noisy)
observations of the form y ~ (A, ¥*) where A is fixed
before we make the measurement; in our problem, the sens-
ing matrix A" depends on our observed response  and

associated sensing vector a. Hence, the process of obtain-
ing a PAQ response can be viewed as an inversion of the
standard trace measurement process. The inverse nature of
our problem makes estimator design more challenging, as
we discuss in the following section.

3.2. Algorithm

As our first attempt at a procedure to estimate 3*, we follow
the literature (Negahban & Wainwright, 2011; McRae et al.,
2022) and consider randomly sampling i.i.d. vectors a; ~
N (0, I;). We use standard least-squares estimation of 3*,
with nuclear-norm regularization to promote low rank. We
solve the following program:

1 & .
min ZZ; (v — (A=) 4 B ©)
where ||| is the nuclear norm, and Ay > 0 is a regulariza-
tion parameter. This is a convex semidefinite program and
can be solved with standard off-the-shelf solvers. However,
the inverted form of our measurement model creates two
critical issues when naively using (5):

* Dependence between the sensing matrix and noise.
Note that the sensing matrix (4) depends on the noise
n. Quantitatively, we have E [pA™] # 0 (see Ap-
pendix A.1). Standard trace regression analyses require
that this quantity be zero, typically assuming (at least)
that 7 is zero-mean conditioned on the sensing matrix A.
The failure of this to hold in our case introduces a bias
that does not decrease with the sample size V.

* Heavy-tailed sensing matrix. The factor —4— in A™

makes A™™ heavy-tailed in general. When a is Gaussian,
the term ﬁ is an inverse weighted chi-square random
variable, which has infinite higher moments (the number
of finite moments depends on the rank of 32*). This makes
error analysis much more difficult, as standard analyses

require the sensing matrix A to concentrate well.

To overcome these challenges, we make two key modifica-
tions to the procedure (5).

Step 1: Bias reduction via averaging. First, we want to
mitigate the bias due to the dependence between the sens-
ing matrix A™ and the noise 7. The bias term E [n.A™ ]
scales proportionally to E [(y + n)n] = E [n?]. Therefore,
to reduce this bias in the least-squares estimator (5), we
need to reduce the noise variance. We reduce the effective
noise variance (and hence the bias) by averaging i.i.d. sam-
ples. Operationally, instead of obtaining /N measurements
from N distinct sensing vectors {a;},, we draw sensing
vectors {a; }7, and collect m measurements, denoted by

{%?j )}'j’-”=1 , corresponding to each sensing vector a;. We



refer to n as the number of sensing vectors. To keep the total
number of measurements constant, we set n = % where
the value of m is specified later. For each sensing vector a;,
we compute the empirical mean of the m measurements:
1 & ; 1 & y+ () 47
=2 . (2 _ yrn Y+
Yi ~—*Z(%‘ ) == :

Ty ,: TSV,
mj:1 mjzlaiEa, a; ¥*a;

,(6)

m .
where we define the average noise by 7; := % > m(] ). This
j=1

averaging operation reduces the effective noise variance

V2

from var(n;) = v} to var(ij;) = .

Step 2: Heavy tail mitigation via truncation. Next, we
need to control the heavy-tailed behavior introduced by the
ﬁ term in the sensing matrix A™ . Note that the sam-
ple averaging procedure (6) does not mitigate this problem.
We adopt the approach in Fan et al. (2021) and truncate the
observations. Specifically, we truncate the averaged mea-
surements 77 to the value 37 := 52 A 7, where 7 > O is a
truncation threshold that we will specify. We then construct
the truncated sensing matrices
i _=2 T Y+
Az - ’Yz a;a; = (a;rz*ai

9

/\T> aia;r,izl,...,n.
)

While truncation mitigates heavy-tailed behavior, it also
introduces additional bias in our estimate. The truncation
threshold 7 therefore gives us another tradeoff, and in our
analysis to follow, we carefully set the value of 7 to balance
the effects of heavy-tailedness and bias.

Final algorithm. After these two steps, we substitute the
averaged and truncated matrices { A;}?_; into the original
least-squares problem (5). Specifically, we solve for

n

~ 1 ~ 2
Seagmin ~ > (y— (4, 5) + M, ©®
=xo Mo

where, again, \,, is a regularization parameter that we will
specify. The full query and estimation procedure is pre-
sented in Algorithm 1.

Practical considerations. In the averaging step, we col-
lect m measurements for each sensing vector a;. These
measurements could be collected from m different users.
Furthermore, recall from Section 2.2 that the measurements
do not depend on the reference item x. As a result, one
may also collect multiple responses from the same user by
presenting them the same query vector a; but with different
reference items x. In addition, recall from Section 2.1 that
the problem is scale-invariant. Practitioners are hence free
to set the boundary ¥ to be any positive value of their choice
without loss of generality, and the noise variance 1/% scales
accordingly with y. The user interface does not depend on
the value of y.

Algorithm 1 Metric learning from PAQ.

Input: number of total measurements N, averaging param-
eter m, truncation threshold 7, measurement value y, regu-
larization parameter \.

1: Compute the number of sensing vectors n = &

2: for: =1tondo "
3:  Draw a; ~ N (0, 1)
4 1 (m)

Obtain m PAQ measurements v, /,...,7, ~ using
a; and y

5: end for

6: fori =1ton do .
Compute averaged response 72 = % > (’yi(j ))2

—

8:  Compute truncated response 72 = 52 A T
9:  Compute truncated sensing matrices A; = y2a,;a
10: end for

~ n ~ 2
11: Compute ¥ € argming, ¢+ > (y - (Ai,E)) +
T i=
AllZ]
Output: matrix 3.

T

i

4. Theoretical results

We now present our main theoretical result, which is a finite-
sample error bound for estimating a low-rank metric from
inverted measurements with the nuclear norm-based estima-
tor (8). Our error bound depends on the averaging param-
eter m and truncation threshold 7. Recall that the direc-
tion vectors ay, ..., a, are sampled i.i.d. from N(0, I).
We have furthermore assumed that for any query direction
a, the noise variable 7 in the generic observation model
y+n = (v*aa’,X*) is independent of a, has variance v/2,

and is bounded as —y < 7 < n' for some constant ' > 0.

Theorem 1. Let y' = y + n' and k, be the median of
y + 7. Suppose that ¥* has rank r, with r > 8. Denote
by oy > --- > o, > 0 the non-zero singular values of 3*.
Assume that the truncation threshold T satisfies T > “(”Ty*)
Then there exist positive absolute constants ¢, C,C1, and

C5 such that, if the regularization parameter and number of
sensing vectors satisfy
1 v
oy m

tfd d T\ 1
/\nzcuﬁ<y \/7+r+<y > =+
o,rVn n o,r) T

©))

n > Card,

then any solution X to the optimization program (8) satisfies

. )\ 2
2 -2l <o (T2 m,

Y

(10)

with probability at least 1 — 4 exp (—d) — exp (—cn).
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Figure 3: Simulations quantifying the effect of dimension d, rank 7, and averaging parameter /m on estimation error.

The proof of Theorem 1 is presented in Appendix B. The
two sources of bias discussed in Section 3.2 appear in the
expression (9) for the regularization parameter \,, (and con-
sequently in (10)). The term scaling as 1/~ corresponds to
the bias induced by truncation, and decreases as the trun-
cation gets milder. The term scaling as »/m corresponds
to the bias from the noise—sensing matrix dependence. As
discussed in Section 3.2, m-averaging results in a bias that
scales like 1/m. Given the dependence of the estimation
error bound on the parameters m and 7, we carefully set
these to obtain the tightest possible bound as a function of
the number of fotal measurements N = mn.

Corollary 1. Recall N = mn. Assume the conditions of
Theorem 1 hold, that N 2, v} r*/2d, and that (v2)*’N/d > 1.
Set the averaging parameter m and truncation threshold T
to be

1/4
GRAN

+
and T = AN N
d o,r

11
o 1D
Then setting Ay, equal to its lower bound in (9), any solution
3 to (8) satisfies

. a2 [yt 2 5 l/%d s
IS -2 p<C2 (=) 7| 2 (12)
[ors

Ky
with probability at least 1 — 4 exp(—d) — exp (—c¢N/m).

Corollary 1 follows immediately from Theorem 1. We pro-
vide a proof for completeness in Appendix E. Under the
standard trace measurement model, if the measurement ma-
trices are i.i.d. according to some sub-Gaussian distribu-
tion and N 2 rd, then nuclear norm regularized estima-

tors achieve an error that scales as \/% (e.g., Negahban &
Wainwright, 2011; Tsybakov & Rohde, 2011). Allowing
heavier-tailed assumptions on the sensing matricestypically
results in additional log d factors but does not impact the
square-root rate (Negahban & Wainwright, 2012; Kueng
et al., 2017; Fan et al., 2021). However, a crucial assump-
tion in these results is that IE [nA] = 0, and thus there is no

bias due to measurement noise. Our inverted measurement
sensing matrix is heavy-tailed and leads to measurement
noise bias, which results in the one-third error rate.

5. Numerical simulations

In this section, we provide numerical simulations. Fo; all
results, we report the normalized estimation error ||X —
3*|| ¢ /11X || averaged over 20 trials. Shaded areas (some-
times not visible) represent standard error of the mean. For
all experiments, we follow Mason et al. (2017) and gen-
erate the ground truth matrix as ¥* = %U U, where

U € R?" is a randomly generated matrix with orthonor-
mal columns. The noise 7 is sampled from a uniform dis-
tribution on [—n', nT]. We set the regularization parameter,
truncation threshold, and averaging parameter consistent
with our theoretical results (see (9) and (11)).

Effects of dimension and rank. We first characterize the
effects of dimension d and matrix rank r. For all experi-
ments, unless we are sweeping a specific parameter, we set
y = 200, d = 50, r = 15, and nT = 10. Fig. 3a shows
the performance for varying values of d plotted against the
normalized sample size N/d. For all dimensions d, the er-
ror decays to zero as the total number of measurements N
increases. Furthermore, the error curves are well-aligned
when the sample size is normalized by d; this agrees with
the prediction of Corollary 1. Fig. 3b shows the performance
for varying values of rank r. Recall that for our theoretical
results we assume r > 8. When r > 8, the number of mea-
surements required for the same estimation error increases
as the rank increases. The error still decreases with IV for
r < 8, but at a markedly slower rate than when r > 8.

Effect of averaging parameter m. Equation (11) suggests
that the averaging parameter m should scale proportionally
to (N/d)*/3. To test this, we set y = 200, d = 50, r = 9,
and n" = 200. We vary values of m for different choices
of the (NN, d) pair, as shown in Fig. 3c. The empirically
optimal choice of m is observed to be the same when N/d is
fixed, regardless of the particular choices of NV or d.
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A. Preliminaries and Notation

In this section, we provide an overview of the key tools that are utilized in our proofs. We first introduce notation which is
used throughout our proofs.

Notation. For two real numbers a and b, let a A b = min{a, b}. Given a vector z € R%, denote ||z||; and ||z|2 as the ¢,
and /5 norm, respectively. Denote S~ := {x € R? : ||z||, = 1} to be the set of vectors with unit /> norm. Given a matrix
A € RU*4 denote ||Alr, ||Al|., and |All,, as the Frobenius norm, nuclear norm, and operator norm, respectively.
Denote S¥*?¢ = {A € R¥?: A = AT} to be the set of symmetric d x d matrices. Denote A = 0 to mean A is symmetric
positive semi-definite. For A > 0, define the (pseudo-) inner product (&, y) , = T Ay and the associated (pseudo-) norm
|z||a = V& T Az. For matrices A, B € R%*%_ denote (A, B) = tr (AT B) as the Frobenius inner product.

We use the notation f(z) < g(z) to denote that there exists some universal positive constant ¢ > 0, such that f(z) < ¢-g(x),
and use the notation f(x) 2 g(x) when g(x) < f(z).

We define random matrices

A_~2 T_ Y+tn
A—’}/ aa —maa (13)
and
A_~2 T _ (. Ytm T

as the sensing matrix formed with the m-averaged responses 7 and truncated responses 7, respectively.

A.1. Inverted measurement sensing matrices result in estimation bias.

Recall from Equation (4) that the random sensing matrix A" takes the form

inv __ y""l T

Standard trace regression analysis requires that the bias term E [nA] = 0, typically by assuming (at least) that 7 is zero-
mean conditioned on the sensing matrix A. The following lemma shows that the bias term associated with the inverted
measurements sensing matrix A'™ is nonzero, resulting in biased estimation

Lemma 1. Let A™ be the random matrix defined in Eq. (4) and 1 be the measurement noise. Then,

E [nA™] # 0. (16)

The proof of Lemma 1 is provided in Appendix A.6.1. As a result, utilizing established low-rank matrix estimators will
result in biased estimation.
A.2. Sub-exponential random variables.

Our analysis will depend on sub-exponential random variables, a class of random variables with heavier tails than Gaussian.
While many definitions of sub-exponential random variables exist (see, for example, Vershynin, 2018, Chapter 2.7), we will
make use of one particular property, presented below.

If X is a sub-exponential random variable, then there exists some constant ¢ (only dependent on the distribution underlying
the random variable X') such that for all integers p > 1,

(E|X ") < ep. (17)

A.3. Bernstein’s inequality.

A key ingredient in our proofs is the well-known Bernstein’s inequality, which is a concentration inequality for sums of
independent sub-exponential random variables.



Lemma 2 (Bernstein’s inequality, adapted from Boucheron et al., 2013, Theorem 2.10). Let X1, ..., X,, be independent
real-valued random variables. Assume exist positive numbers u; and uo such that

E[X?] <uy and E[X;!] < %u1u§_2f0r all integers p > 2, (18a)
Then for allt > 0,
1 & 2uit  uat
Pl=ST X —EXD] > /2 £ 22 < 2exp(—t). 18b
(n;( [Xi)) n+n> exp(—1) (18b)

A.4. Moments of the ratios of quadratic forms.

Because the quadratic term a " X*a appears in the denominator of our sensing matrices, our analysis depends on quantifying
the moments of the ratios of quadratic forms. This is done in the following lemma.

Lemma 3. There exists an absolute constant c > 0 such that the following is true. Let a ~ N'(0, I;), £* € R%*? be any
PSD matrix with rank r, and U € R4 pe an arbitrary symmetric matrix.

E 1 4 < c
aTS*a ) — oirt’

( a'Ua

a’Y*a

(a) Suppose that r > 8. Then we have

(b) Suppose that r > 2. Then we have
c
)< <ol (19)
orr
The proof of Lemma 3 is presented in Appendix A.6.2.

A.5. A fourth moment bound for 72,

Throughout our analysis, we will utilize the fact that 42 has a bounded fourth-moment. This bound is characterized in the
following lemma.

Lemma 4. Assume r > 8. Then the bound

E[(7)"] 5 (“mf 20)

oyr

holds, where o, is the smallest non-zero singular value of 32*.

4
The proof of Lemma 4 is presented in Appendix A.6.3. For notational simplicity of the proofs, we denote M = ¢ (M> .

orr

A.6. Proofs of preliminary lemmas

In this section, we present proofs for preliminary lemmas from Appendices A.1, A.4, and A.5.

A.6.1. PROOF OF LEMMA 1

We show that E [nAi”"} # 0. Using the independence of 7 and a and the assumption that 7 is zero mean, we have

E[pA™] = [Maa—r} 1)
_ T
=Eny+n)]E LT S g Y } (22)

T

This expectation is non-zero, as the random matrix aa ' is symmetric-positive semidefinite. Therefore, we have

E [nA™] # 0, as desired.

a'X*a



A.6.2. PROOF OF LEMMA 3

Without loss of generality, we assume that 3* is diagonal for the remainder of this proof. To prove each part of Lemma 3,
we utilize results on the moments of ratios of quadratic forms. For non-negative integers p and ¢, we first verify that the

T P
mixed moment E [((ZT;J:Z))Q] exists. By Bao & Kan (2013, Proposition 1), the mixed moment exists if % > ¢. This is

assumed to be true for all parts of Lemma 3.

.
By Bao & Kan (2013, Proposition 2), we have the following expression for the mixed moment E {((;TEUZ))Q] :

oo

_ 1 -1 T p
- 0 O/tq |A|E [(a AUA ) }dt, (24)

(aTUa)p
(a"X*a)?

where A; = (I; + 2t3*)~"/2 and |A,| is the determinant of A;. Our results will depend on characterizing |A;|. We begin

by noting that A; is a diagonal matrix of the following form

_ 1 -
(14-2toq)"/2

1
Ay = (1+2to,)'/2 1 ) (25)

1

It follows that the determinant |A;| can be written as the product |A;| = [];

1 ;
=1 (qzte )" Furthermore, this product can

be bounded as follows:
1 1

<A< —— 26
(14 2toy)7? = A < (1 + 2to;)72 (26)

We are now ready to prove parts (a) and (b).

Part (a). This case corresponds to the case where p = 0 and ¢ = 4. Using the integral expression (24) and upper bound
on determinant (26), with these values of p and ¢, we have

T P 7t3 A di @7
a’X*a - T(4) K
< 3 dt 2
—F4/ 1+2ta /2 (28)
0

Making the substitution s = 1 + 2to,., we can evaluate the integral as follows.

1 4 1 T/s—1\% 1
(aTE*a) 1 = 2I'(4)o, /( 20, ) ﬁds 29)

E

1 [ (s—1)°
57/ o (30)
o
"1
1 7 53 52 s 1
1
1 2 6 6 2
S - - . 32
U§<r—8 - 7"—2) (32)



Therefore, we have that there exists some absolute constant ¢ such that

1 4 c
a'X*a = odrt’ (33)

E

as desired.

Part (b). This case corresponds to the case where p = ¢ = 1. We begin again with the integral expression (24) and upper
bound on determinant (26):

E K a Ua )} - F(ll) 7|At|E [a”AUA,a) dt (34)

a'X*a

oo

r(1) / 1+2taﬁ/2 E[
0

< a'AUAa] dt (35)

We now bound the expectation term E [a” AU Aa]. Note that for a ~ N'(0, 1), the expectation E [a” Ba] = tr (B)
for any symmetric matrix B. Therefore, we have

Ela"AUAa] =tr(AUA,) (36)
< || AU Al 37)
Above, we have used the fact that tr (B) < || B||. for any symmetric matrix B. By Hélder’s inequality for Schatten-p

norms, we have that | AU A« < ||A¢ Hip U ||.. Because A; is diagonal and the entries of A, are bounded between 0
and 1, we can bound the operator norm as ||A||,, < 1. Therefore

Ela"AUAa] < |U|. (38)
Substituting this upper bound for the expectation term into the integral, we obtain
a'Ua T 1
E|——| <||U|« | =—————dt. 39
{aTE*a} < Ivl / (14 2to;)7> %9)
0

Evaluating this integral, we have for some absolute constant c,

.
B a' Ua < c
a'X*a| = o7

*s (40
as desired.

A.6.3. PROOF OF LEMMA 4

By the bounded noise assumption, y + 7 < y + nT. Therefore, we have
4 Y47 4
E { ¥ } = 41
(’y ) aY*a S

1 4
<aT§J*a> ] . (42)

which is done in Lemma 3. Therefore,

<(y+n'E

It therefore suffices to bound the fourth moment of Tz:* ,

1 4 1\*
() |2 (55)

as desired.



B. Proof of Theorem 1

Our goal is to derive finite sample error bounds for the estimator in Equation (8). For our estimator, if the regularization
parameter is set to be sufficiently large (which we will characterize later), then the error matrix is guaranteed to be in some
error set £. For rank r symmetric positive semidefinite matrices, the error set £ can be characterized as (Negahban &
Wainwright, 2011)

&= {UeSdXd Ul §4@||U||F}, (44)

where recall that ST denotes the set of symmetric d x d matrices.

A key condition for estimation under these settings is to ensure that the shrunken sensing matrices satisfy a restricted strong
convexity (RSC) condition over the error set £. That is, we must show that there exists some positive constant x such that

1 &~
- > (AU > w|U|;  forallU €&. (45)
=1

We begin by stating a proposition that characterizes the deterministic upper bound on the estimation error.

Proposition 1 (Fan et al., 2021, Theorem 1 with ¢ = 0). Suppose that ¥* has rank r and the shrunken sensing matrices
satisfy the restricted strong convexity condition with positive constant k. Then if the regularization parameter satisfies

Tem +~ 1<~ ~
An > 2| — A, —— A TA; 46
=2\~ Z; y - Z;< ) (46a)
1= 1= op
any optimal solution s of the optimization program (8) satisfies

N 32y/rAp

£ - < 22V (46b)

K

This theorem is a special case of Theorem 1 in (Fan et al., 2021), which is in turn adapted from Theorem 1 in (Negahban &
Wainwright, 2011) (see (Negahban & Wainwright, 2011) or (Fan et al., 2021) for the proof). Proposition 1 is a deterministic
and nonasymptotic result and provides a roadmap for proving upper bounds. First, we show that the operator norm (46a)
can be upper bounded with high probability, allowing us to set the regularization parameter \,, accordingly. Second, we
show that the RSC condition (45) is satisfied with high probability. We begin by bounding the operator norm (46a) in the
following proposition.

Proposition 2. Let y' =y + n'. Suppose that =* has rank r, with v > 8. Then there exists a positive absolute constant C'

such that the bound

1<, ~ 1. - . t o fd d TNI11 2

SN yAi - -3 (ALENA| <oyt yf+r+<y ) S0 @7)
n = n op or¥n n orr) T orm

i=1

holds with probability at least 1 — 4 exp (—d).
The proof of Proposition 2 is provided in Appendix B.1. Next, we show that the RSC condition (45) is satisfied with high
probability, as is done in the following proposition.

Proposition 3. Let k, be the median of y + 7] and let £ be the error set defined in Eq. (44). Suppose that the truncation
threshold T satisfies T > tr(ﬁig*) Then, there exist positive absolute constants k., ¢, and C such that if the number of
effective measurements satisfy

n > Crd (48a)

then we have

1o, & 2
=~ (AU > g <tr f;)) legle (48D)
=1

simultaneously for all matrices U € & with probability greater than 1 — exp(—cn).



The proof of Proposition 3 is provided in Appendix B.2. We now utilize the results of Propositions 1, 2 and 3 to derive our
final error bounds. By Proposition 2, we know that the operator norm (46a) can be upper bounded with high probability. We
set the regularization parameter \,, to satisfy

v fd d AN B 7
AnzclyT<y \/+T+<y ) Sy (49)
orrVn  n o) T oprm

for an appropriate constant C';. Furthermore, by Proposition 3, we have that there exists some universal constant C such that

2
if the number of effective measurements satisfies n > Csrd, the RSC condition also holds for constant x = k. (tr(KTJ*))

with high probability. Taking a union bound, we have that Proposition 2 and Proposition 3 hold simultaneously with
probability at least 1 — 4 exp(—d) — exp(—cn). By Proposition 1, the bound

« A’rL
X — 2% F <327 5 (50)
ke tr(HZy]*))
tr (2)) 2
<c (r()> Vi (51)
Ky
holds with probability at least 1 — 4 exp(—d) — exp(—cn), as desired. Above, we have defined C' = %
B.1. Proof of Proposition 2.
Our goal is to derive an upper bound on the operator norm
li EVfli<A- =) A, (52)
n — y 7 n — (2] 2

op
Step 1: decompose the error into five terms. We begin by adding and subtracting multiple quantities, as done below.

LS A - LS A A - LY A B[] B [yA] ~E A
=1

=1 i=1

3

[
+E [@2{, 2*)21“} - %i(ﬁi, =) A, (54)



Above, (i) follows from substituting in (A, 3*) — 7] for y for the E [y A] term. To obtain our final bound, we bound the
following operator norms.

W v AL B4 s i A-E[4] )
Term 1
+y|E[4] ~Ela]]

Term 2

+|[E[(4,57)4] - E (4, =) 4]

op
Term 3
+ ||E [(A, 2*>fﬂ — %Z(gu E*ﬂL
i=1 op
Term 4
+ H]E [ﬁA]Hop (55)
Term 5

In the remaining proof, we bound the five terms in (55) individually. We first discuss the nature of the five terms.

* Terms 1 and 4: These two terms characterize the difference between the empirical mean of quantities involving A and
their true expectation. In the proof, we show that the empirical mean concentrates around the expectation with high
probability (see Lemma 5 and Lemma 8).

+ Terms 2 and 3: These two terms characterize the difference in expectation introduced by truncating A to A. Hence,
these two terms characterize biases that arise from truncation. In the proof, these two terms diminish as T — 00
(see Lemma 6 and Lemma 7). Note that setting 7 to oo is equivalent to no thresholding, and in this case A becomes
identical to A, and both terms diminish.

+ Term 5: Term 5 is a bias term that arises from the fact that the mean of the noise 1 conditioned on sensing matrix A is
non-zero: E [ﬁ\A] # 0. We will show that this bias scales like %, allowing us to set the averaging number m to obtain
consistent estimation.

By setting the truncation threshold 7 carefully, we can make the Term 3 and 4 biases the same order as Terms 1 and 4.

Step 2: bound the five terms individually. In what follows, we provide five lemmas to bound each of the five terms
individually. In the proofs of the five lemmas, we rely on an upper bound on the fourth moment of the m-sample averaged

4
measurements 72. Recall from Lemma 4 in Appendix A.5 that we have E[(7%)%] < M = ¢ (%’f) . We also rely heavily
on the following truncation properties relating the m-sample averaged measurements 42 and truncated measurements 72:
W< (TP1)
72 <7} (TP2)
VoA =G =A0 1E =2 T (TP3)

The following lemma provides a bound for Term 1.

Lemma 5. Let gl, ey Avn be i.i.d copies of a random matrix A as defined in Eq. (14). There exists a universal constant
¢ > 0 such that the following is true. For any t > 0, we have

'S5-s[a]

with probability at least 1 — 2 - 9% - exp (—t).

MYt t
+ (56)
n n

~

op




The proof of Lemma 5 is provided in Appendix C.1. The next lemma provides a deterministic upper bound for Term 2.

Lemma 6. Let A and A be the random matrices defined in Eq. (13) and Eq. (14), respectively. Then the bound
1 / 2

< M

~Y
op T

(4] -2l

(57)

holds.

The proof of Lemma 6 is provided in Appendix C.2. The following lemma provides a deterministic upper bound for Term 3.

Lemma 7. Let A and A be the random matrices defined in Eq. (13) and Eq. (14), respectively. Then the bound

N AsY2
< (y+n" )M

H]E [(A,5)A] - [@, 2*>A“} (58)
op T
holds.
The proof of Lemma 7 is provided in Appendix C.3. The following lemma provides a bound for Term 4.
Lemma 8. Let jl, ceey An be i.i.d copies of a random matrix A as defined in Eq. (14). There exists a universal constant
¢ > 0 such that the following is true. For any t > 0, we have
- a1l ~ ~ MYttt
E[(4=)A4] - 2 Y (A, 34| s t = 59
(4,%7) n;< VA S [\ =+ (59)

op
with probability at least 1 — 2 - 99 - exp (—t).

The proof of Lemma 8 is provided in Appendix C.4. We note that Terms 2 and 3 are bias that result from shrinkage, but
crucially are inversely dependent on the shrinkage threshold 7. This fact allows us to set 7 so that the order of Terms 2 and 3

match the order of Terms 1 and 4. In particular, with the choice of 7 = M 14 \/g , all terms are of order M /4 \/g .

The final lemma bounds Term 5, which is a bias that arises from the dependence of the sensing matrix A on the noise 17,.

Lemma 9. Let A be the random matrix defined in Eq. (13). Suppose that £* has rank r with v > 2. Then we have

2[l7dl,] s 2. )

1
orrm

The proof of Lemma 9 is provided in Appendix C.5. We note that the bias scales with the variance of the m-sample averaged
noise 7, which scales inversely with m.

Step 3: combine the five terms. We set t = (log 9 + 1)d and denote 3" = y + nT. Utilizing Lemmas 5- 9, we arrive at an
upper bound for the operator norm. We have that with probability at least 1 — 4 exp(—d),
+ -7+ — (61)

< (a7
N(y +1)( n orrm

(1) T ld  d t\?%1 1 v?
S,yT(y +T+<y> S (62)
o,rVn n o.r) T  oprm

as desired. Above, (i) follows from substituting in the expression for M from Lemma 4.

n n

1 ~ 1 o

i=1 i=1

MY72d  d M1/2> 1 2
+ n

op

B.2. Proof of Proposition 3

Our objective is to show that the there exists some constant  such that the RSC condition

1~
~D (ALU)° > s|U (63)

i=1



holds uniformly for all matrices U in the error set

&= {U e s . ||U|, <4@||U||F}. (64)
Recall from the definition of A that
A; =72aa; (65)
Y+ T

so we have

_ 4
(A;,U)? = <Z/T;Zh A T) (a;rUai)2 .
a; a;

This implies that 3 (A;, U)? is nondecreasing in 7 when 7 > 0. As a result, defining the random matrix
i=1

AT _ y+ﬁ / T
AT = <aT2*a /\T>aa , (67)

we have that the following lower bound holds for any 7/ < 7.
1« ! -
A, U)? >~ 68
w Az “

are i.i.d copies of the random matrix (67). We will lower bound % > (ﬁ[/, U)? for an appropriate
i=1

value of 7/, which we will set later. To proceed, we will use a small-ball argument (Mendelson, 2015; Tropp, 2015) based

on the following lemma.

Above ﬁ{l, ce A7

n

Lemma 10 (Tropp, 2015, Proposition 5.1, adapted to our notation). Let X1, ..., X,, € R™? be i.i.d. copies of a random
matrix X € R™, Let E C R¥*?. Let £,Q > 0 be such that for every U € E,

P((X,U)[ = 2¢) > Q. (69)

Furthermore, denote the Rademacher width as

1 n
W =E |sup — E e(X;,U) |,
Uee 1T < >]
where €1, . .., ey, are i.i.d. Rademacher random variables independent of the X;’s. Then, for any t > 0, with probability at

least 1 —exp( ni )

UcE ‘
i=1

n 1/2
inf (i > (X, U>2> > £(Q —t) — 2W.

We apply Lemma 10 with X; = /LT/ and with set F as

E=E6n{U cR™: |U||p =1} (70)
={U esS™ :|U|r=1|U|. <4vV2r} (71)
The rest of the proof is comprised of two key steps. To invoke Lemma 10, the first step establishes the inequality (69) by

lower bounding ). The second step upper bounds the Rademacher width W. The following lemma provides the lower
bound on Q.



Lemma 11. Consider any 7' € (0, 7). There exist absolute constants ¢, co > 0 such that for every U € E, we have

AT Ky /
]P’(’(A ,U>‘zc1 <tr(2*)m)> > ¢, (72)

The proof of Lemma 11 is presented in Appendix D.1. We now turn to the second step of the proof, which is bounding the
Rademacher width WW. The next lemma characterizes this width.

Lemma 12. Consider any 7' € (0,7). Let AT ..., AT € R be i.id. copies of the random matrix A™ € R defined
in Equation (67). Let E be the set defined in Equation (71). Then, there exists some absolute constants c1 and co such that if

n > cd (73a)

the bound

E

1 « s /
sup 725,»(A17 7U)] < eyt % (73b)

UcE N im1
holds.

The proof of Lemma 12 is presented in Appendix D.2. Invoking Lemma 11 and Lemma 12, we have that for some constant
c4, as long as n > c4d, the bound

n /2 n 1/2
; 1 } : A 2 : 1 Z AT 2
—_ . > — .
I}IéfE (n i:1<A“U> ) - l}réfE (n (A, U) )

i=1
> ¢ M A (ca —t) — 37’ rd (74)
= 1\ tr(Z) 2 3 n

with probability at least 1 — exp (— %2) . Weset 7/ = tr('{%*), where k,, is the median of the random quantity y + 7). By the

assumption 7 > trfizyl*)’ this choice of 7/ satisfies 7/ < 7. Setting t = %2 we have for some constant ¢, that with probability

at least 1 — exp (—cn),

1/2
1 (<~ cies K K rd
inf — AT | U)? > 1 Y__ Y —. 75
I}relEn<;< . >> 2 tr () CBtr(E*) n (75)
2
Therefore, if n Zmax{(ég) ,04}rd, we have
wt LSO A 0y (G2 ) s 76)
inf — ; —_—
Uee n & v “\ 4 (T F

SN2 2
with probability at least 1 — exp (—cn). We conclude by setting r, = (le 2) and C' = max { (f,l‘g) ,04}.

C. Proof of supporting lemmas for Proposition 2

In this section, we prove the supporting lemmas for Proposition 2.

C.1. Proof of Lemma 5.

LetS 1 CS8%lbea %-covering of unit-norm d-dimensional vectors. By a covering argument (Vershynin, 2018, Exercise

4.4.3), for any symmetric matrix U € R?*<, its operator norm is bounded by [|U]|,, < 2sup,es, |v"Uw|. Hence, we
14



have

1<~ 1<~ B
fZAi—E[A} <2 sup |v fZAi—E[A} v
n =1 veSL n =1
op 1
I~ T+
=2 sup |— Z'UTA{U - E ['UTA’U} 77
’UES& n i=1

We now apply Bernstein’s inequality to bound (77). We first assume the Bernstein condition holds with uy = ¢y M 3 and
ug = coT for some universal positive constants ¢y, co. Namely, for each integer p > 2, we show that for any unit vector
v € RY,

|
p} < %ulup_z. (78)

We first provide the rest of the proof assuming that (78) holds, followed by proving (78). By Bernstein’s inequality (see
Lemma 2), under condition (78), we have that for any unit vector v € R? and any ¢t > 0,

1/2
P( 22<,/U1Mt+uzft>> < 2exp (). 79
n n

By Vershynin (2018, Corollary 4.2.13), the cardinality of the covering set S 1 is bounded above by 9¢. Therefore, by a union

bound,
M2t t
22<\/“1+W> <2.9%. exp(—t). (80)
n n

E HvTﬁv

% l_il vTAviv —E [’UTAV’U}

P | sup
vES 1
4

l i ’UTAVZ"U —E [’UTAVU:|
i=1

n-

Combining (77) and (80), for any ¢ > 0, we have

1 e ~ ~
=3 A -E[4]
nia

with probability at least 1 — 2 - 9¢ - exp (—t), as desired. It remains to prove the Bernstein condition (78).

M2t t
+ = 1)
n n

<

~

op

Proving the Bernstein condition (78) holds. We fix any unit vector v € R?. Plugging in A = F2aa’, we have
v  Av = 3%(v"a)?. Since the random variable a ~ N(0, I;), and v is a unit vector, it follows that v "'a ~ N(0,1).
Denote by G ~ N(0, 1) a standard normal random variable. For any integer p > 2, we have

~ @)
]E[‘vTAv‘p

=[] Lo [(72) 6]
(iﬁi) P2 E [(,72)2 G2p}
(iif)

< rp2 (IE [(/72)4} E [G4PD1

(iév) P72 (M -E[G"]) 7

/2

(82)

where steps (i) and (ii) follow from TP1 and TP2, respectively, step (iii) follows from Cauchy—Schwarz, and step (iv) follows
from the upper bound on the fourth moment of 42. Note that G? follows a Chi-Square distribution with 1 degree of freedom,
and hence sub-exponential. Recall from (17) in Appendix A.2 that there exists some constant ¢ > 0 such that we have

(E [(G2)p])l/p < ¢p for all p > 1. Hence, we have
(B[6*])" < (ep)? = 2ec) - By

2 p! - (2ec)? (83)



where step (i) is true by Stirling’s inequality that for all p > 1,

p
p!l > \/27p (£> eI > (B)p.
e

e

Plugging (83) to (82) and rearranging terms completes the proof of Bernstein condition (78).

C.2. Proof of Lemma 6.
We first begin by showing that E [A] — E {Av] > 0. Substituting in the definitions of A and A, we have E [A] — E [Av} =

E [(’72 — %2)aaw . By TP2, we have 42 > 72, meaning that 52 — 52 is non-negative. The expectation of a non-negative
quantity times an outer product is symmetric positive semidefinite. Therefore, we can write the operator norm as

[o|4] -2 (4]

— swp o' (E[4] ~E[4])v. (84)

op Uesd— 1
We now show that there exists a uniform upper bound on the quantity
o (E[A] ~E[4])v (85)

for a unit-norm d-dimensional vector v, therefore bounding the operator norm. We again note (v ' a) ~ N(0, 1) and denote

G ~ N(0,1). Then we rewrite the quantity (85) by substituting in the expression for sensing matrices A and A, as follows.

v (E[A] ~E[A])v=E[vT (A~ A) ] (86)
=E ['UT (’_yzaaT — §2aa—r) v] (87)
=E[(72-72) G2 (88)

We continue from here by utilizing properties of the shrunken measurements, as follows.

E[(7* -77) G2 Ly E[(3* - 72) G*1{7? > 7}] (89)
<E [¥*G*1{3* > 7}] (90)
< (E[(6*?] - E[1{3* = 7}] )1/2 o1
< (e Efe]) (G2 =) " ©2)

where step (i) follows from TP3, and (ii) and (iii) follow from Cauchy—Schwarz. We proceed by bounding each of the above
terms separately. First, recall from Lemma 4 in Appendix A.5 that the fourth moment E “,72 |4] is bounded above by M.

Second, G? is a sub-exponential random variable. By Appendix A.2, we have that E [|G2 \4] /4 < c for some constant c. It

1/2
remains to bound (]P’ (¥ >71) ) , which we do below.

Y2 () (B [|522]\ 72
(=) ()
v ~2147) /4
vi 1/4
(§> M 95)
;

Above, (iv) follows from Markov’s inequality, (v) follows from Cauchy—Schwarz, and (vi) follows from the fourth moment
bound on the averaged scaling 2. Putting everything together, we have that the bound

o (B14] - [4])0 g 2 96)



holds uniformly for all vectors v € S¢~!. Therefore,
~ _ M2
|E[4] -E[4]| 5=, 97)

op T

as desired

C.3. Proof of Lemma 7.

We begin by substituting in the definition A = ¥2aa ', the matrix (A, *) A can be written as 5*a " X*a. Similarly, we
can re-write the matrix (A, £*) A as 74 (aTE*a) aa'. Therefore, our goal is to bound the operator norm

13" =7") (a"=*a) aa’| | (98)

We note that the matrix (7* —3*) (a” $*a) aa’ is symmetric positive semidefinite, as it is the product of a non-negative
scalar (¥* —5*) (a'X*a) and an outer product. Similar to the proof of Lemma 6, we now show a uniform upper bound
on the quantity v 'E [(3* — 3*) (@ £*a) aa '] v for arbitrary unit-norm d-dimensional vector v.

Again, note that v " a ~ N(0, 1) and denote G' ~ N(0, 1). We begin by substituting in the expressions for G.

v'E[(7'-7") (a"Z*a)aa"|v=E[(¥' —7") (a"=*a) v aa v] (99)
=E[(7'-7") (a"=%a) G7] (100)
Next, we can proceed by manipulating the 4* — 5% term to remove the term a ' £*a, as follows.
E[(7* -7 (a"=%a) G*1{+* > 7}] =E [(¥* +7%) (3° = 7?) (a' =*a) G?] (101)
@E[za (* —7%) (a"*a) G7] (102)
W [(y+1) (72 - 7) &7 (103)
"o+ ahE (3% =7°) G*1{y* = 7}] (104)
Above, (i) follows from TP2, (ii) follows from the definition 7% = —¥£7— and (i4i) follows from TP3 and the upper bound

on noise 7).

The rest of the proof follows the exact steps of the proof of Lemma 6, provided in Section C.2. Therefore, we have the bound

N + T ]\41/2
[E[(5 - 7") (aT5*a) aaT]|, 5 WHOMZ (105)

T

as desired.

C.4. Proof of Lemma 8

The proof follows the steps as the proof of Lemma 5, and we explain the difference where we now provide a Bernstein
condition with u; = ¢1(y +n")? and us = c2(y + n')7. Namely, for every integer p > 2, we have (cf. 78)

H T(A, =) Av ’ } —ulug 2, (106)

Plugging in A = 3%aa T, we have

} (107)

(")IE[( 7P - ‘v AvH (108)

Lty HUTAH;‘ ] (109)



~ P
Plugging in (78) from Lemma 5 to bound the term [E HvTAv‘ } in (109) completes the proof of the Bernstein condi-
tion (106).

Above, (i) follows from TP2, (ii) follows from the definition 2 = a%’;’za , and (¢i¢) follows from the upper bound on the
noise 7. The rest of the proof follows in the same manner as the proof of Lemma 5, as presented in Section C.1, with an

additional factor of y + n'. Therefore, like in Section C.1, the bound

- IET L ~ MYttt
E [ Az } _ - LENA| < T i
(ADNA| - =3 (A Z9A| S (y+n') + (110)
=1 op
holds with probability greater than 1 — 2 - 9¢ - exp (—t), as desired.
C.5. Proof of Lemma 9.
Substituting in A = ¥%aa’ = ¥&1-aa’, we have
-
_ aa
E |nA =|E |7 N)———
A |
T
aa
= (|E[n M -E | —==—
R P |
o} aa’
= 1IE | == 111
m {aTE*a} op (1
To bound the operator norm term in (111), recall from Lemma 3(b) in Appendix A.4 that for any matrix U, we have
a'Ua 1
E < — U ||« 112
<aTE*a> ~ O’TTH I (112)
Note that % is symmetric positive semidefinite, so we have
T T
aa aa
E|l—<—|| = E
H |:a’T2*a:| op vesc;l‘li)_l v |:O,TE*G,:| ‘
T (ay2y T
— sup E {a _(rm) )a]
veSd—1 a'Y*a
)
< sup fov " .
rl vesd-1
iy 1
L (113)
orT
where step (i) is true by plugging in (112), and step (ii) is true because ||vv ||, = 1 for any unit norm vector v.
Plugging (113) back to (111), we have
_ 1 V2
E[7A]| S — 114
|| [77 ]Hop ~ o m’ ( )

as desired.

D. Proof of supporting lemmas for Proposition 3

In this section, we prove the supporting lemmas for Proposition 3.



D.1. Proof of Lemma 11

For the proof, we first fix any U € €N {U € S : |[U||r = 1}. Let ,, be the median of y + 7 and let G be the event
that y + 7 > k,, which occurs with probability % For any £ > 0, because the averaged noise 7] and sensing vector a are
independent,

P (‘<AT’,U>‘ > g) —_p ((a%;fa m’) l(aa™, U] > g) (115)
P<<ayT;’a m’) l(aa™, U] zg‘g)[@(g) (116)
- %}p ((ayT;”a /\7—’> [(aa™,U)| > 5’g) (117)
> %IP ((aT’;y*a Ar’) [(aa™,U)| > 5) (118)

We proceed by bounding the terms in (118) separately.

Lower bound on P (|(aa™,U)| > ¢1). We use the approach from Kueng et al. (2017, Section 4.1). By Paley-Zygmund
inequality,

(119)

T 2 1 T 2 1 (]E WaaT’U)‘QDQ
P(\(aa U > SE {|<aa U D = E[|<aaT,U>|4}

As noted in Kueng et al. (2017, Section 4.1), there exists some constant ¢, such that for any matrix U with unit Frobenius
norm,

E “(aaT,U)ﬂ >1 and E “(aaT,U)ﬂ < (IE [|<aaT,U>|2])2. (120)

Note that by the definition, every matrix U € E has unit Frobenius norm. Utilizing Paley-Zygmund (119) and the bounds
on the second and fourth moment of (a a’, U) (120), there exist positive constants ¢; and ¢y such that

P([(aa™,U)| > c1) > co. (121)

Upper bound on a" X*a. By Hanson-Wright inequality (Rudelson & Vershynin, 2013, Theorem 1.1), there exist some
positive absolute constants ¢ and ¢} such that for any ¢ > 0, we have

a'T%a < d (tr (Z*) + | Z*| s VE + 1= [lop t) (122)

with probability at least 1 — 2 exp (—ct). Set ¢ to be a constant such that 2 exp (—ct) = % and note that for symmetric
positive semidefinite matrix *, the bounds || X* || < tr (3*) and || £*[|,, < tr (£*) hold. As a result, we have that there
exists some constant c3 such that

]P’(aTE*a < eatr (z:*)) >1— % (123)

By a union bound of (121) and (123), we have

Ry / T Ky /
> - J
P((aTE*a /\T) ’(aa 7U)| > (63tr(2*) /\T))

K K
>P y '>_ W A ) 4+P TUY>e¢)=1
- (aTE*a/\T 03tr(2*)AT>+ (|<aa, >}*Cl)

K K
B (aTz*a - catr(E*)) T (|<aa ’U>| = Cl) 2 (124)



Redefining constants c¢; and co appropriately, we have

AT ﬁy /
P<’<A aU>‘201 (tr(E*)/\T>> > ca, (125)

as desired.

D.2. Proof of Lemma 12

We begin by noting that for any matrix U € FE,

1 <& - @ 1SN~
E |sup — g (AT, U)| <E |sup |— €, AT Ul
lUGE n ; < >1 UeE || ; op H H
(i) 1S~
<4V2rE |||=- ZsiAz-T , (126)
n
i=1 op

where step (i) follows from Holder’s inequality, and step (ii) follows from the definition of the set E. It remains of the
proof to bound the expected operator norm in (126). We do this with a trivial modification of the approaches in Vershynin
(2010, Section 5.4.1), Tropp (2015, Section 8.6), Kueng et al. (2017, Section 4.1) to accommodate the bounded term

(M AT ) that appears in each of the matrices ﬁ:l As aresult, there exist universal constants ¢ and co such that if n

a/Z*a
d
< 017’\/7 (127)
n

satisfies n > cod, then the bound

E

n
1 ~ 7
— E g A7
n

i=1

holds. We conclude by re-defining c; appropriately.

op

E. Proof of Corollary 1

The proof consists of two steps. We first verify that the choices of the averaging parameter m and truncation threshold 7 as

22 /s +
m:K(V”) N) J and =24 N (128)

d oy md
satisfy the assumptions n 2 rd and 7 > tr(ﬁTy*) We then invoke Theorem 1.

Verifying the condition on n. We have

N
n=—
m
-1/3
W (ZR
d
g \1/3
_ 2
= (N (V%)2> (129)
(ii) d 1/3
S 2\2,.3 12
> ((1/,7) r°d (1/%)2> (130)
= rd, (131)

where step (i) is true by plugging in the choice of m from (128), and step (ii) is true by plugging in the assumption
N 2 v2 r*/2d. Thus the condition n 2 rd of Theorem 1 is satisfied.



Verifying the condition on 7. For the term ,/% in the expression of 7 in (128), note that, by the previous point,

m

N — n > rd (with a constant that, WLOG and by necessity, is greater than 1). Thus 4/ % > /r > 1. Therefore, it suffices
to verify that

y' s _ Ny .
opr T tr(X¥)

(132)

By definition, we have yT > ky. Furthermore, since 3* is symmetric positive semidefinite, its eigenvalues are all non-
negative and are the same as singular values, and hence o,.r < tr (3*). Therefore, we have (132) holds, verifying the
condition on 7.
Invoking Theorem 1. By setting \,, to its lower bound in (9) and substituting in n = N/m and our choice of 7 from (128),
we have
)2 d y2
)\nzcl(y)( m+’7>. (133)
o,T N m

Substituting in our choice of m from (128), we have

1/3
12 (124
A, = cl% <VJ’([> . (134)

Substituting this expression for A, into the error bound (10) and absorbing C into the constant C, we have

R *\2 T\ 2 2 s
HE—EWF§C<“@)>(y)/ﬁ<””> . (135)
opr Ky N

Using the fact that tr (3*) < o7, we have

N 2 1 2 24 /3
E—EWFSO(Q>(y>r%<”’> 7 (136)
o, Ky N

as desired.



